1
|
van der Ham MPJM, Creus J, Bitter JH, Koper MTM, Pescarmona PP. Electrochemical and Non-Electrochemical Pathways in the Electrocatalytic Oxidation of Monosaccharides and Related Sugar Alcohols into Valuable Products. Chem Rev 2024. [PMID: 39480753 DOI: 10.1021/acs.chemrev.4c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
In this contribution, we review the electrochemical upgrading of saccharides (e.g., glucose) and sugar alcohols (e.g., glycerol) on metal and metal-oxide electrodes by drawing conclusions on common trends and differences between these two important classes of biobased compounds. For this purpose, we critically review the literature on the electrocatalytic oxidation of saccharides and sugar alcohols, seeking trends in the effect of reaction conditions and electrocatalyst design on the selectivity for the oxidation of specific functional groups toward value-added compounds. Importantly, we highlight and discuss the competition between electrochemical and non-electrochemical pathways. This is a crucial and yet often neglected aspect that should be taken into account and optimized for achieving the efficient electrocatalytic conversion of monosaccharides and related sugar alcohols into valuable products, which is a target of growing interest in the context of the electrification of the chemical industry combined with the utilization of renewable feedstock.
Collapse
Affiliation(s)
- Matthijs P J M van der Ham
- Biobased Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Jordi Creus
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
- TNO, Westerduinweg 3, 1755 LE Petten, The Netherlands
| | - Johannes H Bitter
- Biobased Chemistry and Technology, Wageningen Research, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Marc T M Koper
- Leiden Institute of Chemistry, Leiden University, P.O. Box 9502, 2300 RA Leiden, The Netherlands
| | - Paolo P Pescarmona
- Chemical Engineering Group, Engineering and Technology Institute Groningen (ENTEG), University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| |
Collapse
|
2
|
Palà M, Lligadas G, Moreno A. Valorization of Lactate Esters and Amides into Value-Added Biobased (Meth)acrylic Polymers. Biomacromolecules 2024; 25:6338-6356. [PMID: 39258970 PMCID: PMC11480984 DOI: 10.1021/acs.biomac.4c00891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
(Meth)acrylic polymers are massively produced due to their inherently attractive properties. However, the vast majority of these polymers are derived from fossil resources, which is not aligned with the tendency to reduce gas emissions. In this context, (meth)acrylic polymers derived from biomass (biobased polymers) are gaining momentum, as their application in different areas can not only stand the comparison but even surpass, in some cases, the performance of petroleum-derived ones. In this review, we highlight the design and synthesis of (meth)acrylic polymers derived from lactate esters (LEs) and lactate amides (LAs), both derived from lactic acid. While biobased polymers have been widely studied and reviewed, the poly(meth)acrylates with pendant LE and LA moieties evolved slowly until recently when significant achievements have been made. Hence, constraints and opportunities arising from previous research in this area are presented, focusing on the synthesis of well-defined polymers for the preparation of advanced materials.
Collapse
Affiliation(s)
- Marc Palà
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Gerard Lligadas
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| | - Adrian Moreno
- Universitat
Rovira i Virgili, Departament de
Química Analítica i Química Orgànica,
Laboratory of Sustainable Polymers, Tarragona 43007, Spain
| |
Collapse
|
3
|
Tang J, Hu Z, Pu Y, Wang XC, Abomohra A. Bioprocesses for lactic acid production from organic wastes toward industrialization-a critical review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122372. [PMID: 39241596 DOI: 10.1016/j.jenvman.2024.122372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 08/11/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Lactic acid (LA) is a crucial chemical which has been widely used for industrial application. Microbial fermentation is the dominant pathway for LA production and has been regarded as the promising technology. In recent years, many studies on LA production from various organic wastes have been published, which provided alternative ways to reduce the LA production cost, and further recycle organic wastes. However, few researchers focused on industrial application of this technology due to the knowledge gap and some uncertainties. In this review, the recent advances, basic knowledge and limitations of LA fermentation from organic wastes are discussed, the challenges and suitable envisaged solutions for enhancing LA yield and productivity are provided to realize industrial application of this technology, and also some perspectives are given to further valorize the LA fermentation processes from organic wastes. This review can be a useful guidance for industrial LA production from organic wastes on a sustainable view.
Collapse
Affiliation(s)
- Jialing Tang
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China.
| | - Zongkun Hu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China
| | - Yunhui Pu
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Xiaochang C Wang
- Key Lab of Northwest Water Resource, Environment and Ecology, MOE, Xi'an University of Architecture and Technology, Xi'an, 710055, China; International Science & Technology Cooperation Center for Urban Alternative Water Resources Development, Xi'an, 710055, China.
| | - Abdelfatah Abomohra
- Department of Environmental Engineering, School of Architecture and Civil Engineering, Chengdu University, Chengdu, 610106, China; Aquatic Ecophysiology and Phycology, Institute of Plant Science and Microbiology, University of Hamburg, 22609, Hamburg, Germany
| |
Collapse
|
4
|
Wesner A, Raabe JC, Poller MJ, Meier S, Riisager A, Albert J. Conversion of Sugars to Lactic Acid using Homogeneous Niobium-Substituted Polyoxometalate Catalysts. Chemistry 2024:e202402649. [PMID: 39315518 DOI: 10.1002/chem.202402649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 09/16/2024] [Accepted: 09/24/2024] [Indexed: 09/25/2024]
Abstract
The catalytic conversion of biomass into high-value chemicals is an increasing field of research. This study uniquely investigates the use of various Keggin-type heteropoly salts (HPS) for the chemical conversion of sugars into lactic acid under mild conditions of 160 °C and 20 bar N2. In the first phase, Nb- and V-substituted HPSs were employed to synthesize lactic acid from dihydroxyacetone, an intermediate in the conversion of sugars to lactic acid. Results indicated that increasing the Nb content within the Keggin structure enhances the yield of lactic acid while reducing the formation of the byproduct acetaldehyde. A correlation was established between the redox activity of the HPS and the catalytic performance. The most active catalyst, Na5[PNb2Mo10O40], (NaNb2) achieved a lactic acid yield of 20.9 % after 1 h of reaction. In the second phase of the study, NaNb2 was applied for the conversion of different sugars including glucose, fructose, mannose, sucrose, xylose, and cellobiose. It was demonstrated that the catalyst remains active for complex hexoses, achieving lactic acid yields of up to 12 %. Post-mortem analysis using infrared (IR) and Raman spectroscopy, nuclear magnetic resonance (NMR), and inductively coupled plasma optical emission spectrometry (ICP-OES) confirmed the stability of NaNb2.
