1
|
Kim J, Kim YE, Hong S. Traceless Nucleophile Strategy for C5-Selective C-H Sulfonylation of Pyridines. Angew Chem Int Ed Engl 2024; 63:e202409561. [PMID: 39126202 DOI: 10.1002/anie.202409561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/12/2024]
Abstract
The functionalization of pyridines is crucial for the rapid construction and derivatization of agrochemicals, pharmaceuticals, and materials. Conventional functionalization approaches have primarily focused on the ortho- and para-positions, while achieving precise meta-selective functionalization, particularly at the C5 position in substituted pyridines, remains a formidable challenge due to the intrinsic electronic properties of pyridines. Herein, we present a new strategy for meta- and C5-selective C-H sulfonylation of N-amidopyridinium salts, which employs a transient enamine-type intermediate generated through a nucleophilic addition to N-amidopyridinium salts. This process harnesses the power of electron donor-acceptor complexes, enabling high selectivity and broad applicability, including the construction of complex pyridines bearing valuable sulfonyl functionalities under mild conditions without the need for an external photocatalyst. The remarkable C5 selectivity, combined with the broad applicability to late-stage functionalization, significantly expands the toolbox for pyridine functionalization, unlocking access to previously unattainable meta-sulfonylated pyridines.
Collapse
Affiliation(s)
- Jieun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Ye-Eun Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), 34141, Daejeon, Republic of Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), 34141, Daejeon, Republic of Korea
| |
Collapse
|
2
|
Liu S, Sun Z, Lei X, Miao T, Zhou Q, Chen R, Wang J, Ren F, Pan Y, Cai Y, Tan Z, Liu W, Liu X, Li J, Zhang Y, Xu B, Liu Z, Chen W. Stable Surface Contact with Tailored Alkylamine Pyridine Derivatives for High-Performance Inverted Perovskite Solar Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2415100. [PMID: 39548905 DOI: 10.1002/adma.202415100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 10/29/2024] [Indexed: 11/18/2024]
Abstract
Formamidinium-cesium lead triiodide (FA1-xCsxPbI3) perovskite holds great promise for perovskite solar cells (PSCs) with both high efficiency and stability. However, the defective perovskite surfaces induced by defects and residual tensile strain largely limit the photovoltaic performance of the corresponding devices. Here, the passivation capability of alkylamine-modified pyridine derivatives for the surface defects of FA1-xCsxPbI3 perovskite is systematically studied. Among the studied surface passivators, 3-(2-aminoethyl)pyridine (3-PyEA) with the suitable size is demonstrated to be the most effective in reducing surface iodine impurities and defects (VI and I2) through its strong coordination with Npyridine. Additionally, the tail amino group (─NH2) from 3-PyEA can react with FA+ cations to reduce the surface roughness of perovskite films, and the reaction products can also passivate FA vacancies (VFA), and further strengthen their binding interaction to perovskite surfaces. These merits lead to suppressed nonradiative recombination loss, the release of residual tensile stress for the perovskite films, and a favorable energy-level alignment at the perovskite/[6,6]-phenyl-C61-butyric acid methyl ester interface. Consequently, the resulting inverted FA1-xCsxPbI3 PSCs obtain an impressive power conversion efficiency (PCE) of 25.65% (certified 25.45%, certified steady-state efficiency 25.06%), along with retaining 96.5% of the initial PCE after 1800 h of 1-sun operation at 55 °C in air.
Collapse
Affiliation(s)
- Sanwan Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Zhenxing Sun
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xia Lei
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Tianyin Miao
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Qisen Zhou
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Rui Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jianan Wang
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Fumeng Ren
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yongyan Pan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Yong Cai
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Zhengtian Tan
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Wenguang Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Xiaoxuan Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
| | - Jingbai Li
- Hoffmann Institute of Advanced Materials, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yong Zhang
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Baomin Xu
- Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zonghao Liu
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| | - Wei Chen
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Luoyu Road 1037, Wuhan, 430074, China
- Optics Valley Laboratory, Hubei, 430074, China
| |
Collapse
|
3
|
Liu YY, Zhai YT. Iron-Catalyzed One-Pot Cascade Reactions of Oximes with Inactivated Saturated Ketones: Entry to Highly Substituted Pyridines. J Org Chem 2024. [PMID: 39509683 DOI: 10.1021/acs.joc.4c02361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
An iron-catalyzed oxidative [3 + 3] annulation of oxime esters with inactivated saturated ketones is described. This cascade strategy allows one-step rapid synthesis of various structurally important pyridines through an oxidative dehydrogenation/annulation/oxidative aromatization sequence via direct α,β-dehydrogenation of simple saturated ketones followed by annulation with oximes. This method shows good functional group tolerance, readily accessible starting materials, a wide substrate scope, high chemoselectivity, and no need for extra stoichiometric oxidant and is also applicable to the late-stage functionalization of natural products.
Collapse
Affiliation(s)
- Yan-Yun Liu
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Yu-Ting Zhai
- School of Chemical and Environmental Engineering, Hunan Institute of Technology, Hengyang 421002, China
| |
Collapse
|
4
|
Navazeni M, Zolfigol MA, Torabi M, Khazaei A. Application of magnetic deep eutectic solvents as an efficient catalyst in the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a cooperative vinylogous anomeric-based oxidation. RSC Adv 2024; 14:34668-34678. [PMID: 39479491 PMCID: PMC11520567 DOI: 10.1039/d4ra05177g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 10/13/2024] [Indexed: 11/02/2024] Open
Abstract
Magnetic deep eutectic solvents (MDESs) are adjuvants and an emerging subclass of heterogeneous catalysts in organic transformations. Herein, choline chloride (Ch/Cl) embedded on naphthalene bis-urea-supported magnetic nanoparticles, namely, Fe3O4@SiO2@DES1, was constructed by a special approach. This compound was scrutinized and characterized by instrumental techniques such as FTIR, thermogravimetry and derivative thermogravimetry (TGA/DTG), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), elemental mapping, vibrating sample magnetometer (VSM) and X-ray diffraction (XRD) analyses. Potential catalytic activity of Fe3O4@SiO2@DES1 was impressive, facilitating the synthesis of new 1,2,3-triazole-nicotinonitrile hybrids via a multicomponent method with 65-98% yields. Enhanced rates, high yields, mild reaction conditions, and recycling and reusability of Fe3O4@SiO2@DES1 are the distinct benefits of this catalytic organic synthetic methodology.
Collapse
Affiliation(s)
- Monireh Navazeni
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Mohammad Ali Zolfigol
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Morteza Torabi
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| | - Ardeshir Khazaei
- Department of Organic Chemistry, Faculty of Chemistry and Petroleum Sciences, Bu-Ali Sina University Hamedan Iran
| |
Collapse
|
5
|
Agbaria M, Egbaria N, Nairoukh Z. Dearomative spirocyclization of ynamides. Chem Sci 2024:d4sc05541a. [PMID: 39502502 PMCID: PMC11533057 DOI: 10.1039/d4sc05541a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Accepted: 10/21/2024] [Indexed: 11/08/2024] Open
Abstract
Spiro N-heterocycles, particularly aza-spiro piperidines, have shown significant promise in pharmaceutical applications due to their ability to enhance physicochemical properties. Despite their potential, the preparation of these complex structures poses significant challenges. To address this, we propose a one-pot dearomative spirocyclization reaction of ynamides. This method involves a copper-catalyzed carbomagnesiation reaction, achieving chemo-, regio-, and stereoselective formation of vinyl metal intermediates. Upon the addition of a Lewis acid, these intermediates undergo a regioselective nucleophilic dearomatization event, facilitating the synthesis of diverse aza-spiro dihydropyridine scaffolds with multiple functional handles. Various Grignard reagents, diverse ynamides, and acylating reagents have been explored. A subsequent hydrogenation reaction provides access to both partially and fully reduced spirocyclic frameworks, broadening the scope of spirocyclic structures with potential medicinal applications.
Collapse
Affiliation(s)
- Mohamed Agbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Nwar Egbaria
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, Casali Center of Applied Chemistry, The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| |
Collapse
|
6
|
Li YX, Liu QY, Zhang Y, Liu MM, Liu X, Shen MH, Wang FM, Xu HD. α-( N-Alkyl-N-heteroarenium)-α-diazoacetates: synthesis and reactivity of a novel class of 'onium' diazo compounds. Org Biomol Chem 2024; 22:8109-8113. [PMID: 39291542 DOI: 10.1039/d4ob01056f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Treatment of alkyl α-(N-heteroaryl)-α-diazoacetates with alkylating reagents affords diazoacetate N-heteroarenium salts. These novel 'onium' diazo compounds are mostly yellow solids, displaying increased thermal and acid stability. Their tetrafluoroborates undergo rhodium catalyzed [2 + 1] and Doyle-Kirmse reactions under mild conditions, suggesting the N-quaternization an effective means of elimination of N-coordination caused catalyst toxicity.
