1
|
Siegbahn PEM. Nitrification Mechanisms for the P460 Enzymes. J Phys Chem B 2024. [PMID: 39693510 DOI: 10.1021/acs.jpcb.4c06537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024]
Abstract
The oxidation of hydroxylamine was studied by quantum chemical modeling. Hydroxylamine is the product of ammonia oxidation in ammonia monooxygenase. That mechanism has been studied recently by quantum chemical modeling as here. Only two enzymes can oxidize hydroxylamine, hydroxylamine oxidase and cytochrome-P460. Both employ the unusual P460-heme cofactor. In hydroxylamine oxidase, there is a covalently linked tyrosine, while in cytochrome-P460, there is a covalently linked lysine. The calculations give explanations for the experimental findings that NO is the final product in hydroxylamine oxidase, while N2O is the final product in cytochrome-P460. The effect of the covalent attachments has been investigated, and reasons for their presence have been given. The methodology used, which was proven to give very good agreement with experiments for several redox enzymes, again leads to excellent agreement with experimental findings.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
2
|
Siegbahn PEM. Sulfide release and rebinding in the mechanism for nitrogenase. J Comput Chem 2024; 45:2835-2841. [PMID: 39189512 DOI: 10.1002/jcc.27494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/09/2024] [Accepted: 08/13/2024] [Indexed: 08/28/2024]
Abstract
Nitrogenases are the only enzymes that activate the strong triple bond in N2. The mechanism for the activation has been very difficult to determine in spite of decades of work. In previous modeling studies it has been suggested that the mechanism for nitrogen activation starts out by four pre-activation steps (A0-A4) before catalysis. That suggestion led to excellent agreement with experimental Elecrtron Paramagnetic Resonance (EPR) observations in the step where N2 becomes protonated (E4). An important part of the pre-activation is that a sulfide is released. In the present paper, the details of the pre-activation are modeled, including the release of the sulfide. Several possible transition states for the release have been obtained. An A4(E0) state is reached which is very similar to the E4 state. For completeness, the steps going back from A4(E0) to A0 after catalysis are also modeled, including the insertion of a sulfide.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, Sweden
| |
Collapse
|
3
|
Mukherjee A, Roy S. Understanding the Directed Evolution of a Natural-like Efficient Artificial Metalloenzyme. J Phys Chem B 2024; 128:12122-12132. [PMID: 39588805 DOI: 10.1021/acs.jpcb.4c06994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
The artificial metalloenzyme containing iridium in place of iron along with four directed evolution mutations C317G, T213G, L69V, and V254L in a natural cytochrome P450 presents an important milestone in merging the extraordinary efficiency of biocatalysts with the versatility of small molecule chemical catalysts in catalyzing a new-to-nature carbene insertion reaction. This is a show-stopper enzyme, as it exhibits a catalytic efficiency similar to that of natural enzymes. Despite this remarkable discovery, there is no mechanistic and structural understanding as to why it displays extraordinary efficiency after the incorporation of the four active site mutations by directed evolution methods, which so far has been intractable to any experimental methods. In this study, we have deciphered how directed evolution mutations gradually alter the protein conformational ensemble to populate a catalytically active conformation to boost a multistep catalysis in a natural-like artificial metalloenzyme using large-scale molecular dynamics simulations, rigorous quantum chemical (QM), and multiscale quantum chemical/molecular mechanics (QM/MM) calculations. It reveals how evolution precisely positions the cofactor-substrate in an unusual but effective orientation within a reshaped active site in the catalytically active conformation stabilized by C-H···π interactions from more ordered mutated L69V and V254L residues to achieve preferential transition state stabilization compared to the ground state. This work essentially tracks down in atomistic detail the shift in the conformational ensemble of the highly active conformation from the less efficient single mutant to the most efficient quadruple mutant and offers valuable insights for designing better enzymes. The active conformation correctly reproduces the experimental barrier height and also accounts for the catalytic effect, which is in good agreement with experimental observations. Moreover, this conformation features an unusual bonding interaction in a metal-carbene species that preferentially stabilizes the rate-determining formation of an iridium porphyrin carbene intermediate to render the observed high catalytic rate acceleration. Our study provides crucial insights into the underlying rationale for directed evolution, reports the major catalytic role of nonelectrostatic interactions in enzyme catalysis different from the electrostatic model, and suggests a crucial principle toward designing enzymes with natural efficiency.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
| | - Subhendu Roy
- Crystallography & Molecular Biology Division, Saha Institute of Nuclear Physics, Kolkata 700064, India
- Homi Bhabha National Institute, Mumbai 400094, India
| |
Collapse
|
4
|
Radoń M, Drabik G, Hodorowicz M, Szklarzewicz J. Performance of quantum chemistry methods for a benchmark set of spin-state energetics derived from experimental data of 17 transition metal complexes (SSE17). Chem Sci 2024; 15:20189-20204. [PMID: 39574537 PMCID: PMC11577268 DOI: 10.1039/d4sc05471g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 10/27/2024] [Indexed: 11/24/2024] Open
Abstract
Accurate prediction of spin-state energetics for transition metal (TM) complexes is a compelling problem in applied quantum chemistry, with enormous implications for modeling catalytic reaction mechanisms and computational discovery of materials. Computed spin-state energetics are strongly method-dependent and credible reference data are scarce, making it difficult to conduct conclusive computational studies of open-shell TM systems. Here, we present a novel benchmark set of first-row TM spin-state energetics, which is derived from experimental data of 17 complexes containing FeII, FeIII, CoII, CoIII, MnII, and NiII with chemically diverse ligands. The estimates of adiabatic or vertical spin-state splittings, which are obtained from spin crossover enthalpies or energies of spin-forbidden absorption bands, suitably back-corrected for the vibrational and environmental effects, are employed as reference values for benchmarking density functional theory (DFT) and wave function methods. The results demonstrate a high accuracy of the coupled-cluster CCSD(T) method, which features the mean absolute error (MAE) of 1.5 kcal mol-1 and maximum error of -3.5 kcal mol-1, and outperforms all the tested multireference methods: CASPT2, MRCI+Q, CASPT2/CC and CASPT2+δMRCI. Switching from Hartree-Fock to Kohn-Sham orbitals is not found to consistently improve the CCSD(T) accuracy. The best performing DFT methods are double-hybrids (PWPB95-D3(BJ), B2PLYP-D3(BJ)) with the MAEs below 3 kcal mol-1 and maximum errors within 6 kcal mol-1, whereas the DFT methods so far recommended for spin states (e.g., B3LYP*-D3(BJ) and TPSSh-D3(BJ)) are found to perform much worse with the MAEs of 5-7 kcal mol-1 and maximum errors beyond 10 kcal mol-1. This work is the first such extensive benchmark study of quantum chemistry methods for TM spin-state energetics making use of experimental reference data. The results are relevant for the proper choice of methods to characterize TM systems in computational catalysis and (bio)inorganic chemistry, and may also stimulate new developments in quantum-chemical or machine learning approaches.
Collapse
Affiliation(s)
- Mariusz Radoń
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| | - Gabriela Drabik
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
- Jagiellonian University, Doctoral School of Exact and Natural Sciences Łojasiewicza 11 30-348 Kraków Poland
| | - Maciej Hodorowicz
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| | - Janusz Szklarzewicz
- Jagiellonian University, Faculty of Chemistry Gronostajowa 2 30-387 Kraków Poland +48 12 686 24 89
| |
Collapse
|
5
|
Ju D, Modi V, Khade RL, Zhang Y. Mechanistic investigation of sustainable heme-inspired biocatalytic synthesis of cyclopropanes for challenging substrates. Commun Chem 2024; 7:279. [PMID: 39613908 DOI: 10.1038/s42004-024-01371-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/19/2024] [Indexed: 12/01/2024] Open
Abstract
Engineered heme proteins exhibit excellent sustainable catalytic carbene transfer reactivities toward olefins for value-added cyclopropanes. However, unactivated and electron-deficient olefins remain challenging in such reactions. To help design efficient heme-inspired biocatalysts for these difficult situations, a systematic quantum chemical mechanistic study was performed to investigate effects of olefin substituents, non-native amino acid axial ligands, and natural and non-natural macrocycles with the widely used ethyl diazoacetate. Results show that electron-deficient substrate ethyl acrylate has a much higher barrier than the electron-rich styrene. For styrene, the predicted barrier trend is consistent with experimentally used heme analogue cofactors, which can significantly reduce barriers. For ethyl acrylate, while the best non-native axial ligand only marginally improves the reactivity versus the native histidine model, a couple of computationally studied macrocycles can dramatically reduce barriers to the level comparable to styrene. These results will facilitate the development of better biocatalysts in this area.
Collapse
Affiliation(s)
- Dongrun Ju
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Vrinda Modi
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Rahul L Khade
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA
| | - Yong Zhang
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point Terrace, Hoboken, NJ, 07030, USA.
| |
Collapse
|
6
|
Zheng M, Li Y, Zhang Q, Wang W. Enzymatic Degradation toward Herbicides: The Case of the Sulfonylureas. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:20049-20059. [PMID: 39352087 DOI: 10.1021/acs.est.4c04929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
Commercial herbicides, particularly sulfonylureas, are used worldwide and pose a significant challenge to environmental sustainability. The efficient degradation of sulfonylurea herbicides is critical. SulE, an esterase isolated from the bacterial strain Hansschlegelia zhihuaiae S113, shows degradation activity toward sulfonylurea herbicides. However, the detailed catalytic mechanism remains vague to a large extent. Herein, we decipher the SulEP44R-catalyzed degradation mechanism of sulfonylurea herbicides using hybrid quantum mechanics and molecular mechanics approaches. Our results show that the degradation of sulfonylureas catalyzed by SulEP44R involves four concerted elementary steps. The rate-determining step has an energy barrier range of 19.7-21.4 kcal·mol-1, consistent with the experimentally determined range of 16.0-18.0 kcal·mol-1. Distortion/interaction analysis demonstrates that active-site amino acids play a vital role in the enzymatic catalytic efficacy. The unique architecture of SulEP44R's active site can serve as an excellent template for designing artificial catalysts. Key structural and charge parameters affecting catalytic activity were systematically screened and identified. Based on the elucidated degradation mechanism, several new herbicides with both high herbicidal activity and biodegradability were developed with the aid of a high-throughput strategy. Our findings may advance the application of sulfonylurea herbicides within the framework of environmental sustainability.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao 266237, P.R. China
| |
Collapse
|
7
|
Wang YT, Hsieh YC, Wu TY. In silico validation of allosteric inhibitors targeting Zika virus NS2B-NS3 protease. Phys Chem Chem Phys 2024; 26:27684-27693. [PMID: 39469836 DOI: 10.1039/d4cp02867h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
The Zika virus (ZIKV), a member of the Flaviviridae family, poses a major threat to human health because of the lack of effective antiviral drugs. Although the NS2B-NS3 protease of ZIKV (NS2B-NS3pro) is regarded as a major target for antiviral inhibitors, viral mutations can lead to ineffective competitive inhibitors. Allosteric inhibitors bind to highly conserved nonprotease active sites, induce conformational changes in the protease active site, and prevent substrate binding. Currently, no molecular simulation techniques are available for accurately predicting and analysing conformational changes in the protease catalytic domain. In this study, we developed a combined approach that involves blind docking, Gaussian accelerated molecular dynamics, two-dimensional potential of mean force profiling, density functional theory (DFT) calculations, and interaction region indicator (IRI) analysis and employed it to examine the allosteric inhibitor-01 molecule and its interaction with ZIKV NS2B-NS3pro. Our results indicated that the binding of inhibitor-01 to NS2B-NS3pro resulted in two major conformational states, state I and state II, which in turn changed the volume of the protease active site from 1014 Å3 to 710 and 820 Å3, respectively. These two states had an inactive catalytic domain (residues His116, Asp140, and Ser200). DFT and IRI analyses revealed that, in state I, Lys138 and Gln139 formed hydrogen bonds with inhibitor-01, whereas Lys138, Leu214, Asn217, Val220, and Ile221 engaged in van der Waals interactions with inhibitor-01. Advancements in computational techniques and power are expected to facilitate further progress in overcoming challenges associated with designing allosteric inhibitors for viral proteases.
