1
|
Ji S, Kim S, Lee JK, Lee DH, Han SJ. Cleavage of the Robust Silicon-Fluorine σ-Bond Allows Silicon-Carbon Bond Formation: Synthetic Strategies Toward Ortho-Silyl Aryl Phosphonates. Angew Chem Int Ed Engl 2025; 64:e202413759. [PMID: 39235300 DOI: 10.1002/anie.202413759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 09/04/2024] [Accepted: 09/05/2024] [Indexed: 09/06/2024]
Abstract
A straightforward, mild, and transition-metal-free three-component coupling reaction involving arynes, phosphites, and silyl fluorides was developed through Si-F bond activation. Although the Si-F bond is one of the strongest bonds, Si-C bond formation via Si-F bond cleavage with the assistance of bidentate silicon and phosphonium Lewis acids has been successfully achieved. This unprecedented strategy provides a facile approach for synthesizing ortho-silyl-substituted aryl phosphonates. Notably, this method allows the use of not only dialkylarylsilyl fluorides and diarylalkylsilyl fluorides but also triarylsilyl fluorides as coupling partners, which is uncommon in the field of arylsilane synthesis. Furthermore, a variety of ortho-silyl-substituted aryl phosphonates were produced in moderate to good yields with broad functional group tolerance. Additionally, the versatility of ortho-silyl-substituted aryl phosphonates was demonstrated by the elaboration of the products into a range of silicon-containing compounds.
Collapse
Affiliation(s)
- Suhyun Ji
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Soomin Kim
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Jae Kyun Lee
- Neuro-Medicine Center, Korea Institute of Science and Technology, 5 Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| | - Duck-Hyung Lee
- Department of Chemistry, Sogang University, 35, Baekbeom-ro, Seoul, 04107, Republic of Korea
| | - Seo-Jung Han
- Chemical and Biological Integrative Research Center, Korea Institute of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology KIST School, University of Science and Technology, 5, Hwarang-ro 14-gil, Seongbuk-gu, Seoul, 02792, Republic of Korea
| |
Collapse
|
2
|
Zhang W, Wu X, Peng X, Tian Y, Yuan H. Solution Processable Metal-Organic Frameworks: Synthesis Strategy and Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412708. [PMID: 39470040 DOI: 10.1002/adma.202412708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/30/2024] [Indexed: 10/30/2024]
Abstract
Metal-organic frameworks (MOFs), constructed by inorganic secondary building units with organic linkers via reticular chemistry, inherently suffer from poor solution processability due to their insoluble nature, resulting from their extensive crystalline networks and structural rigidity. The ubiquitous occurrence of precipitation and agglomeration of MOFs upon formation poses a significant obstacle to the scale-up production of MOF-based monolith, aerogels, membranes, and electronic devices, thus restricting their practical applications in various scenarios. To address the previously mentioned challenge, significant strides have been achieved over the past decade in the development of various strategies aimed at preparing solution-processable MOF systems. In this review, the latest advance in the synthetic strategies for the construction of solution-processable MOFs, including direct dispersion in ionic liquids, surface modification, controllable calcination, and bottom-up synthesis, is comprehensively summarized. The respective advantages and disadvantages of each method are discussed. Additionally, the intriguing applications of solution-processable MOF systems in the fields of liquid adsorbent, molecular capture, sensing, and separation are systematically discussed. Finally, the challenges and opportunities about the continued advancement of solution-processable MOFs and their potential applications are outlooked.
Collapse
Affiliation(s)
- Wanglin Zhang
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xuanhao Wu
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Xiaoyan Peng
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yefei Tian
- School of Materials Science and Engineering, Chang'an University, No. 75 Changan Middle Road, Xi'an, Shaanxi, 710064, P. R. China
| | - Hongye Yuan
- State Key Laboratory for Mechanical Behavior of Materials, Shaanxi International Research Center for Soft Matter, School of Materials Science and Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
3
|
Calhoun SGK, Chandran Suja V, Fowler R, Agiral A, Salem K, Fuller GG. Antifoams in non-aqueous diesel fuels: Thin liquid film dynamics and antifoam mechanisms. J Colloid Interface Sci 2024; 675:1059-1068. [PMID: 39013302 DOI: 10.1016/j.jcis.2024.07.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 07/01/2024] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
HypothesisFoaming in diesel fuels is not well understood and leads to operational challenges. To combat deleterious effects of foaming, diesel formulations can include additives called antifoams. Existing antifoams, unfortunately, are inherently ash-generating when combusted, with unknown environmental impacts. They are prohibited in certain countries, so identifying effective alternative ash-free antifoam chemistries is needed. ExperimentsWe conduct systematic characterization of foam stabilization and antifoaming mechanisms in diesel for two different antifoams (silicone-containing & ashless chemistries). Employing a custom technique combining single-bubble/single-antifoam-droplet manipulation with white light interferometry, we also obtain mechanistic insights into foam stability and antifoam dynamics. ResultsCoalescence times from both bulk foam and single bubble experiments confirm ashless antifoams are effective at reducing foaming, demonstrating the potential of ashless antifoams. Further, we perform single-antifoam-droplet experiments and obtain direct experimental evidence revealing the elusive antifoaming mechanisms. Interestingly, the silicone-containing and ashless antifoams seemingly function via two different mechanisms: spreading and dewetting respectively. This surprising finding refutes conventional wisdom that spreading is likely the only antifoam mechanism in diesels. These results and the reported experimental framework significantly enhance the scientific understanding of non-aqueous foams and will accelerate the engineering of alternative antifoam chemistries for non-aqueous systems.
Collapse
Affiliation(s)
- S G K Calhoun
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| | - V Chandran Suja
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA; School of Engineering and Applied Sciences, Harvard University, MA - 02134, USA.
| | - R Fowler
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - A Agiral
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - K Salem
- The Lubrizol Corporation, Wickliffe, OH, 44092, USA
| | - G G Fuller
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
4
|
Mok S, Lee S, Lee N, Kim S, Choi K, Park J, Kho Y, Moon HB. Nationwide human biomonitoring strategy in Korea: Prioritization of novel contaminants using GC/TOF-MS with suspect and non-target screening. CHEMOSPHERE 2024; 369:143814. [PMID: 39608654 DOI: 10.1016/j.chemosphere.2024.143814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 11/12/2024] [Accepted: 11/24/2024] [Indexed: 11/30/2024]
Abstract
According to global regulations on hazardous chemicals, numerous alternatives have been manufactured and used in various consumer products. Suspect and non-target analyses are advanced analytical techniques used for identifying novel contaminants. In the present study, suspect and non-target analytical approaches using a gas chromatography coupled to a time-of-flight mass spectrometer were applied to identify novel contaminants in 40 pooled serum samples from a sub-population (n = 400) of the 2015-2017 national biomonitoring program. Suspect screening analysis was performed using an in-house library based on retention times and quantifier and qualifier ions for 222 contaminants, including persistent organic pollutants and emerging contaminants. Non-target analysis was performed by matching deconvoluted mass spectra to the spectral library from the National Institute of Standards and Technology. The suspect screening analysis identified organochlorinated pesticides, organophosphate esters, phthalate esters, and alternative plasticizers. Among the 68 compounds identified in the non-target analysis, siloxanes, novel organophosphate esters, and UV ink photoinitiators were considered candidates for future inclusion in the biomonitoring program based upon significant human exposure. Our findings demonstrate the feasibility of suspect and non-target analysis to identify novel contaminants to prioritize for inclusion within a national human biomonitoring program.
Collapse
Affiliation(s)
- Sori Mok
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Sunggyu Lee
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea
| | - Nahyun Lee
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Sungkyoon Kim
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kyungho Choi
- Graduate School of Public Health, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jeongim Park
- Department of Environmental Health Sciences, Soonchunhyang University, Asan, 31538, Republic of Korea
| | - Younglim Kho
- Department of Health, Environment & Safety, Eulji University, Seongnam, 13135, Gyeonggi-do, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Science and Convergence Technology, College of Science and Convergence Technology, Hanyang University, Ansan, 15588, Republic of Korea.
| |
Collapse
|
5
|
Bernardo F, Ratola N, Sánchez-Soberón F, Alves A, Homem V. Presence, behaviour, and risk assessment of volatile methylsiloxanes in wastewater: A year-long comprehensive study within a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175486. [PMID: 39147038 DOI: 10.1016/j.scitotenv.2024.175486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/26/2024] [Accepted: 08/11/2024] [Indexed: 08/17/2024]
Abstract
The awareness of possible environmental hazards caused by the widespread global use of volatile methylsiloxanes (VMSs) in personal care products (PCPs) and industrial processes has been increasing. Sewage containing these compounds may reach wastewater treatment plants (WWTPs), which are hotspots of their release into the environment. The levels, distribution, and potential risks of VMSs were studied in an unprecedently comprehensive sampling strategy (four seasonal campaigns) along the water line of a WWTP: the main influent entrance (SA1), after the preliminary treatment (SA2), after the primary treatment (SA3) and after the secondary treatment (the treated effluent; SA4). This WWTP was selected as a representative of the conventional set up based on a secondary treatment, allowing a similar approach in numerous facilities worldwide. Seven VMSs (L3, L4, L5, D3, D4, D5, D6) were analysed in wastewater samples by a small-scale liquid-liquid extraction (LLE) protocol, followed by gas chromatography-mass spectrometry (GC-MS), and the cyclic VMSs were dominant at all sampling sites and in all seasons. Considering the whole year, the total VMSs ranged from 0.4 to 22.5 μg L-1 for SA1, 0.03 to 33.7 μg L-1 for SA2, below method detection limit (MDL) to 13.2 μg L-1 for SA3 and 98 %). According to the risk quotients (RQ), only 18 SA4 samples (32 %) presented a minimal risk to the receiving media (0.01 ≤ RQ < 0.1). However, considering the absence of a secondary treatment or a direct discharge without treatment, there may be a risk to the environment.
Collapse
Affiliation(s)
- Fábio Bernardo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Nuno Ratola
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Francisco Sánchez-Soberón
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| |
Collapse
|
6
|
Bajya KR, Maurya SK, Selvakumar S. Organophotocatalytic Regioselective Silylation/Germylation and Cascade Cyclization of N-Alkenyl α-CF 3 Acrylamides: Access to Densely Functionalized 4-Pyrrolin-2-ones. Org Lett 2024; 26:9269-9275. [PMID: 39432672 DOI: 10.1021/acs.orglett.4c03427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
We report an organophotoredox-catalyzed silylation/germylation cascade cyclization of N-alkenyl α-CF3 acrylamides under mild conditions. N-Aminopyridinium salts act as hydrogen atom transfer reagents under photoredox catalysis in the generation of silyl and germyl radicals. An array of silyl- and germyl-substituted 3-CF3-4-pyrrolin-2-one derivatives were constructed in a shorter reaction time with low catalyst loading in good to excellent yields at room temperature. Importantly, this protocol is amenable to the late-stage diversification of bioactive molecules, as well as to large-scale synthesis.