Collapse
Affiliation(s)
- Anne Wesner
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Jan-Christian Raabe
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Maximilian J Poller
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| | - Sebastian Meier
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Anders Riisager
- Department of Chemistry, Technical University of Denmark, Kemitorvet, 2800, Kgs. Lyngby, Denmark
| | - Jakob Albert
- Institute of Technical and Macromolecular Chemistry, University of Hamburg, Bundesstraße 45, 20146, Hamburg, Germany
| |
Collapse
|
5
|
Gómez González N, Flores-López SL, Cadus LE, Arenillas A, Morales MR. Towards the valorisation of glycerol by designing the surface chemistry of carbon xerogels by doping and oxygen functionalization. ENVIRONMENTAL RESEARCH 2024; 256:119190. [PMID: 38802032 DOI: 10.1016/j.envres.2024.119190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/17/2024] [Accepted: 05/20/2024] [Indexed: 05/29/2024]
Abstract
Research on innovative approaches to the valorisation of glycerol as a subproduct of biodiesel production has acquired an increasing demand in the development of a circular economy around energy generation, especially, in the line of improvement of the heterogeneous metallic catalysts used. In this regard, carbon xerogels have gained importance due to their stability and modifiability, while transition metals such as copper stand out as a cost-effective alternative, resulting in a technology where surface engineering plays a crucial role in achieving competitive catalytic activity. Building upon this, current research evaluates doped xerogels (Si, N, or GO) as supports of Cu and catalysts by themselves for glycerol oxidation. Benefits from the incorporation of oxygenated functional groups (OFG) were also evaluated. Results showed a consistently higher selectivity towards lactic acid (LA) across all catalysts and competitive catalytic conversion. In this performance, dopants played a crucial role in surface acid-base characteristics, while oxygenated functional groups (OFG) influenced copper adsorption, dispersion, and reducibility. Notably, the Cu/CXN-f catalyst demonstrated the highest LA yield by combining the effect of N as a doping species, with the presence of OFG and the formation of appropriated metallic Cu domains. This research underscores the potential of carbon xerogels in the tailored catalyst design, contributing to sustainable chemical production through their customizable textural and chemical properties.
Collapse
Affiliation(s)
- Naila Gómez González
- Chemical Technology Research Institute (INTEQUI-CONICET), National University of San Luis (UNSL), Faculty of Chemistry, Biochemistry and Pharmacy, Almirante Brown 1455, Capital, 5700, San Luis, Argentina
| | - Samantha L Flores-López
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain
| | - Luis E Cadus
- Chemical Technology Research Institute (INTEQUI-CONICET), National University of San Luis (UNSL), Faculty of Chemistry, Biochemistry and Pharmacy, Almirante Brown 1455, Capital, 5700, San Luis, Argentina
| | - Ana Arenillas
- Instituto de Ciencia y Tecnología Del Carbono, INCAR-CSIC, Francisco Pintado Fe, 26, 33011, Oviedo, Spain.
| | - María R Morales
- Chemical Technology Research Institute (INTEQUI-CONICET), National University of San Luis (UNSL), Faculty of Chemistry, Biochemistry and Pharmacy, Almirante Brown 1455, Capital, 5700, San Luis, Argentina.
| |
Collapse
|
6
|
Ma Y, Li M, Lu T, Yang X, Zhou L. Valorization of Corn Straw for Production of Glucose by Two-Step Depolymerization. Chemistry 2024:e202400800. [PMID: 38856089 DOI: 10.1002/chem.202400800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/06/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Depolymerization of the cellulose part in lignocellulose to glucose is a significant step for lignocellulose valorization. As one of the main by-products of agricultural biomass in crop-producing filed, valorization of corn straw has attracted considerable attention. In this study, a two-step depolymerizing strategy of high-pressure CO2-H2O pretreatment and oxidation-hydrolysis was applied for selective depolymerization of the cellulose component of corn straw to glucose production. Most part of the hemicellulose component could be removed through high-pressure CO2-H2O pretreatment in the presence of low concentration of acetic acid, and then as high as 32.2 % yield of glucose was achieved in water at 170 °C for 6 h without additional catalyst. The active acid sites generated during the partial oxidation of hydroxymethyl groups to carboxyl groups on glucose units of cellulose was shown to be crucial for the efficient valorization of corn straw for glucose production.
Collapse
Affiliation(s)
- Yangyang Ma
- College of Food Science & Technology, Henan Agricultural University, 95 Wenhua Road, Zhengzhou, 450002, PR China
| | - Mengge Li
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, PR China
| | - Tianliang Lu
- School of Chemical Engineering, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, PR China
| | - Xiaomei Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, PR China
| | - Lipeng Zhou
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 100 Kexue Road, Zhengzhou, 450001, PR China
| |
Collapse
|
7
|
Boonmark S, Ponchai P, Adpakpang K, Wannapaiboon S, Thongratkaew S, Faungnawakij K, Bureekaew S. Valorizing natural-abundant glucose to lactic acid using a MOF-808 catalyst under green hydrothermal conditions. Chem Commun (Camb) 2024; 60:4890-4893. [PMID: 38546200 DOI: 10.1039/d4cc00393d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Highly robust Zr-based MOF-808, featuring Lewis acid Zr sites and coordinate hydroxide ions upon the removal of the monocarboxylate capping reagent, emerges as an efficient catalyst for the hydrothermal conversion of glucose into lactic acid. A remarkable 99% glucose conversion with an impressive 76.6% yield of lactic acid can be achieved. The large pore window of MOF-808 facilitates the diffusion of glucose to the active sites within the framework. The single-site attribute of the catalytic center enables a high selectivity of lactic acid over the competitive product, 5-(hydroxymethyl)furfural, under hydrothermal reaction conditions.
Collapse
Affiliation(s)
- Sininat Boonmark
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Panyapat Ponchai
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Kanyaporn Adpakpang
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Suttipong Wannapaiboon
- Synchrotron Light Research Institute, 111 University Avenue, Muang, Nakhon Ratchasima 30000, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pahonyothin Rd., Klong Luang Pathumthani 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), 111 Thailand Science Park, Pahonyothin Rd., Klong Luang Pathumthani 12120, Thailand
| | - Sareeya Bureekaew
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, 555 Moo 1 Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
8
|
Erdas A, Marti ME. Eco-Friendly Approach for the Recovery of Lactic Acid by Complex Extraction. ACS OMEGA 2024; 9:16959-16968. [PMID: 38645318 PMCID: PMC11025082 DOI: 10.1021/acsomega.3c07988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/20/2024] [Accepted: 03/25/2024] [Indexed: 04/23/2024]
Abstract
To meet the growing demand for high-purity lactic acid (LA) for biocompatible and biodegradable polymers, LA recovery by green techniques has been attracting the attention. This study focuses on the evaluation of vegetable oils as organic phase diluents in complex extraction of LA with an aliphatic tertiary amine extractant, trioctylamine (TOA). Eight vegetable oils were tested, and their performances were evaluated individually and compared with those obtained using 1-octanol. Extraction yields with these oils were similar; however, efficiencies with safflower oil (SFO) were slightly higher than those obtained with other oils tested. Efficiency with SFO + TOA varied inversely with temperature and pH; however, it increased with higher LA and TOA concentrations. Within the ranges of parameters investigated, the highest yield in SFO was 66% and was achieved at the highest TOA (1.0 M) and LA (1.5 M) concentrations. The efficiency obtained in 1-octanol under the identical conditions was 76%. Thus, the yields obtained with SFO + TOA and 1-octanol + TOA were comparable under most of the conditions tested, especially at the higher LA concentrations, which is preferred for commercial production. Following that, >99% of the LA was transferred from the organic phase to the (second) aqueous phase using NaOH (1.0 M) as a stripping agent. The organic phase was tested in subsequent extractions, and yields comparable to those obtained in the first uses were achieved. This study demonstrated that vegetable oils have the potential to be used as organic phase diluents during complex extraction of LA.