Collapse
Affiliation(s)
- Yeng-Tseng Wang
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Taiwan, ROC.
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Graduate Institute of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan, ROC
- Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung, Taiwan, ROC
| | - Yuan-Chin Hsieh
- School of Medicine for International Students, I-Shou University, Kaohsiung, Taiwan, ROC
| | - Tin-Yu Wu
- Department of Management Information Systems, National Pingtung University of Science and Technology, Taiwan, ROC
| |
Collapse
|
8
|
de Visser SP, Wong HPH, Zhang Y, Yadav R, Sastri CV. Tutorial Review on the Set-Up and Running of Quantum Mechanical Cluster Models for Enzymatic Reaction Mechanisms. Chemistry 2024; 30:e202402468. [PMID: 39109881 DOI: 10.1002/chem.202402468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 08/07/2024] [Indexed: 10/09/2024]
Abstract
Enzymes turnover substrates into products with amazing efficiency and selectivity and as such have great potential for use in biotechnology and pharmaceutical applications. However, details of their catalytic cycles and the origins surrounding the regio- and chemoselectivity of enzymatic reaction processes remain unknown, which makes the engineering of enzymes and their use in biotechnology challenging. Computational modelling can assist experimental work in the field and establish the factors that influence the reaction rates and the product distributions. A popular approach in modelling is the use of quantum mechanical cluster models of enzymes that take the first- and second coordination sphere of the enzyme active site into consideration. These QM cluster models are widely applied but often the results obtained are dependent on model choice and model selection. Herein, we show that QM cluster models can give highly accurate results that reproduce experimental product distributions and free energies of activation within several kcal mol-1, regarded that large cluster models with >300 atoms are used that include key hydrogen bonding interactions and charged residues. In this tutorial review, we give general guidelines on the set-up and applications of the QM cluster method and discuss its accuracy and reproducibility. Finally, several representative QM cluster model examples on metal-containing enzymes are presented, which highlight the strength of the approach.
Collapse
Affiliation(s)
- Sam P de Visser
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Henrik P H Wong
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Yi Zhang
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
- Department of Chemical Engineering, The University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| | - Rolly Yadav
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| | - Chivukula V Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam, 781039, India
| |
Collapse
|
9
|
Siegbahn PEM. Final E 5 to E 8 Steps in the Nitrogenase Mechanism for Nitrogen Fixation. J Phys Chem B 2024; 128:9699-9705. [PMID: 39344806 PMCID: PMC11472303 DOI: 10.1021/acs.jpcb.4c04331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/18/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Nitrogenase converts nitrogen in the air to ammonia. It is often regarded as the second most important enzyme in nature after photosystem II. The mechanism for how nitrogenase is able to perform the difficult task of cleaving the strong bond in N2 is debated. It is known that for every electron that is donated to N2, two ATP are hydrolyzed. In the experimentally suggested mechanism, the activation occurs after four reductions of the ground state, but there is no suggestion for how the enzyme uses the hydrolysis energy to perform catalysis. In the theoretical mechanism, it is suggested that hydrolysis is used to reduce the electron donor. In previous papers, the steps leading to the activation of N2 in the so-called E4 state has been investigated, using both the experimental and theoretical mechanism, showing that only the theoretical one leads to agreement with EPR observations for E4. In the present paper, the four steps following E4, leading to the release of two ammonia molecules, are described using the same methodology as used in the previous studies.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry, Arrhenius
Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
10
|
Kass D, Katz S, Özgen H, Mebs S, Haumann M, García-Serres R, Dau H, Hildebrandt P, Lohmiller T, Ray K. A Bioinspired Nonheme Fe III-(O 22-)-Cu II Complex with an St = 1 Ground State. J Am Chem Soc 2024; 146:24808-24817. [PMID: 38967560 PMCID: PMC11403606 DOI: 10.1021/jacs.4c04492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
Cytochrome c oxidase (CcO) is a heme copper oxidase (HCO) that catalyzes the natural reduction of oxygen to water. A profound understanding of some of the elementary steps leading to the intricate 4e-/4H+ reduction of O2 is presently lacking. A total spin St = 1 FeIII-(O22-)-CuII (IP) intermediate is proposed to reduce the overpotentials associated with the reductive O-O bond rupture by allowing electron transfer from a tyrosine moiety without the necessity of any spin-surface crossing. Direct evidence of the involvement of IP in the CcO catalytic cycle is, however, missing. A number of heme copper peroxido complexes have been prepared as synthetic models of IP, but all of them possess the catalytically nonrelevant St = 0 ground state resulting from antiferromagnetic coupling between the S = 1/2 FeIII and CuII centers. In a complete nonheme approach, we now report the spectroscopic characterization and reactivity of the FeIII-(O22-)-CuII intermediates 1 and 2, which differ only by a single -CH3 versus -H substituent on the central amine of the tridentate ligands binding to copper. Complex 1 with an end-on peroxido core and ferromagnetically (St = 1) coupled FeIII and CuII centers performs H-bonding-mediated O-O bond cleavage in the presence of phenol to generate oxoiron(IV) and exchange-coupled copper(II) and PhO• moieties. In contrast, the μ-η2:η1 peroxido complex 2, with a St = 0 ground state, is unreactive toward phenol. Thus, the implications for spin topology contributions to O-O bond cleavage, as proposed for the heme FeIII-(O22-)-CuII intermediate in CcO, can be extended to nonheme chemistry.
Collapse
Affiliation(s)
- Dustin Kass
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Sagie Katz
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Hivda Özgen
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Stefan Mebs
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Michael Haumann
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Ricardo García-Serres
- Université Grenoble Alpes, CEA, CNRS, Laboratoire de Chimie et Biologie des Métaux, 38000 Grenoble, France
| | - Holger Dau
- Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Peter Hildebrandt
- Department of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany
| | - Thomas Lohmiller
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
- EPR4Energy Joint Lab, Department Spins in Energy Conversion and Quantum Information Science, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH, Albert-Einstein-Straße 16, 12489 Berlin, Germany
| | - Kallol Ray
- Institut für Chemie, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| |
Collapse
|
11
|
Mulashkina TI, Kulakova AM, Khrenova MG. Molecular Basis of the Substrate Specificity of Phosphotriesterase from Pseudomonas diminuta: A Combined QM/MM MD and Electron Density Study. J Chem Inf Model 2024. [PMID: 39255503 DOI: 10.1021/acs.jcim.4c00425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
The occurrence of organophosphorus compounds, pesticides, and flame-retardants in wastes is an emerging ecological problem. Bacterial phosphotriesterases are capable of hydrolyzing some of them. We utilize modern molecular modeling tools to study the hydrolysis mechanism of organophosphorus compounds with good and poor leaving groups by phosphotriesterase from Pseudomonas diminuta (Pd-PTE). We compute Gibbs energy profiles for enzymes with different cations in the active site: native Zn2+cations and Co2+cations, which increase the steady-state rate constant. Hydrolysis occurs in two elementary steps via an associative mechanism and formation of the pentacoordinated intermediate. The first step, a nucleophilic attack, occurs with a low energy barrier independently of the substrate. The second step has a low energy barrier and considerable stabilization of products for substrates with good leaving groups. For substrates with poor leaving groups, the reaction products are destabilized relative to the ES complex that suppresses the reaction. The reaction proceeds with low energy barriers for substrates with good leaving groups with both Zn2+and Co2+cations in the active site; thus, the product release is likely to be a limiting step. Electron density and geometry analysis of the QM/MM MD trajectories of the intermediate states with all considered compounds allow us to discriminate substrates by their ability to be hydrolyzed by the Pd-PTE. For hydrolyzable substrates, the cleaving bond between a phosphorus atom and a leaving group is elongated, and electron density depletion is observed on the Laplacian of electron density maps.
Collapse
Affiliation(s)
- Tatiana I Mulashkina
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Anna M Kulakova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
| | - Maria G Khrenova
- Department of Chemistry, Lomonosov Moscow State University, Moscow 119991, Russia
- Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow 119334, Russia
- Bach Institute of Biochemistry, Federal Research Centre of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| |
Collapse
|
12
|
Qureshi M, Mokkawes T, Cao Y, de Visser SP. Mechanism of the Oxidative Ring-Closure Reaction during Gliotoxin Biosynthesis by Cytochrome P450 GliF. Int J Mol Sci 2024; 25:8567. [PMID: 39201254 PMCID: PMC11354885 DOI: 10.3390/ijms25168567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 09/02/2024] Open
Abstract
During gliotoxin biosynthesis in fungi, the cytochrome P450 GliF enzyme catalyzes an unusual C-N ring-closure step while also an aromatic ring is hydroxylated in the same reaction cycle, which may have relevance to drug synthesis reactions in biotechnology. However, as the details of the reaction mechanism are still controversial, no applications have been developed yet. To resolve the mechanism of gliotoxin biosynthesis and gain insight into the steps leading to ring-closure, we ran a combination of molecular dynamics and density functional theory calculations on the structure and reactivity of P450 GliF and tested a range of possible reaction mechanisms, pathways and models. The calculations show that, rather than hydrogen atom transfer from the substrate to Compound I, an initial proton transfer transition state is followed by a fast electron transfer en route to the radical intermediate, and hence a non-synchronous hydrogen atom abstraction takes place. The radical intermediate then reacts by OH rebound to the aromatic ring to form a biradical in the substrate that, through ring-closure between the radical centers, gives gliotoxin products. Interestingly, the structure and energetics of the reaction mechanisms appear little affected by the addition of polar groups to the model and hence we predict that the reaction can be catalyzed by other P450 isozymes that also bind the same substrate. Alternative pathways, such as a pathway starting with an electrophilic attack on the arene to form an epoxide, are high in energy and are ruled out.