Collapse
Affiliation(s)
- Kalu Ram Bajya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Shivam Kumar Maurya
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| | - Sermadurai Selvakumar
- Department of Chemistry, Indian Institute of Technology Indore, Indore 453552, Madhya Pradesh, India
| |
Collapse
|
7
|
Lu Y, Wong LS. On the biocatalytic synthesis of silicone polymers. Faraday Discuss 2024; 252:422-430. [PMID: 38831708 DOI: 10.1039/d4fd00003j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024]
Abstract
Polysiloxanes, with poly(dimethyl)siloxane (PDMS) being the most common example, are widely used in various industrial and consumer applications due to the physicochemical properties imparted by their Si-O-Si backbone structure. The conventional synthesis of PDMS involves the hydrolysis of dichlorodimethylsilane, which raises environmental concerns due to the usage of chlorinated compounds. Herein, a biocatalytic approach for PDMS synthesis is demonstrated using silicatein-α (Silα), an enzyme from marine sponges that is known to catalyse the hydrolysis and condensation of Si-O bonds. Using dialkoxysilane precursors, it was found that Silα catalyses the formation of PDMS in non-aqueous media, yielding polymers with higher molecular weights (approximately 1000-2000 Da). However, on prolonged exposure, the gradual degradation of the polymers was also observed. Overall these observations indicate that Silα catalyses the formation polysiloxanes, demonstrating the potential of biocatalysis for more sustainable polysiloxane production.
Collapse
Affiliation(s)
- Yuqing Lu
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lu Shin Wong
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, UK.
- Department of Chemistry, University of Manchester, Oxford Road, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Rosales-Reina B, Cruz-Quesada G, Pujol P, Reinoso S, Elosúa C, Arzamendi G, López-Ramón MV, Garrido JJ. Determination of hazardous vapors from the thermal decomposition of organochlorinated silica xerogels with adsorptive properties. ENVIRONMENTAL RESEARCH 2024; 256:119247. [PMID: 38815719 DOI: 10.1016/j.envres.2024.119247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/19/2024] [Accepted: 05/27/2024] [Indexed: 06/01/2024]
Abstract
The incorporation of organic groups into sol-gel silica materials is known to have a noticeable impact on the properties and structure of the resulting xerogels due to the combination of the properties inherent to the organic fragments (functionality and flexibility) with the mechanical and structural stability of the inorganic matrix. However, the reduction of the inorganic content in the materials could be detrimental to their thermal stability properties, limiting the range of their potential applications. Therefore, this work aims to evaluate the thermal stability of hybrid inorganic-organic silica xerogels prepared from mixtures of tetraethoxysilane and organochlorinated triethoxysilane precursors. To this end, a series of four materials with a molar percentage of organochlorinated precursor fixed at 10%, but differing in the type of organic group (chloroalkyls varying in the alkyl-chain length and chlorophenyl), has been selected as model case study. The gases and vapors released during the thermal decomposition of the samples under N2 atmosphere have been analyzed and their components determined and quantified using a thermogravimetric analyzer coupled to a Fourier-transform infrared spectrophotometer and to a gas chromatography-mass spectrometry unit. These analyses have allowed to identify up to three different thermal events for the pyrolysis of the organochlorinated xerogel materials and to elucidate the reaction pathways associated with such processes. These mechanisms have been found to be strongly dependent on the specific nature of the organic group.
Collapse
Affiliation(s)
- Beatriz Rosales-Reina
- Institute for Advanced Materials and Mathematics (INAMAT(2)), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - Guillermo Cruz-Quesada
- Institute for Advanced Materials and Mathematics (INAMAT(2)), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - Pablo Pujol
- Unidad Científico Técnica de Apoyo a La Investigación (UCTAI), Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - Santiago Reinoso
- Institute for Advanced Materials and Mathematics (INAMAT(2)), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - César Elosúa
- Institute of Smart Cities (ISC), Departamento de Ingeniería Eléctrica, Electrónica y de Comunicación, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - Gurutze Arzamendi
- Institute for Advanced Materials and Mathematics (INAMAT(2)), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| | - María Victoria López-Ramón
- Departamento de Química Inorgánica y Orgánica, Facultad de Ciencias Experimentales, Universidad de Jaén, 23071, Jaén, Spain.
| | - Julián J Garrido
- Institute for Advanced Materials and Mathematics (INAMAT(2)), Departamento de Ciencias, Universidad Pública de Navarra (UPNA), Campus de Arrosadía, 31006, Pamplona, Spain.
| |
Collapse
|
9
|
Zhang D, Wang L, Zhang G. Organophotocatalyzed Cross Coupling of C- and Si-Radical to Access Dibenzylic Silanes from para-Quinone Methides and Silanecarboxylic Acids. J Org Chem 2024; 89:10379-10383. [PMID: 38923888 DOI: 10.1021/acs.joc.4c00973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Herein we present a catalytic cross-coupling strategy between C-radicals and Si-radicals, enabling the efficient, gentle, and versatile synthesis of dibenzylic silanes from para-quinone methides and silanecarboxylic acids as the stable silyl radical precursors. The reaction is facilitated by an inexpensive organophotocatalyst and exhibits broad compatibility with various electron-donating and electron-withdrawing functional groups. Notably, mechanistic investigations suggest the involvement of dibenzylic and silyl radicals, underscoring a novel radical coupling mechanism that introduces a fresh perspective on C-Si bond formation.
Collapse
Affiliation(s)
- Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, 545006 Liuzhou, P. R. China
| | - Lei Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| | - Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, 225002 Yangzhou, P. R. China
| |
Collapse
|
10
|
Cantu MA, Durham JA, McClymont EL, Vogel AH, Gobas FAPC. Low Dietary Uptake Efficiencies and Biotransformation Prevent Biomagnification of Octamethylcyclotetrasiloxane (D4) and Decamethylcyclopentasiloxane (D5) in Rainbow Trout. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:10252-10261. [PMID: 38811014 PMCID: PMC11171459 DOI: 10.1021/acs.est.4c00457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 05/31/2024]
Abstract
With octamethylcyclotetrasiloxane (D4) and decamethylcyclopentasiloxane (D5) being considered for evaluation under the UN Stockholm Convention on Persistent Organic Pollutants, which specifically acknowledges risks of biomagnification of persistent organic pollutants in traditional foods, a study into the mechanism of the biomagnification process of D4 and D5 in Rainbow trout was conducted by combining the absorption-distribution-metabolism-excretion for bioaccumulation (ADME-B) approach to determine intestinal and somatic biotransformation rates and radiochemical analyses to identify metabolite formation. High rates of intestinal biotransformation of D4 and D5 (i.e., 2.1 (0.70 SE) and 0.88 (0.67 SE) day-1, respectively) and metabolite formation [i.e., 52.0 (17 SD)% of D4 and 56.5% (8.2 SD)% of D5 were metabolized] were observed that caused low dietary uptake efficiencies of D4 and D5 in fish of 15.5 (2.9 SE)% and 21.0 (6.5 SE)% and biomagnification factors of 0.44 (0.08 SE) for D4 and 0.78 (0.24 SE) kg-lipid·kg-lipid-1 for D5. Bioaccumulation profiles indicated little effect of growth dilution on the bioaccumulation of D4 and D5 in fish and were substantially different from those of PCB153. The study highlights the importance of intestinal biotransformation in negating biomagnification of substances in organisms and explains differences between laboratory tests and field observations of bioaccumulation of D4 and D5.
Collapse
Affiliation(s)
- Mark A. Cantu
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| | - Jeremy A. Durham
- Toxicology
and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - E. Lynn McClymont
- Toxicology
and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Annette H. Vogel
- Toxicology
and Environmental Research and Consulting, The Dow Chemical Company, Midland, Michigan 48674, United States
| | - Frank A. P. C. Gobas
- School
of Resource and Environmental Management, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
11
|
Kumari K, Singh A, Marathe D. Cyclic volatile methyl siloxanes (D4, D5, and D6) as the emerging pollutants in environment: environmental distribution, fate, and toxicological assessments. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:38681-38709. [PMID: 36809612 DOI: 10.1007/s11356-023-25568-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Cyclic volatile methyl siloxanes (cVMS) have now become a subject of environmental contamination and risk assessment due to their widespread use and occurrence in different environmental matrices. Due to their exceptional physio-chemical properties, these compounds are diversely used for formulations of consumer products and others implying their continuous and significant release to environmental compartments. This has captured the major attention of the concerned communities on the grounds of potential health hazards to human and biota. The present study aims at comprehensively reviewing its occurrence in air, water, soil, sediments, sludge, dusts, biogas, biosolids, and biota and their environmental behavior as well. Concentrations of cVMS in indoor air and biosolids were higher; however, no significant concentrations were observed in water, soil, and sediments except for wastewaters. No threat to the aquatic organisms has been identified as their concentrations do not exceed the NOEC (maximum no observed effect concentration) thresholds. Mammalian (rodents) toxicity hazards were not very evident except for the occurrence of uterine tumors in very rare cases under long-term chronic and repeated dose exposures in laboratory conditions. Human relevancy to rodents were also not strongly enough established. Therefore, more careful examinations are required to develop stringent weight of evidences in scientific domain and ease the policy making with respect to their production and use so as to combat any environmental consequences.
Collapse
Affiliation(s)
- Kanchan Kumari
- CSIR-National Environmental Engineering Research Institute (NEERI), Kolkata Zonal Centre, 700 107, Kolkata, West Bengal, India.
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002, India.
| | - Anshika Singh
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| | - Deepak Marathe
- Academy of Scientific and Innovative Research (AcSIR), Uttar Pradesh, Ghaziabad, 201 002, India
- CSIR-National Environmental Engineering Research Institute (NEERI), Nagpur, 440020, Maharashtra, India
| |
Collapse
|
12
|
Meepage J, Welker JK, Meyer CM, Mohammadi S, Stanier CO, Stone EA. Advances in the Separation and Detection of Secondary Organic Aerosol Produced by Decamethylcyclopentasiloxane (D 5) in Laboratory-Generated and Ambient Aerosol. ACS ES&T AIR 2024; 1:365-375. [PMID: 38751609 PMCID: PMC11091883 DOI: 10.1021/acsestair.3c00073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 03/13/2024] [Accepted: 03/14/2024] [Indexed: 05/18/2024]
Abstract
Decamethylcyclopentasiloxane (D5), a common ingredient in many personal care products (PCPs), undergoes oxidation in the atmosphere, leading to the formation of secondary organic aerosol (SOA). Yet, the specific contributions of D5-derived SOA on ambient fine particulate matter (PM2.5) have not been characterized. This study addresses this knowledge gap by introducing a new analytical method to advance the molecular characterization of oxidized D5 and its detection in ambient aerosol. The newly developed reversed phase liquid chromatography method, in conjunction with high-resolution mass spectrometry, separates and detects D5 oxidation products, enabling new insights into their molecular and isomeric composition. Application of this method to laboratory-generated SOA and urban PM2.5 in New York City expands the number of D5 oxidation products observed in ambient aerosol and informs a list of molecular candidates to track D5-derived SOA in the atmosphere. An oxidation series was observed in which one or more methyl groups in D5 (C10H30O5Si5) is replaced by a hydroxyl group, which indicates the presence of multistep oxidation products in ambient PM2.5. Because of their specificity to PCPs and demonstrated detectability in ambient PM2.5, several oxidation products are proposed as molecular tracers for D5-derived SOA and may prove useful in assessing the impact of PCPs-derived SOA in the atmosphere.
