1
|
Yeritsyan KV, Badasyan AV. Differential scanning calorimetry of proteins and Zimm-Bragg model in water. Arch Biochem Biophys 2024; 760:110132. [PMID: 39181382 DOI: 10.1016/j.abb.2024.110132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 08/01/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Differential Scanning Calorimetry (DSC) is a regular and powerful tool to measure the specific heat profile of various materials. Hydrogen bonds play a crucial role in stabilizing the three-dimensional structure of proteins. Naturally, information about the strength of hydrogen bonds is contained in the measured DSC profiles. Despite its obvious importance, there is no approach that would allow the extraction of such information from the heat capacity measurements. In order to connect the measured profile to microscopic properties of a polypeptide chain, a proper model is required to fit. Using recent advances in the Zimm-Bragg (ZB) theory of protein folding in water, we propose a new and efficient algorithm to process the DSC experimental data and to extract the H-bonding energy among other relevant constants. Thus, for the randomly picked set of 33 proteins, we have found a quite narrow distribution of hydrogen bonding energies from 1 to 8 kJ/mol with the average energy of intra-protein hydrogen bonds h¯=4.2±1.5 kJ/mol and the average energy of water-protein bonds as hps¯=3.8±1.5 kJ/mol. This is an important illustration of a tiny disbalance between the water-protein and intraprotein hydrogen bonds. Fitted values of the nucleation parameter σ belong to the range from 0.001 to 0.01, as expected. The reported method can be considered as complementary to the classical two-state approach and together with other parameters provides the protein-water and intraprotein H-bonding energies, not accessible within the two-state paradigm.
Collapse
Affiliation(s)
- Knarik V Yeritsyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia
| | - Artem V Badasyan
- Materials Research Laboratory, University of Nova Gorica, Vipavska 13, SI-5000, Nova Gorica, Slovenia.
| |
Collapse
|
2
|
Ubachs W, Császár AG, Diouf ML, Cozijn FMJ, Tóbiás R. A Network Approach for the Accurate Characterization of Water Lines Observable in Astronomical Masers and Extragalactic Environments. ACS EARTH & SPACE CHEMISTRY 2024; 8:1901-1912. [PMID: 39318707 PMCID: PMC11417992 DOI: 10.1021/acsearthspacechem.4c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 09/26/2024]
Abstract
The water molecule, crucial to the chemical composition and dynamics of the universe, is typically identified in its gas phase via radio and submillimeter transitions, with frequencies up to a few THz. To understand the physicochemical behavior of astronomical objects, accurate transition frequencies are required for these lines. From a set of 26 new and 564 previous Lamb dip measurements, utilizing our ultrasensitive laser-based spectrometers in the near-infrared region, ultrahigh-precision spectroscopic networks were set up for H2 16O and H2 18O, augmented with 40 extremely accurate frequencies taken from the literature. Based on kHz-accuracy paths of these networks, considerably improved line-center frequencies have been obtained for 35 observed or predicted maser lines of H2 16O, as well as for 14 transitions of astronomical significance of H2 18O. These reference frequencies, attached with 5-25 kHz uncertainties, may help future studies in various fields of astrochemistry and astrophysics, in particular when precise information is demanded about Doppler-velocity components, including the gas flows of galactic cores, the kinematics of planetary nebulae, or the motion in exoplanetary atmospheres.
Collapse
Affiliation(s)
- Wim Ubachs
- Department
of Physics and Astronomy, LaserLaB, Vrije
Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Attila G. Császár
- Institute
of Chemistry, ELTE Eötvös
Loránd University, H-1518 Budapest 112, P.O. Box 32, Hungary
- HUN-REN−ELTE
Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| | - Meissa L. Diouf
- Department
of Physics and Astronomy, LaserLaB, Vrije
Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Frank M. J. Cozijn
- Department
of Physics and Astronomy, LaserLaB, Vrije
Universiteit, De Boelelaan 1081, 1081 HV Amsterdam, The Netherlands
| | - Roland Tóbiás
- Institute
of Chemistry, ELTE Eötvös
Loránd University, H-1518 Budapest 112, P.O. Box 32, Hungary
- HUN-REN−ELTE
Complex Chemical Systems Research Group, H-1117 Budapest, Pázmány Péter sétány 1/A, Hungary
| |
Collapse
|
3
|
Watrous AG, Fortenberry RC. The fundamental vibrational frequencies and spectroscopic constants of the C 2O 2H 2 isomers: molecules known in simulated interstellar ice analogues. Phys Chem Chem Phys 2024; 26:21260-21269. [PMID: 39076036 DOI: 10.1039/d4cp02201g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
While trans-glyoxal may not be easily observable in astronomical sources through either IR or radioastronomy due to its C2h symmetry, its cis conformer along with the cyc-H2COCO epoxide isomer should be ready targets for astrochemical detection. The present quantum chemical study shows that not only are both molecular isomers strongly polar, they also have notable IR features and low isomerisation energies of 4.1 kcal mol-1 and 10.7 kcal mol-1, respectively. These three isomers along with two other C2O2H2 isomers have had their full set of fundamental vibrational frequencies and spectroscopic constants characterised herein. These isomers have previously been shown to occur in simulated astrophysical ices making them worthy targets of astronomical search. Furthermore, the hybrid quartic force field (QFF) approach utilized herein to produce the needed spectral data has a mean absolute percent error compared to the experimentally-available, gas phase fundamental vibrational frequencies of 0.6% and rotational constants to better than 0.1%. The hybrid QFF is defined from explicitly correlated coupled cluster theory at the singles, doubles, and perturbative triples level [CCSD(T)-F12b] including core electron correlation and a canonical CCSD(T) relativity correction for the harmonic (quadratic) terms in the QFF and simple CCSD(T)-F12b/cc-pVDZ energies for the cubic and quartic terms, the so-called "F12-TcCR+DZ QFF." This method is producing spectroscopically-accurate predictions for both fundamental vibrational frequencies and principal spectroscopic constants. Hence, the values computed in this work should be notably accurate and, hence, exceptionally useful to the spectroscopy and astrochemistry communities.
Collapse
|
4
|
García-Vázquez RM, Cabrera-González LD, Alpizar OD, Stoecklin T. Vibrational Relaxation of D 2O Induced by Collision with He: A Rigid Bender Close Coupling Study. Chemphyschem 2024; 25:e202400353. [PMID: 38780032 DOI: 10.1002/cphc.202400353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024]
Abstract
The vibrational relaxation of the first excited bending state of D2O induced by collision with He is studied at the close coupling level and using the Rigid Bender approximation. A new 4D potential energy surface is calculated and reported for this system. It is then used to determine the low-lying bound states of the D2O-He van der Waals complex and to perform scattering calculations. Collision rates are determined for pure rotational transitions as well as for rovibrational transitions within the first excited bending state. The results are compared with those obtained for the collision of D2O with other noble gases such as Ne and Ar. We also analyse the differences observed with respect to the H2O+He collisions and compare our results with experiment.
Collapse
Affiliation(s)
| | | | - Otoniel Denis Alpizar
- Departamento de Física, Facultad de Ciencias, Universidad de Chile, Av. Las Palmeras 3425, Ñuñoa, Santiago, Chile
| | - Thierry Stoecklin
- UMR5255-CNRS, Université de Bordeaux, 351 cours de la libération, F-33405, Talence, France
| |
Collapse
|
5
|
Xie F, Tikhonov DS, Schnell M. Electric nuclear quadrupole coupling reveals dissociation of HCl with a few water molecules. Science 2024; 384:1435-1440. [PMID: 38843353 DOI: 10.1126/science.ado7049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 05/19/2024] [Indexed: 06/29/2024]
Abstract
Investigating the dissociation of acids in the presence of a limited number of water molecules is crucial for understanding various elementary chemical processes. In our study, focusing on HCl(H2O)n clusters (where HCl is hydrogen chloride and H2O is water) formed in a cold and isolated jet expansion, we used the nuclear quadrupole coupling tensor obtained through rotational spectroscopy to decipher the nature of the hydrogen-chlorine (H-Cl) chemical bond in a microaqueous environment. For n = 1 to 4, the H-Cl bond is covalent. At n = 5 and 7, the contact ion pair of H3O+Cl- is spontaneously formed within the hydrogen bond networks of book and cube acid-water clusters, respectively.
Collapse
Affiliation(s)
- Fan Xie
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
| | | | - Melanie Schnell
- Deutsches Elektronen-Synchrotron DESY, 22607 Hamburg, Germany
- Institut für Physikalische Chemie, Christian-Albrechts-Universität zu Kiel, 24118 Kiel, Germany
| |
Collapse
|
6
|
Juanes M, Jin S, Saragi RT, van der Linde C, Ebenbichler A, Przybilla N, Ončák M, Beyer MK. Iron Complexes as Potential Carriers of Diffuse Interstellar Bands: The Photodissociation Spectrum of Fe +(H 2O) at Optical Wavelengths. J Phys Chem A 2024; 128:1306-1312. [PMID: 38347749 PMCID: PMC10895653 DOI: 10.1021/acs.jpca.4c00148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/23/2024]
Abstract
The fullerene ion C60+ is the only carrier of diffuse interstellar bands (DIBs) identified so far. Transition-metal compounds feature electronic transitions in the visible and near-infrared regions, making them potential DIB carriers. Since iron is the most abundant transition metal in the cosmos, we here test this idea with Fe+(H2O). Laboratory spectra were obtained by photodissociation spectroscopy at 80 K. Spectra were modeled with the reflection principle. A high-resolution spectrum of the DIB standard star HD 183143 served as an observational reference. Two broad bands were observed from 4120 to 6800 Å. The 4120-4800 Å band has sharp features emerging from the background, which have the width of DIBs but do not match the band positions of the reference spectrum. Calculations show that the spectrum arises from a d-d transition at the iron center. While no match was found for Fe+(H2O) with known DIBs, the observation of structured bands with line widths typical for DIBs shows that small molecules or molecular ions containing iron are promising candidates for DIB carriers.
Collapse
Affiliation(s)
- Marcos Juanes
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
- Dept.
Química Física y Química Inorgánica, University of Valladolid, Paseo de Belén 7, Valladolid 47011, Spain
| | - Shan Jin
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Rizalina T. Saragi
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Christian van der Linde
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Alexander Ebenbichler
- Institut
für Astro- und Teilchenphysik, Universität
Innsbruck, Technikerstr.
25/8, Innsbruck 6020, Austria
| | - Norbert Przybilla
- Institut
für Astro- und Teilchenphysik, Universität
Innsbruck, Technikerstr.