Collapse
Affiliation(s)
| | | | | | - Sam P. de Visser
- Manchester Institute of Biotechnology, Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK (Y.C.)
| |
Collapse
|
13
|
Bopp C, Bernet NM, Meyer F, Khan R, Robinson SL, Kohler HPE, Buller R, Hofstetter TB. Elucidating the Role of O 2 Uncoupling for the Adaptation of Bacterial Biodegradation Reactions Catalyzed by Rieske Oxygenases. ACS ENVIRONMENTAL AU 2024; 4:204-218. [PMID: 39035869 PMCID: PMC11258757 DOI: 10.1021/acsenvironau.4c00016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 04/26/2024] [Indexed: 07/23/2024]
Abstract
Oxygenation of aromatic and aliphatic hydrocarbons by Rieske oxygenases is the initial step of various biodegradation pathways for environmental organic contaminants. Microorganisms carrying Rieske oxygenases are able to quickly adapt their substrate spectra to alternative carbon and energy sources that are structurally related to the original target substrate, yet the molecular events responsible for this rapid adaptation are not well understood. Here, we evaluated the hypothesis that reactive oxygen species (ROS) generated by unproductive activation of O2, the so-called O2 uncoupling, in the presence of the alternative substrate exert a selective pressure on the bacterium for increasing the oxygenation efficiency of Rieske oxygenases. To that end, we studied wild-type 2-nitrotoluene dioxygenase from Acidovorax sp. strain JS42 and five enzyme variants that have evolved from adaptive laboratory evolution experiments with 3- and 4-nitrotoluene as alternative growth substrates. The enzyme variants showed a substantially increased oxygenation efficiency toward the new target substrates concomitant with a reduction of ROS production, while mechanisms and kinetics of enzymatic O2 activation remained unchanged. Structural analyses and docking studies suggest that amino acid substitutions in enzyme variants occurred at residues lining both substrate and O2 transport tunnels, enabling tighter binding of the target substrates in the active site. Increased oxygenation efficiencies measured in vitro for the various enzyme (variant)-substrate combinations correlated linearly with in vivo changes in growth rates for evolved Acidovorax strains expressing the variants. Our data suggest that the selective pressure from oxidative stress toward more efficient oxygenation by Rieske oxygenases was most notable when O2 uncoupling exceeded 60%.
Collapse
Affiliation(s)
- Charlotte
E. Bopp
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Nora M. Bernet
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| | - Fabian Meyer
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Riyaz Khan
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Serina L. Robinson
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Hans-Peter E. Kohler
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Rebecca Buller
- Competence
Center for Biocatalysis, Institute of Chemistry and Biotechnology, Zürich University of Applied Sciences, 8820 Wädenswil, Switzerland
| | - Thomas B. Hofstetter
- Eawag,
Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
- Institute
of Biogeochemistry and Pollutant Dynamics (IBP), ETH Zürich, 8092 Zürich, Switzerland
| |
Collapse
|
14
|
Guo Y, He L, Ding Y, Kloo L, Pantazis DA, Messinger J, Sun L. Closing Kok's cycle of nature's water oxidation catalysis. Nat Commun 2024; 15:5982. [PMID: 39013902 PMCID: PMC11252165 DOI: 10.1038/s41467-024-50210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 07/03/2024] [Indexed: 07/18/2024] Open
Abstract
The Mn4CaO5(6) cluster in photosystem II catalyzes water splitting through the Si state cycle (i = 0-4). Molecular O2 is formed and the natural catalyst is reset during the final S3 → (S4) → S0 transition. Only recently experimental breakthroughs have emerged for this transition but without explicit information on the S0-state reconstitution, thus the progression after O2 release remains elusive. In this report, our molecular dynamics simulations combined with density functional calculations suggest a likely missing link for closing the cycle, i.e., restoring the first catalytic state. Specifically, the formation of closed-cubane intermediates with all hexa-coordinate Mn is observed, which would undergo proton release, water dissociation, and ligand transfer to produce the open-cubane structure of the S0 state. Thereby, we theoretically identify the previously unknown structural isomerism in the S0 state that acts as the origin of the proposed structural flexibility prevailing in the cycle, which may be functionally important for nature's water oxidation catalysis.
Collapse
Affiliation(s)
- Yu Guo
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lanlan He
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Yunxuan Ding
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China
| | - Lars Kloo
- Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, SE-10044, Stockholm, Sweden
| | - Dimitrios A Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr, 45470, Germany
| | - Johannes Messinger
- Department of Plant Physiology, Umeå University, Linnaeus väg 6 (KBC huset), SE-90187, Umeå, Sweden
- Molecular Biomimetics, Department of Chemistry - Ångström Laboratory, Uppsala University, SE-75120, Uppsala, Sweden
| | - Licheng Sun
- Center of Artificial Photosynthesis for Solar Fuels and Department of Chemistry, School of Science, Westlake University, Hangzhou, 310024, China.
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, 310024, China.
- Division of Solar Energy Conversion and Catalysis at Westlake University, Zhejiang Baima Lake Laboratory Co., Ltd., Hangzhou, 310000, Zhejiang, China.
| |
Collapse
|
15
|
Wójcik-Augustyn A, Johansson AJ, Borowski T. Reaction Mechanism Catalyzed by the Dissimilatory Sulfite Reductase - The Role of the Siroheme-[4FeS4] Cofactor. Chemphyschem 2024; 25:e202400327. [PMID: 38602444 DOI: 10.1002/cphc.202400327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/12/2024]
Abstract
The present work is another part of our investigation on the pathway of dissimilatory sulfate reduction and covers a theoretical study on the reaction catalyzed by dissimilatory sulfite reductase (dSIR). dSIR is the terminal enzyme involved in this metabolic pathway, which uses the siroheme-[4Fe4S] cofactor for six-electron reduction of sulfite to sulfide. In this study we use a large cluster model containing siroheme-[4Fe4S] cofactor and protein residues involved in the direct interactions with the substrate, to get insight into the most feasible reaction mechanism and to understand the role of each considered active site component. In combination with earlier studies reported in the literature, our results lead to several interesting insights. One of the most important conclusions is that the reaction mechanism consists of three steps of two-electron reduction of sulfur and the probable role of the siroheme-[4Fe4S] cofactor is to ensure the delivery of packages of two electrons to the reactant.
Collapse
Affiliation(s)
- Anna Wójcik-Augustyn
- Department of Molecular Biophysics, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, ul. Gronostajowa 7, 30-387, Cracow, Poland
| | - A Johannes Johansson
- Swedish Nuclear Fuel and Waste Management Co (SKB), Box 3091, 169 03, Solna, Sweden
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, ul. Niezapominajek 8, 30-239, Cracow, Poland
| |
Collapse
|
16
|
Xue S, Tang Y, Kurnikov IV, Liao HJ, Li J, Chan NL, Kurnikova MG, Chang WC, Guo Y. Spectroscopic and computational studies of a bifunctional iron- and 2-oxoglutarate dependent enzyme, AsqJ. Methods Enzymol 2024; 704:199-232. [PMID: 39300648 PMCID: PMC11415609 DOI: 10.1016/bs.mie.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Iron and 2-oxoglutarate dependent (Fe/2OG) enzymes exhibit an exceedingly broad reaction repertoire. The most prevalent reactivity is hydroxylation, but many other reactivities have also been discovered in recent years, including halogenation, desaturation, epoxidation, endoperoxidation, epimerization, and cyclization. To fully explore the reaction mechanisms that support such a diverse reactivities in Fe/2OG enzyme, it is necessary to utilize a multi-faceted research methodology, consisting of molecular probe design and synthesis, in vitro enzyme assay development, enzyme kinetics, spectroscopy, protein crystallography, and theoretical calculations. By using such a multi-faceted research approach, we have explored reaction mechanisms of desaturation and epoxidation catalyzed by a bi-functional Fe/2OG enzyme, AsqJ. Herein, we describe the experimental protocols and computational workflows used in our studies.
Collapse
Affiliation(s)
- Shan Xue
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Yijie Tang
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Igor V Kurnikov
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Hsuan-Jen Liao
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan
| | - Jikun Li
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States
| | - Nei-Li Chan
- Institute of Biochemistry and Molecular Biology, College of Medicine, National (Taiwan) University, Taipei, Taiwan.
| | - Maria G Kurnikova
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| | - Wei-Chen Chang
- Department of Chemistry, North Carolina State University, Raleigh, NC, United States.
| | - Yisong Guo
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA, United States.
| |
Collapse
|
17
|
Dias AHS, Cao Y, Skaf MS, de Visser SP. Machine learning-aided engineering of a cytochrome P450 for optimal bioconversion of lignin fragments. Phys Chem Chem Phys 2024; 26:17577-17587. [PMID: 38884162 DOI: 10.1039/d4cp01282h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Using machine learning, molecular dynamics simulations, and density functional theory calculations we gain insight into the selectivity patterns of substrate activation by the cytochromes P450. In nature, the reactions catalyzed by the P450s lead to the biodegradation of xenobiotics, but recent work has shown that fungi utilize P450s for the activation of lignin fragments, such as monomer and dimer units. These fragments often are the building blocks of valuable materials, including drug molecules and fragrances, hence a highly selective biocatalyst that can produce these compounds in good yield with high selectivity would be an important step in biotechnology. In this work a detailed computational study is reported on two reaction channels of two P450 isozymes, namely the O-deethylation of guaethol by CYP255A and the O-demethylation versus aromatic hydroxylation of p-anisic acid by CYP199A4. The studies show that the second-coordination sphere plays a major role in substrate binding and positioning, heme access, and in the selectivity patterns. Moreover, the local environment affects the kinetics of the reaction through lowering or raising barrier heights. Furthermore, we predict a site-selective mutation for highly specific reaction channels for CYP199A4.