Collapse
Affiliation(s)
- Ya-Xi Li
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Quan-Yun Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Yi Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Miao-Miao Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Xiaoqian Liu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Mei-Hua Shen
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| | - Fang-Ming Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang, 212003, China.
| | - Hua-Dong Xu
- School of Pharmacy, Changzhou University, Changzhou, 213164, China.
| |
Collapse
|
7
|
Ren C, Chen S, Yuan Z, Fu R, Cui Y, Ma Z, Li W, Li X. Cobalt Nanoparticles Catalyzed N-Heterocycles Synthesis via Acceptorless Dehydrogenative Coupling. Chemistry 2024; 30:e202402168. [PMID: 39072825 DOI: 10.1002/chem.202402168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/04/2024] [Accepted: 07/27/2024] [Indexed: 07/30/2024]
Abstract
The acceptorless dehydrogenation reaction is a sustainable and atom-economical methodology in organic synthesis, resulting in the byproducts of only hydrogen or water. Herein, a robust Co-Si/CN catalyst (derived from ZIF@SiO2 composite) has been synthesized through a one-step assembly process via pyrolysis and etching. This catalyst has been employed for the acceptorless dehydrogenative coupling of 2-aminoalcohols with secondary alcohols, enabling efficient conversion of various substrates into desired quinoline or pyridine derivatives with a yield of up to 94 %.
Collapse
Affiliation(s)
- Changyue Ren
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Shuiyan Chen
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Zeli Yuan
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Rui Fu
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Yanbin Cui
- Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, CAS Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, Guangdong, 510640, China
| | - Zhuang Ma
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| | - Weizuo Li
- School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu, 213164, China
| | - Xinmin Li
- College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou, 563003, China
| |
Collapse
|
8
|
Bote IC, Krevlin ZA, Crespo MCF, Udomphan S, Levin CT, Lam CC, Glanzer AM, Hutchinson HL, Blades AM, McConnell DL, Lin C, Frank JP, Strutton WR, Merklin JC, Sinardo BA, Gueye KJ, Leiman KV, Thayaparan A, Adade JKA, Martinez NL, Kramer WW, Majireck MM. Bench-Stable 2-Halopyridinium Ketene Hemiaminals as Reagents for the Synthesis of 2-Aminopyridine Derivatives. Org Lett 2024. [PMID: 39303224 DOI: 10.1021/acs.orglett.4c02915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
2-Chloro-1-(1-ethoxyvinyl)pyridinium triflate and several other bench-stable N-(1-alkoxyvinyl) 2-halopyridinium triflates have been developed as reagents for the synthesis of valuable 2-aminopyridine scaffolds via unusually mild SNAr substitutions with amine nucleophiles. Advantages of this approach include an operationally simple mix-and-stir procedure at room temperature or mild heat and ambient atmosphere and without the need for transition metal catalysts, coupling reagents, or high-boiling solvents. The stable N-(1-ethoxyvinyl) moiety serves as a dual SNAr-activating group and pyridine N-protecting group that can be cleaved under thermal, acidic, or oxidative conditions. Preliminary results of other nucleophilic substitutions using oxygen-, sulfur-, and carbon-based nucleophiles are also demonstrated.
Collapse
Affiliation(s)
- Isabelle C Bote
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Zoe A Krevlin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Maria Christina F Crespo
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Sudchananya Udomphan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Carolyn T Levin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Christie C Lam
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Amy M Glanzer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Holly L Hutchinson
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Alisha M Blades
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Danielle L McConnell
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Crystal Lin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - John P Frank
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - William R Strutton
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Jordan C Merklin
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Beau A Sinardo
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Khady J Gueye
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Karly V Leiman
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Ashley Thayaparan
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Joel K A Adade
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Nestor L Martinez
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Wesley W Kramer
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| | - Max M Majireck
- Chemistry Department, Hamilton College, 198 College Hill Rd., Clinton, New York 13323, United States
| |
Collapse
|
9
|
You Y, Lin S, Tang C, Li Y, Yan D, Wang D, Chen X. Dual-/multi-organelle-targeted AIE probes associated with oxidative stress for biomedical applications. J Mater Chem B 2024; 12:8812-8824. [PMID: 39150370 DOI: 10.1039/d4tb01440e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
In situ monitoring of biological processes between different organelles upon oxidative stress is one of the most important research hotspots. Fluorescence imaging is especially suitable for biomedical applications due to its distinct advantages of high spatiotemporal resolution, high sensitivity, non-invasiveness, and in situ monitoring capabilities. However, most fluorescent probes can only achieve light-up imaging of single organelles, thus the combined use of two or more probes is usually required for monitoring biological processes between organelles, which can suffer from tedious staining and washing procedures, increased cytotoxicity and poor photostability. Exogenetic oxidants can affect broad-spectrum subcellular organelles, which are not conducive to in situ monitoring of biological processes between specific organelles. To tackle these challenges, a series of dual-/multi-organelle-targeted aggregation-induced emission (AIE) probes associated with oxidative stress have been designed and developed in the past few years. Herein, the recent progress of these AIE probes is summarized in biomedical applications, such as apoptosis monitoring, interplay between organelles, microenvironmental changes of organelles, organelle morphology tracking, precise cancer therapy, and so forth. Moreover, the further outlook for dual-/multi-organelle-targeted AIE probes is discussed, aiming to promote innovative research in biomedical applications.
Collapse
Affiliation(s)
- Yuanyuan You
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Songling Lin
- School of Pharmacy, Guangdong Medical University, Dongguan, 523808, China.
| | - Chengwei Tang
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Yuchao Li
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| | - Dingyuan Yan
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaohui Chen
- Institute of Laboratory Medicine, School of Medical Technology, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
10
|
Yin Z, Cao Y, Sun W, Chen G, Fang X, He L. 3-Methylpyridine: Synthesis and Applications. Chem Asian J 2024; 19:e202400467. [PMID: 38923814 DOI: 10.1002/asia.202400467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 05/29/2024] [Accepted: 06/20/2024] [Indexed: 06/28/2024]
Abstract
3-Methylpyridine holds a pivotal role in organic chemistry as it constitutes a fundamental structure in numerous biologically active compounds. Its significance is underscored by its involvement in synthesizing vitamin B3 and developing pyridine insecticides, garnering considerable attention. Consequently, chemists have dedicated efforts to devising efficient and environmentally friendly methods for its preparation. This review systematically reviews several synthetic routes to 3-methylpyridine, alongside recent advancements, while summarizing its application progress in various organic transformations.
Collapse
Affiliation(s)
- Zihang Yin
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
- Key Laboratory of Advanced Metallic Materials of Jiangsu Province, School of Materials Science and Engineering, Southeast University, 2 Southeast University Road, Nanjing, 211189, China
| | - Yanwei Cao
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| | - Wen Sun
- Shannxi Coal Chemical Industry Technology Research Institute Co.,Ltd, No.166 of 7th Shenzhou Rd, Civil Aerospace Industrial Base, Xi'an, 710000, China
| | - Gang Chen
- Shannxi Coal Chemical Industry Technology Research Institute Co.,Ltd, No.166 of 7th Shenzhou Rd, Civil Aerospace Industrial Base, Xi'an, 710000, China
| | - Xianjie Fang
- Key Laboratory of Organosilicon Chemistry and Material Technology of Ministry of Education, Key Laboratory of Organosilicon Material Technology of Zhejiang Province, College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, 2318 Yuhangtang Road, Hangzhou, 311121, China
| | - Lin He
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, No.18 Tianshui Middle Road, Lanzhou, 730000, China
| |
Collapse
|
11
|
Shen Y, Zhang Y, Zhang C, Li H, Hu C, Yu Z, Zheng K, Su Z. Elucidating Mechanism and Selectivity in Pyridine Functionalization Through Silylium Catalysis. Chemistry 2024; 30:e202402078. [PMID: 38976314 DOI: 10.1002/chem.202402078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/05/2024] [Accepted: 07/08/2024] [Indexed: 07/09/2024]
Abstract
The functionalization of aromatic N-heterocycles through silylium activation demonstrates exceptional selectivity and efficiency. Density functional theory (DFT) calculations unveil the detailed silylium catalysis mechanism and elucidate the origins of selectivity in this reaction. The phosphoramidimidate sulfonamide (PADI) precatalyst orchestrates of the catalytic cycle via three elementary steps. The Brønsted acidity of precatalyst significantly influences both the formation of silylium-based Lewis acid active species and the silylium activation of pyridine. Unlike disulfonimide (DSI)-type precatalysts, both Tf2NH and PADI precatalysts with strong acidities can easily promote the generation of activated silylium pyridine species. A semi-enclosed 'rigid' electronegative cavity in PADI-type anions constructs a well-defined recognition site, facilitating engagement with the positively charged silylium pyridine species. Due to the high electrophilicity and less steric demand at the C4-position of the pyridine substrate, the product with C4-regioselectivity was predominantly generated.