Collapse
Affiliation(s)
- Aybikenur Erdas
- Department
of Chemical Engineering, Konya Technical
University, 42075 Konya, Turkey
| | - Mustafa Esen Marti
- Department
of Chemical Engineering, Konya Technical
University, 42075 Konya, Turkey
| |
Collapse
|
9
|
Li S, Li S, Wang Y, Tang C, Qiu L, Yu S. Selective Oxidation of Glycerol to Lactic Acid Catalyzed by CuO/Activated Carbon and Reaction Kinetics. ACS OMEGA 2024; 9:10583-10591. [PMID: 38463287 PMCID: PMC10918785 DOI: 10.1021/acsomega.3c08845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/28/2024] [Accepted: 02/07/2024] [Indexed: 03/12/2024]
Abstract
Activated carbon-supported CuO catalysts were prepared by an ammonia evaporation method and applied to catalyze the selective oxidation of glycerol to lactic acid. The effects of CuO loadings on the structure and catalytic performance of the catalyst were investigated. Results showed that CuO could be dispersed uniformly on the surface of activated carbon, promoting the increase of the reaction rate and accelerating the glycerol conversion significantly. As CuO loadings increased, the rate of glycerol consumption and yield to lactic acid was increased. However, too high CuO loadings would destroy the original pore structure of activated carbon and aggravate the agglomeration of CuO, resulting in a decrease in the catalytic performance of the catalyst. The best catalytic performance was obtained over 10% CuO/AC when the reaction temperature was 190 °C and the reaction time was 5 h. At this point, the selectivity to lactic acid reached 92.61%. In addition, power-function type reaction kinetic equations were used to evaluate the effect of glycerol and NaOH concentrations and the reaction temperature on the oxidation of glycerol to lactic acid over 10% CuO/AC. The activation energy of the reaction is 134.39 kJ·mol-1, which is higher than that using single CuO as the catalyst. This indicates that CuO/AC is more temperature-sensitive than CuO and can probably achieve a higher lactic acid yield at high temperatures. At the same time, it is indicated that CuO supported on activated carbon can enhance the catalytic activity of CuO effectively.
Collapse
Affiliation(s)
- Shanqi Li
- College of Mechanical and Power Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Shuangming Li
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Yiwen Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Cheng Tang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Leilei Qiu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| | - Sansan Yu
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
| |
Collapse
|
10
|
Jiménez-Martin JM, El Tawil-Lucas M, Montaña M, Linares M, Osatiashtiani A, Vila F, Alonso DM, Moreno J, García A, Iglesias J. Production of Methyl Lactate with Sn-USY and Sn-β: Insights into Real Hemicellulose Valorization. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2024; 12:2771-2782. [PMID: 38389903 PMCID: PMC10880092 DOI: 10.1021/acssuschemeng.3c07356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/24/2024]
Abstract
Potassium exchanged Sn-β and Sn-USY zeolites have been tested for the transformation of various aldoses (hexoses and pentoses), exhibiting outstanding catalytic activity and selectivity toward methyl lactate. Insights into the transformation pathways using reaction intermediates-dihydroxyacetone and glycolaldehyde-as substrates revealed a very high catalytic proficiency of both zeolites in aldol and retro-aldol reactions, showcasing their ability to convert small sugars into large sugars, and vice versa. This feature makes the studied Sn-zeolites outstanding catalysts for the transformation of a wide variety of sugars into a limited range of commercially valuable alkyl lactates and derivatives. [K]Sn-β proved to be superior to [K]Sn-USY in terms of shape selectivity, exerting tight control on the distribution of produced α-hydroxy methyl esters. This shape selectivity was evident in the transformation of several complex sugar mixtures emulating different hemicelluloses-sugar cane bagasse, Scots pine, and white birch-that, despite showing very different sugar compositions, were almost exclusively converted into methyl lactate and methyl vinyl glycolate in very similar proportions. Moreover, the conversion of a real hemicellulose hydrolysate obtained from Scots pine through a simple GVL-based organosolv process confirmed the high activity and selectivity of [K]Sn-β in the studied transformation, opening new pathways for the chemical valorization of this plentiful, but underutilized, sugar feedstock.
Collapse
Affiliation(s)
- Jose M. Jiménez-Martin
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Miriam El Tawil-Lucas
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Maia Montaña
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - María Linares
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Amin Osatiashtiani
- Energy
& Bioproducts Research Institute (EBRI), College of Engineering
and Physical Sciences, Aston University,
Aston Triangle, Birmingham B4 7ET, United
Kingdom
| | - Francisco Vila
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - David Martín Alonso
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Jovita Moreno
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Alicia García
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
| | - Jose Iglesias
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/Tulipan
s/n, 28933 Madrid, Spain
- Instituto
de Tecnologías para la Sostenibilidad. Universidad Rey Juan Carlos. C/Tulipan s/n, 28933. Madrid, Spain
| |
Collapse
|
11
|
Li F, Yang R, Tian Z, Du Z, Dai J, Wang X, Li N, Zhang J. Microwave-Assisted One Pot Cascade Conversion of Furfural to γ-Valerolactone over Sc(OTf) 3. Chemistry 2023; 29:e202300950. [PMID: 37392150 DOI: 10.1002/chem.202300950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/19/2023] [Accepted: 06/29/2023] [Indexed: 07/03/2023]
Abstract
γ-Valerolactone (GVL) is considered as a star biochemical which can be used as a green solvent, fuel additive and versatile organic intermediate. In this study, metal triflate (M(OTf)n ) was utilized as the catalyst for one-pot transformation of furfural (FF) to GVL in alcohol media under microwave irradiation. Alcohol plays multiple functions including solvent, hydrogen donor and alcoholysis reagent in this cascade reaction process. And process efficiency of GVL production from FF upgrading is strongly related to the effective charge density of selected catalyst and the reduction potential of selected alcohol. Complex (OTf)n -M-O(H)R, presenting both Brønsted acid and Lewis acid, is the real catalytic active species in this cascade reaction process. Among various catalysts, Sc(OTf)3 exhibited the best catalytic activity for GVL production. Various reaction parameters including the Sc(OTf)3 amount, reaction temperature and time were optimized by the response surface methodology with the central composite design (RSM-CCD). Up to 81.2 % GVL yield and 100 % FF conversion were achieved at 143.9 °C after 8.1 h in the presence of 0.16 mmol catalyst. This catalyst exhibits high reusability and can be regenerated by oxidative degradation of humins. In addition, a plausible cascade reaction network was proposed based on the distribution of product.
Collapse
Affiliation(s)
- Fukun Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Ronghe Yang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Zheng Tian
- Dencare (Chongqing) Oral Care Co., Ltd, Chongqing, 400067, P. R. China
| | - Ziting Du
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Jinhang Dai
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Xingmin Wang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Ning Li
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| | - Jie Zhang
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, P. R. China
| |
Collapse
|
12
|
Woods S, Tinkler JD, Bensabeh N, Palà M, Martin SJ, Martin-Fabiani I, Lligadas G, Hatton FL. Temperature-Responsive Lactic Acid-Based Nanoparticles by RAFT-Mediated Polymerization-Induced Self-Assembly in Water. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:9979-9988. [PMID: 37448723 PMCID: PMC10337250 DOI: 10.1021/acssuschemeng.3c01112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/08/2023] [Indexed: 07/15/2023]
Abstract
This work demonstrates for the first-time biobased, temperature-responsive diblock copolymer nanoparticles synthesized by reversible addition-fragmentation chain-transfer (RAFT) aqueous emulsion polymerization-induced self-assembly (PISA). Here, monomers derived from green solvents of the lactic acid portfolio, N,N-dimethyl lactamide acrylate (DMLA) and ethyl lactate acrylate (ELA), were used. First, DMLA was polymerized by RAFT aqueous solution polymerization to produce a hydrophilic PDMLA macromolecular chain transfer agent (macro-CTA), which was chain extended with ELA in water to form amphiphilic PDMLA-b-PELA diblock copolymer nanoparticles by RAFT aqueous emulsion polymerization. PDMLAx homopolymers were synthesized targeting degrees of polymerization, DPx from 25 to 400, with relatively narrow molecular weight dispersities (Đ < 1.30). The PDMLA64-b-PELAy diblock copolymers (DPy = 10-400) achieved dispersities, Đ, between 1.18 and 1.54 with two distinct glass transition temperatures (Tg) identified by differential scanning calorimetry (DSC). Tg(1) (7.4 to 15.7 °C) representative of PELA and Tg(2) (69.1 to 79.7 °C) of PDMLA. Dynamic light scattering (DLS) studies gave particle z-average diameters between 11 and 74 nm (PDI = 0.04 to 0.20). Atomic force microscopy (AFM) showed evidence of spherical particles when dispersions were dried at ∼5 °C and film formation when dried at room temperature. Many of these polymers exhibited a reversible lower critical solution temperature (LCST) in water with a concomitant increase in z-average diameter for the PDMLA-b-PELA diblock copolymer nanoparticles.