Collapse
Affiliation(s)
- Artur Hermano Sampaio Dias
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Yuanxin Cao
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| | - Munir S Skaf
- Institute of Chemistry and Centre for Computing in Engineering & Sciences, University of Campinas, Campinas, SP 13083-861, Brazil
| | - Sam P de Visser
- Manchester Institute of Biotechnology and Department of Chemical Engineering, The University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
| |
Collapse
|
18
|
Siegbahn PEM. Mechanisms for Methane and Ammonia Oxidation by Particulate Methane Monooxygenase. J Phys Chem B 2024; 128:5840-5845. [PMID: 38850249 PMCID: PMC11194816 DOI: 10.1021/acs.jpcb.4c01807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/18/2024] [Accepted: 05/28/2024] [Indexed: 06/10/2024]
Abstract
Particulate MMO (pMMO) catalyzes the oxidation of methane to methanol and also ammonia to hydroxylamine. Experimental characterization of the active site has been very difficult partly because the enzyme is membrane-bound. However, recently, there has been major progress mainly through the use of cryogenic electron microscopy (cryoEM). Electron paramagnetic resonance (EPR) and X-ray spectroscopy have also been employed. Surprisingly, the active site has only one copper. There are two histidine ligands and one asparagine ligand, and the active site is surrounded by phenyl alanines but no charged amino acids in the close surrounding. The present study is the first quantum chemical study using a model of that active site (CuD). Low barrier mechanisms have been found, where an important part is that there are two initial proton-coupled electron transfer steps to a bound O2 ligand before the substrate enters. Surprisingly, this leads to large radical character for the oxygens even though they are protonated. That result is very important for the ability to accept a proton from the substrates. Methods have been used which have been thoroughly tested for redox enzyme mechanisms.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
19
|
Wang QQ, Song J, Wei D. Origin of Chemoselectivity of Halohydrin Dehalogenase-Catalyzed Epoxide Ring-Opening Reactions. J Chem Inf Model 2024; 64:4530-4541. [PMID: 38808649 DOI: 10.1021/acs.jcim.4c00640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
By performing molecular dynamics (MD), quantum mechanical/molecular mechanical (QM/MM) calculations, and QM cluster calculations, the origin of chemoselectivity of halohydrin dehalogenase (HHDH)-catalyzed ring-opening reactions of epoxide with the nucleophilic reagent NO2- has been explored. Four possible chemoselective pathways were considered, and the computed results indicate that the pathway associated with the nucleophilic attack on the Cα position of epoxide by NO2- is most energetically favorable and has an energy barrier of 12.9 kcal/mol, which is close to 14.1 kcal/mol derived from experimental kinetic data. A hydrogen bonding network formed by residues Ser140, Tyr153, and Arg157 can strengthen the electrophilicity of the active site of the epoxide substrate to affect chemoselectivity. To predict the energy barrier trends of the chemoselective transition states, multiple analyses including distortion analysis and electrophilic Parr function (Pk+) analysis were carried out with or without an enzyme environment. The obtained insights should be valuable for the rational design of enzyme-catalyzed and biomimetic organocatalytic epoxide ring-opening reactions with special chemoselectivity.
Collapse
Affiliation(s)
- Qian-Qian Wang
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Jinshuai Song
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| | - Donghui Wei
- College of Chemistry, Zhengzhou University, 100 Science Avenue, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
20
|
Tripathi A, Dubey KD. The mechanistic insights into different aspects of promiscuity in metalloenzymes. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 141:23-66. [PMID: 38960476 DOI: 10.1016/bs.apcsb.2023.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
Enzymes are nature's ultimate machinery to catalyze complex reactions. Though enzymes are evolved to catalyze specific reactions, they also show significant promiscuity in reactions and substrate selection. Metalloenzymes contain a metal ion or metal cofactor in their active site, which is crucial in their catalytic activity. Depending on the metal and its coordination environment, the metal ion or cofactor may function as a Lewis acid or base and a redox center and thus can catalyze a plethora of natural reactions. In fact, the versatility in the oxidation state of the metal ions provides metalloenzymes with a high level of catalytic adaptability and promiscuity. In this chapter, we discuss different aspects of promiscuity in metalloenzymes by using several recent experimental and theoretical works as case studies. We start our discussion by introducing the concept of promiscuity and then we delve into the mechanistic insight into promiscuity at the molecular level.
Collapse
Affiliation(s)
- Ankita Tripathi
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India
| | - Kshatresh Dutta Dubey
- Department of Chemistry, School of Natural Science, Shiv Nadar Institution of Eminence, Greater Noida, Uttar Pradesh, India.
| |
Collapse
|
21
|
Khatun S, Bhagat RP, Amin SA, Jha T, Gayen S. Density functional theory (DFT) studies in HDAC-based chemotherapeutics: Current findings, case studies and future perspectives. Comput Biol Med 2024; 175:108468. [PMID: 38657469 DOI: 10.1016/j.compbiomed.2024.108468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 04/08/2024] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
Density Functional Theory (DFT) is a quantum chemical computational method used to predict and analyze the electronic properties of atoms, molecules, and solids based on the density of electrons rather than wavefunctions. It provides insights into the structure, bonding, and behavior of different molecules, including those involved in the development of chemotherapeutic agents, such as histone deacetylase inhibitors (HDACis). HDACs are a wide group of metalloenzymes that facilitate the removal of acetyl groups from acetyl-lysine residues situated in the N-terminal tail of histones. Abnormal HDAC recruitment has been linked to several human diseases, especially cancer. Therefore, it has been recognized as a prospective target for accelerating the development of anticancer therapies. Researchers have studied HDACs and its inhibitors extensively using a combination of experimental methods and diverse in-silico approaches such as machine learning and quantitative structure-activity relationship (QSAR) methods, molecular docking, molecular dynamics, pharmacophore mapping, and more. In this context, DFT studies can make significant contribution by shedding light on the molecular properties, interactions, reaction pathways, transition states, reactivity and mechanisms involved in the development of HDACis. This review attempted to elucidate the scope in which DFT methodologies may be used to enhance our comprehension of the molecular aspects of HDAC inhibitors, aiding in the rational design and optimization of these compounds for therapeutic applications in cancer and other ailments. The insights gained can guide experimental efforts toward developing more potent and selective HDAC inhibitors.
Collapse
Affiliation(s)
- Samima Khatun
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Rinki Prasad Bhagat
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India
| | - Sk Abdul Amin
- Department of Pharmaceutical Technology, JIS University, 81, Nilgunj Road, Agarpara, Kolkata, West Bengal, India
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Shovanlal Gayen
- Laboratory of Drug Design and Discovery, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
22
|
Blomberg MRA, Ädelroth P. Reduction of molecular oxygen in flavodiiron proteins - Catalytic mechanism and comparison to heme-copper oxidases. J Inorg Biochem 2024; 255:112534. [PMID: 38552360 DOI: 10.1016/j.jinorgbio.2024.112534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/16/2024]
Abstract
The family of flavodiiron proteins (FDPs) plays an important role in the scavenging and detoxification of both molecular oxygen and nitric oxide. Using electrons from a flavin mononucleotide cofactor molecular oxygen is reduced to water and nitric oxide is reduced to nitrous oxide and water. While the mechanism for NO reduction in FDPs has been studied extensively, there is very little information available about O2 reduction. Here we use hybrid density functional theory (DFT) to study the mechanism for O2 reduction in FDPs. An important finding is that a proton coupled reduction is needed after the O2 molecule has bound to the diferrous diiron active site and before the OO bond can be cleaved. This is in contrast to the mechanism for NO reduction, where both NN bond formation and NO bond cleavage occurs from the same starting structure without any further reduction, according to both experimental and computational results. This computational result for the O2 reduction mechanism should be possible to evaluate experimentally. Another difference between the two substrates is that the actual OO bond cleavage barrier is low, and not involved in rate-limiting the reduction process, while the barrier connected with bond cleavage/formation in the NO reduction process is of similar height as the rate-limiting steps. We suggest that these results may be part of the explanation for the generally higher activity for O2 reduction as compared to NO reduction in most FDPs. Comparisons are also made to the O2 reduction reaction in the family of heme‑copper oxidases.
Collapse
Affiliation(s)
- Margareta R A Blomberg
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden.
| | - Pia Ädelroth
- Department of Biochemistry and Biophysics, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
23
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
24
|
Vargas DA, Ren X, Sengupta A, Zhu L, Roy S, Garcia-Borràs M, Houk KN, Fasan R. Biocatalytic strategy for the construction of sp 3-rich polycyclic compounds from directed evolution and computational modelling. Nat Chem 2024; 16:817-826. [PMID: 38351380 PMCID: PMC11088497 DOI: 10.1038/s41557-023-01435-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/20/2023] [Indexed: 02/17/2024]
Abstract
Catalysis with engineered enzymes has provided more efficient routes for the production of active pharmaceutical agents. However, the potential of biocatalysis to assist in early-stage drug discovery campaigns remains largely untapped. In this study, we have developed a biocatalytic strategy for the construction of sp3-rich polycyclic compounds via the intramolecular cyclopropanation of benzothiophenes and related heterocycles. Two carbene transferases with complementary regioisomer selectivity were evolved to catalyse the stereoselective cyclization of benzothiophene substrates bearing diazo ester groups at the C2 or C3 position of the heterocycle. The detailed mechanisms of these reactions were elucidated by a combination of crystallographic and computational analyses. Leveraging these insights, the substrate scope of one of the biocatalysts could be expanded to include previously unreactive substrates, highlighting the value of integrating evolutionary and rational strategies to develop enzymes for new-to-nature transformations. The molecular scaffolds accessed here feature a combination of three-dimensional and stereochemical complexity with 'rule-of-three' properties, which should make them highly valuable for fragment-based drug discovery campaigns.
Collapse
Affiliation(s)
- David A Vargas
- Process Research and Development, Merck, Rahway, NJ, USA
| | - Xinkun Ren
- College of Engineering and Applied Sciences, Nanjing University, Nanjing, China
| | - Arkajyoti Sengupta
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA
| | - Ledong Zhu
- Environment Research Institute, Shandong University, Qingdao, People's Republic of China
| | - Satyajit Roy
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA
| | - Marc Garcia-Borràs
- Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, Girona, Spain
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, USA.
| | - Rudi Fasan
- Department of Chemistry and Biochemistry, University of Texas at Dallas, Richardson, TX, USA.
| |
Collapse
|
25
|
Andrys-Olek J, Kluza A, Tataruch M, Heider J, Korecki J, Borowski T. Bacteria at Work - Experimental and Theoretical Studies Reveal the Catalytic Mechanism of Ectoine Synthase. Chemistry 2024; 30:e202304163. [PMID: 38258332 DOI: 10.1002/chem.202304163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 01/24/2024]
Abstract
Ectoine synthase (EctC) catalyses the ultimate step of ectoine biosynthesis, a kosmotropic compound produced as compatible solute by many bacteria and some archaea or eukaryotes. EctC is an Fe2+-dependent homodimeric cytoplasmic protein. Using Mössbauer spectroscopy, molecular dynamics simulations and QM/MM calculations, we determined the most likely coordination number and geometry of the Fe2+ ion and proposed a mechanism of the EctC-catalysed reaction. Most notably, we show that apart from the three amino acids binding to the iron ion (Glu57, Tyr84 and His92), one water molecule and one hydroxide ion are required as additional ligands for the reaction to occur. They fill the first coordination sphere of the Fe2+-cofactor and act as critical proton donors and acceptors during the cyclization reaction.