25/8, Innsbruck 6020, Austria
| | - Milan Ončák
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| | - Martin K. Beyer
- Institut
für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, Innsbruck 6020, Austria
| |
Collapse
|
7
|
M Nair A, Leboucher H, Toucouere L, Zamith S, Joblin C, L'Hermite JM, Marciniak A, Simon A. Diversity of protonated mixed pyrene-water clusters investigated by collision induced dissociation. Phys Chem Chem Phys 2024; 26:5947-5961. [PMID: 38294026 PMCID: PMC10866126 DOI: 10.1039/d3cp05734h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Protonated mixed pyrene-water clusters, (Py)m(H2O)nH+, where m = [1-3] and n = [1-10], are generated using a cryogenic molecular cluster source. Subsequently, the mass-selected mixed clusters undergo controlled collisions with rare gases, and the resulting fragmentation mass spectra are meticulously analyzed to discern distinct fragmentation channels. Notably, protonated water cluster fragments emerge for n ≥ 3, whereas they are absent for n = 1 and 2. The experimental results are complemented by theoretical calculations of structures and energetics for (Py)(H2O)nH+ with n = [1-4]. These calculations reveal a shift in proton localization, transitioning from the pyrene molecule for n = 1 and 2 to water molecules for n ≥ 3. The results support a formation scenario wherein water molecules attach to protonated pyrene PyH+ seeds, and, by extension, to (Py)2H+ and (Py)3H+ seeds. Various isomers are identified, corresponding to potential protonation sites on the pyrene molecule. Protonated polycyclic aromatic hydrocarbons are likely to be formed in cold, dense interstellar clouds and protoplanetary disks due to the high proton affinity of these species. Our findings show that the presence of protonated PAHs in these environments could lead to the formation of water clusters and mixed carbon-water nanograins, having a potential impact on the water cycle in regions of planet formation.
Collapse
Affiliation(s)
- Arya M Nair
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - Héloïse Leboucher
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Lorris Toucouere
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| | - Sébastien Zamith
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Christine Joblin
- Institut de Recherche en Astrophysique et Planétologie (IRAP), Université Toulouse III - Paul Sabatier, CNRS, CNES, 9 Avenue du Colonel Roche, F-31028 Toulouse, France
| | - Jean-Marc L'Hermite
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Alexandre Marciniak
- Laboratoire Collisions Agrégats Réactivité (LCAR/FERMI), UMR5589, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France.
| | - Aude Simon
- Laboratoire de Chimie et Physique Quantiques LCPQ/FERMI, Université Toulouse III - Paul Sabatier and CNRS, 118 Route de Narbonne, F-31062 Toulouse, France
| |
Collapse
|
8
|
Job N, Chandrasekaran V, Thimmakondu VS, Thirumoorthy K. Theoretical Studies on the Isomerization Kinetics of Low-Lying Isomers of the SiC 4H 2 System. J Phys Chem A 2024; 128:73-80. [PMID: 38116994 PMCID: PMC10979431 DOI: 10.1021/acs.jpca.3c05658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/08/2023] [Accepted: 12/08/2023] [Indexed: 12/21/2023]
Abstract
The low-lying isomers of SiC4H2 are investigated to understand the kinetics of isomerization pathways using density functional theory. In our earlier work, we studied the various possible isomers (J. Phys. Chem. A, 2020, 124, 987-1002) and the chemical bonding of low-lying isomers of SiC4H2 (J. Phys. Chem. A, 2022, 126, 9366-9374). Among them, four isomers, 1-ethynyl-3-silacycloprop-1-en-3-ylidene (1), 3-silapent-1,4-diyn-3-ylidene (2), 1-silapent-1,2,3,4-tetraen-1-ylidene (4), and 1-silapent-2,4-diyn-1-ylidene (5) have already been identified in the laboratory. The previously known theoretical isomer 2-methylene-1-silabicyclo[1.1.0]but-1(3)-en-4-ylidene (3) and the newly identified unknown isomer through the present kinetic studies 5-silabicyclo[2.1.0]pent-1(4),2-dien-5-ylidene (N6) remain elusive in the laboratory to date. The isomerization pathways of the low-lying isomers of SiC4H2 are predicted through the transition state structures. Intrinsic reaction coordinate analysis identifies the minimum energy reaction pathways connecting the transition state from one isomer to another of the investigated system. The present kinetic data reveal the isomerization of global minimum energy isomer 1 to thermodynamically stable low-lying isomers, 2 and 5. Interestingly, isomer 3 interconverts to the experimentally known low-energy isomer 4, the second most thermodynamically stable isomer among them. The thermodynamic and kinetic parameters of the low-lying isomers of SiC4H2 are also documented in this work. The rate coefficient and equilibrium constant for isomerization reactions are calculated using the Rice-Ramsperger-Kassel-Marcus theory. The equilibrium constant delineates the difficulties in forming N6 and 3 through the isomerization pathways. Furthermore, ab initio molecular dynamics studies dictate the stability of low-lying isomers of SiC4H2 within the time scale of the simulation.
Collapse
Affiliation(s)
- Nisha Job
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Vijayanand Chandrasekaran
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| | - Venkatesan S. Thimmakondu
- Department
of Chemistry and Biochemistry, San Diego
State University, San Diego, California 92182-1030, United States
| | - Krishnan Thirumoorthy
- Department
of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, Tamil Nadu 632 014, India
| |
Collapse
|
9
|
Yu Y, Yang D, Zhou Y, Xie D. A New Full-Dimensional Ab Initio Intermolecular Potential Energy Surface and Rovibrational Energies of the H 2O-H 2 Complex. J Phys Chem A 2024; 128:170-181. [PMID: 38109882 DOI: 10.1021/acs.jpca.3c06805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
H2O-H2 is a prototypical five-atom van der Waals system, and the interaction between H2O and H2 plays an important role in many physical and chemical environments. However, previous full-dimensional intermolecular potential energy surfaces (IPESs) cannot accurately describe the H2O-H2 interaction in the repulsive or van der Waals minimum region. In this work, we constructed a full-dimensional IPES for the title system with a small root-mean-square error of 0.252 cm-1 by using the permutation invariant polynomial neural network method. The ab initio calculations were performed by employing the explicitly corrected coupled cluster [CCSD(T)-F12a] method with the augmented correlation-consistent polarized valence quintuple-ζ basis set. Based on the newly developed IPES, the bound states of the H2O-H2 complex were calculated within the rigid-rotor approximation. The transition frequencies and band origins agreed well with the experimental values [Weida, M. J.; Nesbitt, D. J. J. Chem. Phys. 1999, 110, 156-167] with errors less than 0.1 cm-1 for most transitions. Those results demonstrate the high accuracy of our new IPES, which would build a solid foundation for the collisional dynamics of H2O-H2 at low temperatures.
Collapse
Affiliation(s)
- Yipeng Yu
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Yanzi Zhou
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Hefei National Laboratory, Hefei 230088, China
| |
Collapse
|
10
|
Kyrkjebø S, Cassidy A, Lambrick S, Jardine A, Holst B, Hornekær L. 3He spin-echo scattering indicates hindered diffusion of isolated water molecules on graphene-covered Ir(111). Front Chem 2023; 11:1229546. [PMID: 37867993 PMCID: PMC10587411 DOI: 10.3389/fchem.2023.1229546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/18/2023] [Indexed: 10/24/2023] Open
Abstract
The dynamics of water diffusion on carbon surfaces are of interest in fields as diverse as furthering the use of graphene as an industrial-coating technology and understanding the catalytic role of carbon-based dust grains in the interstellar medium. The early stages of water-ice growth and the mobility of water adsorbates are inherently dependent on the microscopic mechanisms that facilitate water diffusion. Here, we use 3He spin-echo quasi-inelastic scattering to probe the microscopic mechanisms responsible for the diffusion of isolated water molecules on graphene-covered and bare Ir(111). The scattering of He atoms provides a non-invasive and highly surface-sensitive means to measure the rate at which absorbates move around on a substrate at very low coverage. Our results provide an approximate upper limit on the diffusion coefficient for water molecules on GrIr(111) of < 10 - 12 m2/s, an order of magnitude lower than the coefficient that describes the diffusion of water molecules on the bare Ir(111) surface. We attribute the hindered diffusion of water molecules on the GrIr(111) surface to water trapping at specific areas of the corrugated moiré superstructure. Lower mobility of water molecules on a surface is expected to lead to a lower ice nucleation rate and may enhance the macroscopic anti-icing properties of a surface.
Collapse
Affiliation(s)
- Signe Kyrkjebø
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| | - Andrew Cassidy
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
| | - Sam Lambrick
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Andrew Jardine
- Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | - Bodil Holst
- Institute of Physics and Technology, University of Bergen, Bergen, Norway
| | - Liv Hornekær
- Center for Interstellar Catalysis, Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
- Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, Denmark
| |
Collapse
|
11
|
van Dishoeck EF, Grant S, Tabone B, van Gelder M, Francis L, Tychoniec L, Bettoni G, Arabhavi AM, Gasman D, Nazari P, Vlasblom M, Kavanagh P, Christiaens V, Klaassen P, Beuther H, Henning T, Kamp I. The diverse chemistry of protoplanetary disks as revealed by JWST. Faraday Discuss 2023; 245:52-79. [PMID: 37366333 DOI: 10.1039/d3fd00010a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Early results from the James Webb Space Telescope-Mid-InfraRed Instrument (JWST-MIRI) guaranteed time programs on protostars (JOYS) and disks (MINDS) are presented. Thanks to the increased sensitivity, spectral and spatial resolution of the MIRI spectrometer, the chemical inventory of the planet-forming zones in disks can be investigated with unprecedented detail across stellar mass range and age. Here, data are presented for five disks, four around low-mass stars and one around a very young high-mass star. The mid-infrared spectra show some similarities but also significant diversity: some sources are rich in CO2, others in H2O or C2H2. In one disk around a very low-mass star, booming C2H2 emission provides evidence for a "soot" line at which carbon grains are eroded and sublimated, leading to a rich hydrocarbon chemistry in which even di-acetylene (C4H2) and benzene (C6H6) are detected. Together the data point to an active inner disk gas-phase chemistry that is closely linked to the physical structure (temperature, snowlines, presence of cavities and dust traps) of the entire disk and which may result in varying CO2/H2O abundances and high C/O ratios >1 in some cases. Ultimately, this diversity in disk chemistry will also be reflected in the diversity of the chemical composition of exoplanets.