Collapse
Affiliation(s)
- Sarah
E. Woods
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - James David Tinkler
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | - Nabil Bensabeh
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Marc Palà
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Simon J. Martin
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| | | | - Gerard Lligadas
- Laboratory
of Sustainable Polymers, Department of Analytical Chemistry and Organic
Chemistry, University Rovira i Virgili, 43007 Tarragona, Spain
| | - Fiona L. Hatton
- Department
of Materials, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
13
|
Rimondino GN, Iriarte AG, Malanca FE. Photo-oxidation of ethyl pyruvate initiated by chlorine atoms. Kinetics and reaction mechanism. J Photochem Photobiol A Chem 2023. [DOI: 10.1016/j.jphotochem.2023.114655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
14
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
15
|
Zhang Y, Liao S, Zhang H, Liu R, Tong X. The selective aerobic oxidation of ethyl lactate to ethyl pyruvate mediated by a trace of HBr with visible light. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2023.113066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
|
16
|
Ke J, Chi M, Zhao J, Liu Y, Wang R, Fan K, Zhou Y, Xi Z, Kong X, Li H, Zeng J, Geng Z. Dynamically Reversible Interconversion of Molecular Catalysts for Efficient Electrooxidation of Propylene into Propylene Glycol. J Am Chem Soc 2023; 145:9104-9111. [PMID: 36944146 DOI: 10.1021/jacs.3c00660] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
For the electrooxidation of propylene into 1,2-propylene glycol (PG), the process involves two key steps of the generation of *OH and the transfer of *OH to the C═C bond in propylene. The strong *OH binding energy (EB(*OH)) favors the dissociation of H2O into *OH, whereas the transfer of *OH to propylene will be impeded. The scaling relationship of the EB(*OH) plays a key role in affecting the catalytic performance toward propylene electrooxidation. Herein, we adopt an immobilized Ag pyrazole molecular catalyst (denoted as AgPz) as the electrocatalyst. The pyrrolic N-H in AgPz could undergo deprotonation to form pyrrolic N (denoted as AgPz-Hvac), which can be protonated reversibly. During propylene electrooxidation, the strong EB(*OH) on AgPz favors the dissociation of H2O into *OH. Subsequently, the AgPz transforms into AgPz-Hvac that possesses weak EB(*OH), benefiting to the further combination of *OH and propylene. The dynamically reversible interconversion between AgPz and AgPz-Hvac accompanied by changeable EB(*OH) breaks the scaling relationship, thus greatly lowering the reaction barrier. At 2.0 V versus Ag/AgCl electrode, AgPz achieves a remarkable yield rate of 288.9 mmolPG gcat-1 h-1, which is more than one order of magnitude higher than the highest value ever reported.
Collapse
Affiliation(s)
- Jingwen Ke
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Mingfang Chi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jiankang Zhao
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yan Liu
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Ruyang Wang
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Kaiyuan Fan
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Yuxuan Zhou
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Zhikai Xi
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Xiangdong Kong
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Hongliang Li
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| | - Jie Zeng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
- School of Chemistry & Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Zhigang Geng
- Hefei National Research Center for Physical Sciences at the Microscale, Key Laboratory of Strongly-Coupled Quantum Matter Physics of Chinese Academy of Sciences, Key Laboratory of Surface and Interface Chemistry and Energy Catalysis of Anhui Higher Education Institutes, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, P. R. China
| |
Collapse
|
17
|
Catalytic Conversion of Sugars into Lactic Acid via a RuOx/MoS2 Catalyst. Catalysts 2023. [DOI: 10.3390/catal13030545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Abstract
The catalytic transformation of sugars into lactic acid has shown great potential for the scalable utilization of renewable biomass. Herein, RuOx/MoS2 catalysts were synthesized with the assistance of CaO for the one-pot conversion of glucose to lactic acid. Under the reaction conditions of 120 °C and 1MPa O2, a 96.6% glucose conversion and a 54.3% lactic acid yield were realized in the one-pot catalytic reaction, with relatively high stability after four successive cycles. This catalytic system was also effective for the conversion of many other carbohydrate substrates, such as fructose, xylose and cellulose (selectivity 68.9%, 78.2% and 50.6%, respectively). According to catalyst characterizations and conditional experiments, the highly dispersed RuOx species on the surface of MoS2, together with OH−, promoted isomerization, retro-aldol condensation, dehydration and hydration reactions, resulting in a relatively high lactic acid yield for sugar conversions.
Collapse
|
18
|
Catalytic conversion of biomass-derived compoUnds to various amino acids: status and perspectives. Front Chem Sci Eng 2023. [DOI: 10.1007/s11705-022-2254-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
19
|
One Step Catalytic Conversion of Polysaccharides in Ulva prolifera to Lactic Acid and Value-Added Chemicals. Catalysts 2023. [DOI: 10.3390/catal13020262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The production of lactic acid and value-added chemicals (such as hydroxypropanone, glycolic acid, and formic acid) directly from Ulva prolifera via one-step catalytic process was studied. The effect of different amounts of YCl3-derived catalysts on the hydrothermal conversion of carbohydrates in Ulva prolifera was explored, and the reaction conditions were optimized. In this catalytic system, rhamnose could be extracted from Ulva prolifera and converted in situ into lactic acid and hydroxypropanone at 160 °C, while all the glucose, xylose, and rhamnose were fractionated and completely converted to lactic acid at 220 °C or at a higher temperature, via several consecutive and/or parallel catalytic processes. The highest yield of lactic acid obtained was 31.4 wt% under the optimized conditions. The hydrothermal conversion of Ulva prolifera occurred rapidly (within 10 min) and showed promise to valorize Ulva prolifera.
Collapse
|
20
|
Kim S, Giraldo N, Rainaldi V, Machens F, Collas F, Kubis A, Kensy F, Bar-Even A, Lindner SN. Optimizing E. coli as a formatotrophic platform for bioproduction via the reductive glycine pathway. Front Bioeng Biotechnol 2023; 11:1091899. [PMID: 36726742 PMCID: PMC9885119 DOI: 10.3389/fbioe.2023.1091899] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/06/2023] [Indexed: 01/17/2023] Open
Abstract
Microbial C1 fixation has a vast potential to support a sustainable circular economy. Hence, several biotechnologically important microorganisms have been recently engineered for fixing C1 substrates. However, reports about C1-based bioproduction with these organisms are scarce. Here, we describe the optimization of a previously engineered formatotrophic Escherichia coli strain. Short-term adaptive laboratory evolution enhanced biomass yield and accelerated growth of formatotrophic E. coli to 3.3 g-CDW/mol-formate and 6 h doubling time, respectively. Genome sequence analysis revealed that manipulation of acetate metabolism is the reason for better growth performance, verified by subsequent reverse engineering of the parental E. coli strain. Moreover, the improved strain is capable of growing to an OD600 of 22 in bioreactor fed-batch experiments, highlighting its potential use for industrial bioprocesses. Finally, demonstrating the strain's potential to support a sustainable, formate-based bioeconomy, lactate production from formate was engineered. The optimized strain generated 1.2 mM lactate -10% of the theoretical maximum- providing the first proof-of-concept application of the reductive glycine pathway for bioproduction.