Collapse
Affiliation(s)
- Justyna Andrys-Olek
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Anna Kluza
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Mateusz Tataruch
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Johann Heider
- Department of Biology, Philipps-Universität Marburg, 35043, Marburg, Germany
| | - Józef Korecki
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| | - Tomasz Borowski
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, 30-239, Kraków, Poland
| |
Collapse
|
26
|
Li F, Lan J, Li X, Chung LW. A Synergistic Bimetallic Ti/Co-Catalyzed Isomerization of Epoxides to Allylic Alcohols Enabled by Two-State Reactivity. Inorg Chem 2024; 63:6285-6295. [PMID: 38517250 DOI: 10.1021/acs.inorgchem.4c00011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
Isomerization of epoxides into versatile allylic alcohols is an atom-economical synthetic method to afford vicinal bifunctional groups. Comprehensive density functional theory (DFT) calculations were carried out to elucidate the complex mechanism of a bimetallic Ti/Co-catalyzed selective isomerization of epoxides to allyl alcohols by examining several possible pathways. Our results suggest a possible mechanism involving (1) radical-type epoxide ring opening catalyzed by Cp2Ti(III)Cl leading to a Ti(IV)-bound β-alkyl radical, (2) hydrogen-atom transfer (HAT) catalyzed by the Co(II) catalyst to form the Ti(IV)-enolate and Co(III)-H intermediate, (3) protonation to give the alcohols, and (4) proton abstraction to form the Co(I) species followed by electron transfer to regenerate the active Co(II) and Ti(III) species. Moreover, bimetallic catalysis and two-state reactivity enable the key rate-determining HAT step. Furthermore, a subtle balance between dispersion-driven bimetallic processes and entropy-driven monometallic processes determines the most favorable pathway, among which the monometallic process is energetically more favorable in all steps except the vital hydrogen-atom transfer step. Our study should provide an in-depth mechanistic understanding of bimetallic catalysis.
Collapse
Affiliation(s)
- Fangfang Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Jialing Lan
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xin Li
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Lung Wa Chung
- Shenzhen Grubbs Institute and Department of Chemistry, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
27
|
Shams Ghamsary M, Ghiasi M, Naghavi SS. Insight into the activation mechanism of carbonic anhydrase(II) through 2-(2-aminoethyl)-pyridine: a promising pathway for enhanced enzymatic activity. Phys Chem Chem Phys 2024; 26:10382-10391. [PMID: 38502117 DOI: 10.1039/d3cp05687b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
Activation of human carbonic anhydrase II (hCA II) holds great promise for treating memory loss symptoms associated with Alzheimer's disease. Despite its importance, the activation mechanism of hCA II has been largely overlooked in favor of the well-studied inhibition mechanism. To address this unexplored realm, we use first-principles calculations to tease out the activation mechanism of hCA II using 2-(2-aminoethyl)-pyridine (2-2AEPy), a promising in vitro activator. We explored both stepwise and concerted mechanisms via both available nitrogen sites of 2-2AEPy: (i) aminoethyl group (Nα) and (ii) pyridine ring (Nβ). Our results show that a concerted mechanism via Nα holds the key to hCA II activation. The activation process of the concerted mechanism exhibits the characteristics of an exergonic reaction, wherein the transition state resembles the reactant with a notably low imaginary frequency of 452.4i cm-1 and barrier height of 5.2 kcal mol-1. Such meager transition barriers propel the activation of hCA II at in vivo temperatures. These findings initiate future research into hCA II activation mechanisms and the development of efficient activators, which may lead to promising therapeutic interventions for Alzheimer's disease.
Collapse
Affiliation(s)
- Masoumeh Shams Ghamsary
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| | - Mina Ghiasi
- Department of Physical Chemistry and Nano chemistry, Faculty of Chemistry, Alzahra University, 1993893973, Tehran, Iran.
| | - S Shahab Naghavi
- Department of Physical and Computational Chemistry, Shahid Beheshti University, Tehran 1983969411, Iran.
| |
Collapse
|
28
|
Farshadfar K, Laasonen K. DFT Mechanistic Investigation into Ni(II)-Catalyzed Hydroxylation of Benzene to Phenol by H 2O 2. Inorg Chem 2024; 63:5509-5519. [PMID: 38471975 PMCID: PMC11186014 DOI: 10.1021/acs.inorgchem.3c04461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/28/2024] [Indexed: 03/14/2024]
Abstract
Introduction of oxygen into aromatic C-H bonds is intriguing from both fundamental and practical perspectives. Although the 3d metal-catalyzed hydroxylation of arenes by H2O2 has been developed by several prominent researchers, a definitive mechanism for these crucial transformations remains elusive. Herein, density functional theory calculations were used to shed light on the mechanism of the established hydroxylation reaction of benzene with H2O2, catalyzed by [NiII(tepa)]2+ (tepa = tris[2-(pyridin-2-yl)ethyl]amine). Dinickel(III) bis(μ-oxo) species have been proposed as the key intermediate responsible for the benzene hydroxylation reaction. Our findings indicate that while the dinickel dioxygen species can be generated as a stable structure, it cannot serve as an active catalyst in this transformation. The calculations allowed us to unveil an unprecedented mechanism composed of six main steps as follows: (i) deprotonation of coordinated H2O2, (ii) oxidative addition, (iii) water elimination, (iv) benzene addition, (v) ketone generation, and (vi) tautomerization and regeneration of the active catalyst. Addition of benzene to oxygen, which occurs via a radical mechanism, turns out to be the rate-determining step in the overall reaction. This study demonstrates the critical role of Ni-oxyl species in such transformations, highlighting how the unpaired spin density value on oxygen and positive charges on the Ni-O• complex affect the activation barrier for benzene addition.
Collapse
Affiliation(s)
- Kaveh Farshadfar
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| | - Kari Laasonen
- Department of Chemistry and
Material Science, School of Chemical Engineering, Aalto University, 02150 Espoo, Finland
| |
Collapse
|
29
|
Yang Y, Wang X, Dong H. Simulating chemical reactions promoted by self-assembled peptides with catalytic properties. Methods Enzymol 2024; 697:321-343. [PMID: 38816128 DOI: 10.1016/bs.mie.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Peptides that self-assemble exhibit distinct three-dimensional structures and attributes, positioning them as promising candidates for biocatalysts. Exploring their catalytic processes enhances our comprehension of the catalytic actions inherent to self-assembling peptides, laying a theoretical foundation for creating novel biocatalysts. The investigation into the intricate reaction mechanisms of these entities is rendered challenging due to the vast variability in peptide sequences, their aggregated formations, supportive elements, structures of active sites, types of catalytic reactions, and the interplay between these variables. This complexity hampers the elucidation of the linkage between sequence, structure, and catalytic efficiency in self-assembling peptide catalysts. This chapter delves into the latest progress in understanding the mechanisms behind peptide self-assembly, serving as a catalyst in hydrolysis and oxidation reactions, and employing computational analyses. It discusses the establishment of models, selection of computational strategies, and analysis of computational procedures, emphasizing the application of modeling techniques in probing the catalytic mechanisms of peptide self-assemblies. It also looks ahead to the potential future trajectories within this research domain. Despite facing numerous obstacles, a thorough investigation into the structural and catalytic mechanisms of peptide self-assemblies, combined with the ongoing advancement in computational simulations and experimental methodologies, is set to offer valuable theoretical insights for the development of new biocatalysts, thereby significantly advancing the biocatalysis field.
Collapse
Affiliation(s)
- Yuqin Yang
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China
| | - Xiaoyu Wang
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China
| | - Hao Dong
- Kuang Yaming Honors School, Nanjing University, Nanjing, P.R. China; State Key Laboratory of Analytical Chemistry for Life Science, Chemistry and Biomedicine Innovation Center (ChemBIC), Institute for Brain Sciences, Nanjing University, Nanjing, P.R. China.
| |
Collapse
|
30
|
Li RN, Chen SL. Mechanistic Insights into the N-Hydroxylations Catalyzed by the Binuclear Iron Domain of SznF Enzyme: Key Piece in the Synthesis of Streptozotocin. Chemistry 2024; 30:e202303845. [PMID: 38212866 DOI: 10.1002/chem.202303845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/10/2024] [Accepted: 01/11/2024] [Indexed: 01/13/2024]
Abstract
SznF, a member of the emerging family of heme-oxygenase-like (HO-like) di-iron oxidases and oxygenases, employs two distinct domains to catalyze the conversion of Nω-methyl-L-arginine (L-NMA) into N-nitroso-containing product, which can subsequently be transformed into streptozotocin. Using unrestricted density functional theory (UDFT) with the hybrid functional B3LYP, we have mechanistically investigated the two sequential hydroxylations of L-NMA catalyzed by SznF's binuclear iron central domain. Mechanism B primarily involves the O-O bond dissociation, forming Fe(IV)=O, induced by the H+/e- introduction to the FeA side of μ-1,2-peroxo-Fe2(III/III), the substrate hydrogen abstraction by Fe(IV)=O, and the hydroxyl rebound to the substrate N radical. The stochastic addition of H+/e- to the FeB side (mechanism C) can transition to mechanism B, thereby preventing enzyme deactivation. Two other competing mechanisms, involving the direct O-O bond dissociation (mechanism A) and the addition of H2O as a co-substrate (mechanism D), have been ruled out.
Collapse
Affiliation(s)
- Rui-Ning Li
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| | - Shi-Lu Chen
- Key Laboratory of Cluster Science of Ministry of Education, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 100081, China
| |
Collapse
|
31
|
Ciardullo G, Parise A, Prejanò M, Marino T. Viral RNA Replication Suppression of SARS-CoV-2: Atomistic Insights into Inhibition Mechanisms of RdRp Machinery by ddhCTP. J Chem Inf Model 2024; 64:1593-1604. [PMID: 38412057 DOI: 10.1021/acs.jcim.3c01919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
The nonstructural protein 12, known as RNA-dependent RNA polymerase (RdRp), is essential for both replication and repair of the viral genome. The RdRp of SARS-CoV-2 has been used as a promising candidate for drug development since the inception of the COVID-19 spread. In this work, we performed an in silico investigation on the insertion of the naturally modified pyrimidine nucleobase ddhCTP into the SARS-CoV-2 RdRp active site, in a comparative analysis with the natural one (CTP). The modification in ddhCTP involves the removal of the 3'-hydroxyl group that prevents the addition of subsequent nucleotides into the nascent strand, acting as an RNA chain terminator inhibitor. Quantum mechanical investigations helped to shed light on the mechanistic source of RdRp activity on the selected nucleobases, and comprehensive all-atom simulations provided insights about the structural rearrangements occurring in the active-site region when inorganic pyrophosphate (PPi) is formed. Subsequently, the intricate pathways for the release of PPi, the catalytic product of RdRp, were investigated using Umbrella Sampling simulations. The results are in line with the available experimental data and contribute to a more comprehensive point of view on such an important viral enzyme.