Collapse
Affiliation(s)
- Ewine F van Dishoeck
- Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
| | - S Grant
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
| | - B Tabone
- Université Paris-Saclay, CNRS, Institut d'Astrophysique Spatiale, 91405, Orsay, France
| | - M van Gelder
- Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
| | - L Francis
- Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
| | - L Tychoniec
- European Southern Observatory, Karl-Schwarzschild-Strasse 2, 85748 Garching bei München, Germany
| | - G Bettoni
- Max-Planck Institut für Extraterrestrische Physik (MPE), Giessenbachstr. 1, 85748, Garching, Germany
| | - A M Arabhavi
- Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, P. O. Box 800, 9700 AV Groningen, The Netherlands
| | - D Gasman
- Institute of Astronomy, KU Leuven, Celestijnenlaan 200D, 3001 Leuven, Belgium
| | - P Nazari
- Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
| | - M Vlasblom
- Leiden Observatory, Leiden University, P. O. Box 9513, 2300 RA Leiden, The Netherlands.
| | - P Kavanagh
- Dublin Institute for Advanced Studies, Astronomy & Astrophysics Section, 31 Fitzwilliam Place, Dublin 2, Ireland
| | - V Christiaens
- STAR Institute, Université de Liège, Allée du Six Août 19c, 4000 Liège, Belgium
| | - P Klaassen
- UK Astronomy Technology Centre, Royal Observatory Edinburgh, Blackford Hill, Edinburgh EH9 3HJ, UK
| | - H Beuther
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - Th Henning
- Max-Planck-Institut für Astronomie (MPIA), Königstuhl 17, 69117 Heidelberg, Germany
| | - I Kamp
- Kapteyn Astronomical Institute, Rijksuniversiteit Groningen, P. O. Box 800, 9700 AV Groningen, The Netherlands
| |
Collapse
|
12
|
Berni S, Scelta D, Fanetti S, Bini R. High pressure behavior of ethylene and water: From clathrate hydrate to polymerization in solid ice mixtures. J Chem Phys 2023; 158:064505. [PMID: 36792521 DOI: 10.1063/5.0137863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Among the ice mixtures that can be found in our universe, those involving ethylene are poorly studied even though ethylene reportedly exists in the presence of water in several astrochemical domains. Here, we report on the chemistry of ethylene and water mixtures in both pressure (0-15 GPa) and temperature (300-370 K) ranges relevant to celestial bodies conditions. The behavior of the binary mixture has been tracked, starting from the ethylene clathrate hydrate and following its evolution through two different crystalline phases up to 2.10 GPa, where it decomposes into a solid mixture of water ice and crystalline ethylene. The pressure and temperature evolution of this mixture has been studied up to the complete transformation of ethylene into polyethylene and compared with that of the pure hydrocarbon, reporting here for the first time its spectroscopic features upon compression. The spectroscopic analysis of the recovered polymers from the ice mixtures provided hints about the reactivity of the monomer under the environmental stress exerted by the water network. The results of this study are expected to be significant in a variety of fields ranging from astrochemistry to material science and also to fundamental chemistry, particularly regarding the study and modelization of the behavior of complex mixtures.
Collapse
Affiliation(s)
- S Berni
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - D Scelta
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - S Fanetti
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| | - R Bini
- LENS, European Laboratory for Non-linear Spectroscopy, Via N. Carrara 1, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
13
|
Aalto S, Battersby C, Chin G, Hunt LK, Rigopoulou D, Stark AA, Viti S, Walker CK. Extragalactic Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory. SPACE SCIENCE REVIEWS 2023; 219:9. [PMID: 36747508 PMCID: PMC9895007 DOI: 10.1007/s11214-023-00948-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Accepted: 01/04/2023] [Indexed: 06/18/2023]
Abstract
The Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), a proposed Astrophysics MIDEX-class mission concept, has an innovative 14-meter diameter inflatable primary mirror that will provide the sensitivity to study far-infrared continuum and line emission from galaxies at all redshifts with high spectral resolution heterodyne receivers. OASIS will have the sensitivity to follow the water trail from galaxies to the comets that create oceans. It will bring an understanding of the role of water in galaxy evolution and its part of the oxygen budget, by measuring water emission from local to intermediate redshift galaxies, observations that have not been possible from the ground. Observation of the ground-state HD line will accurately measure gas mass in a wide variety of astrophysical objects. Thanks to its exquisite spatial resolution and sensitivity, OASIS will, during its one-year baseline mission, detect water in galaxies with unprecedented statistical significance. This paper reviews the extragalactic science achievable and planned with OASIS.
Collapse
Affiliation(s)
- Susanne Aalto
- Department of Space, Earth and Environment, Onsala Space Observatory, Chalmers University of Technology, Onsala, Sweden
| | - Cara Battersby
- Department of Physics, University of Connecticut, Storrs, 06269 CT USA
| | - Gordon Chin
- Planetary Systems Laboratory, NASA Goddard Space Flight Center, 8800 Greenbelt Road, Greenbelt, 20771 MD USA
| | - Leslie K. Hunt
- Istituto Nazionale di Astrofisica-Osservatorio Astrofisico di Arcetri, Firenze, Italy
| | - Dimitra Rigopoulou
- Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU UK
| | - Antony A. Stark
- Center for Astrophysics | Harvard & Smithsonian, 60 Garden St., Cambridge, MA USA
| | - Serena Viti
- Leiden Observatory, P.O. Box 9513, Leiden, The Netherlands
| | - Christopher K. Walker
- Department of Astronomy and Steward Observatory, University of Arizona, Tucson, 85719 AZ USA
| |
Collapse
|
14
|
Proton and Electron Irradiations of CH4:H2O Mixed Ices. ATOMS 2023. [DOI: 10.3390/atoms11020019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The organic chemistry occurring in interstellar environments may lead to the production of complex molecules that are relevant to the emergence of life. Therefore, in order to understand the origins of life itself, it is necessary to probe the chemistry of carbon-bearing molecules under conditions that simulate interstellar space. Several of these regions, such as dense molecular cores, are exposed to ionizing radiation in the form of galactic cosmic rays, which may act as an important driver of molecular destruction and synthesis. In this paper, we report the results of a comparative and systematic study of the irradiation of CH4:H2O ice mixtures by 1 MeV protons and 2 keV electrons at 20 K. We demonstrate that our irradiations result in the formation of a number of new products, including both simple and complex daughter molecules such as C2H6, C3H8, C2H2, CH3OH, CO, CO2, and probably also H2CO. A comparison of the different irradiation regimes has also revealed that proton irradiation resulted in a greater abundance of radiolytic daughter molecules compared to electron irradiation, despite a lower radiation dose having been administered. These results are important in the context of the radiation astrochemistry occurring within the molecular cores of dense interstellar clouds, as well as on outer Solar System objects.
Collapse
|
15
|
Tsuge M, Watanabe N. Radical reactions on interstellar icy dust grains: Experimental investigations of elementary processes. PROCEEDINGS OF THE JAPAN ACADEMY. SERIES B, PHYSICAL AND BIOLOGICAL SCIENCES 2023; 99:103-130. [PMID: 37121737 DOI: 10.2183/pjab.99.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Molecular clouds (MCs) in space are the birthplace of various molecular species. Chemical reactions occurring on the cryogenic surfaces of cosmic icy dust grains have been considered to play important roles in the formation of these species. Radical reactions are crucial because they often have low barriers and thus proceed even at low temperatures such as ∼10 K. Since the 2000s, laboratory experiments conducted under low-temperature, high-vacuum conditions that mimic MC environments have revealed the elementary physicochemical processes on icy dust grains. In this review, experiments conducted by our group in this context are explored, with a focus on radical reactions on the surface of icy dust analogues, leading to the formation of astronomically abundant molecules such as H2, H2O, H2CO, and CH3OH and deuterium fractionation processes. The development of highly sensitive, non-destructive methods for detecting adsorbates and their utilization for clarifying the behavior of free radicals on ice, which contribute to the formation of complex organic molecules, are also described.
Collapse
Affiliation(s)
- Masashi Tsuge
- Institute of Low Temperature Science, Hokkaido University
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University
| |
Collapse
|
16
|
Lin SY, Huang WJ, Chou SL, Chen HF, Wu YJ. Formation of Para-H 2O by Vacuum-UV Photolysis of O 2 in Solid Hydrogen: Implication for Astrochemistry. J Phys Chem Lett 2022; 13:10439-10446. [PMID: 36326470 DOI: 10.1021/acs.jpclett.2c02665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The observation that the ortho to para ratio (OPR) of interstellar H2O is smaller than 3 is an important yet unresolved subject in astronomy. We irradiated O2 embedded in solid H2 at 3 K with vacuum-ultraviolet (VUV) light and observed IR lines associated with para-H2O (denoted as pH2O) and nonrotating H2O-(oH2)n (where oH2 denotes ortho-H2) but no lines associated with ortho-H2O (denoted as oH2O). After maintaining the matrix in darkness for ∼30 h, the amount of pH2O decreased, accompanied by an increase in H2O-(oH2)n via diffusion of oH2. After that, the continuous nuclear-spin conversion from oH2 to para-H2 (denoted as pH2) in solid H2 over time resulted in the conversion of nonrotating H2O-(oH2)n to rotating pH2O in solid pH2. The observation of the formation and conversion of pH2O in our experiment suggests a plausible route in which VUV irradiation of O2 and H2 adsorbed on grain surfaces might be responsible for the smaller OPR of interstellar H2O.
Collapse
Affiliation(s)
- Shu-Yu Lin
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
| | - Wen-Jian Huang
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - Sheng-Lung Chou
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| | - Hui-Fen Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, 100 Shih-Chuan First Road, Kaohsiung80708, Taiwan
| | - Yu-Jong Wu
- Department of Applied Chemistry and Institute of Molecular Science, National Yang Ming Chiao Tung University, Hsinchu300093, Taiwan
- National Synchrotron Radiation Research Center, Hsinchu30076, Taiwan
| |
Collapse
|
17
|
Saha A, Yi R, Fahrenbach AC, Wang A, Jia TZ. A Physicochemical Consideration of Prebiotic Microenvironments for Self-Assembly and Prebiotic Chemistry. Life (Basel) 2022; 12:1595. [PMID: 36295030 PMCID: PMC9604842 DOI: 10.3390/life12101595] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 11/06/2022] Open
Abstract
The origin of life on Earth required myriads of chemical and physical processes. These include the formation of the planet and its geological structures, the formation of the first primitive chemicals, reaction, and assembly of these primitive chemicals to form more complex or functional products and assemblies, and finally the formation of the first cells (or protocells) on early Earth, which eventually evolved into modern cells. Each of these processes presumably occurred within specific prebiotic reaction environments, which could have been diverse in physical and chemical properties. While there are resources that describe prebiotically plausible environments or nutrient availability, here, we attempt to aggregate the literature for the various physicochemical properties of different prebiotic reaction microenvironments on early Earth. We introduce a handful of properties that can be quantified through physical or chemical techniques. The values for these physicochemical properties, if they are known, are then presented for each reaction environment, giving the reader a sense of the environmental variability of such properties. Such a resource may be useful for prebiotic chemists to understand the range of conditions in each reaction environment, or to select the medium most applicable for their targeted reaction of interest for exploratory studies.