Collapse
Affiliation(s)
- Yanling Shen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Yan Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Cefei Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Haoze Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Changwei Hu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhipeng Yu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education College of Chemistry, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
12
|
Ma Y, Xu T, Yuan Y, Chen Y, Xiao F, Deng GJ. Copper-Catalyzed Four-Component Domino Cyclization for the Synthesis of 2-Methylpyridines. J Org Chem 2024; 89:11994-12000. [PMID: 39153208 DOI: 10.1021/acs.joc.4c00620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2024]
Abstract
A convenient protocol for synthesis of unsymmetrical 2-methylpyridines from acetyl ketones, ammonium salts and tertiary amines is described. The construction of two C-C bonds and two C-N bonds via [2 + 2 + 1 + 1] four-component domino cyclization reaction is achieved using Cu(OTf) as catalyst in one pot. This cyclization reaction shows good selectivity and produces multisubstituted 2-methylpyridine derivatives in good yields with various functional groups.
Collapse
Affiliation(s)
- Yanfeng Ma
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Tianci Xu
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yuezhou Yuan
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Ya Chen
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Fuhong Xiao
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Guo-Jun Deng
- Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, Hunan Province Key Laboratory of Green Organic Synthesis and Application, College of Chemistry, Xiangtan University, Xiangtan 411105, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
13
|
Satheesh V, Deng Y. Recent Advances in Synthetic Methods by Photocatalytic Single-Electron Transfer Chemistry of Pyridine N-Oxides. J Org Chem 2024; 89:11864-11874. [PMID: 39121338 PMCID: PMC11415123 DOI: 10.1021/acs.joc.4c01453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2024]
Abstract
By adoption of the enabling technology of modern photoredox catalysis and photochemistry, the generation of reactive and versatile pyridine N-oxy radicals can be facilely achieved from single-electron oxidation of pyridine N-oxides. This Synopsis highlights recent methodologies mediated by pyridine N-oxy radicals in developing (1) pyridine N-oxide-based hydrogen atom transfer catalysts for C(sp3)-H functionalizations and (2) β-oxyvinyl radical-mediated cascade reactions. In addition, recent research revealed that direct photoexcitation of pyridine N-oxides allowed for the generation of alkyl carbon radicals from alkylboronic acids.
Collapse
Affiliation(s)
- Vanaparthi Satheesh
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| | - Yongming Deng
- Department of Chemistry and Chemical Biology, Indiana University Indianapolis, Indianapolis, Indiana 46202, United States
| |
Collapse
|
14
|
Li S, Tang J, Shi Y, Yan M, Fu Y, Su Z, Xu J, Xue W, Zheng X, Ge Y, Li R, Chen H, Fu H. C3 Selective chalcogenation and fluorination of pyridine using classic Zincke imine intermediates. Nat Commun 2024; 15:7420. [PMID: 39198410 PMCID: PMC11358504 DOI: 10.1038/s41467-024-51452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
Regioselective C-H functionalization of pyridines remains a persistent challenge due to their inherent electronically deficient properties. In this report, we present a strategy for the selective pyridine C3-H thiolation, selenylation, and fluorination under mild conditions via classic N-2,4-dinitrophenyl Zincke imine intermediates. Radical inhibition and trapping experiments, as well as DFT theoretical calculations, indicated that the thiolation and selenylation proceeds through a radical addition-elimination pathway, whereas fluorination via a two-electron electrophilic substitution pathway. The pre-installed electron-deficient activating N-DNP group plays a crucial and positive role, with the additional benefit of recyclability. The practicability of this protocol was demonstrated in the gram-scale synthesis and the late-stage modification of pharmaceutically relevant pyridines.
Collapse
Affiliation(s)
- Shun Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Juan Tang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yonglin Shi
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Meixin Yan
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yihua Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Jiaqi Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Weichao Xue
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Xueli Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Yicen Ge
- College of Materials, Chemistry and Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, PR China
| | - Ruixiang Li
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China
| | - Hua Chen
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| | - Haiyan Fu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
15
|
Qin S, Yang M, Xu M, Peng ZH, Cai J, Wang S, Gao H, Zhou Z, Hashmi ASK, Yi W, Zeng Z. Electrochemical meta-C-H sulfonylation of pyridines with nucleophilic sulfinates. Nat Commun 2024; 15:7428. [PMID: 39198391 PMCID: PMC11358150 DOI: 10.1038/s41467-024-50644-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 07/17/2024] [Indexed: 09/01/2024] Open
Abstract
Considering the indispensable significance and utilities of meta-substituted pyridines in medicinal, chemical as well as materials science, a direct meta-selective C-H functionalization of pyridines is of paramount importance, but such reactions remain limited and highly challenging. In general, established methods for meta C-H functionalization of pyridines rely on the utilization of tailored electrophilic reagents to realize the intrinsic polarity match. Herein, we report a complementary electrochemical methodology; diverse nucleophilic sulfinates allow meta-sulfonylation of pyridines through a redox-neutral dearomatization-rearomatization strategy by a tandem dearomative cycloaddition/hydrogen-evolution electrooxidative C-H sulfonation of the resulting oxazino-pyridines/acid-promoted rearomatization sequence. Besides, several salient features, including exclusive regiocontrol, remarkable substrate/functional group compatibility, scale-up potential, and facile late-stage modification, have been demonstrated, which further contributes to the practicality and adaptability of this approach.
Collapse
Affiliation(s)
- Shi Qin
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingkai Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Mingyao Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi-Huan Peng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Jiating Cai
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Shengdong Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China
| | - A Stephen K Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Heidelberg, Germany.
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| | - Zhongyi Zeng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, PR China.
| |
Collapse
|
16
|
Xiao Y, Zhao ZY, Kemper S, Irran E, Oestreich M. Enantioselective Dearomatization of Pyridinium Salts by Copper-Catalyzed C4-Selective Addition of Silicon Nucleophiles. Angew Chem Int Ed Engl 2024; 63:e202407056. [PMID: 38728222 DOI: 10.1002/anie.202407056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/12/2024]
Abstract
A copper-catalyzed C4-selective addition of silicon nucleophiles released from an Si-B reagent to prochiral pyridinium triflates is reported. The dearomatization proceeds with excellent enantioselectivity using Cu(CH3CN)4PF6 as the precatalyst and (R,R)-Ph-BPE (1,2-bis[(2R,5R)-2,5-diphenylphospholan-1-yl]ethane) as the chiral ligand. A carbonyl group at C3 is required for this, likely acting a weak donor group to preorganize and direct the nucleophilic attack towards C4. The resulting 4-silylated 1,4-dihydropyridines can be further converted into functionalized piperidine derivatives.
Collapse
Affiliation(s)
- Yao Xiao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Zhi-Yuan Zhao
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Sebastian Kemper
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Elisabeth Irran
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
17
|
Gopireddy SR, Panwar V, Sarkar A, Jain M, Tejaswini KB, Chandrasekhar KB, Kumar D. Synthesis, Evaluation and Docking Studies of Disubstituted N-Heterocyclic Derivatives as Anticancer Agents. Chem Biodivers 2024:e202401010. [PMID: 39175307 DOI: 10.1002/cbdv.202401010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/24/2024]
Abstract
Cancer is a chronic disease reported with alarming rates of mortalities every year. Herein, we reported the synthesis of nitrogen based novel heterocyclic disubstituted derivatives and evaluated them against L929 and A549 cell lines using MTT assay. Among all, 6a2 and 6c1 were significantly active against L929 with IC50 value of 2.61±9.58 and 2.64±8.97 μg/mL respectively. Compounds 6a2 and 6c1 were also active against A549 with IC50 value of 2.36±9.20 and 2.43±6.28 μg/mL respectively and were found to be more potent than the standard drug Doxorubicin. A molecular docking study of the active compounds was also done against EGFR, conferring good binding affinity and binding interactions. Further biological investigations may provide valuable insights towards exploring the therapeutic potential of the active compounds in future.