Collapse
Affiliation(s)
- Seohyoung Kim
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Néstor Giraldo
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Vittorio Rainaldi
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Fabian Machens
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | | | | | | | - Arren Bar-Even
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Steffen N. Lindner
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany,Department of Biochemistry, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany,*Correspondence: Steffen N. Lindner,
| |
Collapse
|
21
|
Li F, Yang R, Du Z, Dai J, Wang X, Li N, Zhang J, Zhang X, Liu Y, Gong H, Yin H, Cai Z. Sc(OTf)3: An efficient homogeneous catalyst for microwave-assisted transfer hydrogenation of ethyl levulinate to γ-valerolactone under mild conditions. MOLECULAR CATALYSIS 2023. [DOI: 10.1016/j.mcat.2022.112863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
22
|
Huang Y, Xiong D, Wu S, Huang Z, Shen W, Xu H. Preparation of a Nanorod-like Mo-VO x Catalyst for Gas Phase Selective Oxidation of Methyl Lactate with Air. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c03827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Yijia Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Desheng Xiong
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
- Shanghai Huayi New Material Co., Ltd., Shanghai201507, People’s Republic of China
| | - Shipeng Wu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Zhen Huang
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Wei Shen
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| | - Hualong Xu
- Department of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Laboratory of Advanced Materials, Collaborative Innovation Centre of Chemistry for Energy Materials, Fudan University, Shanghai200433, People’s Republic of China
| |
Collapse
|
23
|
Valorisation of Corncob Residue towards the Sustainable Production of Glucuronic Acid. Catalysts 2022. [DOI: 10.3390/catal12121603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The production of glucuronic acid (GA) directly from actual biomass via chemocatalysis is of great significance to the effective valorisation of biomass for a sustainable future. Herein, we have developed a one-step strategy for the conversion of cellulose in corncob residue into GA with the cooperation of Au/CeO2 and maleic acid, achieving a 60.3% yield. Experimental and density functional theory (DFT) results show that maleic acid is effective in the fractionation of cellulose from corncob residue and the depolymerisation of cellulose fragments to glucose, on account of the good capacity for proton migration. Au/CeO2 is responsible for the selective oxidation of glucose to GA, in which the formation of glucaric acid is restrained, due to the weak capacity of Au/CeO2 on the proton transfer without the occurrence of the ring-opening reaction of glucose. Therefore, the relay catalysis of Au/CeO2 and maleic acid enables the production of GA via the complex cascade reactions. This work may provide insight regarding the conversion of actual biomass to targeted products.
Collapse
|
24
|
The synergistic effect of EDTA-Fe and 1-naphthaleneacetic acid on the growth and carbohydrate content of Scenedesmus obliquus. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Song L, Liu S, Liu R, Yang D, Dai X. Direct lactic acid production from household food waste by lactic acid bacteria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 840:156479. [PMID: 35679945 DOI: 10.1016/j.scitotenv.2022.156479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/31/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
China is vigorously promoting garbage classification, but the treatment of classified waste, especially household food waste (HFW) has yet to be studied. Lactic acid (LA), a high value-added platform molecule has broad market prospects. Although there have been many studies on the production of LA from food waste, open fermentation often produces lots of by-products, while the traditional fermentation under a pure bacteria system often requires the saccharification process, which increases the production cost. We sought to analyze the comprehensive properties of classified HFW in Shanghai, then to produce LA by inoculating lactic acid bacteria (LAB) directly. The effects of strains, temperature, sterilized or not, initial pH, inoculum size, and substrate concentration on LA production were investigated. HFW was rich in nutrients and growth factors which provided the possibility for direct LA production from HFW by inoculating LAB. The results showed that Lactobacillus rhamnosus ATCC 7469, Lactobacillus delbrueckii subsp. bulgaricus and Streptococcus thermophilus all could be used as the inoculum, however, no significant synergistic effect of the three strains on LA production was found. LA concentration of 30.25 g/L at 37 °C, pH 6.8 could be obtained by inoculating Lactobacillus rhamnosus ATCC 7469 from sterilized HFW. High inoculum size and substrate concentration resulted in high LA concentration, but not high LA yield. The result of ANOVA indicated that there was a significantly positive relationship between substrate concentration and LA concentration (r = 0.942, p < 0.01), while no statistically significant difference between these groups at different inoculum size was evident (p = 0.318). In addition, an average LA concentration of 26.8 g/L, LA yield of 0.20 g/g TCOD was obtained by repeated batch fermentation for 32 d.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
26
|
Zhang G, Zhao J, Jin X, Qian Y, Zhou M, Jia X, Sun F, Jiang J, Xu W, Sun B. Combined dehydrogenation of glycerol with catalytic transfer hydrogenation of H2 acceptors to chemicals: Opportunities and challenges. Front Chem 2022; 10:962579. [PMID: 36072704 PMCID: PMC9442352 DOI: 10.3389/fchem.2022.962579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/13/2022] [Indexed: 11/17/2022] Open
Abstract
Catalytic transformation of low-cost glycerol to value-added lactic acid (LA) is considered as one of the most promising technologies for the upgradation of glycerol into renewable products. Currently, research studies reveal that anaerobic transformation of glycerol to LA could also obtain green H2 with the same yield of LA. However, the combined value-added utilization of released H2 with high selectivity of LA during glycerol conversion under mild conditions still remains a grand challenge. In this perspective, for the first time, we conducted a comprehensive and critical discussion on current strategies for combined one-pot/tandem dehydrogenation of glycerol to LA with catalytic transfer hydrogenation of H2 acceptors (such as CO2) to other chemicals. The aim of this overview was to provide a general guidance on the atomic economic reaction pathway for upgrading low-cost glycerol and CO2 to LA as well as other chemicals.
Collapse
Affiliation(s)
- Guangyu Zhang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
- *Correspondence: Guangyu Zhang,
| | - Jian Zhao
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xin Jin
- State Key Laboratory of Heavy Oil Processing, College of Chemical Engineering, China University of Petroleum, Qingdao, Shandong, China
| | - Yanan Qian
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Mingchuan Zhou
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Xuewu Jia
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Feng Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Jie Jiang
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Wei Xu
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| | - Bing Sun
- State Key Laboratory of Safety and Control for Chemicals, SINOPEC Research Institute of Safety Engineering Co., Ltd., Qingdao, Shandong, China
| |
Collapse
|
27
|
Hu Y, Zhang G, Liu L, Chi Z, Wang S, Lin J, Xiong H, Wan S. Synergetic Effect of Mo, Mg-Modified Sn-β Over Moderate-Temperature Conversion of Hexose to Alkyl Lactate. Front Chem 2022; 10:944552. [PMID: 35910739 PMCID: PMC9329925 DOI: 10.3389/fchem.2022.944552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022] Open
Abstract
The thermocatalytic conversion of hexose into valuable chemicals such as methyl lactate under mild conditions is very appealing. Here, we report that Mo, Mg co-modified Sn-β catalyst can effectively catalyze the transformation of glucose and fructose into alkyl lactate at moderate temperatures. A maximum yield of around 35% of methyl lactate was achieved from the conversion of glucose in methanol at 100°C over Sn-β catalyst modified with 3 wt% Mo and 0.5 wt% Mg. However, up to 82.8% yield of ethyl lactate was obtained in the case of fructose in ethanol upon the same catalytic condition, suggesting a significant solvent effect. The Mo species plays a key role to enable the retro-aldol condensation of fructose, in which the competing side reactions are significantly suppressed with the assistance of neighboring Mg species probably through a synergetic effect of Lewis acid-base.