Collapse
Affiliation(s)
- Arpita Saha
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Amity Institute of Applied Sciences, Amity University, Kolkata 700135, India
| | - Ruiqin Yi
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Albert C. Fahrenbach
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Anna Wang
- School of Chemistry, UNSW Sydney, Sydney, NSW 2052, Australia
- Australian Centre for Astrobiology, UNSW Sydney, Sydney, NSW 2052, Australia
- UNSW RNA Institute, UNSW Sydney, Sydney, NSW 2052, Australia
| | - Tony Z. Jia
- Blue Marble Space Institute of Science, 600 1st Ave, Floor 1, Seattle, WA 98104, USA
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1-IE-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| |
Collapse
|
18
|
Shingledecker CN, Banu T, Kang Y, Wei H, Wandishin J, Nobis G, Jarvis V, Quinn F, Quinn G, Molpeceres G, McCarthy MC, McGuire BA, Kästner J. Grain-Surface Hydrogen-Addition Reactions as a Chemical Link Between Cold Cores and Hot Corinos: The Case of H 2CCS and CH 3CH 2SH. J Phys Chem A 2022; 126:5343-5353. [PMID: 35944179 DOI: 10.1021/acs.jpca.2c01447] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently, searches were made for H2CCS and HCCSH in a variety of interstellar environments─all of them resulted in nondetections of these two species. Recent findings have indicated the importance of destruction pathways, e.g., with atomic hydrogen, in explaining the consistent nondetection of other species, such as the H2C3O family of isomers. We have thus performed ab initio calculations looking at reactions of H2CCS, HCCSH, and related species with atomic hydrogen. Our results show that H2CCS and HCCSH are both destroyed barrierlessly by atomic hydrogen, thus providing a plausible explanation for the nondetections. We further find that subsequent reactions with atomic hydrogen can barrierlessly lead to CH3CH2SH, which has been detected. Astrochemical simulations including these reactions result not only in reproducing the observed abundance of H2CCS in TMC-1 but also show that CH3CH2SH, produced via our H-addition pathways and subsequently trapped on grains, can desorb in warmer sources up to abundances that match previous observations of CH3CH2SH in Orion KL. These results, taken together, point to the importance of grain-surface H-atom addition reactions and highlight the chemical links between cold prestellar cores and their subsequent, warmer evolutionary stages.
Collapse
Affiliation(s)
- Christopher N Shingledecker
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States.,Center for Astrochemical Studies, Max Planck Institute for Extraterrestrial Physics, Garching 85748, Germany.,Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart 70174, Germany
| | - Tahamida Banu
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart 70174, Germany
| | - Yi Kang
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Hongji Wei
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Joseph Wandishin
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Garrett Nobis
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Virginia Jarvis
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Faith Quinn
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Grace Quinn
- Department of Physics and Astronomy, Benedictine College, Atchison, Kansas 66002, United States
| | - Germán Molpeceres
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart 70174, Germany
| | - Michael C McCarthy
- Center for Astrophysics-Harvard & Smithsonian, Cambridge, Massachusetts 02138, United States
| | - Brett A McGuire
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,National Radio Astronomy Observatory, Charlottesville, Virginia 22903, United States
| | - Johannes Kästner
- Institute for Theoretical Chemistry, University of Stuttgart, Stuttgart 70174, Germany
| |
Collapse
|
19
|
Haupa KA, Joshi PR, Lee Y. Hydrogen‐atom tunneling reactions in solid
para
‐hydrogen and their applications to astrochemistry. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Karolina Anna Haupa
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Institute of Physical Chemistry Karlsruhe Institute of Technology Karlsruhe Germany
| | - Prasad Ramesh Joshi
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| | - Yuan‐Pern Lee
- Department of Applied Chemistry and Institute of Molecular Science National Yang Ming Chiao Tung University Hsinchu Taiwan
- Center for Emergent Functional Matter Science National Yang Ming Chiao Tung University Hsinchu Taiwan
| |
Collapse
|
20
|
Yachmenev A, Yang G, Zak E, Yurchenko S, Küpper J. The nuclear-spin-forbidden rovibrational transitions of water from first principles. J Chem Phys 2022; 156:204307. [DOI: 10.1063/5.0090771] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The water molecule occurs in two nuclear-spin isomers that differ by the value of the total nuclear spin of the hydrogen atoms, i.e., I = 0 for para-H2O and I = 1 for ortho-H2O. Spectroscopic transitions between rovibrational states of ortho and para water are extremely weak due to the tiny hyperfine nuclear-spin –rotation interaction of only ∼30 kHz and, so far, have not been observed. We report the first comprehensive theoretical investigation of the hyperfine effects and ortho–para transitions in [Formula: see text]O due to nuclear-spin –rotation and spin–spin interactions. We also present the details of our newly developed general variational approach to the simulation of hyperfine effects in polyatomic molecules. Our results for water suggest that the strongest ortho–para transitions with room-temperature intensities on the order of 10−31 cm/molecule are about an order of magnitude larger than previously predicted values and should be detectable in the mid-infrared ν2 and near-infrared 2 ν1 + ν2 and ν1 + ν2 + ν3 bands by current spectroscopy experiments.
Collapse
Affiliation(s)
- Andrey Yachmenev
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Guang Yang
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| | - Emil Zak
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
| | - Sergei Yurchenko
- Department of Physics and Astronomy, University College London, Gower Street, WC1E 6BT London, United Kingdom
| | - Jochen Küpper
- Center for Free-Electron Laser Science CFEL, Deutsches Elektronen-Synchrotron DESY, Notkestr. 85, 22607 Hamburg, Germany
- Center for Ultrafast Imaging, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
- Department of Physics, Universität Hamburg, Luruper Chaussee 149, 22761 Hamburg, Germany
| |
Collapse
|
21
|
Coussan S, Noble JA, Cuppen HM, Redlich B, Ioppolo S. IRFEL Selective Irradiation of Amorphous Solid Water: from Dangling to Bulk Modes. J Phys Chem A 2022; 126:2262-2269. [PMID: 35357188 DOI: 10.1021/acs.jpca.2c00054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Amorphous solid water (ASW) is one of the most widely studied solid phase systems. A better understanding of the nature of inter- and intramolecular forces in ASW is, however, still required to correctly interpret the catalytic role of ASW in the formation and preservation of molecular species in environments such as the icy surfaces of Solar System objects, on interstellar icy dust grains, and potentially even in the upper layers of the Earth's atmosphere. In this work, we have systematically exposed porous ASW (pASW) to mid-infrared radiation generated by a free-electron laser at the HFML-FELIX facility in The Netherlands to study the effect of vibrational energy injection into the surface and bulk modes of pASW. During multiple sequential irradiations on the same ice spot, we observed selective effects both at the surface and in the bulk of the ice. Although the density of states in pASW should allow for a fast vibrational relaxation through the H-bonded network, part of the injected energy is converted into structural ice changes as illustrated by the observation of spectral modifications when performing Fourier transform infrared spectroscopy in reflection-absorption mode. Future studies will include the quantification of such effects by systematically investigating ice thickness, ice morphology, and ice composition.
Collapse
Affiliation(s)
| | - Jennifer A Noble
- Aix-Marseille Univ, CNRS, PIIM, Marseille, France.,School of Physical Sciences, University of Kent, Canterbury CT2 7NH, U.K
| | - Herma M Cuppen
- Institute for Molecules and Materials, Radboud University, Nijmegen 6525 AJ, The Netherlands
| | - Britta Redlich
- Institute for Molecules and Materials, FELIX Laboratory, Radboud University, Nijmegen 6525 ED, The Netherlands
| | - Sergio Ioppolo
- School of Electronic Engineering and Computer Science, Queen Mary University of London, Mile End Road, London E1 4NS, U.K
| |
Collapse
|
22
|
Rimola A, Balucani N, Ceccarelli C, Ugliengo P. Tracing the Primordial Chemical Life of Glycine: A Review from Quantum Chemical Simulations. Int J Mol Sci 2022; 23:4252. [PMID: 35457069 PMCID: PMC9030215 DOI: 10.3390/ijms23084252] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/08/2022] [Accepted: 04/09/2022] [Indexed: 12/28/2022] Open
Abstract
Glycine (Gly), NH2CH2COOH, is the simplest amino acid. Although it has not been directly detected in the interstellar gas-phase medium, it has been identified in comets and meteorites, and its synthesis in these environments has been simulated in terrestrial laboratory experiments. Likewise, condensation of Gly to form peptides in scenarios resembling those present in a primordial Earth has been demonstrated experimentally. Thus, Gly is a paradigmatic system for biomolecular building blocks to investigate how they can be synthesized in astrophysical environments, transported and delivered by fragments of asteroids (meteorites, once they land on Earth) and comets (interplanetary dust particles that land on Earth) to the primitive Earth, and there react to form biopolymers as a step towards the emergence of life. Quantum chemical investigations addressing these Gly-related events have been performed, providing fundamental atomic-scale information and quantitative energetic data. However, they are spread in the literature and difficult to harmonize in a consistent way due to different computational chemistry methodologies and model systems. This review aims to collect the work done so far to characterize, at a quantum mechanical level, the chemical life of Gly, i.e., from its synthesis in the interstellar medium up to its polymerization on Earth.
Collapse
Affiliation(s)
- Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Catalonia, Spain
| | - Nadia Balucani
- Dipartimento di Chimica, Biologia e Biotecnologie, Università di Perugia, Via Elce di Sotto 8, 06123 Perugia, Italy;
- Osservatorio Astrosico di Arcetri, Largo E. Fermi 5, 50125 Firenze, Italy
| | - Cecilia Ceccarelli
- CNRS, Institut de Planétologie et d’Astrophysique de Grenoble (IPAG), Université Grenoble Alpes, 38000 Grenoble, France;
| | - Piero Ugliengo
- Dipartimento di Chimica and Nanostructured Interfaces and Surfaces (NIS) Centre, Università degli Studi di Torino, Via P. Giuria 7, 10125 Torino, Italy;
| |
Collapse
|
23
|
Mejía C, da Costa CAP, Iza P, da Silveira EF. Irradiation of Phenylalanine at 300 K by MeV Ions. ASTROBIOLOGY 2022; 22:439-451. [PMID: 35427147 DOI: 10.1089/ast.2021.0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Phenylalanine (Phe) is an amino acid that has been identified in carbonaceous meteorites; its formation mechanism in space is unknown, and its radioresistance has been the subject of investigation. This work aims at studying, in the laboratory, the Phe radiolysis by cosmic analogues. The Phe destruction rate, at 300 K, is measured for H, He, and N ion beam irradiation in the 0.5 to 2 kinetic MeV range. Fourier transform infrared (FTIR) spectroscopy was employed to monitor the molecular degradation as a function of fluence. The Phe apparent destruction cross-section, σapd, which includes radiolysis and sputtering processes, is determined to be proportional to the electronic stopping power, Se. The measured parameter D0 = 14.3 ± 2.2 eV/molec in the relationship, and σdap = Se/D0 is interpreted as the mean absorbed dose necessary to dissociate or eject a Phe molecule. The Phe half-life in the interstellar medium is predicted to be about 10 million years, H+ ions the main destructive cosmic ray constituent.