Collapse
Affiliation(s)
- Sreenivasulu Reddy Gopireddy
- Department of Chemistry, Jawaharlal Nehru Technological University Anantapur, Ananthapuramu, Andhra Pradesh, 515002, India
| | - Vivek Panwar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., 173 229, India
| | - Ankan Sarkar
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | - Manish Jain
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, 160014, India
| | | | | | - Deepak Kumar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Shoolini University, Solan, H.P., 173 229, India
| |
Collapse
|
18
|
Shi Q, Huang X, Yang R, Liu WH. Unified ionic and radical C-4 alkylation and arylation of pyridines. Chem Sci 2024; 15:12442-12450. [PMID: 39118600 PMCID: PMC11304543 DOI: 10.1039/d4sc03739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/10/2024] Open
Abstract
C-H Functionalization of pyridines is an efficient strategy to access pyridine derivatives occurring in pharmaceuticals, agrochemicals, and materials. Nucleophilic additions to pyridiniums via both ionic and radical species have proven particularly useful. However, these reactions suffer from poor regioselectivity. By identifying an enzyme-mimic pocket-type urea activation reagent, we report a general platform for pyridine C-4 functionalization. Both ionic and radical nucleophiles can be incorporated to achieve the alkylation and arylation. Notably, the highly regioselective C-4 radical arylation is disclosed for the first time. The broad scope of nucleophiles and pyridines renders this platform applicable to the late-stage functionalization of drug-like molecules and the preparation of complex biologically important molecules.
Collapse
Affiliation(s)
- Qiu Shi
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Xiaofeng Huang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Ruizhi Yang
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| | - Wenbo H Liu
- School of Chemistry, Sun Yat-sen University Guangzhou 510006 China
| |
Collapse
|
19
|
Luo J, Zhou Q, Xu Z, Houk KN, Zheng K. Photochemical Skeletal Editing of Pyridines to Bicyclic Pyrazolines and Pyrazoles. J Am Chem Soc 2024; 146:21389-21400. [PMID: 38875215 DOI: 10.1021/jacs.4c03713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2024]
Abstract
We present an efficient one-pot photochemical skeletal editing protocol for the transformation of pyridines into diverse bicyclic pyrazolines and pyrazoles under mild conditions. The method requires no metals, photocatalysts, or additives and allows for the selective removal of specific carbon atoms from pyridines, allowing for unprecedented versatility. Our approach offers a convenient and efficient means for the late-stage modification of complex drug molecules by replacing the core pyridine skeleton. Moreover, we have successfully scaled up this procedure in stop-flow and flow-chemistry systems, showcasing its applicability to intricate transformations such as the Diels-Alder reaction, hydrogenation, [3 + 2] cycloaddition, and Heck reaction. Through control experiments and DFT calculations, we provide insights into the mechanistic underpinnings of this skeletal editing protocol.
Collapse
Affiliation(s)
- Jiajing Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Zhou Xu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, California 90095-1569, United States
| | - Ke Zheng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610065, China
| |
Collapse
|
20
|
Sakuma M, Haraguchi R. Charge-Enhanced Reactivity of Esters by a Cationic Substituent. Org Lett 2024; 26:6148-6152. [PMID: 39008814 DOI: 10.1021/acs.orglett.4c01962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
In this study, the high electrophilicity of carbonyl carbons attached to cationic heterocycles was observed. Triazolium-substituted esters underwent catalyst-free amidation with aliphatic amines at -50 °C and reduction with NaBH4 at -100 °C. The origin and generality of the high reactivity of these esters were systematically investigated. The findings of this work were utilized for the postmodification of N-heterocyclic carbenes, which are utilized as promising ligands in a wide range of transition-metal-catalyzed reactions.
Collapse
Affiliation(s)
- Masaaki Sakuma
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| | - Ryosuke Haraguchi
- Department of Applied Chemistry, Graduate School of Engineering, Chiba Institute of Technology, 2-17-1 Tsudanuma, Narashino, Chiba 275-0016, Japan
| |
Collapse
|
21
|
Lu M, Liu Y. Gold-Catalyzed Regio- and Stereoselective Alkenylation of Quinoline N-Oxides with Allenamides. Org Lett 2024; 26:5493-5499. [PMID: 38905136 DOI: 10.1021/acs.orglett.4c01796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
A gold-catalyzed cycloaddition/ring opening of allenamides with quinoline N-oxides has been developed, which provides C2-alkenylated quinolines with high E selectivity in moderate to high yields. It is noted that quinoline N-oxides with a C8 or C7 substituent are crucial for this catalytic reaction.
Collapse
Affiliation(s)
- Mingduo Lu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| | - Yuanhong Liu
- State Key Laboratory of Organometallic Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, People's Republic of China
| |
Collapse
|
22
|
Xu J, Liu B. Metal Free Functionalization of Saturated Heterocycles with Vinylarenes and Pyridine Enabled by Photocatalytic Hydrogen Atom Transfer. Chemistry 2024; 30:e202400612. [PMID: 38566284 DOI: 10.1002/chem.202400612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 03/25/2024] [Accepted: 04/01/2024] [Indexed: 04/04/2024]
Abstract
Saturated heterocycles are important class of structural scaffolds in small-molecule drugs, natural products, and synthetic intermediates. Here, we disclosed a metal free, mild, and scalable functionalization of saturated heterocycles using vinylarenes as a linchpin approach. Key to success of this transformation is the employing of simple and cheap benzophenone as a hydrogen atom transfer (HAT) catalyst. This operationally robust process was used for the making of diverse functionalized saturated heterocycles. Furthermore, aldehydes, alkane, and alcohol have been functionalized under the optimized conditions. The potential pharmaceutical utility of the procedure has also been demonstrated by late-stage functionalization of bioactive natural compounds and pharmaceutical molecules. Initial mechanism studies and control experiments were performed to elucidate the mechanism of the reactions.
Collapse
Affiliation(s)
- Junhua Xu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| | - Bin Liu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, Jiangxi, 330031, People's Republic of China
| |
Collapse
|
23
|
Verma RS, Khatana AK, Verma D, Tiwari B. Organocatalytic access to 3-pyridylphosphonates from vinyl phosphonates and aldehydes. Chem Commun (Camb) 2024; 60:5306-5309. [PMID: 38666411 DOI: 10.1039/d4cc00131a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2024]
Abstract
The preparation of 3-phosphorylated pyridines has remained the most challenging compared to the corresponding 2- or 4-functionalized pyridines. Herein, an unprecedented amino-organocatalyzed direct synthesis of 3-pyridylphosphonates from vinylphosphonates and aldehydes has been achieved. This allows access to a wide range of multi-substituted phosphorylated pyridines in excellent yields under transition metal-free conditions.
Collapse
Affiliation(s)
- Ram Subhawan Verma
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow, 226014, India.
| | - Anil Kumar Khatana
- Department of Chemistry, R.P.S. Degree College, Balana, Mahendergarh, 123029, Haryana, India
| | - Deepika Verma
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow, 226014, India.
| | - Bhoopendra Tiwari
- Department of Biological and Synthetic Chemistry, Centre of Biomedical Research, SGPGIMS-Campus, Raebareli Road, Lucknow, 226014, India.
| |
Collapse
|
24
|
Dabbs J, Ericson MN, Dickie DA, Harman WD. Synthesis of 1-Azatriene Complexes of Tungsten: Metal-Promoted Ring-Opening of Dihydropyridine. Organometallics 2024; 43:1051-1056. [PMID: 38756990 PMCID: PMC11094799 DOI: 10.1021/acs.organomet.4c00108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/18/2024]
Abstract
For nearly a century, chemists have explored how transition-metal complexes can affect the physical and chemical properties of linear conjugated polyenes and heteropolyenes. While much has been written about higher hapticity complexes (η4-η6), less is known about the chemistry of their η2 analogues. Herein, we describe a general method for synthesizing 5,6-η2-(1-azatriene) tungsten complexes via a 6π-azaelectrocyclic dihydropyridine ring-opening that is promoted by the π-basic nature of {WTp(NO)(PMe3)}. This study includes detailed spectroscopic and crystallographic data for the η2-dihydropyridine and η2-1-azatriene complexes, both of which were prepared as single regio- and stereoisomers.
Collapse
Affiliation(s)
- Jonathan
D. Dabbs
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| | - Megan N. Ericson
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| | - Diane A. Dickie
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| | - W. Dean Harman
- Department of Chemistry, University
of Virginia, Charlottesville, Virginia 22904, United States
| |
Collapse
|
25
|
Lei J, Xu ZG. Reaction strategies for the meta-selective functionalization of pyridine through dearomatization. Mol Divers 2024:10.1007/s11030-024-10861-5. [PMID: 38647989 DOI: 10.1007/s11030-024-10861-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 03/25/2024] [Indexed: 04/25/2024]
Abstract
The pyridine moiety is a crucial structural component in various pharmaceuticals. While the direct ortho- and para-functionalization of pyridines is relatively straightforward, the meta-selective C-H functionalization remains a significant challenge. This review highlights dearomatization strategies as a key area of interest in expanding the application of meta-C-H functionalization of pyridines. Dearomatization enables the meta-functionalization through various catalytic methods that directly generate dearomatization products, and some products can be rearomatized back to pyridine derivatives. Furthermore, this article also covers the dearomatization of multiple positions of pyridine in the synthesis of polycyclic compounds. It offers a comprehensive overview of the latest advancements in dearomatization at different positions of pyridine, aiming to provide a valuable resource for researchers in this field. It also highlights the advantages and limitations of existing technologies, aiming to inform a broader audience about this important field and foster its future development.