Collapse
|
28
|
Jimenez-Martin JM, Orozco-Saumell A, Hernando H, Linares M, Mariscal R, López Granados M, García A, Iglesias J. Efficient Conversion of Glucose to Methyl Lactate with Sn-USY: Retro-aldol Activity Promotion by Controlled Ion Exchange. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2022; 10:8885-8896. [PMID: 35846797 PMCID: PMC9278086 DOI: 10.1021/acssuschemeng.2c01987] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Sn-USY materials have been prepared through an optimized post-synthetic catalytic metalation procedure. These zeolites displayed, upon ion exchange with alkaline metals, an outstanding activity in the direct transformation of glucose into methyl lactate, yielding more than 70% of the starting glucose as the target product, and an overall combined retro-aldol condensation product yield above 95% in a short reaction time (<4 h). This outstanding catalytic performance is ascribed to the neutralization of Brønsted acid sites, the consequent depression of side reactions, and a higher population of tin open sites in the ion-exchanged Sn-USY zeolites. Reusability tests evidenced some loss of catalytic activity, partially caused by the closing of tin sites, although the use of small amounts of water in the reaction media demonstrated that this deactivation mechanism can be, at least, partially alleviated.
Collapse
Affiliation(s)
- Jose M. Jimenez-Martin
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Ana Orozco-Saumell
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Héctor Hernando
- IMDEA
Energy Institute, Av. Ramón de la Sagra 3, 28935 Móstoles, Madrid, Spain
| | - María Linares
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Rafael Mariscal
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Manuel López Granados
- Energy
and Sustainable Chemistry (EQS) Group, Institute
of Catalysis and Petrochemistry, CSIC, C/ Marie Curie 2, Campus de Cantoblanco, 28049 Madrid, Spain
| | - Alicia García
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| | - Jose Iglesias
- Chemical
& Environmental Engineering Group, Universidad
Rey Juan Carlos, C/ Tulipan
s/n, 28933 Madrid, Spain
| |
Collapse
|
29
|
Wang S, Li T, Chu Y, Li T, Yu H, Wang S, Chai J, Yan B, Zhou X, Yin H. Ethylenediamine Assisted Synthesis of Sn‐MFI Zeolite with High Space‐time Yield as Lewis Acidic Catalysts for Conversion of Dihydroxypropanone to Methyl Lactate. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Shiwei Wang
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering 1219 Zhongguan West Road 315201 Ningbo CHINA
| | - Tianhao Li
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Yuting Chu
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Tong Li
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Hongbo Yu
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Shuibo Wang
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Juan Chai
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Bo Yan
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Xiaobing Zhou
- Ningbo Institute of Materials Technology and Engineering CAS: Ningbo Institute of Industrial Technology Chinese Academy of Sciences Ningbo Institute of Materials Technology and Engineering CHINA
| | - Hongfeng Yin
- Institute for New Energy Technologies, Ningbo Institute of Material Technology and Engineering Chinese Academy of Sciences No. 1219 Zhongguan West Road Zhenhai District 315201 Ningbo CHINA
| |
Collapse
|
30
|
Zhu Z, Hu J, Xie Z, Tang J, Le Z. Visible‐Light‐Enabled Photosensitizer‐ and Additive‐Free Decarboxylative Coupling Cyclization of Enaminone with
N
‐Arylglycine for 3‐Aminoalkyl Chromones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhi‐Qiang Zhu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Jia‐Yu Hu
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Zong‐Bo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| | - Juan Tang
- Ministry of Education Key Laboratory of Functional Small Organic Molecule Department of Chemistry and chemical engineering Jiangxi Normal University Nanchang 330022 People's Republic of China
| | - Zhang‐Gao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry School of Chemistry, Biology and Material Science East China University of Technology Nanchang 330013 People's Republic of China
| |
Collapse
|
31
|
Lu T, Yang Z, Li H, Chen H, Xu J, Xu CC, Wang J, Li Z, Zhang Y. Selective oxidation of ethyl lactate to ethyl pyruvate by a photocatalytic strategy under room temperature. J Catal 2022. [DOI: 10.1016/j.jcat.2022.04.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
32
|
Qu H, Zhou S, Su Y, Yang X, Zhou L. Cost-effective and fast synthesis of Sn-β zeolite with less silanol defects for efficient conversion of glucose to methyl lactate. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Catalytic Conversion of High Fructose Corn Syrup to Methyl Lactate with CoO@silicalite-1. Catalysts 2022. [DOI: 10.3390/catal12040442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Methyl lactate (MLA), a versatile biomass platform, was typically produced from the catalytic conversion of high-priced fructose. High fructose corn syrup (HFCS) is a mixture of glucose, fructose, water, etc., which is viewed as an economical substitute for fructose to produce MLA due to the much lower cost of separation and drying processes. However, the transformation of HFCS to MLA is still a challenge due to its complex components and the presence of water. In this work, the catalytic conversion of HFCS to MLA over CoO@silicalite-1 catalyst synthesized via a straightforward post citric acid treatment approach was reported. The maximum MLA yield reached 43.8% at 180 °C for 18 h after optimizing the reaction conditions and Co loading. Interestingly, adding extra 3% water could further increase the MLA yield, implying that our CoO@silicalite-1 catalyst is also capable for upgrading wet HFCS. As a result, the costly drying process of wet HFCS can be avoided. Moreover, the activity of CoO@silicalite-1 catalyst can be regenerated for at least four cycles via facile calcination in air. This study, therefore, will provide a new opportunity to not only solve the HFCS-overproduction issues but also produce value-added MLA.
Collapse
|
34
|
Palà M, Woods SE, Hatton FL, Lligadas G. RDRP (Meth)acrylic Homo and Block Polymers from Lignocellulosic Sugar Derivatives. MACROMOL CHEM PHYS 2022. [DOI: 10.1002/macp.202200005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Marc Palà
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| | - Sarah E. Woods
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Fiona L. Hatton
- Department of Materials Loughborough University Loughborough LE11 3TU UK
| | - Gerard Lligadas
- Laboratory of Sustainable Polymers Department of Analytical Chemistry and Organic Chemistry University Rovira i Virgili Tarragona 43007 Spain
| |
Collapse
|
35
|
Dong W, Ou M, Qu D, Shi X, Guo M, Liu G, Wang S, Wang F, Chen Y. Rare‐Earth Metal Yttrium‐Modified Composite Metal Oxide Catalysts for High Selectivity Synthesis of Biomass‐Derived Lactic Acid from Cellulose. ChemCatChem 2022. [DOI: 10.1002/cctc.202200265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Wendi Dong
- Nanjing University of Technology - Jiangpu Campus: Nanjing Tech University College of Chemical Engineering CHINA
| | - Man Ou
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Dongxue Qu
- Nanjing Tech University Collage of Chemical Engineering CHINA
| | - Xingshan Shi
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Ming Guo
- University of Helsinki: Helsingin Yliopisto Deparment of Chemistry CHINA
| | - Guojun Liu
- Nanjing Tech University School of Energy Science and Engineering CHINA
| | - Shaoshuai Wang
- Nanjing Tech University College of Chemical Engineering CHINA
| | - Fenfen Wang
- Nanjing Tech University School of Energy Science and Engineering NO.30 Puzhu Road(S),Nanjing,China 211816 Nanjing CHINA
| | - Yuhui Chen
- Nanjing Tech University School of Energy Science and Engineering CHINA
| |
Collapse
|
36
|
Rungtaweevoranit B, Chaipojjana K, Junkaew A, Thongratkaew S, Impeng S, Faungnawakij K. Identification of Cooperative Reaction Sites in Metal-Organic Framework Catalysts for High Yielding Lactic Acid Production from d-Xylose. CHEMSUSCHEM 2022; 15:e202102653. [PMID: 34982851 DOI: 10.1002/cssc.202102653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Determining the roles of surface functionality of heterogeneous acid catalysts is important for many industrial catalysts. In this study, the decisive structure of metal-organic frameworks (MOFs) is utilized to identify important features for the effective conversion of d-xylose into lactic acid. Several acidic MOFs are tested and the combination of Lewis acidity and adjacent hydroxy sites is found to be critical to attain high lactic acid yields. This hypothesis is corroborated experimentally by modification of the MOF to increase such sites, which affords an enhanced lactic acid yield of 79 %, and investigation of the acidity by using in situ FTIR spectroscopy. Density functional theory calculations disclose the cooperative behavior of Lewis acid sites and hydroxy groups in promoting the Cannizzaro reaction, a key step in the production of lactic acid.