Collapse
Affiliation(s)
- Christian Mejía
- Facultad de Ciencias Químicas, Universidad de Cuenca, Cuenca, Ecuador
| | - Cíntia A P da Costa
- Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Peter Iza
- Departamento de Física, Escuela Superior Politécnica del Litoral, ESPOL, Guayaquil, Ecuador
| | - Enio F da Silveira
- Physics Department, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
24
|
Prasad VK, Otero-de-la-Roza A, DiLabio GA. Fast and Accurate Quantum Mechanical Modeling of Large Molecular Systems Using Small Basis Set Hartree-Fock Methods Corrected with Atom-Centered Potentials. J Chem Theory Comput 2022; 18:2208-2232. [PMID: 35313106 DOI: 10.1021/acs.jctc.1c01128] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
There has been significant interest in developing fast and accurate quantum mechanical methods for modeling large molecular systems. In this work, by utilizing a machine learning regression technique, we have developed new low-cost quantum mechanical approaches to model large molecular systems. The developed approaches rely on using one-electron Gaussian-type functions called atom-centered potentials (ACPs) to correct for the basis set incompleteness and the lack of correlation effects in the underlying minimal or small basis set Hartree-Fock (HF) methods. In particular, ACPs are proposed for ten elements common in organic and bioorganic chemistry (H, B, C, N, O, F, Si, P, S, and Cl) and four different base methods: two minimal basis sets (MINIs and MINIX) plus a double-ζ basis set (6-31G*) in combination with dispersion-corrected HF (HF-D3/MINIs, HF-D3/MINIX, HF-D3/6-31G*) and the HF-3c method. The new ACPs are trained on a very large set (73 832 data points) of noncovalent properties (interaction and conformational energies) and validated additionally on a set of 32 048 data points. All reference data are of complete basis set coupled-cluster quality, mostly CCSD(T)/CBS. The proposed ACP-corrected methods are shown to give errors in the tenths of a kcal/mol range for noncovalent interaction energies and up to 2 kcal/mol for molecular conformational energies. More importantly, the average errors are similar in the training and validation sets, confirming the robustness and applicability of these methods outside the boundaries of the training set. In addition, the performance of the new ACP-corrected methods is similar to complete basis set density functional theory (DFT) but at a cost that is orders of magnitude lower, and the proposed ACPs can be used in any computational chemistry program that supports effective-core potentials without modification. It is also shown that ACPs improve the description of covalent and noncovalent bond geometries of the underlying methods and that the improvement brought about by the application of the ACPs is directly related to the number of atoms to which they are applied, allowing the treatment of systems containing some atoms for which ACPs are not available. Overall, the ACP-corrected methods proposed in this work constitute an alternative accurate, economical, and reliable quantum mechanical approach to describe the geometries, interaction energies, and conformational energies of systems with hundreds to thousands of atoms.
Collapse
Affiliation(s)
- Viki Kumar Prasad
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| | - Alberto Otero-de-la-Roza
- MALTA Consolider Team, Departamento de Química Física y Analítica, Facultad de Química, Universidad de Oviedo, E-33006 Oviedo, Spain
| | - Gino A DiLabio
- Department of Chemistry, University of British Columbia, Okanagan, 3247 University Way, Kelowna, British Columbia, Canada V1V 1V7
| |
Collapse
|
25
|
Yang D, Xie D, Guo H. Stereodynamical Control of Cold Collisions of Polyatomic Molecules with Atoms. J Phys Chem Lett 2022; 13:1777-1784. [PMID: 35167302 DOI: 10.1021/acs.jpclett.2c00187] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Scattering between atomic and/or molecular species can be controlled by manipulating the orientation or alignment of the collision partners. Such stereodynamics is particularly pronounced at cold (∼1 K) collision temperatures because of the presence of resonances. Comparing to the extensively studied atomic and diatomic species, polyatomic molecules with strong steric anisotropy could provide a more sophisticated platform for studying such stereodynamics. Here, we provide the quantum mechanical framework for understanding state-to-state stereodynamics in rotationally inelastic scattering of polyatomic molecules with atoms and apply it to cold collision of oriented H2O with He on a highly accurate potential energy surface. It is shown that strong stereodynamical control can be achieved near 1 K via shape resonances. Furthermore, quantum interference in scattering of a coherently prepared initial state of the H2O species is explored, which is shown to be significant.
Collapse
Affiliation(s)
- Dongzheng Yang
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Hua Guo
- Department of Chemistry and Chemical Biology, University of New Mexico, Albuquerque, New Mexico 87131, United States
| |
Collapse
|
26
|
Serra-Peralta M, Domínguez-Dalmases C, Rimola A. Water formation on interstellar silicates: the role of Fe 2+/H 2 interactions in the O + H 2 → H 2O reaction. Phys Chem Chem Phys 2022; 24:28381-28393. [DOI: 10.1039/d2cp04051d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Water formation by reaction of H2 and O on silicate surfaces as a first step towards the generation of interstellar ice mantles is possible thanks to the activation of H2 inferred by Fe2+ ions and quantum tunnelling effects.
Collapse
Affiliation(s)
- Marc Serra-Peralta
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| | | | - Albert Rimola
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Catalonia, Spain
| |
Collapse
|
27
|
M Wallace A, C Fortenberry R. Computational UV spectra for amorphous solids of small molecules. Phys Chem Chem Phys 2021; 23:24413-24420. [PMID: 34693942 DOI: 10.1039/d1cp03255k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Ices in the interstellar medium largely exist as amorphous solids composed of small molecules including ammonia, water, and carbon dioxide. Describing gas-phase molecules can be readily accomplished with current high-level quantum chemical calculations with the description of crystalline solids becoming more readily accomplished. Differently, amorphous solids require more novel approaches. The present work describes a method for generating amorphous structures and constructing electronic spectra through a combination of quantum chemical calculations and statistical mechanics. The structures are generated through a random positioning program and DFT methods, such as ωB97-XD and CAM-B3LYP. A Boltzmann distribution weights the excitations to compile a final spectrum from a sampling of molecular clusters. Three ice analogs are presented herein consisting of ammonia, carbon dioxide, and water. Ammonia and carbon dioxide provide semi-quantitative agreement with experiment for CAM-B3LYP/6-311++G(2d,2p) from 30 clusters of 8 molecules. Meanwhile, the amorphous water description improves when the sample size is increased in cluster size and count to as many as 105 clusters of 32 water molecules. The described methodology can produce highly comparative descriptions of electronic spectra for ice analogs and can be used to predict electronic spectra for other ice analogs.
Collapse
Affiliation(s)
- Austin M Wallace
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
| | - Ryan C Fortenberry
- Department of Chemistry & Biochemistry, University of Mississippi, University, Mississippi 38677-1848, USA.
| |
Collapse
|
28
|
Abstract
Cross-sections and thermally averaged rate coefficients for vibration (de-)excitation of a water molecule by electron impact are computed; one and two quanta excitations are considered for all three normal modes. The calculations use a theoretical approach that combines the normal mode approximation for vibrational states of water, a vibrational frame transformation employed to evaluate the scattering matrix for vibrational transitions and the UK molecular R-matrix code. The interval of applicability of the rate coefficients is from 10 to 10,000 K. A comprehensive set of calculations is performed to assess uncertainty of the obtained data. The results should help in modelling non-LTE spectra of water in various astrophysical environments.
Collapse
|
29
|
Visible-light photoionization of aromatic molecules in water-ice: Organic chemistry across the universe with less energy. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138814] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
30
|
Neeman EM, González D, Blázquez S, Ballesteros B, Canosa A, Antiñolo M, Vereecken L, Albaladejo J, Jiménez E. The impact of water vapor on the OH reactivity toward CH 3CHO at ultra-low temperatures (21.7-135.0 K): Experiments and theory. J Chem Phys 2021; 155:034306. [PMID: 34293904 PMCID: PMC7611909 DOI: 10.1063/5.0054859] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The role of water vapor (H2O) and its hydrogen-bonded complexes in the gas-phase reactivity of organic compounds with hydroxyl (OH) radicals has been the subject of many recent studies. Contradictory effects have been reported at temperatures between 200 and 400 K. For the OH + acetaldehyde reaction, a slight catalytic effect of H2O was previously reported at temperatures between 60 and 118 K. In this work, we used Laval nozzle expansions to reinvestigate the impact of H2O on the OH-reactivity with acetaldehyde between 21.7 and 135.0 K. The results of this comprehensive study demonstrate that water, instead, slows down the reaction by factors of ∼3 (21.7 K) and ∼2 (36.2-89.5 K), and almost no effect of added H2O was observed at 135.0 K.
Collapse
Affiliation(s)
- E. M. Neeman
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - D. González
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - S. Blázquez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
| | - B. Ballesteros
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - A. Canosa
- CNRS, IPR (Institut de Physique de Rennes) - UMR 6251, Université de Rennes, F-35000, Rennes, France
| | - M. Antiñolo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - L. Vereecken
- Institute for energy and climate research, IEK-8: Troposphere. Forschungszentrum Jülich GmbH, Jülich, Germany
| | - J. Albaladejo
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| | - E. Jiménez
- Departamento de Química Física. Facultad de Ciencias y Tecnologías Químicas. Universidad de Castilla-La Mancha. Avda. Camilo José Cela 1B. 13071, Ciudad Real, Spain
- Instituto de Investigación en Combustión y Contaminación Atmosférica. Universidad de Castilla-La Mancha. Camino de Moledores s/n. 13071, Ciudad Real, Spain
| |
Collapse
|
31
|
Luo Z, Zhao Y, Chen Z, Chang Y, Zhang SE, Wu Y, Yang J, Cheng Y, Che L, Wu G, Xie D, Yang X, Yuan K. Strong isotope effect in the VUV photodissociation of HOD: A possible origin of D/H isotope heterogeneity in the solar nebula. SCIENCE ADVANCES 2021; 7:7/30/eabg7775. [PMID: 34290097 PMCID: PMC8294749 DOI: 10.1126/sciadv.abg7775] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/04/2021] [Indexed: 06/13/2023]
Abstract
The deuterium versus hydrogen (D/H) isotopic ratios are important to understand the source of water on Earth and other terrestrial planets. However, the determinations of D/H ratios suggest a hydrogen isotopic diversity in the planetary objects of the solar system. Photochemistry has been suggested as one source of this isotope heterogeneity. Here, we have revealed the photodissociation features of the water isotopologue (HOD) at λ = 120.8 to 121.7 nm. The results show different quantum state populations of OH and OD fragments from HOD photodissociation, suggesting strong isotope effect. The branching ratios of H + OD and D + OH channels display large isotopic fractionation, with ratios of 0.70 ± 0.10 at 121.08 nm and 0.49 ± 0.10 at 121.6 nm. Because water is abundant in the solar nebula, photodissociation of HOD should be an alternative source of the D/H isotope heterogeneity. This isotope effect must be considered in the photochemical models.