Collapse
Affiliation(s)
- Jeewani
N. Meepage
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Josie K. Welker
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Claire M. Meyer
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
| | - Saeideh Mohammadi
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Charles O. Stanier
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| | - Elizabeth A. Stone
- Department
of Chemistry, University of Iowa, Iowa City, Iowa 52242, United States
- Department
of Chemical and Biochemical Engineering, University of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
13
|
He Y, Cheng J, Lyu Y, Tang Z. Uptake and elimination of methylsiloxanes in hens after oral exposure: Implication for risk estimation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168838. [PMID: 38030011 DOI: 10.1016/j.scitotenv.2023.168838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/14/2023] [Accepted: 11/22/2023] [Indexed: 12/01/2023]
Abstract
Methylsiloxanes are accumulated easily in aquatic organisms and may pose potential risks. However, available information on their uptake and accumulation in terrestrial species remains scarce. This study investigated the uptake, elimination and accumulation of eight typical methylsiloxanes in hens after a single oral exposure. At 1440 min after oral exposure, methylsiloxanes were mainly accumulated in kidney, liver and ovary, representing for 29.5 %, 20.4 % and 17.4 % of the summed methylsiloxanes in all tissues, respectively; all investigated chemicals were also detected in brains and unformed yolks. We found much higher mass uptake fractions (MUFs) of cyclic (27.5-66.5 %) than linear chemicals (9.9-17.3 %) by hens via this exposure, and the observed MUFs of individual cyclic congeners were comparable to the higher values of those reported for rats or fish previously. However, the metabolic half-life (t1/2) of these chemicals in hen tissues were in the range of 1.04-57.5 h based on kinetic analyses, indicating higher clearances in comparison with those reported for fish and rats. More research is needed on the metabolic mechanism of these chemicals in hens. Our findings provide important information for further understanding of transportation and transformation of these chemicals in terrestrial organisms and the associated potential risks.
Collapse
Affiliation(s)
- Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Jiali Cheng
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China.
| | - Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing 100081, China; College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China.
| |
Collapse
|
14
|
Sarai NS, Fulton TJ, O'Meara RL, Johnston KE, Brinkmann-Chen S, Maar RR, Tecklenburg RE, Roberts JM, Reddel JCT, Katsoulis DE, Arnold FH. Directed evolution of enzymatic silicon-carbon bond cleavage in siloxanes. Science 2024; 383:438-443. [PMID: 38271505 DOI: 10.1126/science.adi5554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024]
Abstract
Volatile methylsiloxanes (VMS) are man-made, nonbiodegradable chemicals produced at a megaton-per-year scale, which leads to concern over their potential for environmental persistence, long-range transport, and bioaccumulation. We used directed evolution to engineer a variant of bacterial cytochrome P450BM3 to break silicon-carbon bonds in linear and cyclic VMS. To accomplish silicon-carbon bond cleavage, the enzyme catalyzes two tandem oxidations of a siloxane methyl group, which is followed by putative [1,2]-Brook rearrangement and hydrolysis. Discovery of this so-called siloxane oxidase opens possibilities for the eventual biodegradation of VMS.
Collapse
Affiliation(s)
- Nicholas S Sarai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Tyler J Fulton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ryen L O'Meara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kadina E Johnston
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sabine Brinkmann-Chen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | | | | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
15
|
Warner MJ, Kopatz JW, Schafer DP, Kustas J, Sawyer PS, Grillet AM, Jones BH, Ghosh K. A robust depolymerization route for polysiloxanes. Chem Commun (Camb) 2024; 60:1188-1191. [PMID: 38193881 DOI: 10.1039/d3cc05509d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2024]
Abstract
A versatile, robust, and stable tetrabutylammonium difluorotriphenylsilicate (TBAT) catalyst has been deployed for efficient depolymerization of silicones. This catalyst is soluble in a variety of organic solvents and is stable up to 170 °C, enabling a wide range of reaction conditions under which F--catalysed siloxane bond cleavage can be initiated. This effort offers significant advancement overcoming the traditional limitations of silicone depolymerization, such as high catalyst loading, storage and handling, and few viable reaction media.
Collapse
Affiliation(s)
- Matthew J Warner
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Jessica W Kopatz
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - David P Schafer
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Jessica Kustas
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Patricia S Sawyer
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Anne M Grillet
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Brad H Jones
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| | - Koushik Ghosh
- Sandia National Laboratories, 1515 Eubank SE, Albuquerque, New Mexico 87123, USA.
| |
Collapse
|
16
|
Zhang G, Tan W, Zhang D, Wang K, Gao P, Wang S, Liu SL, Chen F. Regioselective Hydro(deutero)silylation of 1,3-Enynes Enabled by Photoredox/Nickel Dual Catalysis. Org Lett 2024. [PMID: 38179934 DOI: 10.1021/acs.orglett.3c04064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In the presence of visible light irradiation, organophoto/nickel dual catalysts, and the mild base K2HPO4, 1,3-enynes react with silanecarboxylic acids to give the corresponding α-silylallenes with high selectivity. In this uniquely decarboxylative hydrosilylation of 1,3-enynes, a silyl radical process is involved and diverse electron-rich and -poor substrates proceed smoothly in moderate to excellent yields. This transformation is particularly synthetically worthwhile when using MeOD as the solvent, which furnishes new access to α-silyldeuteroallenes.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, 257 Liushi Road, Liuzhou, Guangxi 545006, People's Republic of China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Pan Gao
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Shuli Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| | - Shuang-Liang Liu
- College of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, Henan 450001, People's Republic of China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, 180 Siwangting Road, Yangzhou, Jiangsu 225002, People's Republic of China
| |
Collapse
|
17
|
Bridson JH, Masterton H, Theobald B, Risani R, Doake F, Wallbank JA, Maday SDM, Lear G, Abbel R, Smith DA, Kingsbury JM, Pantos O, Northcott GL, Gaw S. Leaching and transformation of chemical additives from weathered plastic deployed in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115810. [PMID: 38006872 DOI: 10.1016/j.marpolbul.2023.115810] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/12/2023] [Accepted: 11/14/2023] [Indexed: 11/27/2023]
Abstract
Plastic pollution causes detrimental environmental impacts, which are increasingly attributed to chemical additives. However, the behaviour of plastic additives in the marine environment is poorly understood. We used a marine deployment experiment to examine the impact of weathering on the extractables profile, analysed by liquid chromatography-mass spectrometry, of four plastics at two locations over nine months in Aotearoa/New Zealand. The concentration of additives in polyethylene and oxo-degradable polyethylene were strongly influenced by artificial weathering, with deployment location and time less influential. By comparison, polyamide 6 and polyethylene terephthalate were comparatively inert with minimal change in response to artificial weathering or deployment time. Non-target analysis revealed extensive differentiation between non-aged and aged polyethylene after deployment, concordant with the targeted analysis. These observations highlight the need to consider the impact of leaching and weathering on plastic composition when quantifying the potential impact and risk of plastic pollution within receiving environments.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Beatrix Theobald
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Regis Risani
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Fraser Doake
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Jessica A Wallbank
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Stefan D M Maday
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Gavin Lear
- School of Biological Sciences, University of Auckland, 3a Symonds Street, Auckland 1010, New Zealand
| | - Robert Abbel
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Dawn A Smith
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Joanne M Kingsbury
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Olga Pantos
- Institute of Environmental Science and Research, 27 Creyke Road, Christchurch 8041, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
18
|
Fulton TJ, Sarai NS, O'Meara RL, Arnold FH. Directed evolution for Si-C bond cleavage of volatile siloxanes in glass bioreactors. Methods Enzymol 2023; 693:375-403. [PMID: 37977737 DOI: 10.1016/bs.mie.2023.09.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Volatile methylsiloxanes (VMS) are a class of non-biodegradable anthropogenic compounds with propensity for long-range transport and potential for bioaccumulation in the environment. As a proof-of-principle for biological degradation of these compounds, we engineered P450 enzymes to oxidatively cleave Si-C bonds in linear and cyclic VMS. Enzymatic reactions with VMS are challenging to screen with conventional tools, however, due to their volatility, poor aqueous solubility, and tendency to extract polypropylene from standard 96-well deep-well plates. To address these challenges, we developed a new biocatalytic reactor consisting of individual 2-mL glass shells assembled in conventional 96-well plate format. In this chapter, we provide a detailed account of the assembly and use of the 96-well glass shell reactors for screening biocatalytic reactions. Additionally, we discuss the application of GC/MS analysis techniques for VMS oxidase reactions and modified procedures for validating improved variants. This protocol can be adopted broadly for biocatalytic reactions with substrates that are volatile or not suitable for polypropylene plates.
Collapse
Affiliation(s)
- Tyler J Fulton
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Nicholas S Sarai
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Ryen L O'Meara
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States
| | - Frances H Arnold
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, United States.
| |
Collapse
|
19
|
Zhang G, Wang K, Zhang D, Zhang C, Tan W, Chen Z, Chen F. Decarboxylative Allylation of Silanecarboxylic Acids Enabled by Organophotocatalysis. Org Lett 2023; 25:7406-7411. [PMID: 37782755 DOI: 10.1021/acs.orglett.3c02907] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2023]
Abstract
Herein we present a visible-light-facilitated transition-metal-free allylic silylation reaction under mild conditions. This protocol is enabled by an inexpensive organophotocatalyst and provides efficient and concise synthetic routes to substituted allylsilanes, particularly from readily available allyl sulfones and stable silanecarboxylic acids as silyl radical precursors. Further investigations reveal that this strategy is also generally compatible with vinyl sulfones to access vinylsilanes. The silver catalytic system opens up an alternative entry to realize the decarboxylative allylation of silanecarboxylic acids.