Collapse
Affiliation(s)
- Giada Ciardullo
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Angela Parise
- Consiglio Nazionale Delle Ricerche (CNR)-IOM C/O International School for Advanced Studies (SISSA/ISAS), Via Bonomea 265, Trieste 34136, Italy
| | - Mario Prejanò
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| | - Tiziana Marino
- Dipartimento di Chimica E Tecnologie Chimiche, Laboratorio PROMOCS Cubo 14C, Università della Calabria, RENDE (CS) I-87036, Italy
| |
Collapse
|
32
|
Siegbahn PEM. Computational Model Study of the Experimentally Suggested Mechanism for Nitrogenase. J Phys Chem B 2024; 128:985-989. [PMID: 38237063 PMCID: PMC10839828 DOI: 10.1021/acs.jpcb.3c07675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 02/02/2024]
Abstract
The mechanism for N2 activation in the E4 state of nitrogenase was investigated by model calculations. In the experimentally suggested mechanism, the E4 state is obtained after four reductions to the ground state. In a recent theoretical study, results for a different mechanism have been found in excellent agreement with available Electron Paramagnetic Resonance (EPR) experiments for E4. The two hydrides in E4 leave as H2 concertedly with the binding of N2. The mechanism suggested differs from the experimentally suggested one by a requirement for four activation steps prior to catalysis. In the present study, the experimentally suggested mechanism is studied using the same methods as those used in the previous study on the theoretical mechanism. The computed results make it very unlikely that a structure obtained after four reductions from the ground state has two hydrides, and the experimentally suggested mechanism does therefore not agree with the EPR experiments for E4. Another structure with only one hydride is here suggested to be the one that has been observed to bind N2 after only four reductions of the ground state.
Collapse
Affiliation(s)
- Per E. M. Siegbahn
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
33
|
Siegbahn PEM, Wei WJ. The energetics of N 2 reduction by vanadium containing nitrogenase. Phys Chem Chem Phys 2024; 26:1684-1695. [PMID: 38126534 DOI: 10.1039/d3cp04698b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The main class of nitrogenases has a molybdenum in its cofactor. A mechanism for Mo-nitrogenase has recently been described. In the present study, another class of nitrogenases has been studied, the one with a vanadium instead of a molybdenum in its cofactor. It is generally believed that these classes use the same general mechanism to activate nitrogen. The same methodology has been used here as the one used for Mo-nitrogenase. N2 activation is known to occur after four reductions in the catalytic cycle, in the E4 state. The main features of the mechanism for Mo-nitrogenase found in the previous study are an activation process in four steps prior to catalysis, the release of a sulfide during the activation steps and the formation of H2 from two hydrides in E4, just before N2 is activated. The same features have been found here for V-nitrogenase. A difference is that five steps are needed in the activation process, which explains why the ground state of V-nitrogenase is a triplet (even number) and the one for Mo-nitrogenase is a quartet (odd number). The reason an additional step is needed for V-nitrogenase is that V3+ can be reduced to V2+, in contrast to the case for Mo3+ in Mo-nitrogenase. The fact that V3+ is Jahn-Teller active has important consequences. N2H2 is formed in E4 with reasonably small barriers.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| | - Wen-Jie Wei
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
34
|
Rajabi A, Grotjahn R, Rappoport D, Furche F. A DFT perspective on organometallic lanthanide chemistry. Dalton Trans 2024; 53:410-417. [PMID: 38013481 DOI: 10.1039/d3dt03221c] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Computational studies of the coordination chemistry and bonding of lanthanides have grown in recent decades as the need for understanding the distinct physical, optical, and magnetic properties of these compounds increased. Density functional theory (DFT) methods offer a favorable balance of computational cost and accuracy in lanthanide chemistry and have helped to advance the discovery of novel oxidation states and electronic configurations. This Frontier article examines the scope and limitations of DFT in interpreting structural and spectroscopic data of low-valent lanthanide complexes, elucidating periodic trends, and predicting their properties and reactivity, presented through selected examples.
Collapse
Affiliation(s)
- Ahmadreza Rajabi
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Robin Grotjahn
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Dmitrij Rappoport
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| | - Filipp Furche
- Department of Chemistry, University of California Irvine, 1102 Natural Sciences II, Irvine, CA 92697-2025, USA.
| |
Collapse
|
35
|
Costa GJ, Egbemhenghe A, Liang R. Computational Characterization of the Reactivity of Compound I in Unspecific Peroxygenases. J Phys Chem B 2023; 127:10987-10999. [PMID: 38096487 DOI: 10.1021/acs.jpcb.3c06311] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Unspecific peroxygenases (UPOs) are emerging as promising biocatalysts for selective oxyfunctionalization of unactivated C-H bonds. However, their potential in large-scale synthesis is currently constrained by suboptimal chemical selectivity. Improving the selectivity of UPOs requires a deep understanding of the molecular basis of their catalysis. Recent molecular simulations have sought to unravel UPO's selectivity and inform their design principles. However, most of these studies focused on substrate-binding poses. Few researchers have investigated how the reactivity of CpdI, the principal oxidizing intermediate in the catalytic cycle, influences selectivity in a realistic protein environment. Moreover, the influence of protein electrostatics on the reaction kinetics of CpdI has also been largely overlooked. To bridge this gap, we used multiscale simulations to interpret the regio- and enantioselective hydroxylation of the n-heptane substrate catalyzed by Agrocybe aegerita UPO (AaeUPO). We comprehensively characterized the energetics and kinetics of the hydrogen atom-transfer (HAT) step, initiated by CpdI, and the subsequent oxygen rebound step forming the product. Notably, our approach involved both free energy and potential energy evaluations in a quantum mechanics/molecular mechanics (QM/MM) setting, mitigating the dependence of results on the choice of initial conditions. These calculations illuminate the thermodynamics and kinetics of the HAT and oxygen rebound steps. Our findings highlight that both the conformational selection and the distinct chemical reactivity of different substrate hydrogen atoms together dictate the regio- and enantio-selectivity. Building on our previous study of CpdI's formation in AaeUPO, our results indicate that the HAT step is the rate-limiting step in the overall catalytic cycle. The subsequent oxygen rebound step is swift and retains the selectivity determined by the HAT step. We also pinpointed several polar and charged amino acid residues whose electrostatic potentials considerably influence the reaction barrier of the HAT step. Notably, the Glu196 residue is pivotal for both the CpdI's formation and participation in the HAT step. Our research offers in-depth insights into the catalytic cycle of AaeUPO, which will be instrumental in the rational design of UPOs with enhanced properties.
Collapse
Affiliation(s)
- Gustavo J Costa
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Abel Egbemhenghe
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| | - Ruibin Liang
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, Texas 79409, United States
| |
Collapse
|
36
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
37
|
Cheng Q, DeYonker NJ. The Glycine N-Methyltransferase Case Study: Another Challenge for QM-Cluster Models? J Phys Chem B 2023; 127:9282-9294. [PMID: 37870315 PMCID: PMC11018112 DOI: 10.1021/acs.jpcb.3c04138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
The methyl transfer reaction between SAM and glycine catalyzed by glycine N-methyltransferase (GNMT) was examined using QM-cluster models generated by Residue Interaction Network ResidUe Selector (RINRUS). RINRUS is a Python-based tool that can build QM-cluster models with rules-based processing of the active site residue interaction network. This way of enzyme model-building allows quantitative analysis of residue and fragment contributions to kinetic and thermodynamic properties of the enzyme. Many residue fragments are important for the GNMT catalytic reaction, such as Gly137, Asn138, and Arg175, which interact with the glycine substrate, and Trp30, Asp85, and Tyr242, which interact with the SAM cofactor. Our study shows that active site fragments that interact with the glycine substrate and the SAM cofactor must both be included in the QM-cluster models. Even though the proposed mechanism is a simple one-step reaction, GNMT may be a rather challenging case study for QM-cluster models because convergence in energetics requires models with >350 atoms. "Maximal" QM-cluster models built with either qualitative contact count ranking or quantitative interaction energies from functional group symmetry adapted perturbation theory provide acceptable results. Hence, important residue fragments that contribute to the energetics of the methyl-transfer reaction in GNMT are correctly identified in the RIN. Observations from this work suggest new directions to better establish an effective approach for constructing atomic-level enzyme models.
Collapse
Affiliation(s)
- Qianyi Cheng
- Department of Chemistry, University of Memphis, Memphis, TN 38152, U.S.A
| | - Nathan J. DeYonker
- Department of Chemistry, University of Memphis, Memphis, TN 38152, U.S.A
| |
Collapse
|
38
|
BUYUKTEMIZ M, DEDE Y. Homoprotocatechuate dioxygenase active site: Imitating the secondary sphere base via computational design. Turk J Chem 2023; 47:1116-1124. [PMID: 38173743 PMCID: PMC10760822 DOI: 10.55730/1300-0527.3598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 10/31/2023] [Accepted: 09/30/2023] [Indexed: 01/05/2024] Open
Abstract
Oxidative ring cleavage reactions have attracted great interest and various studies on the catechol ring-cleaving enzyme homoprotocatechuate dioxygenase (HPCD) have been reported in the literature. The available data on how the proton transfer takes place led us to design a potential HPCD model structure. A secondary sphere effect of utmost importance, the assistance of His200, which is critical for the catechol proton to migrate to dioxygen, was cautiously included on the first coordination shell. This was done mainly by modifying the axial ligands in the first coordination shell of HPCD such that the dual basic/acidic role in the proton transfer pathway of His200 was reproduced. Model systems with mono-, bi-, and tridentate ligands are reported. Energetically feasible reaction channels on synthetically promising ligand structures are identified. Key structural and electronic principles for obtaining viable proton transfer paths are outlined.
Collapse
Affiliation(s)
- Muhammed BUYUKTEMIZ
- Department of Chemistry, Faculty of Science, Gazi University, Ankara,
Turkiye
| | - Yavuz DEDE
- Department of Chemistry, Faculty of Science, Gazi University, Ankara,
Turkiye
- Department of Chemistry, Faculty of Science, University of Helsinki, Helsinki,
Finland
| |
Collapse
|
39
|
Yang X, Liu S, Yin Z, Chen M, Song J, Li P, Yang L. New insights into the proton pumping mechanism of ba 3 cytochrome c oxidase: the functions of key residues and water. Phys Chem Chem Phys 2023; 25:25105-25115. [PMID: 37461851 DOI: 10.1039/d3cp01334k] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
As the terminal oxidase of cell respiration in mitochondria and aerobic bacteria, the proton pumping mechanism of ba3-type cytochrome c oxidase (CcO) of Thermus thermophiles is still not fully understood. Especially, the functions of key residues which were considered as the possible proton loading sites (PLSs) above the catalytic center, as well as water located above and within the catalytic center, remain unclear. In this work, molecular dynamic simulations were performed on a set of designed mutants of key residues (Asp287, Asp372, His376, and Glu126II). The results showed that Asp287 may not be a PLS, but it could modulate the ability of the proton transfer pathway to transfer protons through its salt bridge with Arg225. Maintaining the closed state of the water pool above the catalytic center is necessary for the participation of inside water molecules in proton transfer. Water molecules inside the water pool can form hydrogen bond chains with PLS to facilitate proton transfer. Additional quantum cluster models of the Fe-Cu metal catalytic center are established, indicating that when the proton is transferred from Tyr237, it is more likely to reach the OCu atom directly through only one water molecule. This work provides a more profound understanding of the functions of important residues and specific water molecules in the proton pumping mechanism of CcO.
