1
|
Tkachenko NV, Head-Gordon M. Smoother Semiclassical Dispersion for Density Functional Theory via D3S: Understanding and Addressing Unphysical Minima in the D3 Dispersion Correction Model. J Chem Theory Comput 2024; 20:9741-9753. [PMID: 39406704 DOI: 10.1021/acs.jctc.4c01105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2024]
Abstract
One of the most widely used and computationally efficient models that accounts for London dispersion interactions within density functional theory (DFT) is the D3 dispersion correction model. In this work, we demonstrate that this model can induce the appearance of unphysical minima on the potential energy surface (PES) when the coordination number of atoms changes. Optimizing to these artifactual structures can lead to significant errors in determining the interaction energy between two molecules and in estimating the thermodynamic properties of the system. In several specific examples, such as Kuratowski-type H2-NiKur and H2-PdKur clusters, these local minima exhibited extremely high PES curvature, resulting in incorrect estimations of harmonic frequencies and significant overestimations of zero-point energy and enthalpy values. Although such erroneous behavior of the D3 model is relatively rare, it can occur across a wide range of chemical species, including molecules like the [Li(C6H6)]+ complex and the dispiro(acridan)-substituted pyracene (DSAP) molecule. Our analysis reveals that the root of the problem lies in the definition of the AB atomic-pair dependent C6AB coefficients in the D3 model. To address this issue, we propose a reparameterization of the D3 model by introducing a modified C6AB functional form that now depends on the specific pair of considered atoms. This new model, termed D3-Smooth (or D3S for short), is designed to smooth out the PES associated with the dispersion correction. By doing so, we demonstrate that D3S eliminates unphysical local minima while maintaining the quite satisfactory accuracy of the parent D3 method in interaction energy benchmark sets. For example, the RMS difference between using the D3(BJ) correction to B3LYP and the D3S(BJ) correction across the large MGCDB84 data set of nearly 5000 data points is only 0.12 kJ/mol. Similar results are obtained for every other D3-corrected functional tested. Consistent with this result, no significant improvement could be obtained for the B3LYP-D3S(0) correction by reoptimizing the damping function.
Collapse
Affiliation(s)
- Nikolay V Tkachenko
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
| | - Martin Head-Gordon
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Institute for Decarbonization Materials, University of California, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
2
|
Byrd JN, Lotrich VF, Sanders BA. Massively Parallel Computational Chemistry with the Super Instruction Architecture and ACES4. J Phys Chem A 2024; 128:7498-7509. [PMID: 39177160 DOI: 10.1021/acs.jpca.4c04146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2024]
Abstract
The task of developing high-performing parallel software must be made easier and more cost-effective in order to fully exploit existing and emerging large-scale computer systems for the advancement of science. The Super Instruction Architecture (SIA) is a parallel programming platform geared toward applications that need to manage large amounts of data stored in potentially sparse multidimensional arrays during calculations. The SIA platform was originally designed for the quantum chemistry software package ACESIII. More recently, the SIA was reimplemented to overcome the limitations in the original ACESIII program. It has now been successfully employed in the new ACES4 quantum chemistry software package. This paper describes the SIA and ACES4 and illustrates their capabilities with some difficult quantum chemistry open-shell coupled-cluster benchmark calculations.
Collapse
Affiliation(s)
- Jason N Byrd
- ENSCO, Inc., Melbourne, Florida 32940, United States
| | | | - Beverly A Sanders
- Department of Computer & Information Science & Engineering, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
3
|
Sandhu G, Agrawal P, Bose S, Thelma BK. Building polarization into protein-inhibitor binding dynamics in rational drug design for rheumatoid arthritis. J Biomol Struct Dyn 2024; 42:5912-5930. [PMID: 37378542 DOI: 10.1080/07391102.2023.2229449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 06/20/2023] [Indexed: 06/29/2023]
Abstract
Standard force field-based simulations to accomplish structure-based evaluations of lead molecules is a powerful tool. Combining protein fragmentation into tractable sub-systems with continuum solvation method is envisaged to enable quantum mechanics-based electronic structure calculations of macromolecules in their realistic environment. This along with incorporation of many-body polarization effect in molecular dynamics simulations may augment an accurate description of electrostatics of protein-inhibitor systems for effective drug design. Rheumatoid arthritis (RA) is a complex autoimmune disorder plagued by the ceiling effect of current targeted therapies, encouraging identification of new druggable targets and corresponding drug design to tackle the refractory form of disease. In this study, polarization-inclusive force field approach has been used to model protein solvation and ligand binding for 'Mitogen-activated protein kinase' (MAP3K8), a regulatory node of notable pharmacological relevance in RA synovial biology. For MAP3K8 inhibitors belonging to different scaffold series, the calculations illustrated differential electrostatic contribution to their relative binding affinities and successfully explained examples from available structure-activity relationship studies. Results from this study exemplified i) the advantage of this approach in reliably ranking inhibitors having close nanomolar range activities for the same target; and ii) its prospective application in lead molecule identification aiding drug discovery efforts in RA.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gurvisha Sandhu
- Department of Genetics, University of Delhi South Campus, New Delhi, Delhi, India
| | - Praveen Agrawal
- LeadInvent Technologies Private Limited, Biotech Centre, University of Delhi South Campus, New Delhi, Delhi, India
| | - Surojit Bose
- LeadInvent Technologies Private Limited, Biotech Centre, University of Delhi South Campus, New Delhi, Delhi, India
| | - B K Thelma
- Department of Genetics, University of Delhi South Campus, New Delhi, Delhi, India
| |
Collapse
|
4
|
Liu J, Ma H, Shang H, Li Z, Yang J. Quantum-centric high performance computing for quantum chemistry. Phys Chem Chem Phys 2024; 26:15831-15843. [PMID: 38787657 DOI: 10.1039/d4cp00436a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
High performance computing (HPC) is renowned for its capacity to tackle complex problems. Meanwhile, quantum computing (QC) provides a potential way to accurately and efficiently solve quantum chemistry problems. The emerging field of quantum-centric high performance computing (QCHPC), which merges these two powerful technologies, is anticipated to enhance computational capabilities for solving challenging problems in quantum chemistry. The implementation of QCHPC for quantum chemistry requires interdisciplinary research and collaboration across multiple fields, including quantum chemistry, quantum physics, computer science and so on. This perspective provides an introduction to the quantum algorithms that are suitable for deployment in QCHPC, focusing on conceptual insights rather than technical details. Parallel strategies to implement these algorithms on quantum-centric supercomputers are discussed. We also summarize high performance quantum emulating simulators, which are considered a viable tool to explore QCHPC. We conclude with challenges and outlooks in this field.