Collapse
Affiliation(s)
- Guodong Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Kaiping Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Duo Zhang
- Medicine Center, Guangxi University of Science and Technology, Liushi Road 257, Liuzhou, Guangxi 545006, China
| | - Chengyu Zhang
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Wei Tan
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| | - Zhanzhan Chen
- Medical College, Yangzhou University, Jiangyang Road 136, Yangzhou 225009, China
| | - Feng Chen
- School of Chemistry and Chemical Engineering, Yangzhou University, Siwangting Road 180, Yangzhou 225002, China
| |
Collapse
|
20
|
Sánchez-Soberón F, Pantuzza GF, Fernandes M, Homem V, Alves A, Fontes M, André M, Cunha J, Ratola N. Helping WWTP managers to address the volatile methylsiloxanes issue-Behaviour and complete mass balance in a conventional plant. ENVIRONMENTAL RESEARCH 2023; 234:116564. [PMID: 37422117 DOI: 10.1016/j.envres.2023.116564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2023] [Revised: 06/03/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
Volatile methylsiloxanes (VMSs) are a group of additives employed in different consumer products that can affect the quality of the biogas produced in wastewater treatment plants (WWTPs). The main objective of this study is to understand the fate of different VMSs along the treatment process of a WWTP located in Aveiro (Portugal). Thus, wastewater, sludge, biogas, and air were sampled in different units for two weeks. Subsequently, these samples were extracted and analyzed by different environment-friendly protocols to obtain their VMS (L3-L5, D3-D6) concentrations and profiles. Finally, considering the different matrix flows at every sampling moment, the mass distribution of VMSs within the plant was estimated. The levels of ∑VMSs were similar to those showed in the literature (0.1-50 μg/L in entry wastewater and 1-100 μg/g dw in primary sludge). However, the entry wastewater profile showed higher variability in D3 concentrations (from non detected to 49 μg/L) than found in previous studies (0.10-1.00 μg/L), likely caused by isolated releases of this compound that could be related to industrial sources. Outdoor air samples showed a prevalence of D5, while indoor air locations were characterized by a predominance of D3 and D4. Differences in sources and the presence of an indoor air filtration system may explain this divergence. Biogas was characterized by ∑VMSs concentrations (8.00 ± 0.22 mg/m3) above the limits recommended by some engine manufacturers and mainly composed of D5 (89%). Overall, 81% of the total incoming mass of VMSs is reduced along the WWTP, being the primary decanter and the secondary treatment responsible for the highest decrease (30.6% and 29.4% of the initial mass, respectively). This reduction, however, is congener dependant. The present study demonstrates the importance of extending sampling periods and matrices (i.e., sludge and air) to improve sample representativity, time-sensitivity, and the accuracy of mass balance exercises.
Collapse
Affiliation(s)
- Francisco Sánchez-Soberón
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; Department of Atmospheric Pollution, National Center for Environmental Health, Instituto de Salud Carlos III, Ctra. Majadahonda - Pozuelo, Km. 2., 28220, Madrid, Spain
| | - Gabriel F Pantuzza
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Madalena Fernandes
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Milton Fontes
- AdRA - Águas da Região de Aveiro, S.A., Travessa Rua da Paz 4, 3800-587 Cacia, Aveiro, Portugal
| | - Magda André
- AdCL - Águas Do Centro Litoral, S.A., ETA da Boavista, Av. Dr. Luís Albuquerque, 3030-410, Coimbra, Portugal
| | - Joana Cunha
- AdCL - Águas Do Centro Litoral, S.A., ETA da Boavista, Av. Dr. Luís Albuquerque, 3030-410, Coimbra, Portugal
| | - Nuno Ratola
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
21
|
Yao P, Holzinger R, Materić D, Oyama BS, de Fátima Andrade M, Paul D, Ni H, Noto H, Huang RJ, Dusek U. Methylsiloxanes from Vehicle Emissions Detected in Aerosol Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14269-14279. [PMID: 37698874 PMCID: PMC10537456 DOI: 10.1021/acs.est.3c03797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Methylsiloxanes have gained growing attention as emerging pollutants due to their toxicity to organisms. As man-made chemicals with no natural source, most research to date has focused on volatile methylsiloxanes from personal care or household products and industrial processes. Here, we show that methylsiloxanes can be found in primary aerosol particles emitted by vehicles based on aerosol samples collected in two tunnels in São Paulo, Brazil. The aerosol samples were analyzed with thermal desorption-proton transfer reaction-mass spectrometry (TD-PTR-MS), and methylsiloxanes were identified and quantified in the mass spectra based on the natural abundance of silicon isotopes. Various methylsiloxanes and derivatives were found in aerosol particles from both tunnels. The concentrations of methylsiloxanes and derivatives ranged 37.7-377 ng m-3, and the relative fractions in organic aerosols were 0.78-1.9%. The concentrations of methylsiloxanes exhibited a significant correlation with both unburned lubricating oils and organic aerosol mass. The emission factors of methylsiloxanes averaged 1.16 ± 0.59 mg kg-1 of burned fuel for light-duty vehicles and 1.53 ± 0.37 mg kg-1 for heavy-duty vehicles. Global annual emissions of methylsiloxanes in vehicle-emitted aerosols were estimated to range from 0.0035 to 0.0060 Tg, underscoring the significant yet largely unknown potential for health and climate impacts.
Collapse
Affiliation(s)
- Peng Yao
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747 AG, The Netherlands
| | - Rupert Holzinger
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands
| | - Dušan Materić
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research─UFZ, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Beatriz Sayuri Oyama
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Maria de Fátima Andrade
- Institute of Astronomy, Geophysics and Atmospheric Sciences, University of São Paulo, São Paulo 05508-090, Brazil
| | - Dipayan Paul
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747 AG, The Netherlands
| | - Haiyan Ni
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747 AG, The Netherlands
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Hanne Noto
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, Utrecht 3584 CC, The Netherlands
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ulrike Dusek
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747 AG, The Netherlands
| |
Collapse
|
22
|
Lv S, Hou X, Zheng Y, Ma Z. Hexamethyldisiloxane Removal from Biogas Using a Fe 3O 4-Urea-Modified Three-Dimensional Graphene Aerogel. Molecules 2023; 28:6622. [PMID: 37764398 PMCID: PMC10535819 DOI: 10.3390/molecules28186622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/06/2023] [Accepted: 09/12/2023] [Indexed: 09/29/2023] Open
Abstract
Volatile methyl siloxanes (VMS), which are considered to be the most troublesome impurities in current biogas-cleaning technologies, need to be removed. In this study, we fabricated a series of Fe3O4-urea-modified reduced graphene-oxide aerogels (Fe3O4-urea-rGOAs) by using industrial-grade graphene oxide as the raw material. A fixed-bed dynamic adsorption setup was built, and the adsorption properties of the Fe3O4-urea-rGOAs for hexamethyldisiloxane (L2, as a VMS model pollutant) were studied. The properties of the as-prepared samples were investigated by employing various characterization techniques (SEM, TEM, FTIR, XRD, Raman spectroscopy, and N2 adsorption/desorption techniques). The results showed that the Fe3O4-urea-rGOA-0.4 had a high specific surface area (188 m2 g-1), large porous texture (0.77 cm3 g-1), and the theoretical maximum adsorption capacity for L2 (146.5 mg g-1). The adsorption capacity considerably increased with a decrease in the bed temperature of the adsorbents, as well as with an increase in the inlet concentration of L2. More importantly, the spent Fe3O4-urea-rGOA adsorbent could be readily regenerated and showed an excellent adsorption performance. Thus, the proposed Fe3O4-urea-rGOAs are promising adsorbents for removing the VMS in biogas.
Collapse
Affiliation(s)
- Siqi Lv
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Xifeng Hou
- Hebei Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology, College of Life Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| | - Yanhui Zheng
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China;
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China;
| |
Collapse
|
23
|
Lv S, Wang Y, Zheng Y, Ma Z. Removal of Hexamethyldisiloxane via a Novel Hydrophobic (3-Aminopropyl)Trimethoxysilane-Modified Activated Porous Carbon. Molecules 2023; 28:6493. [PMID: 37764269 PMCID: PMC10535671 DOI: 10.3390/molecules28186493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Volatile methyl siloxanes (VMS) must be removed because the formation of silica in the combustion process seriously affects the resource utilization of biogas. Herein, a series of APTMS ((3-aminopropyl)trimethoxysilane)-modified activated porous carbon (APC) adsorbents (named APTMS@APC) were prepared for VMS efficient removal. The as-prepared adsorbents were characterized using SEM, FTIR, Raman, X-ray diffraction analyses, and N2 adsorption/desorption. The results showed that the surface modification with APTMS enhanced the hydrophobicity of APC with the water contact angle increasing from 74.3° (hydrophilic) to 127.1° (hydrophobic), and meanwhile improved its texture properties with the SBET increasing from 981 to 1274 m2 g-1. The maximum breakthrough adsorption capacity of APTMS@APC for hexamethyldisiloxane (L2, model pollutant) was 360.1 mg g-1. Effects of an inlet L2 concentration (31.04-83.82 mg L-1) and a bed temperature (0-50 °C) on the removal of L2 were investigated. Meanwhile, after five adsorption-desorption cycles, the APTMS@APC demonstrated a superior cycling performance. This indicated that the hydrophobic APTMS@APC has a great significance to remove VMS.
Collapse
Affiliation(s)
- Siqi Lv
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yingrun Wang
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
| | - Yanhui Zheng
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
- College of Chemical Technology, Shijiazhuang University, Shijiazhuang 050035, China
| | - Zichuan Ma
- Hebei Key Laboratory of Inorganic Nano-Materials, College of Chemistry and Material Sciences, Hebei Normal University, Shijiazhuang 050024, China
| |
Collapse
|
24
|
Rücker C, Winkelmann M, Kümmerer K. Are Si-C bonds formed in the environment and/or in technical microbiological systems? ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91492-91500. [PMID: 37486465 PMCID: PMC10439844 DOI: 10.1007/s11356-023-28528-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/27/2023] [Indexed: 07/25/2023]
Abstract
Organosiloxanes are industrially produced worldwide in millions of tons per annum and are widely used by industry, professionals, and consumers. Some of these compounds are PBT (persistent, biaccumulative and toxic) or vPvB (very persistent and very bioaccumulative). If organosiloxanes react at all in the environment, Si-O bonds are hydrolyzed or Si-C bonds are oxidatively cleaved, to result finally in silica and carbon dioxide. In strong contrast and very unexpectedly, recently formation of new Si-CH3 bonds from siloxanes and methane by the action of microorganisms under mild ambient conditions was proposed (in landfills or digesters) and even reported (in a biotrickling filter, 30 °C). This is very surprising in view of the harsh conditions required in industrial Si-CH3 synthesis. Here, we scrutinized the pertinent papers, with the result that evidence put forward for Si-C bond formation from siloxanes and methane in technical microbiological systems is invalid, suggesting such reactions will not occur in the environment where they are even less favored by conditions. The claim of such reactions followed from erroneous calculations and misinterpretation of experimental results. We propose an alternative explanation of the experimental observations, i.e., the putative observation of such reactions was presumably due to confusion of two compounds, hexamethyldisiloxane and dimethylsilanediol, that elute at similar retention times from standard GC columns.
Collapse
Affiliation(s)
- Christoph Rücker
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany.
| | - Magnus Winkelmann
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, 21335, Lüneburg, Germany
| |
Collapse
|
25
|
Fotie J, Matherne CM, Wroblewski JE. Silicon switch: Carbon-silicon Bioisosteric replacement as a strategy to modulate the selectivity, physicochemical, and drug-like properties in anticancer pharmacophores. Chem Biol Drug Des 2023; 102:235-254. [PMID: 37029092 DOI: 10.1111/cbdd.14239] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 04/09/2023]
Abstract
Bioisosterism is one of the leading strategies in medicinal chemistry for the design and modification of drugs, consisting in replacing an atom or a substituent with a different atom or a group with similar chemical properties and an inherent biocompatibility. The objective of such an exercise is to produce a diversity of molecules with similar behavior while enhancing the desire biological and pharmacological properties, without inducing significant changes to the chemical framework. In drug discovery and development, the optimization of the absorption, distribution, metabolism, elimination, and toxicity (ADMETox) profile is of paramount importance. Silicon appears to be the right choice as a carbon isostere because they possess very similar intrinsic properties. However, the replacement of a carbon by a silicon atom in pharmaceuticals has proven to result in improved efficacy and selectivity, while enhancing physicochemical properties and bioavailability. The current review discusses how silicon has been strategically introduced to modulate drug-like properties of anticancer agents, from a molecular design strategy, biological activity, computational modeling, and structure-activity relationships perspectives.