Collapse
Affiliation(s)
- Bunyarat Rungtaweevoranit
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kawisa Chaipojjana
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Anchalee Junkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sutarat Thongratkaew
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Sarawoot Impeng
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| | - Kajornsak Faungnawakij
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency (NSTDA), Pathum Thani, 12120, Thailand
| |
Collapse
|
37
|
Yankov D. Fermentative Lactic Acid Production From Lignocellulosic Feedstocks: From Source to Purified Product. Front Chem 2022; 10:823005. [PMID: 35308791 PMCID: PMC8931288 DOI: 10.3389/fchem.2022.823005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 01/21/2022] [Indexed: 01/10/2023] Open
Abstract
The second (lignocellulosic biomass and industrial wastes) and third (algal biomass) generation feedstocks gained substantial interest as a source of various value-added chemicals, produced by fermentation. Lactic acid is a valuable platform chemical with both traditional and newer applications in many industries. The successful fractionation, separation, and hydrolysis of lignocellulosic biomass result in sugars' rich raw material for lactic acid fermentation. This review paper aims to summarize the investigations and progress in the last 5 years in lactic acid production from inexpensive and renewable resources. Different aspects are discussed-the type of raw materials, pretreatment and detoxification methods, lactic acid-producers (bacteria, fungi, and yeasts), use of genetically manipulated microorganisms, separation techniques, different approaches of process organization, as well as main challenges, and possible solutions for process optimization.
Collapse
Affiliation(s)
- Dragomir Yankov
- Chemical and Biochemical Reactors Laboratory, Institute of Chemical Engineering, Bulgarian Academy of Sciences, Sofia, Bulgaria
| |
Collapse
|
38
|
Kumar A, Awasthi MK, Priya B, Singh SK. Selective Hydrogen Production from Glycerol over Ruthenium Catalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202101951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ankit Kumar
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Mahendra K. Awasthi
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Bhanu Priya
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| | - Sanjay Kumar Singh
- Indian Institute of Technology Indore Chemistry SimrolKhandwa Road 453552 Indore INDIA
| |
Collapse
|
39
|
Hydrothermal Conversion of Fructose to Lactic Acid and Derivatives: Synergies of Metal and Acid/Base Catalysts. Chin J Chem Eng 2022. [DOI: 10.1016/j.cjche.2021.12.027] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
40
|
Song L, Yang D, Liu R, Liu S, Dai L, Dai X. Microbial production of lactic acid from food waste: Latest advances, limits, and perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126052. [PMID: 34592459 DOI: 10.1016/j.biortech.2021.126052] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 06/13/2023]
Abstract
A significant amount of food waste (FW) is produced every year. If it is not disposed of timeously, human health and the ecological environment can be negatively affected. Lactic acid (LA), a high value-added product, can be produced by fermentation from FW as a substrate, realizing the concurrent treatment and recycling of FW, which has attracted increasing research interest. In this paper, the latest advances and deficiencies were presented from the following aspects: microorganisms involved in LA fermentation and the metabolic pathways of Lactobacillus, fermentation conditions, and methods of enhanced biotransformation and LA separation. The limitations of the LA fermentation of FW are mainly associated with low LA concentration and yield, the low purity of L(+)-LA, and the high separation costs. The establishment of biorefineries of FW with lactic acid as the target product is the future development direction, but there are still many research studies to be done.
Collapse
Affiliation(s)
- Liang Song
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Donghai Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Rui Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Shiyu Liu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lingling Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|
41
|
Ke YH, Wang X, Li JY, Liu H, Yuan H. Selective Oxidation of Glycerol to Lactic Acid over Supported Bimetallic Au–M Catalysts. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2022. [DOI: 10.1134/s0036024421150139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
42
|
Selective Hydrogenation of Glycolic Acid to Renewable Ethylene Glycol over Supported Ruthenium Catalysts. ChemCatChem 2022. [DOI: 10.1002/cctc.202101275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Simulation of continuous catalytic conversion of glycerol into lactic acid in a microreactor system: A CFD study. J IND ENG CHEM 2021. [DOI: 10.1016/j.jiec.2021.08.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
44
|
Djakovitch L, Essayem N, Eternot M, Rataboul F. A Landscape of Lignocellulosic Biopolymer Transformations into Valuable Molecules by Heterogeneous Catalysis in C'Durable Team at IRCELYON. Molecules 2021; 26:molecules26226796. [PMID: 34833888 PMCID: PMC8621028 DOI: 10.3390/molecules26226796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/04/2021] [Accepted: 11/09/2021] [Indexed: 11/16/2022] Open
Abstract
This review article highlights part of the research activity of the C’Durable team at IRCELYON in the field of sustainable chemistry. This review presents a landscape of the work performed on the valorization of lignocellulosic biopolymers. These studies intend to transform cellulose, hemicellulose and lignin into valuable molecules. The methodology usually consists in evaluating the behavior of the biopolymers in the absence of catalyst under various conditions (solvent, temperature), and then to assess the influence of a catalyst, most often a heterogeneous catalyst, on the reactivity. The most significant results obtained on the upgrading of cellulose and lignin, which have been mainly investigated in the team, will be presented with an opening on studies involving raw lignocellulose.