Collapse
Affiliation(s)
- Jie Lei
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China
| | - Zhi-Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, IATTI, Chongqing University of Arts and Sciences, Chongqing, 402160, China.
| |
Collapse
|
26
|
Singh B, Pandey SK, Malik N, Ramasastry SSV. Morita-Baylis-Hillman Spirannulation under Phosphine- and Anion-Binding Catalysis. Org Lett 2024; 26:3273-3278. [PMID: 38587460 DOI: 10.1021/acs.orglett.4c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
We introduce an advancement in Morita-Baylis-Hillman (MBH) chemistry that provides access to α-spirannulated enones. The treatment of enone-tethered azaarenium salts with catalytic amounts of organophosphines provides spiroindenyl dihydropyridines. It represents the α-spirannulation of enones via an intramolecular MBH (IMBH) reaction utilizing dual phosphine- and anion-binding catalysis. The IMBH adducts were subjected to several post-synthetic modifications to access highly functionalized molecules.
Collapse
Affiliation(s)
- Bara Singh
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Shivam K Pandey
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - Nirmal Malik
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| | - S S V Ramasastry
- Department of Chemical Sciences, Indian Institute of Science Education and Research (IISER) Mohali, Sector 81, S A S Nagar, Manauli PO, Punjab 140 306, India
| |
Collapse
|
27
|
Li FY, Xiao Y, Huang DW, Luo M, Li L, Xu H, Wang B, Wang JY. Facile Construction of Benzo[ d][1,3]oxazocine: Reductive Radical Dearomatization of N-Alkyl Quinoline Quaternary Ammonium Salts. Org Lett 2024; 26:1996-2001. [PMID: 38436281 DOI: 10.1021/acs.orglett.3c04243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2024]
Abstract
Reductive radical dearomatization N-alkyl quinoline quaternary ammonium salts to synthesize structurally complex and challenging polysubstituted benzo[d][1,3]oxazocines was first reported. The mechanism showed various allyl alcohols can be converted into alkyl radicals under reduction conditions of iron/silane. These radicals then nucleophilically attack the C4 site of N-alkyl quinoline quaternary ammonium salts, and intramolecular cyclization of the resulting intermediate generates the target product. This method not only produced a series of novel polysubstituted benzo[d][1,3]oxazocines but also prepared polycyclic benzo[d][1,3]oxazocines. Finally, this strategy made up for the lack of reductive radical reports on N-alkylquinolinium salts and also had the advantages of mild reaction conditions, wide substrate range, and novel product structure.
Collapse
Affiliation(s)
- Fu-Yu Li
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yao Xiao
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Dong-Wei Huang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Meng Luo
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Lu Li
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Hong Xu
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
- Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bei Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| | - Ji-Yu Wang
- Department of Chemistry, Xihua University, Chengdu 610039, P. R. China
| |
Collapse
|
28
|
Shi J, Zhu Z, Yang Z, Lin Y, Yu T, Zhong M, Lo TWB, Chen X, Luan T. In Situ Activation of Azaarenes and Terminal Alkynes to Construct Bridged Polycyclic Compounds Containing Isoquinolinones. Org Lett 2024; 26:2002-2006. [PMID: 38394378 DOI: 10.1021/acs.orglett.4c00006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
A copper-catalyzed [4+2] cyclization reaction of isoquinolines and alkynes is developed for the one-step construction of isoquinolinone derivatives with multisubstituted bridging rings. The unique feature of this three-component tandem cyclization reaction is the functionalization of the C1, N2, C3, and C4 positions of 3-haloisoquinolines via the construction of new C-N, C═O, and C-C bonds. This dearomatization strategy for the synthesis of structurally complex isoquinolinone-bridged cyclic compounds offers good chemoselectivity, broad functional group compatibility, greenness, and high step economy.
Collapse
Affiliation(s)
- Jianyi Shi
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhongzhi Zhu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Zhendong Yang
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Yuqun Lin
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tong Yu
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Mingli Zhong
- College of Pharmacy, Guilin Medical University, Guilin 541199, China
| | - Tsz Woon Benedict Lo
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong, China
| | - Xiuwen Chen
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
| | - Tiangang Luan
- Jiangmen Key Laboratory of Synthetic Chemistry and Cleaner Production, School of Environmental and Chemical Engineering, Wuyi University, Jiangmen 529020, China
- Guangdong Laboratory of Chemistry and Fine Chemical Industry Jieyang Center, Jieyang 515200, China
| |
Collapse
|
29
|
Escolano M, Gaviña D, Alzuet-Piña G, Díaz-Oltra S, Sánchez-Roselló M, Pozo CD. Recent Strategies in the Nucleophilic Dearomatization of Pyridines, Quinolines, and Isoquinolines. Chem Rev 2024; 124:1122-1246. [PMID: 38166390 PMCID: PMC10902862 DOI: 10.1021/acs.chemrev.3c00625] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Dearomatization reactions have become fundamental chemical transformations in organic synthesis since they allow for the generation of three-dimensional complexity from two-dimensional precursors, bridging arene feedstocks with alicyclic structures. When those processes are applied to pyridines, quinolines, and isoquinolines, partially or fully saturated nitrogen heterocycles are formed, which are among the most significant structural components of pharmaceuticals and natural products. The inherent challenge of those transformations lies in the low reactivity of heteroaromatic substrates, which makes the dearomatization process thermodynamically unfavorable. Usually, connecting the dearomatization event to the irreversible formation of a strong C-C, C-H, or C-heteroatom bond compensates the energy required to disrupt the aromaticity. This aromaticity breakup normally results in a 1,2- or 1,4-functionalization of the heterocycle. Moreover, the combination of these dearomatization processes with subsequent transformations in tandem or stepwise protocols allows for multiple heterocycle functionalizations, giving access to complex molecular skeletons. The aim of this review, which covers the period from 2016 to 2022, is to update the state of the art of nucleophilic dearomatizations of pyridines, quinolines, and isoquinolines, showing the extraordinary ability of the dearomative methodology in organic synthesis and indicating their limitations and future trends.
Collapse
Affiliation(s)
- Marcos Escolano
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Daniel Gaviña
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Gloria Alzuet-Piña
- Department of Inorganic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Santiago Díaz-Oltra
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - María Sánchez-Roselló
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| | - Carlos Del Pozo
- Department of Organic Chemistry, Faculty of Pharmacy, University of Valencia, 46100 Burjassot, Valencia, Spain
| |
Collapse
|
30
|
Ding R, Zhang B, Yang L, Ma T, Gang D, Mao YY, Gao H. Copper Catalyst-Promoted Regioselective Multicomponent Cascade Cyclization of 3-Aza-1,5-enynes with Sulfur Dioxide and Cycloketone Oxime Esters to Access Cyanoalkylsulfonylated 1,2-Dihydropyridines. J Org Chem 2024; 89:1515-1523. [PMID: 38253015 DOI: 10.1021/acs.joc.3c02117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Radical cascade cyclization via the cracking of alkenyl C-H has emerged as an attractive and remarkable tool for the rapid construction of ring frameworks with endocyclic double bonds. We developed a cascade reaction of 3-aza-1,5-enynes with sulfur dioxide and cycloketone oxime esters to access cyanoalkylsulfonylated 1,2-dihydropyridines, which can be easily converted to pyridine derivatives. This protocol involves radical addition to the C≡C bond and 6-endo cyclization and features high regioselectivity and a broad substrate scope.
Collapse
Affiliation(s)
- Ran Ding
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Bing Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Le Yang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Tao Ma
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Dong Gang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Yue-Yuan Mao
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Bengbu, Anhui 233000, P. R. China
| | - Hui Gao
- School of Chemistry and Materials Science, Huaibei Normal University, Huaibei, Anhui 235000, P. R. China
| |
Collapse
|
31
|
Siddiqi Z, Bingham TW, Shimakawa T, Hesp KD, Shavnya A, Sarlah D. Oxidative Dearomatization of Pyridines. J Am Chem Soc 2024; 146:2358-2363. [PMID: 38230893 PMCID: PMC11006438 DOI: 10.1021/jacs.3c13603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Dearomatization of pyridines is a well-established synthetic approach to access piperidines. Although remarkably powerful, existing dearomatization processes have been limited to the hydrogenation or addition of carbon-based nucleophiles to activated pyridiniums. Here, we show that arenophile-mediated dearomatizations can be applied to pyridines to directly introduce heteroatom functionalities without prior substrate activation. The arenophile platform in combination with olefin oxidation chemistry provides access to dihydropyridine cis-diols and epoxides. These previously elusive compounds are now readily accessible and can be used for the downstream preparation of diversely functionalized piperidines.