Collapse
Affiliation(s)
- Jean Fotie
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Caitlyn M Matherne
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| | - Jordan E Wroblewski
- Department of Chemistry and Physics, Southeastern Louisiana University, Hammond, Louisiana, USA
| |
Collapse
|
26
|
Selenius M, Ruokolainen J, Riikonen J, Rantanen J, Näkki S, Lehto VP, Hyttinen M. Removing siloxanes and hydrogen sulfide from landfill gases with biochar and activated carbon filters. WASTE MANAGEMENT (NEW YORK, N.Y.) 2023; 167:31-38. [PMID: 37230876 DOI: 10.1016/j.wasman.2023.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 04/20/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023]
Abstract
Landfill gas (LFG) is formed by microorganisms within a landfill; it can be utilized as a renewable fuel in power plants. Impurities such as hydrogen sulfide and siloxanes can cause significant damage to gas engines and turbines. The aim of this study was to determine the filtration efficiencies of biochar products made of birch and willow to remove hydrogen sulfides, siloxanes, and volatile organic compounds from the gas streams compared to activated carbon. Experiments were conducted on a laboratory scale with model compounds and in a real LFG power plant where microturbines are used to generate power and heat. The biochar filters removed heavier siloxanes effectively in all of the tests. However, the filtration efficiency for volatile siloxane and hydrogen sulfide declined quickly. Biochars are promising filter materials but require further research to improve their performance.
Collapse
Affiliation(s)
- Mikko Selenius
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland.
| | - Joonas Ruokolainen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| | - Joakim Riikonen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Jimi Rantanen
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Simo Näkki
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, 70210 Kuopio, Finland
| | - Marko Hyttinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, 70210 Kuopio, Finland
| |
Collapse
|
27
|
Chen YX, He JT, Wu MC, Liu ZL, Xia PJ, Chen K, Xiang HY, Yang H. Visible-light-driven oxidation of organosilanes by a charge-transfer complex. Chem Commun (Camb) 2023; 59:6588-6591. [PMID: 37190787 DOI: 10.1039/d3cc01972a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Direct oxidation of organosilanes is one of the most straightforward ways to access silanols. Herein, we describe a novel photo-induced strategy for oxidation of organosilanes to access silanols, promoted by a photoactive charge-transfer complex (CTC) between sodium benzenesulfinate and molecular O2. A streamlined sequence transformation of organosilanes to silyl ethers was also readily achieved. This developed protocol represents the first example of CTC-based oxidation of organosilanes, offering a facile approach to access a series of silanol and silyl ether products.
Collapse
Affiliation(s)
- Yi-Xuan Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Jun-Tao He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Mei-Chun Wu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- College of Chemistry and Chemical Engineering, Huaihua University, Huaihua 418008, P. R. China
| | - Zhi-Lin Liu
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Peng-Ju Xia
- School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China
| | - Kai Chen
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
28
|
Tang J, Feng S, Wang D. Facile Synthesis of Sulfur-Containing Functionalized Disiloxanes with Nonconventional Fluorescence by Thiol-Epoxy Click Reaction. Int J Mol Sci 2023; 24:ijms24097785. [PMID: 37175492 PMCID: PMC10177946 DOI: 10.3390/ijms24097785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/22/2023] [Accepted: 04/23/2023] [Indexed: 05/15/2023] Open
Abstract
Herein, a series of novel sulfur-containing functionalized disiloxanes based on a low-cost and commercially available material, i.e., 1,3-bis(3-glycidoxypropyl)-1,1,3,3-tetramethyldisiloxane, and various thiol compounds were prepared by thiol-epoxy click reaction. It was found that both lithium hydroxide (LiOH) and tetrabutylammonium fluoride (TBAF) have high catalytic activity after optimizing the reaction condition, and the reaction can be carried out with high yields, excellent regioselectivity, mild reaction condition, and good tolerance of functional groups. These compounds exhibit excellent nonconventional fluorescence due to the formation of coordination bonds between Si atoms and heteroatoms (e.g., S or N) and can emit blue fluorescence upon ultraviolet (UV) irradiation. These results demonstrate that the thiol-epoxy click reaction could promisingly act as an efficient organosilicon synthetic methodology to construct various organosilicon materials with novel structures and functionality, and thus their application scope will be significantly expanded.
Collapse
Affiliation(s)
- Jing Tang
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Shengyu Feng
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| | - Dengxu Wang
- Institute of Novel Semiconductors, State Key Laboratory of Crystal Materials, Shandong University, Jinan 250100, China
- National Engineering Research Center for Colloidal Materials & Key Laboratory of Special Functional Aggregated Materials, Ministry of Education, Shandong Key Laboratory of Advanced Organosilicon Materials and Technologies, School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
| |
Collapse
|
29
|
Rücker C, Grabitz E, Kümmerer K. Are Si-C bonds cleaved by microorganisms? A critical review on biodegradation of methylsiloxanes. CHEMOSPHERE 2023; 321:137858. [PMID: 36642148 DOI: 10.1016/j.chemosphere.2023.137858] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/22/2022] [Accepted: 01/11/2023] [Indexed: 06/17/2023]
Abstract
Methylsiloxanes, compounds that contain H3C-Si-O subunits in their molecular structure, are emerging ubiquitous pollutants now detected in many environmental compartments. These compounds and generally Si-C bonds do not occur in living nature, but are industrially produced worldwide in millions of tons per annum and are widely used, resulting in their release to the environment. It is an open question whether or to what extent microorganisms are able to decompose these compounds. The presence of methylsiloxanes in many biogases adds to the economic relevance of this question. We here review and critically discuss, for the first time, the evidence obtained for and against degradation of methylsiloxanes by microorganisms, and in particular for microbial cleavage of Si-CH3 bonds. As a result, no convincing demonstration of Si-C cleavage by native environmental microorganisms has been found.
Collapse
Affiliation(s)
- Christoph Rücker
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, D-21335, Lüneburg, Germany.
| | - Elisa Grabitz
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, D-21335, Lüneburg, Germany
| | - Klaus Kümmerer
- Institute for Sustainable Chemistry, Leuphana University Lüneburg, Universitätsallee 1, D-21335, Lüneburg, Germany
| |
Collapse
|
30
|
Khot A, Lindsey RK, Lewicki JP, Maiti A, Goldman N, Kroonblawd MP. United atom and coarse grained models for crosslinked polydimethylsiloxane with applications to the rheology of silicone fluids. Phys Chem Chem Phys 2023; 25:9669-9684. [PMID: 36943730 DOI: 10.1039/d2cp04920a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
Abstract
Siloxane systems consisting primarily of polydimethylsiloxane (PDMS) are versatile, multifaceted materials that play a key role in diverse applications. However, open questions exist regarding the correlation between their varied atomic-level properties and observed macroscale features. To this effect, we have created a systematic workflow to determine coarse-grained simulation models for crosslinked PDMS in order to further elucidate the effects of network changes on the system's rheological properties below the gel point. Our approach leverages a fine-grained united atom model for linear PDMS, which we extend to include crosslinking terms, and applies iterative Boltzmann inversion to obtain a coarse-grain "bead-spring-type" model. We then perform extensive molecular dynamics simulations to explore the effect of crosslinking on the rheology of silicone fluids, where we compute systematic increases in both density and shear viscosity that compare favorably to experiments that we conduct here. The kinematic viscosity of partially crosslinked fluids follows an empirical linear relationship that is surprisingly consistent with Rouse theory, which was originally derived for systems comprised of a uniform distribution of linear chains. The models developed here serve to enable quantitative bottom-up predictions for curing- and age-induced effects on macroscale rheological properties, allowing for accurate prediction of material properties based on fundamental chemical data.
Collapse
Affiliation(s)
- Aditi Khot
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA
| | - Rebecca K Lindsey
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
- Department of Chemical Engineering, University of California, Davis, California 95616, USA
| | - Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|
31
|
Bouranis DL, Stylianidis GP, Manta V, Karousis EN, Tzanaki A, Dimitriadi D, Bouzas EA, Siyiannis VF, Constantinou-Kokotou V, Chorianopoulou SN, Bloem E. Floret Biofortification of Broccoli Using Amino Acids Coupled with Selenium under Different Surfactants: A Case Study of Cultivating Functional Foods. PLANTS (BASEL, SWITZERLAND) 2023; 12:1272. [PMID: 36986960 PMCID: PMC10055910 DOI: 10.3390/plants12061272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 03/01/2023] [Accepted: 03/07/2023] [Indexed: 06/19/2023]
Abstract
Broccoli serves as a functional food because it can accumulate selenium (Se), well-known bioactive amino-acid-derived secondary metabolites, and polyphenols. The chemical and physical properties of Se are very similar to those of sulfur (S), and competition between sulfate and selenate for uptake and assimilation has been demonstrated. Towards an efficient agronomic fortification of broccoli florets, the working questions were whether we could overcome this competition by exogenously applying the S-containing amino acids cysteine (Cys) or/and methionine (Met), or/and the precursors of Glucosinolate (GSL) types along with Se application. Broccoli plants were cultivated in a greenhouse and at the beginning of floret growth, we exogenously applied sodium selenate in the concentration gradient of 0, 0.2, 1.5, and 3.0 mM to study the impact of increased Se concentration on the organic S (Sorg) content of the floret. The Se concentration of 0.2 mM (Se0.2) was coupled with the application of Cys, Met, their combination, or a mixture of phenylalanine, tryptophane, and Met. The application took place through fertigation or foliar application (FA) by adding isodecyl alcohol ethoxylate (IAE) or a silicon ethoxylate (SiE) surfactant. Fresh biomass, dry mass, and Se accumulation in florets were evaluated, along with their contents of Sorg, chlorophylls (Chl), carotenoids (Car), glucoraphanin (GlRa), glucobrassicin (GlBra), glucoiberin (GlIb), and polyphenols (PPs), for the biofortification efficiency of the three application modes. From the studied selenium concentration gradient, the foliar application of 0.2 mM Se using silicon ethoxylate (SiE) as a surfactant provided the lowest commercially acceptable Se content in florets (239 μg or 0.3 μmol g-1 DM); it reduced Sorg (-45%), GlIb (-31%), and GlBr (-27%); and it increased Car (21%) and GlRa (27%). Coupled with amino acids, 0.2 mM Se provided commercially acceptable Se contents per floret only via foliar application. From the studied combinations, that of Met,Se0.2/FA,IAE provided the lowest Se content per floret (183 μg or 0.2 μmol g-1 DM) and increased Sorg (35%), Car (45%), and total Chl (27%), with no effect on PPs or GSLs. Cys,Met,Se0.2/FA,IAE and amino acid mix,Se0.2/FA,IAE increased Sorg content, too, by 36% and 16%, respectively. Thus, the foliar application with the IAE surfactant was able to increase Sorg, and methionine was the amino acid in common in these treatments, with varying positive effects on carotenoids and chlorophylls. Only the Cys,Met,Se0.2 combination presented positive effects on GSLs, especially GlRa, but it reduced the fresh mass of the floret. The foliar application with SiE as a surfactant failed to positively affect the organic S content. However, in all studied combinations of Se 0.2 mM with amino acids, the Se content per floret was commercially acceptable, the yield was not affected, the content of GSLs was increased (especially that of GlRa and GlIb), and PPs were not affected. The content of GlBr decreased except for the treatment with methionine (Met,Se0.2/FA,SiE) where GlBr remained unaffected. Hence, the combination of Se with the used amino acids and surfactants can provide enhanced biofortification efficiency in broccoli by providing florets as functional foods with enhanced functional properties.