Collapse
Affiliation(s)
- Zijie Luo
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, China
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yarui Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Su-E Zhang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yucheng Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Yi Cheng
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Daiqian Xie
- Institute of Theoretical and Computational Chemistry, Key Laboratory of Mesoscopic Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
32
|
Cassidy A, Jørgensen MRV, Glavic A, Lauter V, Plekan O, Field D. A mechanism for ageing in a deeply supercooled molecular glass. Chem Commun (Camb) 2021; 57:6368-6371. [PMID: 34105533 DOI: 10.1039/d1cc01639c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Measurements of the decay of electric fields, formed spontaneously within vapour-deposited films of cis-methyl formate, provide the first direct assessment of the energy barrier to secondary relaxation in a molecular glass. At temperatures far below the glass transition temperature, the mechanism of relaxation is shown to be through hindered molecular rotation. Magnetically-polarised neutron scattering experiments exclude diffusion, which is demonstrated to take place only close to the glass transition temperature.
Collapse
Affiliation(s)
- Andrew Cassidy
- Center for Interstellar Catalysis and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Denmark.
| | - Mads R V Jørgensen
- Center for Materials Crystallography, iNano & Department of Chemistry, Aarhus University, Langelandsgade 140, Aarhus C, Denmark & MAX IV Laboratory, Lund University, Fotongatan 2, Lund, Sweden
| | - Artur Glavic
- Laboratory for Neutron and Muon Instrumentation, Paul Scherrer Institut, 5231 Villigen PSI, Switzerland
| | - Valeria Lauter
- Neutron Scattering Division, Oak Ridge National Lab, Oak Ridge, TN 37831, USA.
| | - Oksana Plekan
- Sincrotrone Trieste S.C.p.A., Area Science Park, Strada Statale 14, km 163.5, I-34149 Basovizza, Trieste, Italy
| | - David Field
- Center for Interstellar Catalysis and Department of Physics and Astronomy, Aarhus University, Ny Munkegade 120, Aarhus C, Denmark.
| |
Collapse
|
33
|
Luo Z, Chang Y, Zhao Y, Yang J, Chen Z, Cheng Y, Che L, Wu G, Yang X, Yuan K. Photodissociation Dynamics of H 2O via the Ẽ' ( 1B 2) Electronic State. J Phys Chem A 2021; 125:3622-3630. [PMID: 33891426 DOI: 10.1021/acs.jpca.1c01459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Photodissociation dynamics of H2O via the Ẽ'1B2 state were studied using the high-resolution H atom photofragment translational spectroscopy method, in combination with the tunable vacuum ultraviolet free electron laser (VUV FEL). The measured translational energy spectra allow us to determine the respective quantum state population distributions for the nascent OH(X2Π) and OH(A2Σ+) photofragments. Analyses of the quantum state population distributions show both the ground and electronically excited OH fragments to be formed with moderate vibrational excitation but with highly rotational excitation. Unlike the dissociation via the lower-lying electronic states, where OH(X) is the major fragment, the OH(A) products are predominant via the Ẽ' state. These products are mainly ascribed to a fast dissociation on the B̃1A1 state surface after nonadiabatic transitions from the initial excited Ẽ' state to the B̃ state. Meanwhile, another dissociation pathway from the Ẽ' state to the 1B2 3pb2 state, followed by coupling to the 1A2 3pb2 state, is also observed, which yields the OH(X) + H and O(3P) + 2H products.
Collapse
Affiliation(s)
- Zijie Luo
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China.,State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yao Chang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yarui Zhao
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Jiayue Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Zhichao Chen
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Yi Cheng
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, 1 Linghai Road, Dalian, Liaoning 116026, P. R. China
| | - Guorong Wu
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| | - Xueming Yang
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China.,Department of Chemistry, College of Science, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Kaijun Yuan
- State Key Laboratory of Molecular Reaction Dynamics and Dalian Coherent Light Source, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, P. R. China
| |
Collapse
|
34
|
Three body photodissociation of the water molecule and its implications for prebiotic oxygen production. Nat Commun 2021; 12:2476. [PMID: 33931653 PMCID: PMC8087761 DOI: 10.1038/s41467-021-22824-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 04/01/2021] [Indexed: 11/20/2022] Open
Abstract
The provenance of oxygen on the Earth and other planets in the Solar System is a fundamental issue. It has been widely accepted that the only prebiotic pathway to produce oxygen in the Earth’s primitive atmosphere was via vacuum ultraviolet (VUV) photodissociation of CO2 and subsequent two O atom recombination. Here, we provide experimental evidence of three-body dissociation (TBD) of H2O to produce O atoms in both 1D and 3P states upon VUV excitation using a tunable VUV free electron laser. Experimental results show that the TBD is the dominant pathway in the VUV H2O photochemistry at wavelengths between 90 and 107.4 nm. The relative abundance of water in the interstellar space with its exposure to the intense VUV radiation suggests that the TBD of H2O and subsequent O atom recombination should be an important prebiotic O2-production, which may need to be incorporated into interstellar photochemical models. Three-body dissociation of water, producing one oxygen and two hydrogen atoms, has been difficult to investigate due to the lack of intense vacuum ultraviolet sources. Here, using a tunable free-electron laser, the authors obtain quantum yields for this channel showing that it is a possible route to prebiotic oxygen formation in interstellar environments.
Collapse
|
35
|
An S, Ranjan S, Yuan K, Yang X, Skodje RT. The role of the three body photodissociation channel of water in the evolution of dioxygen in astrophysical applications. Phys Chem Chem Phys 2021; 23:9235-9248. [PMID: 33885109 DOI: 10.1039/d1cp00565k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A recent experiment at the Dalian Coherent Light Source (DCLS) has provided measurements of the partial cross sections for the photodissociation of water vapor over an unprecedented range of wavelengths in the vacuum ultraviolet (VUV) region. It was found that the three body dissociation channel, H + H + O(3P/1D), becomes prominent at wavelengths shorter than the Lyman α-line at 121.6 nm. The present work explores the kinetic consequences of this discovery for several astrophysically motivated examples. The irradiation of a dilute low-temperature gas by unscreened solar radiation, similar to early stage photochemical processing in a comet coma, shows significant increase in the production of O2-molecules at shorter times, <1 day, that might physically correspond to the photochemical reaction zone of the coma. Several examples of planetary atmospheres show increased O-atom production at high altitudes but relatively little modification of the equilibrium O2 concentrations predicted by conventional models.
Collapse
Affiliation(s)
- Suming An
- Department of Chemistry, University of Colorado, Boulder, CO 80309-215, USA.
| | | | | | | | | |
Collapse
|
36
|
Dupuy R, Bertin M, Féraud G, Michaut X, Marie-Jeanne P, Jeseck P, Philippe L, Baglin V, Cimino R, Romanzin C, Fillion JH. Mechanism of Indirect Photon-Induced Desorption at the Water Ice Surface. PHYSICAL REVIEW LETTERS 2021; 126:156001. [PMID: 33929258 DOI: 10.1103/physrevlett.126.156001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Electronic excitations near the surface of water ice lead to the desorption of adsorbed molecules, through a so far debated mechanism. A systematic study of photon-induced indirect desorption, revealed by the spectral dependence of the desorption (7-13 eV), is conducted for Ar, Kr, N_{2}, and CO adsorbed on H_{2}O or D_{2}O amorphous ices. The mass and isotopic dependence and the increase of intrinsic desorption efficiency with photon energy all point to a mechanism of desorption induced by collisions between adsorbates and energetic H/D atoms, produced by photodissociation of water. This constitutes a direct and unambiguous experimental demonstration of the mechanism of indirect desorption of weakly adsorbed species on water ice, and sheds new light on the possibility of this mechanism in other systems. It also has implications for the description of photon-induced desorption in astrochemical models.
Collapse
Affiliation(s)
- R Dupuy
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - M Bertin
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - G Féraud
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - X Michaut
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - P Marie-Jeanne
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - P Jeseck
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - L Philippe
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - V Baglin
- CERN, CH-1211 Geneva 23, Switzerland
| | - R Cimino
- Laboratori Nazionali di Frascati (LNF)-INFN, I-00044 Frascati, Italy
| | - C Romanzin
- Laboratoire de Chimie Physique, CNRS, Université Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - J-H Fillion
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| |
Collapse
|
37
|
Stoecklin T, Cabrera-González LD, Denis-Alpizar O, Páez-Hernández D. A close coupling study of the bending relaxation of H 2O by collision with He. J Chem Phys 2021; 154:144307. [PMID: 33858145 DOI: 10.1063/5.0047718] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present a close coupling study of the bending relaxation of H2O by collision with He, taking explicitly into account the bending-rotation coupling within the rigid-bender close-coupling method. A 4D potential energy surface is developed based on a large grid of ab initio points calculated at the coupled-cluster single double triple level of theory. The bound states energies of the He-H2O complex are computed and found to be in excellent agreement with previous theoretical calculations. The dynamics results also compare very well with the rigid-rotor results available in the Basecol database and with experimental data for both rotational transitions and bending relaxation. The bending-rotation coupling is also demonstrated to be very efficient in increasing bending relaxation when the rotational excitation of H2O increases.