Collapse
Affiliation(s)
- Zohaib Siddiqi
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tanner W. Bingham
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Tsukasa Shimakawa
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| | - Kevin D. Hesp
- Treeline Biosciences, 500 Arsenal St, second Floor, Watertown, Massachusetts 02472, United States
| | - Andre Shavnya
- Pfizer Worldwide Research and Development, Pfizer Inc., Eastern Point Road, Groton, Connecticut 06340, United States
| | - David Sarlah
- Roger Adams Laboratory, Department of Chemistry, University of Illinois, Urbana, Illinois 61801, United States; and Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana, Illinois 61801, United States
| |
Collapse
|
32
|
Mondal R, Agbaria M, Cohen O, Nairoukh Z. Brook Rearrangement as Trigger for Dearomatization Reaction: Synthesis of Non-Aromatic N-Heterocycles. Chemistry 2024; 30:e202303588. [PMID: 37930139 DOI: 10.1002/chem.202303588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/05/2023] [Accepted: 11/06/2023] [Indexed: 11/07/2023]
Abstract
The [1,2]-Brook rearrangement stands as a potent technique for constructing complex molecules. In this study, we showcase its power in the dearomatization of aromatic N-heterocycles. Through a concise four-step process that integrates lithiation, nucleophilic addition, Brook rearrangement and dearomatization reaction, we demonstrate a versatile strategy for generating diverse non-aromatic N-heterocycles which exhibit ambident reactivities. Various acyl silanes, halo-pyridines, and quinolines have been explored within this context. The synthetic utility of this methodology is demonstrated through the construction of complex architectures.
Collapse
Affiliation(s)
- Rajarshi Mondal
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Mohamed Agbaria
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Orit Cohen
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
33
|
Selingo JD, Greenwood JW, Andrews MK, Patel C, Neel AJ, Pio B, Shevlin M, Phillips EM, Maddess ML, McNally A. A General Strategy for N-(Hetero)arylpiperidine Synthesis Using Zincke Imine Intermediates. J Am Chem Soc 2024; 146:936-945. [PMID: 38153812 DOI: 10.1021/jacs.3c11504] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Methods to synthesize diverse collections of substituted piperidines are valuable due to the prevalence of this heterocycle in pharmaceutical compounds. Here, we present a general strategy to access N-(hetero)arylpiperidines using a pyridine ring-opening and ring-closing approach via Zincke imine intermediates. This process generates pyridinium salts from a wide variety of substituted pyridines and (heteroaryl)anilines; hydrogenation reactions and nucleophilic additions then access the N-(hetero)arylpiperidine derivatives. We successfully applied high-throughput experimentation (HTE) using pharmaceutically relevant pyridines and (heteroaryl)anilines as inputs and developed a one-pot process using anilines as nucleophiles in the pyridinium salt-forming processes. This strategy is viable for generating piperidine libraries and applications such as the convergent coupling of complex fragments.
Collapse
Affiliation(s)
- Jake D Selingo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jacob W Greenwood
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Mary Katherine Andrews
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Chirag Patel
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Andrew J Neel
- Department of Process Research and Development, Merck & Company, Incorporated, Boston, Massachusetts 02115, United States
| | - Barbara Pio
- Department of Discovery Chemistry, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Michael Shevlin
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Eric M Phillips
- Department of Process Research and Development, Merck & Co., Inc., Rahway, New Jersey 07065, United States
| | - Matthew L Maddess
- Department of Process Research and Development, Merck & Co., Inc., Boston, Massachusetts 02115, United States
| | - Andrew McNally
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
34
|
Deng W, Li X, Li Z, Wen Y, Wang Z, Lin Z, Li Y, Hu J, Huang Y. Electrochemically Driven C4-Selective Decyanoalkylation of Cyanopyridines with Unactivated Alkyl Bromides Enabling C(sp 3)-C(sp 2) Coupling. Org Lett 2023; 25:9237-9242. [PMID: 38096030 DOI: 10.1021/acs.orglett.3c03984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
With cyanopyridines and alkyl bromides as coupling partners, an electrochemically driven C4-selective decyanoalkylation has been established to access diverse 4-alkylpyridines in one step. The reaction proceeds through the single electron reduction/radical-radical coupling tandem process under mild electrolytic conditions, achieving the cleavage of the C(sp2)-CN bond and the formation of C(sp3)-C(sp2). The practicality of this protocol is illustrated by no sacrificial anodes, a broad substrate scope, and gram-scale synthesis.
Collapse
Affiliation(s)
- Weijie Deng
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Xinling Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Zhenjie Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Yating Wen
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Ziliang Wang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Zeyin Lin
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Yibiao Li
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Jinhui Hu
- School of Pharmacy and Food Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| | - Yubing Huang
- School of Environmental and Chemical Engineering, Wuyi University, Jiangmen, Guangdong 529090, People's Republic of China
| |
Collapse
|
35
|
Ortiz KG, Hammons JS, Karimov RR. Rhodium-Catalyzed Asymmetric Functionalization of Quinoxalinium Salts. Org Lett 2023; 25:8987-8991. [PMID: 38060420 PMCID: PMC11032262 DOI: 10.1021/acs.orglett.3c03555] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
We report a rhodium-catalyzed asymmetric addition of aryl and alkenyl boronic acids to quinoxalinium salts that generates dihydroquinoxalines with high enantioselectivity. Functionalization of the reaction products, dihydroquinoxaline, allows the preparation of tetrahydroquinoxalines with various substitution patterns.
Collapse
Affiliation(s)
- Kacey G Ortiz
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Jensen S Hammons
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| | - Rashad R Karimov
- Department of Chemistry and Biochemistry, Auburn University, 179 Chemistry Building, Auburn, Alabama 36849, United States
| |
Collapse
|
36
|
Hu M, Ding H, DeSnoo W, Tantillo DJ, Nairoukh Z. The Construction of Highly Substituted Piperidines via Dearomative Functionalization Reaction. Angew Chem Int Ed Engl 2023; 62:e202315108. [PMID: 37860947 DOI: 10.1002/anie.202315108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 10/21/2023]
Abstract
Nitrogen heterocycles play a vital role in pharmaceuticals and natural products, with the six-membered aromatic and aliphatic architectures being commonly used. While synthetic methods for aromatic N-heterocycles are well-established, the synthesis of their aliphatic functionalized analogues, particularly piperidine derivatives, poses a significant challenge. In that regard, we propose a stepwise dearomative functionalization reaction for the construction of highly decorated piperidine derivatives with diverse functional handles. We also discuss challenges related to site-selectivity, regio- and diastereoselectivity, and provide insights into the reaction mechanism through mechanistic studies and density functional theory computations.
Collapse
Affiliation(s)
- Miao Hu
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Hao Ding
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - William DeSnoo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, CA 95616, USA
| | - Zackaria Nairoukh
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| |
Collapse
|
37
|
Huang Y, Qi Z, Li X. Rhodium-Catalyzed Enantioselective Addition of Heteroarenium Salts Enabled by Nucleophilic Cyclization of 2-Alkynylanilines. Org Lett 2023; 25:8439-8444. [PMID: 37985509 DOI: 10.1021/acs.orglett.3c03300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Transition-metal-catalyzed cyclative coupling of 2-alkynylanilines provides a feasible routine for accessing functionalized indoles. Herein, a rhodium-catalyzed highly enantioselective addition of heteroarenium salts is presented, which is enabled by the nucleophilic cyclization of 2-alkynylanilines. It offers feasible protocols to access enantioenriched functionalized indoles tethered to 1,2-dihydropyridine and 1,2-dihydroquinoline motifs with excellent enantioselectivities.
Collapse
Affiliation(s)
- Yaling Huang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| | - Zisong Qi
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| | - Xingwei Li
- School of Chemistry and Chemical Engineering, Shaanxi Normal University (SNNU), Xi'an, Shaanxi 710062, People's Republic of China
| |
Collapse
|
38
|
Xu LC, Ma XD, Liu KM, Duan XF. Chemo- and Regioselective Alkylation of Pyridine N-Oxides with Titanacyclopropanes. Org Lett 2023. [PMID: 38016093 DOI: 10.1021/acs.orglett.3c03469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
While titanacyclopropanes are used to react mainly with ester, amide, and cyano to undergo cyclopropanation, herein they react preferentially with pyridine N-oxide to accomplish C2-H alkylation beyond these functionalities with double regioselectivity. After being pyridylated at the less hindered C-Ti bond, the remaining C-Ti bond of titanacyclopropanes can be further functionalized by various electrophiles, allowing facile introduction of complex alkyls onto the C2 of pyridines. Its synthetic potential has been demonstrated by late-stage diversification of drugs.