Collapse
Affiliation(s)
- Dimitris L. Bouranis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Georgios P. Stylianidis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Vassiliki Manta
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Evangelos N. Karousis
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Andriani Tzanaki
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | | | - Emmanuel A. Bouzas
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | | | - Violetta Constantinou-Kokotou
- Chemical Laboratories, Department of Food Science and Human Nutrition, Agricultural University of Athens, 11855 Athens, Greece
| | - Styliani N. Chorianopoulou
- Plant Physiology & Morphology Laboratory, Crop Science Department, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
- PlanTerra Institute for Plant Nutrition & Soil Quality, Agricultural University of Athens, Iera Odos 75, 118 55 Athens, Greece
| | - Elke Bloem
- Julius Kuehn Institute, Federal Research Centre for Cultivated Plants, Bundesallee 58, 38116 Braunschweig, Germany
| |
Collapse
|
32
|
Peng H, Yu H, Tang SY, Zeng YL, Li PF, Tang YY, Zhang ZX, Xiong RG, Zhang HY. High- T c Single-Component Organosilicon Ferroelectric Crystal Obtained by H/F Substitution. JACS AU 2023; 3:603-609. [PMID: 36873683 PMCID: PMC9975823 DOI: 10.1021/jacsau.3c00004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Organic single-component ferroelectrics are highly desirable for their low molecular mass, light weight, low processing temperature, and excellent film-forming properties. Organosilicon materials with a strong film-forming ability, weather resistance, nontoxicity, odorlessness, and physiological inertia are very suitable for device applications related to the human body. However, the discovery of high-T c organic single-component ferroelectrics has been very scarce, and the organosilicon ones even less so. Here, we used a chemical design strategy of H/F substitution to successfully synthesize a single-component organosilicon ferroelectric tetrakis(4-fluorophenylethynyl)silane (TFPES). Systematic characterizations and theory calculations revealed that, compared with the parent nonferroelectric tetrakis(phenylethynyl)silane, fluorination caused slight modifications of the lattice environment and intermolecular interactions, inducing a 4/mmmFmm2-type ferroelectric phase transition at a high T c of 475 K in TFPES. To our knowledge, this T c should be the highest among the reported organic single-component ferroelectrics, providing a wide operating temperature range for ferroelectrics. Moreover, fluorination also brought about a significant improvement in the piezoelectric performance. Combined with excellent film properties, the discovery of TFPES provides an efficient path for designing ferroelectrics suitable for biomedical and flexible electronic devices.
Collapse
Affiliation(s)
- Hang Peng
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Hang Yu
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Shu-Yu Tang
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Yu-Ling Zeng
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Peng-Fei Li
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Yuan-Yuan Tang
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Zhi-Xu Zhang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 211189, People’s Republic
of China
| | - Ren-Gen Xiong
- Ordered
Matter Science Research Center, Nanchang
University, Nanchang 330031, People’s Republic
of China
| | - Han-Yue Zhang
- State
Key Laboratory of Bioelectronics, Southeast
University, Nanjing 211189, People’s Republic
of China
| |
Collapse
|
33
|
Xu J, Hadjichristidis N. Heteroatom-containing degradable polymers by ring-opening metathesis polymerization. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
34
|
Wang Y, Tang W, Xiao Z, Yang W, Peng Y, Chen J, Li J. Novel quantitative structure activity relationship models for predicting hexadecane/air partition coefficients of organic compounds. J Environ Sci (China) 2023; 124:98-104. [PMID: 36182199 DOI: 10.1016/j.jes.2021.10.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 06/16/2023]
Abstract
Predicting the logarithm of hexadecane/air partition coefficient (L) for organic compounds is crucial for understanding the environmental behavior and fate of organic compounds and developing prediction models with polyparameter linear free energy relationships. Herein, two quantitative structure activity relationship (QSAR) models were developed with 1272 L values for the organic compounds by using multiple linear regression (MLR) and support vector machine (SVM) algorithms. On the basis of the OECD principles, the goodness of fit, robustness and predictive ability for the developed models were evaluated. The SVM model was first developed, and the predictive capability for the SVM model is slightly better than that for the MLR model. The applicability domain (AD) of these two models has been extended to include more kinds of emerging pollutants, i.e., oraganosilicon compounds. The developed QSAR models can be used for predicting L values of various organic compounds. The van der Waals interactions between the organic compound and the hexadecane have a significant effect on the L value of the compound. These in silico models developed in current study can provide an alternative to experimental method for high-throughput obtaining L values of organic compounds.
Collapse
Affiliation(s)
- Ya Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Zijun Xiao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Wenhao Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yue Peng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian 116024, China
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
35
|
Woźnica M, Sobiech M, Luliński P. A Fusion of Molecular Imprinting Technology and Siloxane Chemistry: A Way to Advanced Hybrid Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:248. [PMID: 36677999 PMCID: PMC9863567 DOI: 10.3390/nano13020248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/01/2023] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
Molecular imprinting technology is a well-known strategy to synthesize materials with a predetermined specificity. For fifty years, the "classical" approach assumed the creation of "memory sites" in the organic polymer matrix by a template molecule that interacts with the functional monomer prior to the polymerization and template removal. However, the phenomenon of a material's "memory" provided by the "footprint" of the chemical entity was first observed on silica-based materials nearly a century ago. Through the years, molecular imprinting technology has attracted the attention of many scientists. Different forms of molecularly imprinted materials, even on the nanoscale, were elaborated, predominantly using organic polymers to induce the "memory". This field has expanded quickly in recent years, providing versatile tools for the separation or detection of numerous chemical compounds or even macromolecules. In this review, we would like to emphasize the role of the molecular imprinting process in the formation of highly specific siloxane-based nanomaterials. The distinct chemistry of siloxanes provides an opportunity for the facile functionalization of the surfaces of nanomaterials, enabling us to introduce additional properties and providing a way for vast applications such as detectors or separators. It also allows for catalyzing chemical reactions providing microreactors to facilitate organic synthesis. Finally, it determines the properties of siloxanes such as biocompatibility, which opens the way to applications in drug delivery and nanomedicine. Thus, a brief outlook on the chemistry of siloxanes prior to the discussion of the current state of the art of siloxane-based imprinted nanomaterials will be provided. Those aspects will be presented in the context of practical applications in various areas of chemistry and medicine. Finally, a brief outlook of future perspectives for the field will be pointed out.
Collapse
|
36
|
You B, Zhou W, Li J, Li Z, Sun Y. A review of indoor Gaseous organic compounds and human chemical Exposure: Insights from Real-time measurements. ENVIRONMENT INTERNATIONAL 2022; 170:107611. [PMID: 36335895 DOI: 10.1016/j.envint.2022.107611] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/29/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Gaseous organic compounds, mainly volatile organic compounds (VOCs), have become a wide concern in various indoor environments where we spend the majority of our daily time. The sources, compositions, variations, and sinks of indoor VOCs are extremely complex, and their potential impacts on human health are less understood. Owing to the deployment of the state-of-the-art real-time mass spectrometry during the last two decades, our understanding of the sources, dynamic changes and chemical transformations of VOCs indoors has been significantly improved. This review aims to summarize the key findings from mass spectrometry measurements in recent indoor studies including residence, classroom, office, sports center, etc. The sources and sinks, compositions and distributions of indoor VOCs, and the factors (e.g., human activities, air exchange rate, temperature and humidity) driving the changes in indoor VOCs are discussed. The physical and chemical processes of gas-particle partitioning and secondary oxidation processes of VOCs, and their impacts on human health are summarized. Finally, the recommendations for future research directions on indoor VOCs measurements and indoor chemistry are proposed.
Collapse
Affiliation(s)
- Bo You
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Zhou
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China
| | - Junyao Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhijie Li
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yele Sun
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
37
|
Etz BD, Mifkovic M, Vyas S, Shukla MK. High-temperature decomposition chemistry of trimethylsiloxane surfactants, a potential Fluorine-Free replacement for fire suppression. CHEMOSPHERE 2022; 308:136351. [PMID: 36084830 DOI: 10.1016/j.chemosphere.2022.136351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) have become global environmental contaminants due to being notoriously difficult to degrade, and it has become increasingly important to employ suitable PFAS alternatives, especially in aqueous film-forming foams (AFFF). Trimethylsiloxane (TriSil) surfactants are potential fluorine-free replacements for PFAS in fire suppression technologies. Yet because these compounds may be more susceptible to high-temperature decomposition, it is necessary to assess the potential environmental impact of their thermal degradation products. Our study analyzes the high-temperature degradation of a truncated trimethylsiloxane (TriSil-1n) surfactant based on quantum mechanical methods. The degradation chemistry of TriSil-1n was studied through radical formation and propagation initiated from two prominent pathways (unimolecular and bimolecular reactions) at both 298 K and 1200 K, a relevant temperature in flames and thermal incinerators. Regardless of the pathway taken and temperature, all radical intermediates stemmed from the polyethylene glycol chain and primarily formed stable polydimethylsiloxanes (PDMS) and small organics such as ethylene, formaldehyde, and acetaldehyde, among other products. The major degradation products of TriSil-1n resulting from high-temperature thermal degradation as predicted by this study would be relatively less harmful to the environment compared to PFAS incineration/combustion products from previous research, supporting the replacement of PFAS with TriSil surfactants.