Collapse
Affiliation(s)
- Xiaoyue Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Shaohui Liu
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Zhili Yin
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Mengguo Chen
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| | - Jinshuai Song
- Green Catalysis Center, and College of Chemistry, Zhengzhou University, Henan 450001, China
| | - Pengfei Li
- Department of Chemistry and Biochemistry, Loyola University Chicago, Illinois 60660, USA
| | - Longhua Yang
- School of Pharmaceutical Sciences & Key Laboratory of Advanced Drug Preparation Technologies, Zhengzhou University, Henan 450001, China.
| |
Collapse
|
40
|
Siegbahn PEM. The mechanism for N 2 activation in the E 4 - state of nitrogenase. Phys Chem Chem Phys 2023; 25:23602-23613. [PMID: 37622205 DOI: 10.1039/d3cp02851h] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
Nitrogenases take nitrogen from the air and reduce it to ammonia. It has long been known that N2 becomes activated after four reductions in the catalytic cycle, in the E4 state. Several mechanisms for the activation have been suggested. In the present study a previous mechanism has been revised based on recent experimental findings. In the present mechanism N2H2 is formed in E4. As in the previously suggested mechanism, there are four initial reductions before catalysis (the A-states), after which a sulfide is released and the first state in catalysis (E0) is formed. In E4, N2 becomes bound and protonated in the Fe1, Fe2, Fe4 region, in which the hydrides have left two electrons. The rate-limiting step is the formation of N2H by a hydrogen atom transfer from Cys275 to N2 bound to Fe4, concerted with an additional electron transfer from the cofactor. The mechanism fulfills all requirements set by experiments. The activation of N2 is preceded by a formation of H2 from two hydrides, the carbide is kinetically hindered from being protonated, the E4 state is reversible. An important aspect is the presence of a water molecule in the Fe2, Fe6 region. The non-allowed formations of H2 from a hydride and a proton have been investigated and found to have higher barriers than the allowed formation of H2 from two hydrides.
Collapse
Affiliation(s)
- Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden.
| |
Collapse
|
41
|
Escamilla P, Bartella L, Sanz-Navarro S, Percoco RM, Di Donna L, Prejanò M, Marino T, Ferrando-Soria J, Armentano D, Leyva-Pérez A, Pardo E. Degradation of Penicillinic Antibiotics and β-Lactamase Enzymatic Catalysis in a Biomimetic Zn-Based Metal-Organic Framework. Chemistry 2023; 29:e202301325. [PMID: 37279057 DOI: 10.1002/chem.202301325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/07/2023]
Abstract
β-Lactam antibiotics are one of the most commonly prescribed drugs to treat bacterial infections. However, their use has been somehow limited given the emergence of bacteria with resistance mechanisms, such as β-lactamases, which inactivate them by degrading their four-membered β-lactam rings. So, a total knowledge of the mechanisms governing the catalytic activity of β-lactamases is required. Here, we report a novel Zn-based metal-organic framework (MOF, 1), possessing functional channels capable to accommodate and interact with antibiotics, which catalyze the selective hydrolysis of the penicillinic antibiotics amoxicillin and ceftriaxone. In particular, MOF 1 degrades, very efficiently, the four-membered β-lactam ring of amoxicillin, acting as a β-lactamase mimic, and expands the very limited number of MOFs capable to mimic catalytic enzymatic processes. Combined single-crystal X-ray diffraction (SCXRD) studies and density functional (DFT) calculations offer unique snapshots on the host-guest interactions established between amoxicillin and the functional channels of 1. This allows to propose a degradation mechanism based on the activation of a water molecule, promoted by a Zn-bridging hydroxyl group, concertedly to the nucleophilic attack to the carbonyl moiety and the cleaving of C-N bond of the lactam ring.
Collapse
Affiliation(s)
- Paula Escamilla
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Lucia Bartella
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Sergio Sanz-Navarro
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Rita Maria Percoco
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Leonardo Di Donna
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
- QUASIORA Laboratory, AGRINFRA Research Net, Università della Calabria, 87036, Rende, Cosenza, Italy
| | - Mario Prejanò
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Tiziana Marino
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Jesús Ferrando-Soria
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, 87030, Rende, Cosenza, Italy
| | - Antonio Leyva-Pérez
- Instituto de Tecnología Química, Universidad Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), 46022, Valencia, Spain
| | - Emilio Pardo
- Instituto de Ciencia Molecular (ICMOL), Universitat deValència Paterna, 46980, València, Spain
| |
Collapse
|
42
|
Song YT, Li XC, Siegbahn PEM. Is There a Different Mechanism for Water Oxidation in Higher Plants? J Phys Chem B 2023; 127:6643-6647. [PMID: 37467375 PMCID: PMC10405216 DOI: 10.1021/acs.jpcb.3c03029] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Indexed: 07/21/2023]
Abstract
The leading mechanism for the formation of O2 in photosystem II (PSII) has, during the past decade, been established as the so-called oxyl-oxo mechanism. In that mechanism, O2 is formed from a binding between an oxygen radical (oxyl) and a bridging oxo group. For the case of higher plants, that mechanism has recently been criticized. Instead, a nucleophilic attack of an oxo group on a five-coordinated Mn(V)═O group forming O2 has been suggested in a so-called water-unbound (WU) mechanism. In the present study, the WU mechanism has been investigated. It is found that the WU mechanism is just a variant of a previously suggested mechanism but with a reactant and a transition state that have much higher energies. The addition of a water molecule on the empty site of the Mn(V)═O center is very exergonic and leads back to the previously suggested oxyl-oxo mechanism.
Collapse
Affiliation(s)
- Yu-Tian Song
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Xi-Chen Li
- College
of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Per E. M. Siegbahn
- Department
of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
43
|
Vasile S, Roos K. Understanding the Structure-Activity Relationship through Density Functional Theory: A Simple Method Predicts Relative Binding Free Energies of Metalloenzyme Fragment-like Inhibitors. ACS OMEGA 2023; 8:21438-21449. [PMID: 37360476 PMCID: PMC10285960 DOI: 10.1021/acsomega.2c08156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 03/29/2023] [Indexed: 06/28/2023]
Abstract
Despite being involved in several human diseases, metalloenzymes are targeted by a small percentage of FDA-approved drugs. Development of novel and efficient inhibitors is required, as the chemical space of metal binding groups (MBGs) is currently limited to four main classes. The use of computational chemistry methods in drug discovery has gained momentum thanks to accurate estimates of binding modes and binding free energies of ligands to receptors. However, exact predictions of binding free energies in metalloenzymes are challenging due to the occurrence of nonclassical phenomena and interactions that common force field-based methods are unable to correctly describe. In this regard, we applied density functional theory (DFT) to predict the binding free energies and to understand the structure-activity relationship of metalloenzyme fragment-like inhibitors. We tested this method on a set of small-molecule inhibitors with different electronic properties and coordinating two Mn2+ ions in the binding site of the influenza RNA polymerase PAN endonuclease. We modeled the binding site using only atoms from the first coordination shell, hence reducing the computational cost. Thanks to the explicit treatment of electrons by DFT, we highlighted the main contributions to the binding free energies and the electronic features differentiating strong and weak inhibitors, achieving good qualitative correlation with the experimentally determined affinities. By introducing automated docking, we explored alternative ways to coordinate the metal centers and we identified 70% of the highest affinity inhibitors. This methodology provides a fast and predictive tool for the identification of key features of metalloenzyme MBGs, which can be useful for the design of new and efficient drugs targeting these ubiquitous proteins.
Collapse
|
44
|
Pang YJ, Li XC, Siegbahn PEM, Chen GJ, Tan HW. Theoretical Study of the Catalytic Mechanism of the Cu-Only Superoxide Dismutase. J Phys Chem B 2023. [PMID: 37196177 DOI: 10.1021/acs.jpcb.3c02175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
The catalytic mechanisms for the wild-type and the mutated Cu-only superoxide dismutase were studied using the hybrid density functional B3LYP and a quantum chemical cluster approach. Optimal protonation states of the active site were examined for each stage of the catalytic cycle. For both the reductive and the oxidative half-reactions, the arrival of the substrate O2•- was found to be accompanied by a charge-compensating H+ with exergonicities of -15.4 kcal·mol and -4.7 kcal·mol, respectively. The second-sphere Glu-110 and first-sphere His-93 were suggested to be the transient protonation site for the reductive and the oxidative half-reactions, respectively, which collaborates with the hydrogen bonding water chain to position the substrate near the redox-active copper center. For the reductive half-reaction, the rate-limiting step was found to be the inner-sphere electron transfer from the partially coordinated O2•- to CuII with a barrier of 8.1 kcal·mol. The formed O2 is released from the active site with an exergonicity of -14.9 kcal·mol. For the oxidative half-reaction, the inner-sphere electron transfer from CuI to the partially coordinated O2•- was found to be accompanied by the proton transfer from the protonated His-93 and barrierless. The rate-limiting step was found to be the second proton transfer from the protonated Glu-110 to HO2- with a barrier of 7.3 kcal·mol. The barriers are reasonably consistent with experimental activities, and a proton-transfer rate-limiting step in the oxidative half-reaction could explain the experimentally observed pH-dependence. For the E110Q CuSOD, Asp-113 was suggested to be likely to serve as the transient protonation site in the reductive half-reaction. The rate-limiting barriers were found to be 8.0 and 8.6 kcal·mol, respectively, which could explain the slightly lower performance of E110X mutants. The results were found to be stable, with respect to the percentage of exact exchange in B3LYP.
Collapse
Affiliation(s)
- Yun-Jie Pang
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Xi-Chen Li
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Per E M Siegbahn
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-106 91, Stockholm, Sweden
| | - Guang-Ju Chen
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| | - Hong-Wei Tan
- College of Chemistry, Beijing Normal University, 100875, Beijing, China
| |
Collapse
|
45
|
Tooke C, Hinchliffe P, Beer M, Zinovjev K, Colenso CK, Schofield CJ, Mulholland AJ, Spencer J. Tautomer-Specific Deacylation and Ω-Loop Flexibility Explain the Carbapenem-Hydrolyzing Broad-Spectrum Activity of the KPC-2 β-Lactamase. J Am Chem Soc 2023; 145:7166-7180. [PMID: 36972204 PMCID: PMC10080687 DOI: 10.1021/jacs.2c12123] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 03/29/2023]
Abstract
KPC-2 (Klebsiella pneumoniae carbapenemase-2) is a globally disseminated serine-β-lactamase (SBL) responsible for extensive β-lactam antibiotic resistance in Gram-negative pathogens. SBLs inactivate β-lactams via a mechanism involving a hydrolytically labile covalent acyl-enzyme intermediate. Carbapenems, the most potent β-lactams, evade the activity of many SBLs by forming long-lived inhibitory acyl-enzymes; however, carbapenemases such as KPC-2 efficiently deacylate carbapenem acyl-enzymes. We present high-resolution (1.25-1.4 Å) crystal structures of KPC-2 acyl-enzymes with representative penicillins (ampicillin), cephalosporins (cefalothin), and carbapenems (imipenem, meropenem, and ertapenem) obtained utilizing an isosteric deacylation-deficient mutant (E166Q). The mobility of the Ω-loop (residues 165-170) negatively correlates with antibiotic turnover rates (kcat), highlighting the role of this region in positioning catalytic residues for efficient hydrolysis of different β-lactams. Carbapenem-derived acyl-enzyme structures reveal the predominance of the Δ1-(2R) imine rather than the Δ2 enamine tautomer. Quantum mechanics/molecular mechanics molecular dynamics simulations of KPC-2:meropenem acyl-enzyme deacylation used an adaptive string method to differentiate the reactivity of the two isomers. These identify the Δ1-(2R) isomer as having a significantly (7 kcal/mol) higher barrier than the Δ2 tautomer for the (rate-determining) formation of the tetrahedral deacylation intermediate. Deacylation is therefore likely to proceed predominantly from the Δ2, rather than the Δ1-(2R) acyl-enzyme, facilitated by tautomer-specific differences in hydrogen-bonding networks involving the carbapenem C-3 carboxylate and the deacylating water and stabilization by protonated N-4, accumulating a negative charge on the Δ2 enamine-derived oxyanion. Taken together, our data show how the flexible Ω-loop helps confer broad-spectrum activity upon KPC-2, while carbapenemase activity stems from efficient deacylation of the Δ2-enamine acyl-enzyme tautomer.