Collapse
Affiliation(s)
- Li-Chen Xu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xiao-Di Ma
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Kun-Ming Liu
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| | - Xin-Fang Duan
- College of Chemistry, Beijing Normal University, Beijing 100875, P.R. China
| |
Collapse
|
39
|
Luo W, Zheng X, Zhang F, Luo Q, Deng WT, Long L, Yu D, Wang ZX, Chen Z. Synthesis of functionalized tetrahydrodibenzo[ b, g][1,8]naphthyridin-1(2 H)-ones through base-promoted annulation of quinoline-derived dipolarophiles and cyclic enaminones. Org Biomol Chem 2023. [PMID: 37997680 DOI: 10.1039/d3ob01547e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
An eco-friendly and metal-free method for the synthesis of tetrahydrodibenzo[b,g][1,8]naphthyridin-1(2H)-ones was established. Quinoline-derived dipolarophiles and cyclic enaminones as starting materials undergo a 1,4-Michael addition/SNAr tandem annulation reaction affording the target products. This approach features transition metal-free conditions, good functional group tolerance and operational simplicity.
Collapse
Affiliation(s)
- Wenjun Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Xinghua Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Fanglian Zhang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Qiuya Luo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Wen-Ting Deng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Lipeng Long
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Daohong Yu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Zhong-Xia Wang
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| | - Zhengwang Chen
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province, Gannan Normal University, Ganzhou 341000, P.R. China.
| |
Collapse
|
40
|
Harmange Magnani C, Hernández-Meléndez JR, Tantillo DJ, Maimone TJ. Total Synthesis of Altemicidin: A Surprise Ending for a Monoterpene Alkaloid. JACS AU 2023; 3:2883-2893. [PMID: 37885570 PMCID: PMC10598567 DOI: 10.1021/jacsau.3c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/21/2023] [Accepted: 09/21/2023] [Indexed: 10/28/2023]
Abstract
Monoterpene alkaloids encompass distinct chemical diversity and wide-ranging bioactivity. Their compact complexity has made them popular as synthetic targets and has inspired many distinct strategies and tactics in the field of heterocyclic chemistry. This article documents the evolution of a synthetic program aimed at accessing the unusual sulfonamide-containing natural product altemicidin, which was generally believed to be a monoterpene alkaloid throughout our entire synthetic investigations but has recently been found to originate through an unexpected and quite disparate biosynthetic pathway. By leveraging a pyridine dearomatization/cycloaddition strategy, we developed a concise pathway to the 5,6-fused bicyclic azaindane core and, after significant experimentation, an ultimate synthesis of altemicidin itself. Tactics to productively manipulate the multiple functional groups present on this highly polar scaffold proved challenging but were eventually realized via several carefully orchestrated and chemoselective transformations-investments that paid dividends in the form of significantly shorter chemical synthesis. Surprisingly, the bond-forming logic between our presumed abiotic synthetic strategy to this alkaloid class and its subsequently identified biosynthetic pathway is eerily similar.
Collapse
Affiliation(s)
- Claire
S. Harmange Magnani
- Department
of Chemistry, University of California,
Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - José R. Hernández-Meléndez
- Department
of Chemistry, University of California,
Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| | - Dean J. Tantillo
- Department
of Chemistry, University of California−Davis; 1 Shields Avenue, Davis, California 95616, United States
| | - Thomas J. Maimone
- Department
of Chemistry, University of California,
Berkeley, 826 Latimer Hall, Berkeley, California 94720, United States
| |
Collapse
|
41
|
Hammouda MM, Elattar KM, Rashed MM, Osman AMA. Synthesis, biological activities, and future perspectives of steroidal monocyclic pyridines. RSC Med Chem 2023; 14:1934-1972. [PMID: 37859725 PMCID: PMC10583814 DOI: 10.1039/d3md00411b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 09/04/2023] [Indexed: 10/21/2023] Open
Abstract
Steroidal pyridines are a class of compounds that have been the subject of extensive research in recent years due to their potential biological activities. The introduction of a pyridine ring into the steroid skeleton can significantly alter the chemical and biological properties of the compound, making it more potent and/or selective for a particular target. Different synthetic methods have been developed for the preparation of steroidal pyridines. This review provides an overview of the synthesis, biological activities, and future perspectives of steroidal monocyclic dihydropyridines, tetrahydropyridines, and pyridines from 2005 to the present. The different synthetic methods that have been developed for the preparation of these steroids are discussed, as well as the proposed mechanisms and the biological activities that have been reported. Finally, the potential of steroidal monocyclic pyridines for the development of new drugs is discussed. This review is intended to provide a comprehensive overview of the field of steroidal monocyclic pyridines for researchers and scientists who are interested in this area of research. It is also hoped that this review will stimulate further research into the synthesis and biological activities of steroidal pyridines to develop new and improved drugs for the treatment of diseases.
Collapse
Affiliation(s)
- Mohamed M Hammouda
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Khaled M Elattar
- Unit of Genetic Engineering and Biotechnology, Faculty of Science, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt +201010655354
| | - Marwa M Rashed
- Toxicology Department, Mansoura Hospital, Faculty of Medicine, Mansoura University El-Gomhoria Street Mansoura 35516 Egypt
| | - Amany M A Osman
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
- Chemistry Department, Faculty of Science, Menoufia University Shebin El-Koam Egypt
| |
Collapse
|
42
|
Cao H, Cheng Q, Studer A. meta-Selective C-H Functionalization of Pyridines. Angew Chem Int Ed Engl 2023; 62:e202302941. [PMID: 37013613 DOI: 10.1002/anie.202302941] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/01/2023] [Accepted: 04/03/2023] [Indexed: 04/05/2023]
Abstract
The pyridine moiety is an important core structure for a variety of drugs, agrochemicals, catalysts, and functional materials. Direct functionalization of C-H bonds in pyridines is a straightforward approach to access valuable substituted pyridines. Compared to the direct ortho- and para-functionalization, meta-selective pyridine C-H functionalization is far more challenging due to the inherent electronic properties of the pyridine entity. This review summarizes currently available methods for pyridine meta-C-H functionalization using a directing group, non-directed metalation, and temporary dearomatization strategies. Recent advances in ligand control and temporary dearomatization are highlighted. We analyze the advantages as well as limitations of current techniques and hope to inspire further developments in this important area.
Collapse
Affiliation(s)
- Hui Cao
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Qiang Cheng
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Armido Studer
- Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| |
Collapse
|
43
|
van IJzendoorn B, Whittingham JBM, Whitehead GFS, Kaltsoyannis N, Mehta M. A robust Zintl cluster for the catalytic reduction of pyridines, imines and nitriles. Dalton Trans 2023; 52:13787-13796. [PMID: 37721024 DOI: 10.1039/d3dt02896h] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Despite p-block clusters being known for over a century, their application as catalysts to mediate organic transformations is underexplored. Here, the boron functionalized [P7] cluster [(BBN)P7]2- ([1]2-; BBN = 9-borabicyclo[3.3.1]nonane) is applied in the dearomatized reduction of pyridines, as well as the hydroboration of imines and nitriles. These transformations afford amine products, which are important precursors to pharmaceuticals, agrochemicals, and polymers. Catalyst [1]2- has high stability in these reductions: recycling nine times in quinoline hydroboration led to virtually no loss in catalyst performance. The catalyst can also be recycled between two different organic transformations, again with no loss in catalyst competency. The mechanism for pyridine reduction was probed experimentally using variable time normalization analysis, and computationally using density functional theory. This work demonstrates that Zintl clusters can mediate the reduction of nitrogen containing substrates in a transition metal-free manner.
Collapse
Affiliation(s)
- Bono van IJzendoorn
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | | | - George F S Whitehead
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Nikolas Kaltsoyannis
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| | - Meera Mehta
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, UK.
| |
Collapse
|
44
|
Song S, Wang Y, Yu F. Construction of 1,4-Dihydropyridines: The Evolution of C4 Source. Top Curr Chem (Cham) 2023; 381:30. [PMID: 37749452 DOI: 10.1007/s41061-023-00440-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 09/08/2023] [Indexed: 09/27/2023]
Abstract
The field of cascade cyclization for the construction of 1,4-dihydropyridines (1,4-DHPs) has been continuously expanding during the last decades because of their broad-spectrum biological and synthetic importance. To date, many methods have been developed, mainly including the Hantzsch reaction, Hantzsch-like reaction and newly developed cascade cyclization, in which various synthons have been successively developed as C4 sources of 1,4-DHPs. This review presents the cascade cyclization synthesis strategy for the construction of 1,4-DHPs according to various C4 sources from carbonyl compounds, alkenyl fragments, alcohols, aliphatic amines, glycines and other C4 sources.