Collapse
Affiliation(s)
- Brian D Etz
- Oak Ridge Institute for Science and Education (ORISE), Oak Ridge, TN, 37830, USA; Simetri, Inc., 7005 University Blvd, Winter Park, FL, 32792, USA
| | | | - Shubham Vyas
- Colorado School of Mines, Golden, CO, 80401, USA.
| | - Manoj K Shukla
- Environmental Laboratory, US Army Engineer Research and Development Center, 3909 Halls Ferry Road, Vicksburg, MS, 39180, USA.
| |
Collapse
|
38
|
Elmanovich IV, Sizov VE, Zefirov VV, Kalinina AA, Gallyamov MO, Papkov VS, Muzafarov AM. Chemical Recycling of High-Molecular-Weight Organosilicon Compounds in Supercritical Fluids. Polymers (Basel) 2022; 14:5170. [PMID: 36501564 PMCID: PMC9738714 DOI: 10.3390/polym14235170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
The main known patterns of thermal and/or catalytic destruction of high-molecular-weight organosilicon compounds are considered from the viewpoint of the prospects for processing their wastes. The advantages of using supercritical fluids in plastic recycling are outlined. They are related to a high diffusion rate, efficient extraction of degradation products, the dependence of solvent properties on pressure and temperature, etc. A promising area for further research is described concerning the application of supercritical fluids for processing the wastes of organosilicon macromolecular compounds.
Collapse
Affiliation(s)
- Igor V. Elmanovich
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Victor E. Sizov
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russia
| | - Vadim V. Zefirov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
| | - Alexandra A. Kalinina
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russia
| | - Marat O. Gallyamov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
- Faculty of Physics, Lomonosov Moscow State University, Leninskie Gory 1-2, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russia
| | - Vladimir S. Papkov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
| | - Aziz M. Muzafarov
- A.N. Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences, Vavilova 28, 119991 Moscow, Russia
- Enikolopov Institute of Synthetic Polymer Materials, Russian Academy of Sciences, Profsoyuznaya 70, 117393 Moscow, Russia
| |
Collapse
|
39
|
Molinier B, Arata C, Katz EF, Lunderberg DM, Liu Y, Misztal PK, Nazaroff WW, Goldstein AH. Volatile Methyl Siloxanes and Other Organosilicon Compounds in Residential Air. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15427-15436. [PMID: 36327170 PMCID: PMC9670844 DOI: 10.1021/acs.est.2c05438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
Volatile methyl siloxanes (VMS) are ubiquitous in indoor environments due to their use in personal care products. This paper builds on previous work identifying sources of VMS by synthesizing time-resolved proton-transfer reaction time-of-flight mass spectrometer VMS concentration measurements from four multiweek indoor air campaigns to elucidate emission sources and removal processes. Temporal patterns of VMS emissions display both continuous and episodic behavior, with the relative importance varying among species. We find that the cyclic siloxane D5 is consistently the most abundant VMS species, mainly attributable to personal care product use. Two other cyclic siloxanes, D3 and D4, are emitted from oven and personal care product use, with continuous sources also apparent. Two linear siloxanes, L4 and L5, are also emitted from personal care product use, with apparent additional continuous sources. We report measurements for three other organosilicon compounds found in personal care products. The primary air removal pathway of the species examined in this paper is ventilation to the outdoors, which has implications for atmospheric chemistry. The net removal rate is slower for linear siloxanes, which persist for days indoors after episodic release events. This work highlights the diversity in sources of organosilicon species and their persistence indoors.
Collapse
Affiliation(s)
- Betty Molinier
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Caleb Arata
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Erin F. Katz
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - David M. Lunderberg
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| | - Yingjun Liu
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- College
of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Pawel K. Misztal
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
- Civil,
Architectural, and Environmental Engineering, The University of Texas at Austin, Austin, Texas 78712, United States
| | - William W Nazaroff
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
| | - Allen H. Goldstein
- Department
of Civil and Environmental Engineering, University of California, Berkeley, California 94720, United States
- Department
of Environmental Science, Policy and Management, University of California, Berkeley, California 94720, United States
| |
Collapse
|
40
|
Horii Y, Ohtsuka N, Nishino T, Kuroda K, Imaizumi Y, Sakurai T. Spatial distribution and benthic risk assessment of cyclic, linear, and modified methylsiloxanes in sediments from Tokyo Bay catchment basin, Japan: Si-based mass profiles in extractable organosilicon. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155956. [PMID: 35580679 DOI: 10.1016/j.scitotenv.2022.155956] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/10/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
We investigated the spatial distribution, mass profiles, and benthic risk assessment of a wide range of methylsiloxanes (MSs), including 7 cyclic MSs (CMSs; D3-D9; the number refers to the number of SiO bonds), 13 linear MSs (LMSs; L3-L15), and 15 modified and other MSs (MMSs) in sediments from the Tokyo Bay catchment basin, Japan. We observed widespread distribution of MSs (ΣCMS, ΣLMS, and ΣMMS) in the sediment samples, with concentrations of 1.0-6180 ng/g dry weight (dw), 1.8-10,100 ng/g dw, and < 0.31-210 ng/g dw, respectively. Our study is the first to measure various MMSs modified with hydrogen, vinyl, or phenyl groups; however, only methyltris(trimethylsiloxy)silane and phenyltris(trimethylsiloxy)silane were detected with high occurrence frequency. Notably, no elevated concentrations of MSs were observed downstream of silicone manufacturers, whereas the sediment was characterized by a specific D4/D5 ratio. With the Si-based mass profiles in extractable organosilicon (EOSi), the measured CMSs, LMSs, and MMSs accounted for 5.4%, 7.8%, and 0.2%, respectively. Unidentified EOSi (unknown fraction) constituted a major proportion of the EOSi in the sediment, with a mean of 87%, suggesting that the organosilicon environmental emissions were more than the measured MSs. In risk assessment of the adverse effects of D4, D5, and D6 in sediment on benthic organisms, the respective distributions indicated no overlap between the 95th percentile field sediment concentration and the 5th percentile chronic sediment no-effect concentration in organic carbon-normalized concentration. Although the hazard quotient compared with the predicted no-effect concentration for D5 and D6 exceeded the threshold level (hazard quotient ≥1), the results of probabilistic risk assessment for the three CMSs were not high enough to indicate a threat to benthic organisms in the study area.
Collapse
Affiliation(s)
- Yuichi Horii
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan.
| | - Nobutoshi Ohtsuka
- Center for Environmental Science in Saitama, 914 Kamitanadare, Kazo, Saitama 347-0115, Japan
| | - Takahiro Nishino
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna, Koto, Tokyo 136-0075, Japan
| | - Keisuke Kuroda
- Department of Environmental and Civil Engineering, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yoshitaka Imaizumi
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Takeo Sakurai
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| |
Collapse
|
41
|
Babkin AI, Kissel AA, Ob’edkov AM, Trifonov AA. Dehydrocoupling of alkoxyarenes with aromatic hydrosilanes catalyzed by scandium aminobenzyl complexes. Russ Chem Bull 2022. [DOI: 10.1007/s11172-022-3614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Porous liquids for gas capture, separation, and conversion: Narrowing the knowing-doing gap. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Zhang J, Liu N, Ren J, Xu L, Cai Y. Vinylmethylsiloxanes in Municipal Wastewater Treatment Plant and Biosolid-Amended Soils: Their Distribution and Backbone/Vinyl Branch Degradation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10691-10698. [PMID: 35833964 DOI: 10.1021/acs.est.2c01400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study is the first to investigate the emission and environmental fate of one type of modified methylsiloxane with double-bond (vinyl) groups. During 2018-2020, 2,4,6-trimethyl-2,4,6-trivinylcyclotrisiloxane (V3), 2,4,6,8-tetramethyl-2,4,6,8-tetravinylcyclotetrasiloxane (V4), and 2,4,6,8,10-pentavinyl-2,4,6,8,10-pentamethylcyclopentasiloxane (V5) were found in aqueous (<LOD-72.9 ng/L) and solid [13.0-371 ng/g dw (dry weight)] phases of wastewater samples from one Chinese municipal wastewater treatment plant (WWTP) as well as the corresponding biosolid-amended soils [<LOD-36.9 ng/g dw, df (detection frequency) = 37.5-41.7%, n = 48]. Based on the measure of environmental samples, simulated experiment, and product analysis by ESI-FT-ICR-MS, it was found that (1) in addition to sorption to sludge, abiotic degradation of vinylmethylsiloxanes (especially V3, t1/2 = 0.5-1.9 h at pH = 5.2-9.2) should have an important contribution to their sufficient removal in WWTP; (2) different from siloxane analogues with saturated branches and aromatic branches, abiotic degradation pathways of vinylmethylsiloxane might include both the hydrolysis of Si-O backbone and the oxidation/addition reactions of vinyl branches; (3) although vinylmethylsiloxanes in wastewater could be transferred to soil by biosolids application, these compounds had no accumulation in soil, which should arise from their fast elimination, such as volatilization (t1/2 = 3.2 h-20.9 days) and degradation (t1/2 =9.1 h-96.3 days); and (4) degradation of the Si-O backbone and vinyl branches had slowing trends with the increase in the soil organic matter.
Collapse
Affiliation(s)
- Jie Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China
| | - Juntao Ren
- Dongying Eco-Environment Monitoring Center of Shandong Province, Dongying 257091, China
| | - Lin Xu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 330106, China
| | - Yaqi Cai
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Hubei Key Laboratory of Environmental and Health Effects of Persistence Toxic Substances, Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
44
|
Sturm AG, Santowski T, Felder T, Lewis KM, Holthausen MC, Auner N. Müller–Rochow Reloaded: Single-Step Synthesis of Bifunctional Monosilanes. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alexander G. Sturm
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Tobias Santowski
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Thorsten Felder
- Momentive Performance Materials, Chempark, 51368 Leverkusen, Germany
| | - Kenrick M. Lewis
- Momentive Performance Materials, 769 Old Saw Mill River Road, Tarrytown, New York 10591, United States
| | - Max C. Holthausen
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| | - Norbert Auner
- Institute of Inorganic and Analytic Chemistry, Goethe-University, Max-von-Laue-Straße 7, 60438 Frankfurt/Main, Germany
| |
Collapse
|
45
|
Yao P, Chianese E, Kairys N, Holzinger R, Materić D, Sirignano C, Riccio A, Ni H, Huang RJ, Dusek U. A large contribution of methylsiloxanes to particulate matter from ship emissions. ENVIRONMENT INTERNATIONAL 2022; 165:107324. [PMID: 35689851 DOI: 10.1016/j.envint.2022.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 05/24/2022] [Accepted: 05/26/2022] [Indexed: 06/15/2023]
Abstract
The chemical and stable carbon isotopic composition of the organic aerosol particles (OA) emitted by a shuttle passenger ship between mainland Naples and island Capri in Italy were investigated. Various methylsiloxanes and derivatives were found in particulate ship emissions for the first time, as identified in the mass spectra of a thermal desorption - proton transfer reaction - mass spectrometer (TD-PTR-MS) based on the natural abundance of silicon isotopes. Large contributions of methylsiloxanes to OA (up to 59.3%) were found under inefficient combustion conditions, and considerably lower methylsiloxane emissions were observed under cruise conditions (1.2% of OA). Furthermore, the stable carbon isotopic composition can provide a fingerprint for methylsiloxanes, as they have low δ13C values in the range of -44.91‰ ± 4.29‰. The occurrence of methylsiloxanes was therefore further supported by low δ13C values of particulate organic carbon (OC), ranging from -34.7‰ to -39.4‰, when carbon fractions of methylsiloxanes in OC were high. The δ13C values of OC increased up to around -26.7‰ under cruise conditions, when carbon fractions of methylsiloxanes in OC were low. Overall, the δ13C value of OC decreased linearly with increasing carbon fraction of methylsiloxanes in OC, and the slope is consistent with a mixture of methylsiloxanes and fuel combustion products. The methylsiloxanes in ship emissions may come from engine lubricants.