Collapse
Affiliation(s)
- Thierry Stoecklin
- Institut des Sciences Moléculaires, Université de Bordeaux, CNRS UMR 5255, 33405 Talence Cedex, France
| | - Lisán David Cabrera-González
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile
| | - Otoniel Denis-Alpizar
- Núcleo de Astroquímica y Astrofísica, Instituto de Ciencias Químicas Aplicadas, Facultad de Ingeniería, Universidad Autónoma de Chile, Av. Pedro de Valdivia 425, Providencia, Santiago, Chile
| | - Dayán Páez-Hernández
- Doctorado en Fisicoquímica Molecular, Facultad de Ciencias Exactas, Universidad Andres Bello, República 275, Santiago, Chile
| |
Collapse
|
38
|
Pysanenko A, Grygoryeva K, Kočišek J, Kumar T P R, Fedor J, Ončák M, Fárník M. Stability of pyruvic acid clusters upon slow electron attachment. Phys Chem Chem Phys 2021; 23:4317-4325. [PMID: 33587076 DOI: 10.1039/d0cp06464e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Pyruvic acid represents a key molecule in prebiotic chemistry and it has recently been proposed to be synthesized on interstellar ices. In order to probe the stability of pyruvic acid in the interstellar medium with respect to decomposition by slow electrons, we investigate the electron attachment to its homomolecular and heteromolecular clusters. Using mass spectrometry, we follow the changes in the fragmentation pattern and its dependence on the electron energy for various cluster sizes of pure and microhydrated pyruvic acid. The assignment of fragmentation reaction pathways is supported by ab initio calculations. The fragmentation degree dramatically decreases upon clustering. This decrease is even stronger in the heteromolecular clusters of pyruvic acid with water, where the non-dissociative attachment is by far the strongest channel. In the homomolecular clusters, the dissociative channel leading to dehydrogenation is active over a larger electron energy range than in the isolated molecules. To probe the role of the self-scavenging effects, we explore the excited states of pyruvic acid. This has been done both experimentally, by using electron energy loss spectroscopy, and theoretically, by photochemical calculations. Data on both optically-allowed and forbidden states allow for the explanation of processes emerging upon clustering.
Collapse
Affiliation(s)
- Andriy Pysanenko
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Kateryna Grygoryeva
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Jaroslav Kočišek
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Ragesh Kumar T P
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Juraj Fedor
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | - Milan Ončák
- Institut für Ionenphysik und Angewandte Physik, Universität Innsbruck, Technikerstraße 25, 6020 Innsbruck, Austria.
| | - Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| |
Collapse
|
39
|
Tahsildaran F FS, Moore B, Bashiri T, Otani H, Djuricanin P, Malekfar R, Farahbod AH, Momose T. VUV photochemistry and nuclear spin conversion of water and water-orthohydrogen complexes in parahydrogen crystals at 4 K. Phys Chem Chem Phys 2021; 23:4094-4106. [PMID: 33586746 DOI: 10.1039/d0cp04523c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Samples of H2O, HDO, and D2O were isolated in solid parahydrogen (pH2) matrices and irradiated by vacuum ultraviolet (VUV) radiation at 147 nm. Fourier-Transform Infrared (FTIR) spectra showed a clear depletion of D2O and an enrichment of both HDO and H2O by 147 nm irradiation. These irradiation-dependent changes are attributed to the production of OH and/or OD radicals through photodissociations of H2O, HDO, and D2O. The radicals subsequently react with the hydrogen matrix, leading to the observed enrichment of H2O. No trace of isolated OH or OD was detected in the FTIR spectra, indicating that the OH/OD radicals react with the surrounding matrix hydrogen molecules via quantum tunneling within our experimental timescale. The observed temporal changes in concentrations, especially the increase of HDO concentration during VUV irradiation, can be interpreted by a model with a rapid conversion from orthohydrogen (oH2) to pH2 in water-oH2 complexes upon VUV photodissociation, indicating either the acceleration of the nuclear spin conversion (NSC) of H2 due to the magnetic moment of the intermediate OH/OD radical, or the preferential reaction of the OH/OD radical with a nearby oH2 molecule over other pH2 molecules. We have also identified and quantified an anomalously slow NSC of H2O and D2O complexed with oH2 in solid pH2.
Collapse
Affiliation(s)
- Fatemeh S Tahsildaran F
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada. and Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Brendan Moore
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Termeh Bashiri
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Hatsuki Otani
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Pavle Djuricanin
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| | - Rasoul Malekfar
- Atomic and Molecular Physics Group, Department of Physics, Faculty of Basic Sciences, Tarbiat Modares University, Tehran, Iran
| | - Amir Hossein Farahbod
- Research School of Plasma Physics and Nuclear Fusion, Research Institute of Nuclear Sciences and Technologies, AEOI, Tehran, Iran
| | - Takamasa Momose
- Department of Chemistry, The University of British Columbia, 2036 Main Mall, Vancouver, BC V6T 1Z1, Canada.
| |
Collapse
|
40
|
Abstract
ConspectusBecause chemical reactions on/in cosmic ice dust grains covered by amorphous solid water (ASW) play important roles in generating a variety of molecules, many experimental and theoretical studies have focused on the chemical processes occurring on the ASW surface. In laboratory experiments, conventional spectroscopic and mass-spectrometric detection of stable products is generally employed to deduce reaction channels and mechanisms. However, despite their importance, the details of chemical reactions involving reactive species (i.e., free radicals) have not been clarified because of the absence of experimental methods for in situ detection of radicals. Because OH radicals can be easily produced in interstellar conditions by not only the photolysis and/or ion bombardments of H2O but also the reaction of H and O atoms, they are thought to be one of the most abundant radicals on ice dust. In this context, the development of a close monitoring method of OH radicals on the ASW surface may help to elucidate the chemical reactions occurring on the ASW surface.Recently, to detect OH radicals adsorbed on the ASW surface, we applied our developed method to sensitively and selectively detect surface adsorbates with a combination of photostimulated desorption and resonance-enhanced multiphoton ionization techniques. Using this method, we showed that an OH radical on the ASW surface can be desorbed upon one-photon absorption at 532 nm, at which wavelength both the OH radical and H2O molecule are transparent. Theoretical calculations addressing an OH radical adsorbed on water clusters indicated that the valence A-X transition of an OH radical significantly red-shifts by ∼2 eV when the OH radical is strongly adsorbed to ice through three hydrogen bonds. With this method, the number density of surface OH can be monitored as a snapshot so that the behaviors of OH radicals, such as surface diffusion, can be studied. Moreover, the development of a system for studying the wavelength dependence of photodesorption may establish a foundation for future research investigating the absorption spectra of surface adsorbed species.Owing to the large electron affinity of OH radicals on ice, they are expected to easily become OH- by electron attachment on the ASW surface. We characterized the behavior of OH- on ASW at low temperatures, which may be relevant not only to physicochemical processes on cosmic ice dust and planetary atmosphere but also to understanding the electrochemical properties of ice. A negative constant current was found when ASW at temperatures below 50 K was exposed to both UV photons and electrons. It was demonstrated that the negative current is initiated by the formation of OH- ions on the ASW surface, and they are transported to the bulk via the proton-hole transfer mechanism, which was predicted 100 years ago as a mirror image of proton transfer known as the Grotthuss mechanism. These results indicate that OH- ions are readily transported to the bulk ice and further induce reactions, even at low temperatures where thermal diffusion is negligible. Therefore, in-mantle chemical processes that have been considered inactive at low temperatures are worth reevaluating.
Collapse
Affiliation(s)
- Masashi Tsuge
- Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| | - Naoki Watanabe
- Institute of Low Temperature Science, Hokkaido University, N19-W8, Kita-ku, Sapporo, Hokkaido 060-0819, Japan
| |
Collapse
|
41
|
Fárník M, Fedor J, Kočišek J, Lengyel J, Pluhařová E, Poterya V, Pysanenko A. Pickup and reactions of molecules on clusters relevant for atmospheric and interstellar processes. Phys Chem Chem Phys 2021; 23:3195-3213. [PMID: 33524089 DOI: 10.1039/d0cp06127a] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In this perspective, we review experiments with molecules picked up on large clusters in molecular beams with the focus on the processes in atmospheric and interstellar chemistry. First, we concentrate on the pickup itself, and we discuss the pickup cross sections. We measure the uptake of different atmospheric molecules on mixed nitric acid-water clusters and determine the accommodation coefficients relevant for aerosol formation in the Earth's atmosphere. Then the coagulation of the adsorbed molecules on the clusters is investigated. In the second part of this perspective, we review examples of different processes triggered by UV-photons or electrons in the clusters with embedded molecules. We start with the photodissociation of hydrogen halides and Freon CF2Cl2 on ice nanoparticles in connection with the polar stratospheric ozone depletion. Next, we mention reactions following the excitation and ionization of the molecules adsorbed on clusters. The first ionization-triggered reaction observed between two different molecules picked up on the cluster was the proton transfer between methanol and formic acid deposited on large argon clusters. Finally, negative ion reactions after slow electron attachment are illustrated by two examples: mixed nitric acid-water clusters, and hydrogen peroxide deposited on large ArN and (H2O)N clusters. The selected examples are discussed from the perspective of the atmospheric and interstellar chemistry, and several future directions are proposed.
Collapse
Affiliation(s)
- Michal Fárník
- J. Heyrovský Institute of Physical Chemistry, v.v.i., The Czech Academy of Sciences, Dolejškova 2155/3, 182 23 Prague, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
42
|
Maity A, Maithani S, Pal A, Pradhan M. Highresolution spectroscopic probing of ortho and para nuclear-spin isomers of heavy water in the gas phase. Chem Phys 2021. [DOI: 10.1016/j.chemphys.2020.111041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Computational Surface Modelling of Ices and Minerals of Interstellar Interest—Insights and Perspectives. MINERALS 2020. [DOI: 10.3390/min11010026] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The universe is molecularly rich, comprising from the simplest molecule (H2) to complex organic molecules (e.g., CH3CHO and NH2CHO), some of which of biological relevance (e.g., amino acids). This chemical richness is intimately linked to the different physical phases forming Solar-like planetary systems, in which at each phase, molecules of increasing complexity form. Interestingly, synthesis of some of these compounds only takes place in the presence of interstellar (IS) grains, i.e., solid-state sub-micron sized particles consisting of naked dust of silicates or carbonaceous materials that can be covered by water-dominated ice mantles. Surfaces of IS grains exhibit particular characteristics that allow the occurrence of pivotal chemical reactions, such as the presence of binding/catalytic sites and the capability to dissipate energy excesses through the grain phonons. The present know-how on the physicochemical features of IS grains has been obtained by the fruitful synergy of astronomical observational with astrochemical modelling and laboratory experiments. However, current limitations of these disciplines prevent us from having a full understanding of the IS grain surface chemistry as they cannot provide fundamental atomic-scale of grain surface elementary steps (i.e., adsorption, diffusion, reaction and desorption). This essential information can be obtained by means of simulations based on computational chemistry methods. One capability of these simulations deals with the construction of atom-based structural models mimicking the surfaces of IS grains, the very first step to investigate on the grain surface chemistry. This perspective aims to present the current state-of-the-art methods, techniques and strategies available in computational chemistry to model (i.e., construct and simulate) surfaces present in IS grains. Although we focus on water ice mantles and olivinic silicates as IS test case materials to exemplify the modelling procedures, a final discussion on the applicability of these approaches to simulate surfaces of other cosmic grain materials (e.g., cometary and meteoritic) is given.