Collapse
Affiliation(s)
- Catherine
L. Tooke
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Philip Hinchliffe
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Michael Beer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Kirill Zinovjev
- School
of Biochemistry, Biomedical Sciences Building, University
Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Departamento
de Química Física, Universitat
de València, Burjassot 46100, Comunitat Valenciana, Spain
| | - Charlotte K. Colenso
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - Christopher J. Schofield
- Chemistry
Research Laboratory, Department of Chemistry and the Ineos Oxford
Institute for Antimicrobial Research, Mansfield Road, University of Oxford, Oxford OX1 3TA United
Kingdom
| | - Adrian J. Mulholland
- Centre
for Computational Chemistry, School of Chemistry, Cantock’s
Close, University of Bristol, Bristol BS8 1TS, United Kingdom
| | - James Spencer
- School
of Cellular and Molecular Medicine, Biomedical Sciences
Building, University Walk, University of Bristol, Bristol BS8 1TD, United Kingdom
| |
Collapse
|
46
|
Mechanism for the synthesis of medium-chain 1-alkenes from fatty acids catalyzed by binuclear iron UndA decarboxylase. J Catal 2023. [DOI: 10.1016/j.jcat.2023.02.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
47
|
Abstract
ConspectusThe quantum chemical cluster approach has been used for modeling enzyme active sites and reaction mechanisms for more than two decades. In this methodology, a relatively small part of the enzyme around the active site is selected as a model, and quantum chemical methods, typically density functional theory, are used to calculate energies and other properties. The surrounding enzyme is modeled using implicit solvation and atom fixing techniques. Over the years, a large number of enzyme mechanisms have been solved using this method. The models have gradually become larger as a result of the faster computers, and new kinds of questions have been addressed. In this Account, we review how the cluster approach can be utilized in the field of biocatalysis. Examples from our recent work are chosen to illustrate various aspects of the methodology. The use of the cluster model to explore substrate binding is discussed first. It is emphasized that a comprehensive search is necessary in order to identify the lowest-energy binding mode(s). It is also argued that the best binding mode might not be the productive one, and the full reactions for a number of enzyme-substrate complexes have therefore to be considered to find the lowest-energy reaction pathway. Next, examples are given of how the cluster approach can help in the elucidation of detailed reaction mechanisms of biocatalytically interesting enzymes, and how this knowledge can be exploited to develop enzymes with new functions or to understand the reasons for lack of activity toward non-natural substrates. The enzymes discussed in this context are phenolic acid decarboxylase and metal-dependent decarboxylases from the amidohydrolase superfamily. Next, the application of the cluster approach in the investigation of enzymatic enantioselectivity is discussed. The reaction of strictosidine synthase is selected as a case study, where the cluster calculations could reproduce and rationalize the selectivities of both the natural and non-natural substrates. Finally, we discuss how the cluster approach can be used to guide the rational design of enzyme variants with improved activity and selectivity. Acyl transferase from Mycobacterium smegmatis serves as an instructive example here, for which the calculations could pinpoint the factors controlling the reaction specificity and enantioselectivity. The cases discussed in this Account highlight thus the value of the cluster approach as a tool in biocatalysis. It complements experiments and other computational techniques in this field and provides insights that can be used to understand existing enzymes and to develop new variants with tailored properties.
Collapse
Affiliation(s)
- Xiang Sheng
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China
- National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
48
|
Ji L, Zhang H, Ding W, Song R, Han Y, Yu H, Paneth P. Theoretical Kinetic Isotope Effects in Establishing the Precise Biodegradation Mechanisms of Organic Pollutants. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4915-4929. [PMID: 36926881 DOI: 10.1021/acs.est.2c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Compound-specific isotope analysis (CSIA) for natural isotope ratios has been recognized as a promising tool to elucidate biodegradation pathways of organic pollutants by microbial enzymes by relating reported kinetic isotope effects (KIEs) to apparent KIEs (AKIEs) derived from bulk isotope fractionations (εbulk). However, for many environmental reactions, neither are the reference KIE ranges sufficiently narrow nor are the mechanisms elucidated to the point that rate-determining steps have been identified unequivocally. In this work, besides providing reference KIEs and rationalizing AKIEs, good relationships have been explained by DFT computations for diverse biodegradation pathways with known enzymatic models between the theoretical isotope fractionations (εbulk') from intrinsic KIEs on the rate-determining steps and the observed εbulk. (1) To confirm the mechanistic details of previously reported pathway-dependent CSIA, it includes isotope changes in MTBE biodegradation between hydroxylation by CYP450 and SN2 reaction by cobalamin-dependent methyltransferase, the regioselectivity of toluene biodegradation by CYP450, and the rate-determining step in toluene biodegradation by benzylsuccinate synthase. (2) To yield new fundamental insights into some unclear biodegradation pathways, it consists of the oxidative function of toluene dioxygenase in biodegradation of TCE, the epoxidation mode in biodegradation of TCE by toluene 4-monooxygenase, and the weighted average mechanism in biodegradation of cDCE by CYP450.
Collapse
Affiliation(s)
- Li Ji
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Huanni Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Wen Ding
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Runqian Song
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
- College of Environmental and Resource Sciences, Zhejiang University, Yuhangtang Road 866, Hangzhou 310058, China
| | - Ye Han
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Daxue Road 1, Xuzhou 221116, China
| | - Haiying Yu
- College of Geography and Environmental Sciences, Zhejiang Normal University, Jinhua 321004, China
| | - Piotr Paneth
- Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Zeromskiego 116, Lodz 90-924, Poland
| |
Collapse
|
49
|
Meelua W, Wanjai T, Thinkumrob N, Oláh J, Cairns JRK, Hannongbua S, Ryde U, Jitonnom J. A computational study of the reaction mechanism and stereospecificity of dihydropyrimidinase. Phys Chem Chem Phys 2023; 25:8767-8778. [PMID: 36912034 DOI: 10.1039/d2cp05262h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Dihydropyrimidinase (DHPase) is a key enzyme in the pyrimidine pathway, the catabolic route for synthesis of β-amino acids. It catalyses the reversible conversion of 5,6-dihydrouracil (DHU) or 5,6-dihydrothymine (DHT) to the corresponding N-carbamoyl-β-amino acids. This enzyme has the potential to be used as a tool in the production of β-amino acids. Here, the reaction mechanism and origin of stereospecificity of DHPases from Saccharomyces kluyveri and Sinorhizobium meliloti CECT4114 were investigated and compared using a quantum mechanical cluster approach based on density functional theory. Two models of the enzyme active site were designed from the X-ray crystal structure of the native enzyme: a small cluster to characterize the mechanism and the stationary points and a large model to probe the stereospecificity and the role of stereo-gate-loop (SGL) residues. It is shown that a hydroxide ion first performs a nucleophilic attack on the substrate, followed by the abstraction of a proton by Asp358, which occurs concertedly with protonation of the ring nitrogen by the same residue. For the DHT substrate, the enzyme displays a preference for the L-configuration, in good agreement with experimental observation. Comparison of the reaction energetics of the two models reveals the importance of SGL residues in the stereospecificity of catalysis. The role of the conserved Tyr172 residue in transition-state stabilization is confirmed as the Tyr172Phe mutation increases the activation barrier of the reaction by ∼8 kcal mol-1. A detailed understanding of the catalytic mechanism of the enzyme could offer insight for engineering in order to enhance its activity and substrate scope.
Collapse
Affiliation(s)
- Wijitra Meelua
- Demonstration School, University of Phayao, Phayao 56000, Thailand
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Tanchanok Wanjai
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Natechanok Thinkumrob
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| | - Julianna Oláh
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Műegyetem rakpart 3, Budapest H-1111, Hungary
| | - James R Ketudat Cairns
- Center for Biomolecular Structure, Function and Application and School of Chemistry, Institute of Science, Suranaree University of Technology, Nakhon Ratchasima 30000, Thailand
| | - Supa Hannongbua
- Department of Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Jitrayut Jitonnom
- Unit of Excellence in Computational Molecular Science and Catalysis, and Division of Chemistry, School of Science, University of Phayao, Phayao 56000, Thailand.
| |
Collapse
|
50
|
Maqboul I. Profiling charge transport: A new computational approach. Int J Biol Macromol 2023; 237:124065. [PMID: 36948333 DOI: 10.1016/j.ijbiomac.2023.124065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/12/2023] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
To maintain life, charge transfer processes must be efficient to allow electrons to migrate across distances as large as 30-50 Å within a timescale from picoseconds to milliseconds, and the free-energy cost should not exceed one electron volt. By employing local ionization and local affinity energies, we calculated the pathway for electron and electron-hole transport, respectively. The pathway is then used to calculate both the driving force and the activation energy. The electronic coupling is calculated using configuration interaction procedure. When the charge acceptor is not known, as in oxidative stress, the charge transport terminals are found using Monte-Carlo simulation. These parameters were used to calculate the rate described by Marcus theory. Our approach has been elaborately explained using the famous androstane example and then applied to two proteins: electron transport in azurin protein and hole-hopping migration route from the heme center of cytochrome c peroxidase to its surface. This model gives an effective method to calculate the charge transport pathway and the free-energy profile within 0.1 eV from the experimental measurements and electronic coupling within 3 meV.
Collapse
Affiliation(s)
- Ibrahim Maqboul
- Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-University, Erlangen, Germany; Computer Chemistry Center (CCC), Department of Chemistry and Pharmacy, Faculty of Sciences, Friedrich-Alexander-University, Nägelsbachstraße 25, 91052 Erlangen, Germany..
| |
Collapse
|