Collapse
Affiliation(s)
- Peng Yao
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747AG, The Netherlands.
| | - Elena Chianese
- Department of Science and Technology, University of Naples, 'Parthenope' Centro Direzionale, Isola C4 80143, Napoli, Italy
| | - Norbertas Kairys
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747AG, The Netherlands
| | - Rupert Holzinger
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Dušan Materić
- Institute for Marine and Atmospheric Research, IMAU, Utrecht University, Princetonplein 5, 3584 CC, Utrecht, The Netherlands
| | - Carmina Sirignano
- Department of Mathematics and Physics, University of Campania "Luigi Vanvitelli", Viale Lincoln, 5-81100, Caserta, Italy
| | - Angelo Riccio
- Department of Science and Technology, University of Naples, 'Parthenope' Centro Direzionale, Isola C4 80143, Napoli, Italy
| | - Haiyan Ni
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747AG, The Netherlands; State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ru-Jin Huang
- State Key Laboratory of Loess and Quaternary Geology, Center for Excellence in Quaternary Science and Global Change, Key Laboratory of Aerosol Chemistry & Physics, Institute of Earth Environment, Chinese Academy of Sciences, Xi'an 710061, China
| | - Ulrike Dusek
- Centre for Isotope Research (CIO), Energy and Sustainability Research Institute Groningen (ESRIG), University of Groningen, Groningen 9747AG, The Netherlands.
| |
Collapse
|
46
|
Gao H, Battley A, Leitao EM. The ultimate Lewis acid catalyst: using tris(pentafluorophenyl) borane to create bespoke siloxane architectures. Chem Commun (Camb) 2022; 58:7451-7465. [PMID: 35726789 DOI: 10.1039/d2cc00441k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The breadth of utility of a commercially available and stable strong Lewis acid catalyst, tris(pentafluorophenyl)borane, has been explored, highlighting its use towards a wide range of unique siloxane products and their corresponding applications. This article focuses on the variety of different outcomes that this impressive borane offers in controlled and selective manners by the variation of reaction conditions, precursor functionalities, reagent or catalyst loading, and the mechanistic considerations that contribute. With a predominant focus on the Piers-Rubinsztajn reaction and its modifications, tris(pentaflurophenyl)borane's utility is highlighted in the synthesis of linear, cyclic and macrocyclic siloxanes, aryl-/alkoxysiloxanes, and other bespoke products. The significance of the catalytic transformation within the field of siloxane chemistry is discussed alongside some of the challenges that arise from using the borane catalyst.
Collapse
Affiliation(s)
- Hetian Gao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Andrew Battley
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand.
| | - Erin M Leitao
- School of Chemical Sciences, University of Auckland, Private Bag, 92019, Auckland, 1142, New Zealand. .,The MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
47
|
Bernardo F, Alves A, Homem V. A review of bioaccumulation of volatile methylsiloxanes in aquatic ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 824:153821. [PMID: 35167889 DOI: 10.1016/j.scitotenv.2022.153821] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/07/2022] [Accepted: 02/08/2022] [Indexed: 06/14/2023]
Abstract
Volatile methylsiloxanes (VMSs) are found in a broad range of industrial and consumer products. They are categorized as "high production volume chemicals" by the U.S. Environmental Protection Agency and listed as candidates of substances of very high concern in 2018, by the Registration, Evaluation, Authorization and Restriction of Chemicals (REACH). Industrial wastewater and treated effluents may contain VMSs in different amounts, which can be discharged in the receptor media and may lead to environmental contamination. This can result in direct exposure to aquatic receptors in the water column or to benthic invertebrates from contact and/or ingestion of sediments, and indirect exposures through the aquatic food chain. The possible toxicological effects of VMSs for the aquatic biota and human ecology are not very well known since published information regarding this topic is scarce. VMSs have been subjected to regulatory scrutiny for environmental concerns and have already been screened to determine their environmental risk and ecological harm. This paper aims to assess VMSs bioaccumulation and potential biomagnification on food webs, using several bioaccumulation metrics. The result is a high-level overview of all the collected data, comparing the findings and the experimental conditions applied during the assessments. Several studies present conflicting results regarding the bioaccumulation categorization. Some aquatic organisms demonstrated a high bioconcentration and bioaccumulation of these contaminants. Trophic magnification factors (TMFs) have been suggested as the most reliable tool to assess a chemical behaviour in food webs. However, bioaccumulation studies in food webs provided mixed information, with some studies indicating trophic dilution and others presenting a potential of trophic biomagnification of VMSs. Efforts should be directed to obtain field-based levels of VMSs at different trophic levels and a wider range of linear VMSs should be analysed, since most studies focused on D4, D5 and D6.
Collapse
Affiliation(s)
- Fábio Bernardo
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Arminda Alves
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Vera Homem
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE-Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| |
Collapse
|
48
|
Whelan MJ, Kim J. Application of multimedia models for understanding the environmental behavior of volatile methylsiloxanes: Fate, transport, and bioaccumulation. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:599-621. [PMID: 34375022 PMCID: PMC9293016 DOI: 10.1002/ieam.4507] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/11/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Multimedia fate and transport models (MFTMs) describe how chemicals behave in the environment based on their inherent properties and the characteristics of receiving systems. We critically review the use of MFTMs for understanding the behavior of volatile methylsiloxanes (VMS). MFTMs have been used to predict the fate of VMS in wastewater treatment, rivers, lakes, marine systems, and the atmosphere, and to assess bioaccumulation and trophic transfers. More widely, they have been used to assess the overall persistence, long-range transport potential (LRTP), and the propensity for atmosphere-surface exchange. The application of MFTMs for VMS requires particularly careful selection of model inputs because the properties of VMS differ from those of most organic compounds. For example, although n-octanol/water partition coefficient (KOW ) values are high, air:water partition coefficient (KAW ) values are also high and n-octanol/air partition coefficient (KOA ) values are relatively low. In addition, organic carbon/water partition coefficient (KOC ) values are substantially lower than expectations based on KOW . This means that most empirical relationships between KOC and KOW are not appropriate. Good agreement between modeled and measured concentrations in air, sediment, and biota indicates that our understanding of environmental fate is reasonable. VMS compounds are "fliers" that principally partition to the atmosphere, implying high LRTP, although they have low redeposition potential. They are degraded in air (half-lives 3-10 days) and, thus, have low overall persistence. In water, exposure can be limited by hydrolysis, volatilization, and partitioning to sediments (where degradation half-lives are likely to be high). In food webs, they are influenced by metabolism in biota, which tends to drive trophic dilution (i.e., trophic magnification factors are often but not always <1). Key remaining uncertainties include the following: (i) the strength and direction of the temperature dependence for KOC ; (ii) the fate of atmospheric reaction products; and (iii) the magnitude of emissions to wastewater. Integr Environ Assess Manag 2022;18:599-621. © 2021 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).
Collapse
Affiliation(s)
- Michael J. Whelan
- Centre for Landscape and Climate Research, School of Geography, Geology and the EnvironmentUniversity of LeicesterLeicesterUK
| | - Jaeshin Kim
- Toxicology and Environmental Research and ConsultingThe Dow Chemical CompanyMidlandMichiganUSA
| |
Collapse
|
49
|
Iacomi P, Gulcay-Ozcan E, Pires Conti P, Biswas S, Steunou N, Maurin G, Rioland G, Devautour-Vinot S. MIL-101(Cr) MOF as an Effective Siloxane Sensor. ACS APPLIED MATERIALS & INTERFACES 2022; 14:17531-17538. [PMID: 35380791 DOI: 10.1021/acsami.2c02607] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Volatile methylsiloxanes (VMSs) are common silicone degradation byproducts that cause serious concern for the contamination of sensitive electronics and optics, among others. With the goal of fast, online detection of VMS, we herein highlight the mesoporous MIL-101(Cr) MOF as a promising mass sensing layer for integration with a quartz crystal microbalance (QCM), using an in-house modified gravimetric adsorption system capable of achieving extremely low concentrations of siloxane D4 (down to 0.04 ppm), targeting applications for monitoring in indoor spaces and spacecraft. Our developed MIL-101(Cr)@QCM sensor achieves near-perfect reversibility with no hysteresis alongside excellent repeatability over cycling and fast response/recovery times under 1 min. We attribute this capability to optimum host/guest interactions as uncovered through molecular simulations.
Collapse
Affiliation(s)
- Paul Iacomi
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | | | | | - Subharanjan Biswas
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 78035 Versailles, France
| | - Nathalie Steunou
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles St Quentin en Yvelines, Université Paris-Saclay, 78035 Versailles, France
| | - Guillaume Maurin
- ICGM, Univ. Montpellier, CNRS, ENSCM, F-34095 Montpellier, France
| | - Guillaume Rioland
- Centre National d'Etudes Spatiales, DTN/QE/LE, 18 Avenue Edouard Belin, 31401 Toulouse, Cedex 09, France
| | | |
Collapse
|
50
|
Kroonblawd MP, Goldman N, Maiti A, Lewicki JP. Polymer degradation through chemical change: a quantum-based test of inferred reactions in irradiated polydimethylsiloxane. Phys Chem Chem Phys 2022; 24:8142-8157. [PMID: 35332907 DOI: 10.1039/d1cp05647f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Chemical reaction schemes are key conceptual tools for interpreting the results of experiments and simulations, but often carry implicit assumptions that remain largely unverified for complicated systems. Established schemes for chemical damage through crosslinking in irradiated silicone polymers comprised of polydimethylsiloxane (PDMS) date to the 1950's and correlate small-molecule off-gassing with specific crosslink features. In this regard, we use a somewhat reductionist model to develop a general conditional probability and correlation analysis approach that tests these types of causal connections between proposed experimental observables to reexamine this chemistry through quantum-based molecular dynamics (QMD) simulations. Analysis of the QMD simulations suggests that the established reaction schemes are qualitatively reasonable, but lack strong causal connections under a broad set of conditions that would enable making direct quantitative connections between off-gassing and crosslinking. Further assessment of the QMD data uncovers a strong (but nonideal) quantitative connection between exceptionally hard-to-measure chain scission events and the formation of silanol (Si-OH) groups. Our analysis indicates that conventional notions of radiation damage to PDMS should be further qualified and not necessarily used ad hoc. In addition, our efforts enable independent quantum-based tests that can inform confidence in assumed connections between experimental observables without the burden of fully elucidating entire reaction networks.
Collapse
Affiliation(s)
- Matthew P Kroonblawd
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Nir Goldman
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - Amitesh Maiti
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| | - James P Lewicki
- Physical and Life Sciences Directorate, Lawrence Livermore National Laboratory, Livermore, CA 94550, USA.
| |
Collapse
|