Collapse
Affiliation(s)
- Siyu Song
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China
| | - Yongchao Wang
- College of Vocational and Technical Education, Yunnan Normal University, Kunming, 650092, People's Republic of China.
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, 650500, People's Republic of China.
| |
Collapse
|
45
|
Romero AH. C-H Bond Functionalization of N-Heteroarenes Mediated by Selectfluor. Top Curr Chem (Cham) 2023; 381:29. [PMID: 37736818 DOI: 10.1007/s41061-023-00437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 08/21/2023] [Indexed: 09/23/2023]
Abstract
Herein, recent developments for Selectfluor-mediated C-H functionalization of N-heteroarenes are described. This type of C-H bond activation is an attractive and competitive alternative to traditional methodologies, allowing the functionalization of a variety of chemical functions. In addition, Selectfluor is a more sustainable and economically accessible oxidant compared with expensive/toxic metals or hazardous peroxides. For a practical understanding, the current review classified systematically the reported strategies in four subsections as follows: (1) carbon-carbon formation, (2) carbon-nitrogen bond formation, (3) carbon-chalcogen bond, and (4) carbon-halogen bond formation. Mechanistic aspects and reaction conditions are fully discussed to provide an understanding of the aspects that govern C-H functionalization in N-heteroarenes mediated by Selectfluor.
Collapse
Affiliation(s)
- Angel H Romero
- Grupo de Química Orgánica Medicinal, Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Igua 4225, 11400, Montevideo, Uruguay.
| |
Collapse
|
46
|
Maity S, Lopez MA, Bates DM, Lin S, Krska SW, Stahl SS. Polar Heterobenzylic C(sp 3)-H Chlorination Pathway Enabling Efficient Diversification of Aromatic Nitrogen Heterocycles. J Am Chem Soc 2023; 145:19832-19839. [PMID: 37642292 PMCID: PMC10629438 DOI: 10.1021/jacs.3c05822] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Site-selective radical reactions of benzylic C-H bonds are now highly effective methods for C(sp3-H) functionalization and cross-coupling. The existing methods, however, are often ineffective with heterobenzylic C-H bonds in alkyl-substituted pyridines and related aromatic heterocycles that are prominently featured in pharmaceuticals and agrochemicals. Here, we report new synthetic methods that leverage polar, rather than radical, reaction pathways to enable the selective heterobenzylic C-H chlorination of 2- and 4-alkyl-substituted pyridines and other heterocycles. Catalytic activation of the substrate with trifluoromethanesulfonyl chloride promotes the formation of enamine tautomers that react readily with electrophilic chlorination reagents. The resulting heterobenzyl chlorides can be used without isolation or purification in nucleophilic coupling reactions. This chlorination-diversification sequence provides an efficient strategy to achieve heterobenzylic C-H cross-coupling with aliphatic amines and a diverse collection of azoles, among other coupling partners.
Collapse
Affiliation(s)
- Soham Maity
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marco A. Lopez
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Desiree M. Bates
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Shishi Lin
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Shane W. Krska
- Discovery Chemistry, Merck & Co., Inc., 2000 Galloping Hill Road, Kenilworth, NJ 07033, United States
| | - Shannon S. Stahl
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
47
|
Comparini LM, Pineschi M. Recent Progresses in the Catalytic Stereoselective Dearomatization of Pyridines. Molecules 2023; 28:6186. [PMID: 37687015 PMCID: PMC10488975 DOI: 10.3390/molecules28176186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/14/2023] [Accepted: 08/18/2023] [Indexed: 09/10/2023] Open
Abstract
1,2- and 1,4-dihydropyridines and N-substituted 2-pyridones are very important structural motifs due to their synthetic versatility and vast presence in a variety of alkaloids and bioactive molecules. In this article, we gather and summarize the catalytic and stereoselective synthesis of partially hydrogenated pyridines and pyridones via the dearomative reactions of pyridine derivatives up to mid-2023. The material is fundamentally organized according to the type of reactivity (electrophilic/nucleophilic) of the pyridine nucleus. The material is further sub-divided taking into account the nucleophilic species when dealing with electrophilic pyridines and considering the reactivity manifold of pyridine derivatives behaving as nucleophiles at the nitrogen site. The latter more recent approach allows for an unconventional entry to chiral N-substituted 2- and 4-pyridones in non-racemic form.
Collapse
Affiliation(s)
| | - Mauro Pineschi
- Department of Pharmacy, University of Pisa, Via Bonanno 33, 56126 Pisa, Italy;
| |
Collapse
|
48
|
Golantsov NE, Golubenkova AS, Festa AA, Novikov AP, Varlamov AV, Voskressensky LG. Domino Approach for the Synthesis of Pyridinium Salts and 1,2,3,8 a-Tetrahydroimidazo[1,2- a]pyridines from 2-Imidazolines and Propiolic Acid Esters. J Org Chem 2023; 88:11603-11617. [PMID: 37494140 DOI: 10.1021/acs.joc.3c00916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Adducts of 1-alkyl-2-imidazolines and two molecules of alkyl propiolate, possessing an N-propargyl-β-enaminoester fragment, easily undergo a domino reaction to form pyridinium salts with β-(alkylammonio)ethyl group at the nitrogen atom in the presence of 2 equiv of a protic acid. Treatment of the above reaction mixture with a base gives 1,2,3,8a-tetrahydroimidazo[1,2-a]pyridines. Reaction of the latter compounds with acid chlorides affords pyridinium salts with β-(alkylamido)ethyl moiety at the nitrogen atom.
Collapse
Affiliation(s)
- Nikita E Golantsov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya St., Moscow 117198, Russia
| | - Alexandra S Golubenkova
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya St., Moscow 117198, Russia
| | - Alexey A Festa
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya St., Moscow 117198, Russia
| | - Anton P Novikov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31 Leninsky Prosp., bld. 4, Moscow 119071, Russia
| | - Alexey V Varlamov
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya St., Moscow 117198, Russia
| | - Leonid G Voskressensky
- Organic Chemistry Department, Science Faculty, Peoples' Friendship University of Russia (RUDN University), 6 Mi-klukho-Maklaya St., Moscow 117198, Russia
| |
Collapse
|
49
|
Sun Y, Liu Z, Liu D, Zhang M, Chen L, Chai Z, Chen XB, Yu F. Synthesis of 4-Alkylated 1,4-Dihydropyridines: Fe(II)-Mediated Oxidative Cascade Cyclization Reaction of Cyclic Ethers with Enaminones. J Org Chem 2023; 88:11627-11636. [PMID: 37556793 DOI: 10.1021/acs.joc.3c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
Syntheses of highly functionalized 4-alkylated 1,4-dihydropyridines (1,4-DHPs) from cyclic ethers and enaminones via iron(II)-mediated oxidative free radical cascade C(sp3)-H bond functionalization/C(sp3)-O bond cleavage/cyclization reaction have been first developed. This novel synthetic strategy offers an alternative method for the construction of 1,4-DHPs by using esters as the C4 sources, as well as expands the application of ethers in heterocycle synthesis.
Collapse
Affiliation(s)
- Yulin Sun
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhuoyuan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Donghan Liu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Mingshuai Zhang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Longkun Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Zhangmengjie Chai
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| | - Xue-Bing Chen
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
- College of Science, Honghe University, Mengzi 661199 Yunnan, P. R. China
| | - Fuchao Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, P. R. China
| |
Collapse
|
50
|
Parsons LWT, Berben LA. Metallated dihydropyridinates: prospects in hydride transfer and (electro)catalysis. Chem Sci 2023; 14:8234-8248. [PMID: 37564402 PMCID: PMC10411630 DOI: 10.1039/d3sc02080k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 07/14/2023] [Indexed: 08/12/2023] Open
Abstract
Hydride transfer (HT) is a fundamental step in a wide range of reaction pathways, including those mediated by dihydropyridinates (DHP-s). Coordination of ions directly to the pyridine ring or functional groups stemming therefrom, provides a powerful approach for influencing the electronic structure and in turn HT chemistry. Much of the work in this area is inspired by the chemistry of bioinorganic systems including NADH. Coordination of metal ions to pyridines lowers the electron density in the pyridine ring and lowers the reduction potential: lower-energy reactions and enhanced selectivity are two outcomes from these modifications. Herein, we discuss approaches for the preparation of DHP-metal complexes and selected examples of their reactivity. We suggest further areas in which these metallated DHP-s could be developed and applied in synthesis and catalysis.
Collapse
Affiliation(s)
- Leo W T Parsons
- Department of Chemistry, University of California Davis CA 95616 USA
| | - Louise A Berben
- Department of Chemistry, University of California Davis CA 95616 USA
| |
Collapse
|