Collapse
|
45
|
Ma H, Wen Y, Yu C, Qiao Y, Teng J, Ji H. Catalytic Production of Methyl Lactate from Fructose‐Based Carbohydrates Using Yttrium Modified ZSM‐5 Zeolite. ChemistrySelect 2021. [DOI: 10.1002/slct.202102418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hao Ma
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Yi Wen
- School of Chemical Engineering and Light Industry Guangdong University of Technology Guangzhou 510006 P. R. China
| | - Chenghua Yu
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Yanhui Qiao
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Junjiang Teng
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
| | - Hongbing Ji
- College of Chemistry Guangdong University of Petrochemical Technology Maoming 525000 P. R. China
- Fine Chemical Industry Research Institute School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
46
|
Nikolaivits E, Pantelic B, Azeem M, Taxeidis G, Babu R, Topakas E, Brennan Fournet M, Nikodinovic-Runic J. Progressing Plastics Circularity: A Review of Mechano-Biocatalytic Approaches for Waste Plastic (Re)valorization. Front Bioeng Biotechnol 2021; 9:696040. [PMID: 34239864 PMCID: PMC8260098 DOI: 10.3389/fbioe.2021.696040] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/28/2021] [Indexed: 01/10/2023] Open
Abstract
Inspirational concepts, and the transfer of analogs from natural biology to science and engineering, has produced many excellent technologies to date, spanning vaccines to modern architectural feats. This review highlights that answers to the pressing global petroleum-based plastic waste challenges, can be found within the mechanics and mechanisms natural ecosystems. Here, a suite of technological and engineering approaches, which can be implemented to operate in tandem with nature's prescription for regenerative material circularity, is presented as a route to plastics sustainability. A number of mechanical/green chemical (pre)treatment methodologies, which simulate natural weathering and arthropodal dismantling activities are reviewed, including: mechanical milling, reactive extrusion, ultrasonic-, UV- and degradation using supercritical CO2. Akin to natural mechanical degradation, the purpose of the pretreatments is to render the plastic materials more amenable to microbial and biocatalytic activities, to yield effective depolymerization and (re)valorization. While biotechnological based degradation and depolymerization of both recalcitrant and bioplastics are at a relatively early stage of development, the potential for acceleration and expedition of valuable output monomers and oligomers yields is considerable. To date a limited number of independent mechano-green chemical approaches and a considerable and growing number of standalone enzymatic and microbial degradation studies have been reported. A convergent strategy, one which forges mechano-green chemical treatments together with the enzymatic and microbial actions, is largely lacking at this time. An overview of the reported microbial and enzymatic degradations of petroleum-based synthetic polymer plastics, specifically: low-density polyethylene (LDPE), high-density polyethylene (HDPE), polystyrene (PS), polyethylene terephthalate (PET), polyurethanes (PU) and polycaprolactone (PCL) and selected prevalent bio-based or bio-polymers [polylactic acid (PLA), polyhydroxyalkanoates (PHAs) and polybutylene succinate (PBS)], is detailed. The harvesting of depolymerization products to produce new materials and higher-value products is also a key endeavor in effectively completing the circle for plastics. Our challenge is now to effectively combine and conjugate the requisite cross disciplinary approaches and progress the essential science and engineering technologies to categorically complete the life-cycle for plastics.
Collapse
Affiliation(s)
- Efstratios Nikolaivits
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Brana Pantelic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| | | | - George Taxeidis
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | - Ramesh Babu
- AMBER Centre, CRANN Institute, School of Chemistry, Trinity College Dublin, Dublin, Ireland
| | - Evangelos Topakas
- Industrial Biotechnology & Biocatalysis Group, Biotechnology Laboratory, School of Chemical Engineering, National Technical University of Athens, Athens, Greece
| | | | - Jasmina Nikodinovic-Runic
- Eco-Biotechnology & Drug Development Group, Laboratory for Microbial Molecular Genetics and Ecology, Institute of Molecular Genetics and Genetic Engineering, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
47
|
Li X, Yuan X, Xia G, Liang J, Liu C, Qin Y, Wang Z, Yang W. Postsynthesis of Delaminated MWW-Type Stannosilicate as a Robust Catalyst for Sugar Conversion to Methyl Lactate. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00471] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Xiangcheng Li
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 North Pudong Road, Shanghai 201208, PR China
| | - Xiaohong Yuan
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 North Pudong Road, Shanghai 201208, PR China
| | - Guopeng Xia
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Jun Liang
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| | - Chuang Liu
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 North Pudong Road, Shanghai 201208, PR China
| | - Yucai Qin
- Key Laboratory of Petrochemical Catalytic Science and Technology, Liaoning Province, Liaoning Shihua University, Fushun 113001, Liaoning, PR China
| | - Zhendong Wang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 North Pudong Road, Shanghai 201208, PR China
| | - Weimin Yang
- State Key Laboratory of Green Chemical Engineering and Industrial Catalysis, Sinopec Shanghai Research Institute of Petrochemical Technology, 1658 North Pudong Road, Shanghai 201208, PR China
- School of Chemical Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, PR China
| |
Collapse
|
48
|
Da YY, Liu ZH, Zhu R, Li ZJ. Coutilization of glucose and acetate for the production of pyruvate by engineered Escherichia coli. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.107990] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
49
|
Shen X, Sun R. Recent advances in lignocellulose prior-fractionation for biomaterials, biochemicals, and bioenergy. Carbohydr Polym 2021; 261:117884. [PMID: 33766371 DOI: 10.1016/j.carbpol.2021.117884] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/25/2021] [Accepted: 02/26/2021] [Indexed: 12/20/2022]
Abstract
Due to over-consumption of fossil resources and environmental problems, lignocellulosic biomass as the most abundant and renewable materials is considered as the best candidate to produce biomaterials, biochemicals, and bioenergy, which is of strategic significance and meets the theme of Green Chemistry. Highly efficient and green fractionation of lignocellulose components significantly boosts the high-value utilization of lignocellulose and the biorefinery development. However, heterogeneity of lignocellulosic structure severely limited the lignocellulose fractionation. This paper offers the summary and perspective of the extensive investigation that aims to give insight into the lignocellulose prior-fractionation. Based on the role and structure of lignocellulose component in the plant cell wall, lignocellulose prior-fractionation can be divided into cellulose-first strategy, hemicelluloses-first strategy, and lignin-first strategy, which realizes the selective dissociation and transformation of a component in lignocellulose. Ultimately, the challenges and opportunities of lignocellulose prior-fractionation are proposed on account of the existing problems in the biorefining valorization.
Collapse
Affiliation(s)
- Xiaojun Shen
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China; State Key Laboratory of Catalysis (SKLC), Dalian National Laboratory for Clean Energy (DNL), Dalian, China
| | - Runcang Sun
- Liaoning Key Laboratory of Lignocellulose Chemistry and BioMaterials, Dalian Polytechnic University, Dalian, 116034, China.
| |
Collapse
|
50
|
Xia M, Shen Z, Gu M, Chen W, Dong W, Zhang Y. Efficient catalytic conversion of microalgae residue solid waste into lactic acid over a Fe-Sn-Beta catalyst. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144891. [PMID: 33736128 DOI: 10.1016/j.scitotenv.2020.144891] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 06/12/2023]
Abstract
Microalgae residue was efficiently converted into lactic acid with a high yield (33.9%) under mild reaction conditions (210 °C, 2 h) over a Fe-Sn-Beta catalyst. Under the action of homogeneous H3O+ and distinct Lewis acid sites on the catalyst, the production of lactic acid from microalgae residue underwent three main reaction steps: hydrolysis, isomerization, and retro-aldol condensation. Results demonstrated that the lipid component had a strong inhibitory effect on the production of lactic acid due to the formation of aromatics, esters, and complex nitrogenous heterocyclic compounds, which covered or poisoned the Lewis acid sites of the catalyst. The protein component acted as a chemical buffer that enhanced the production of lactic acid by controlling the release of monosaccharides from the carbohydrate fraction of microalgae and maintaining the catalytic activity of the catalyst. Thus, microalgae residue demonstrated great promise for the production of value-added chemicals.
Collapse
Affiliation(s)
- Meng Xia
- Key Laboratory of Oasis Ecology of Ministry of Education, College of Resource and Environment Sciences, Xinjiang University, Urumchi 830046, China; State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Zheng Shen
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China.
| | - Minyan Gu
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Wenbo Chen
- National Engineering Research Center of Protected Agriculture, Tongji University, Shanghai 200092, China
| | - Wenjie Dong
- College of Quality and Safety Engineering, China Jiliang University, Hangzhou 310018, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, Key Laboratory of Yangtze River Water Environment of Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China.
| |
Collapse
|