Collapse
|
44
|
Gao H. Molecular photodissociation in the vacuum ultraviolet region: implications for astrochemistry and planetary atmospheric chemistry. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1861354] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Hong Gao
- Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences, Beijing, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, People’s Republic of China
| |
Collapse
|
45
|
Loreau J, Kalugina YN, Faure A, van der Avoird A, Lique F. Potential energy surface and bound states of the H 2O-HF complex. J Chem Phys 2020; 153:214301. [PMID: 33291892 DOI: 10.1063/5.0030064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present the first global five-dimensional potential energy surface for the H2O-HF dimer, a prototypical hydrogen bonded complex. Large scale ab initio calculations were carried out using the explicitly correlated coupled cluster approach with single- and double-excitations together with non-iterative perturbative treatment of triple excitations with the augmented correlation-consistent triple zeta basis sets, in which the water and hydrogen fluoride monomers were frozen at their vibrationally averaged geometries. The ab initio data points were fitted to obtain a global potential energy surface for the complex. The equilibrium geometry of the complex corresponds to the formation of a hydrogen bond with water acting as a proton acceptor and a binding energy of De = 3059 cm-1 (8.75 kcal/mol). The energies and wavefunctions of the lowest bound states of the complex were computed using a variational approach, and the dissociation energies of both ortho-H2O-HF (D0 = 2089.4 cm-1 or 5.97 kcal/mol) and para-H2O-HF (D0 = 2079.6 cm-1 or 5.95 kcal/mol) were obtained. The rotational constant of the complex was found to be in good agreement with the available experimental data.
Collapse
Affiliation(s)
- Jérôme Loreau
- KU Leuven, Department of Chemistry, B-3001 Leuven, Belgium
| | - Yulia N Kalugina
- Department of Optics and Spectroscopy, Tomsk State University, 36 Lenin Ave., Tomsk 634050, Russia
| | - Alexandre Faure
- Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
| | - Ad van der Avoird
- Institute for Molecules and Materials, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - François Lique
- LOMC-UMR 6294, Normandie Université, Université du Havre and CNRS, 25 rue Philippe Lebon, BP 1123, 76 063 Le Havre Cedex, France
| |
Collapse
|
46
|
Bergeat A, Morales SB, Naulin C, Wiesenfeld L, Faure A. Probing Low-Energy Resonances in Water-Hydrogen Inelastic Collisions. PHYSICAL REVIEW LETTERS 2020; 125:143402. [PMID: 33064550 DOI: 10.1103/physrevlett.125.143402] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Molecular scattering at collisional energies of the order of 10-100 cm^{-1} (corresponding to kinetic temperatures in the 15-150 K range) provides insight into the details of the scattering process and, in particular, of the various resonances that appear in inelastic cross sections. In this Letter, we present a detailed experimental and theoretical study of the rotationally inelastic scattering of ground-state ortho-D_{2}O by ground-state para-H_{2} in the threshold region of the D_{2}O(0_{00}→2_{02}) transition at 35.9 cm^{-1}. The measurements were performed with a molecular crossed beam apparatus with variable collision angle, thence with variable collisional energy. Calculations were carried out with the coupled-channel method combined with a dedicated high-level D_{2}O-H_{2} intermolecular potential. Our theoretical cross section 0_{00}→2_{02} is found to display several resonance peaks in perfect agreement with the experimental work, in their absolute positions and relative intensities. We show that those peaks are mostly due to shape resonances, characterized here for the first time for a polyatomic molecule colliding with a diatom.
Collapse
Affiliation(s)
- A Bergeat
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255, F-33405 Talence, France
| | - S B Morales
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255, F-33405 Talence, France
| | - C Naulin
- Université de Bordeaux, CNRS, Bordeaux INP, ISM, UMR5255, F-33405 Talence, France
| | - L Wiesenfeld
- Université Paris-Saclay, CNRS, Laboratoire Aimé Cotton, F-91405 Orsay, France
| | - A Faure
- Université Grenoble Alpes, CNRS, IPAG, F-38000 Grenoble, France
| |
Collapse
|
47
|
Spectroscopic-network-assisted precision spectroscopy and its application to water. Nat Commun 2020; 11:1708. [PMID: 32249848 PMCID: PMC7136255 DOI: 10.1038/s41467-020-15430-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 03/05/2020] [Indexed: 11/09/2022] Open
Abstract
Frequency combs and cavity-enhanced optical techniques have revolutionized molecular spectroscopy: their combination allows recording saturated Doppler-free lines with ultrahigh precision. Network theory, based on the generalized Ritz principle, offers a powerful tool for the intelligent design and validation of such precision-spectroscopy experiments and the subsequent derivation of accurate energy differences. As a proof of concept, 156 carefully-selected near-infrared transitions are detected for H216O, a benchmark system of molecular spectroscopy, at kHz accuracy. These measurements, augmented with 28 extremely-accurate literature lines to ensure overall connectivity, allow the precise determination of the lowest ortho-H216O energy, now set at 23.794 361 22(25) cm−1, and 160 energy levels with similarly high accuracy. Based on the limited number of observed transitions, 1219 calibration-quality lines are obtained in a wide wavenumber interval, which can be used to improve spectroscopic databases and applied to frequency metrology, astrophysics, atmospheric sensing, and combustion chemistry. Precision-spectroscopy techniques can accurately measure lines in constrained frequency and intensity ranges. The authors propose a spectroscopic-network-assisted precision spectroscopy method by which transitions measured in a narrow range provide information in other, extended regions of the spectrum.
Collapse
|
48
|
Chang Y, He ZG, Luo ZJ, Zhou JM, Zhang ZG, Chen ZC, Yang JY, Yu Y, Li QM, Che L, Wu GR, Wang XA, Yang XM, Yuan KJ. Application of laser dispersion method in apparatus combining H atom Rydberg tagging time-of-flight technique with vacuum ultraviolet free electron laser. CHINESE J CHEM PHYS 2020. [DOI: 10.1063/1674-0068/cjcp2001008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Affiliation(s)
- Yao Chang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-gang He
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zi-jie Luo
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Jia-mi Zhou
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Zhi-guo Zhang
- Key Laboratory of Functional Materials and Devices for Informatics of Anhui Higher Education Institutions and School of Physics and Electronic Engineering, Fuyang Normal University, Fuyang 236041, China
| | - Zhi-chao Chen
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Jia-yue Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yong Yu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qin-ming Li
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Li Che
- Department of Physics, School of Science, Dalian Maritime University, Dalian 116026, China
| | - Guo-rong Wu
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xing-an Wang
- Department of Chemical Physics, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xue-ming Yang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Kai-jun Yuan
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
49
|
Dupuy R, Féraud G, Bertin M, Romanzin C, Philippe L, Putaud T, Michaut X, Cimino R, Baglin V, Fillion JH. Desorption of neutrals, cations, and anions from core-excited amorphous solid water. J Chem Phys 2020; 152:054711. [PMID: 32035460 DOI: 10.1063/1.5133156] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Core-excitation of water ice releases many different molecules and ions in the gas phase. Studying these desorbed species and the underlying desorption mechanisms can provide useful information on the effects of x-ray irradiation in ice. We report a detailed study of the x-ray induced desorption of a number of neutral, cationic, and anionic species from amorphous solid water. We discuss the desorption mechanisms and the relative contributions of Auger and secondary electrons (x-ray induced electron stimulated desorption) and initial excitation (direct desorption) as well as the role of photochemistry. Anions are shown to desorb not just through processes linked with secondary electrons but also through direct dissociation of the core-excited molecule. The desorption spectra of oxygen ions (O+, OH+, H2O+, O-, and OH-) give a new perspective on their previously reported very low desorption yields for most types of irradiations of water, showing that they mostly originate from the dissociation of photoproducts such as H2O2.
Collapse
Affiliation(s)
- R Dupuy
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - G Féraud
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - M Bertin
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - C Romanzin
- Laboratoire de Chimie Physique, CNRS, univ. Paris-Sud, Université Paris-Saclay, 91405 Orsay, France
| | - L Philippe
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - T Putaud
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - X Michaut
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| | - R Cimino
- Laboratori Nazionali di Frascati (LNF)-INFN, I-00044 Frascati, Italy
| | - V Baglin
- CERN, CH-1211 Geneva 23, Switzerland
| | - J-H Fillion
- Sorbonne Université, Observatoire de Paris, Université PSL, CNRS, LERMA, F-75005 Paris, France
| |
Collapse
|
50
|
Bergeat A, Faure A, Morales SB, Moudens A, Naulin C. Low-Energy Water-Hydrogen Inelastic Collisions. J Phys Chem A 2020; 124:259-264. [PMID: 31283233 DOI: 10.1021/acs.jpca.9b04753] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
New molecular beam scattering experiments are reported for the water-hydrogen system. Integral cross sections of the first rotational excitations of para- and ortho-H2O by inelastic collisions with normal-H2 were determined by crossing a beam of H2O seeded in He with a beam of H2. H2O and H2 were cooled in the supersonic expansion down to their lowest rotational levels. Crossed-beam scattering experiments were performed at collision energies from 15 cm-1 (below the threshold for the excitation to the lowest excited rotational state of H2O: 18.6 cm-1) up to 105 cm-1 by varying the beam crossing angle. The measured state-to-state cross-sections were compared to the theoretical cross-sections (close-coupling quantum scattering calculations): the good agreement found further validates both the employed potential energy surface describing the H2O-H2 van der Waals interaction and the state-to-state rate coefficients calculated with this potential in the very low temperature range needed for the modeling of interstellar media.
Collapse
Affiliation(s)
- Astrid Bergeat
- Univ. Bordeaux , CNRS, Bordeaux INP, ISM , UMR 5255, F-33405 Talence , France
| | - Alexandre Faure
- Univ. Grenoble Alpes , CNRS, IPAG , F-38000 Grenoble , France
| | - Sébastien B Morales
- Univ. Bordeaux , CNRS, Bordeaux INP, ISM , UMR 5255, F-33405 Talence , France
| | - Audrey Moudens
- Univ. Bordeaux , CNRS, Bordeaux INP, ISM , UMR 5255, F-33405 Talence , France
| | - Christian Naulin
- Univ. Bordeaux , CNRS, Bordeaux INP, ISM , UMR 5255, F-33405 Talence , France
| |
Collapse
|