Collapse
Affiliation(s)
- Jie Liu
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
| | - Huan Ma
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
| | - Honghui Shang
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China, Hefei 230088, China.
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
5
|
Leamer JM, Dawson W, Bondar DI. Positivity preserving density matrix minimization at finite temperatures via square root. J Chem Phys 2024; 160:074107. [PMID: 38375902 DOI: 10.1063/5.0189864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/18/2024] [Indexed: 02/21/2024] Open
Abstract
We present a Wave Operator Minimization (WOM) method for calculating the Fermi-Dirac density matrix for electronic structure problems at finite temperature while preserving physicality by construction using the wave operator, i.e., the square root of the density matrix. WOM models cooling a state initially at infinite temperature down to the desired finite temperature. We consider both the grand canonical (constant chemical potential) and canonical (constant number of electrons) ensembles. Additionally, we show that the number of steps required for convergence is independent of the number of atoms in the system. We hope that the discussion and results presented in this article reinvigorate interest in density matrix minimization methods.
Collapse
Affiliation(s)
- Jacob M Leamer
- Department of Physics and Engineering Physics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118, USA
| | - William Dawson
- RIKEN Center for Computational Science, Kobe, Hyogo 650-0047, Japan
| | - Denys I Bondar
- Department of Physics and Engineering Physics, Tulane University, 6823 St. Charles Ave., New Orleans, Louisiana 70118, USA
| |
Collapse
|
6
|
Hermann J, Stöhr M, Góger S, Chaudhuri S, Aradi B, Maurer RJ, Tkatchenko A. libMBD: A general-purpose package for scalable quantum many-body dispersion calculations. J Chem Phys 2023; 159:174802. [PMID: 37933783 DOI: 10.1063/5.0170972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/17/2023] [Indexed: 11/08/2023] Open
Abstract
Many-body dispersion (MBD) is a powerful framework to treat van der Waals (vdW) dispersion interactions in density-functional theory and related atomistic modeling methods. Several independent implementations of MBD with varying degree of functionality exist across a number of electronic structure codes, which both limits the current users of those codes and complicates dissemination of new variants of MBD. Here, we develop and document libMBD, a library implementation of MBD that is functionally complete, efficient, easy to integrate with any electronic structure code, and already integrated in FHI-aims, DFTB+, VASP, Q-Chem, CASTEP, and Quantum ESPRESSO. libMBD is written in modern Fortran with bindings to C and Python, uses MPI/ScaLAPACK for parallelization, and implements MBD for both finite and periodic systems, with analytical gradients with respect to all input parameters. The computational cost has asymptotic cubic scaling with system size, and evaluation of gradients only changes the prefactor of the scaling law, with libMBD exhibiting strong scaling up to 256 processor cores. Other MBD properties beyond energy and gradients can be calculated with libMBD, such as the charge-density polarization, first-order Coulomb correction, the dielectric function, or the order-by-order expansion of the energy in the dipole interaction. Calculations on supramolecular complexes with MBD-corrected electronic structure methods and a meta-review of previous applications of MBD demonstrate the broad applicability of the libMBD package to treat vdW interactions.
Collapse
Affiliation(s)
- Jan Hermann
- Department of Mathematics and Computer Science, FU Berlin, 14195 Berlin, Germany
| | - Martin Stöhr
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Shayantan Chaudhuri
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen, 28359 Bremen, Germany
| | - Reinhard J Maurer
- Department of Chemistry, University of Warwick, Coventry CV4 7AL, United Kingdom
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
7
|
Budiutama G, Li R, Manzhos S, Ihara M. Hybrid Density Functional Tight Binding (DFTB)─Molecular Mechanics Approach for a Low-Cost Expansion of DFTB Applicability. J Chem Theory Comput 2023. [PMID: 37450317 DOI: 10.1021/acs.jctc.3c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
The density functional-based tight binding (DFTB) method has seen a rise in adoption for materials modeling, as it offers significant improvement in scalability with accuracy comparable to the density functional theory (DFT) when good parameterizations exist. The cost reduction in DFTB compared to DFT is achieved by the pre-parameterization of the elements of the Hamiltonian matrix as well as the repulsion potential between all pairs of atoms. Parameterization for new systems with accuracies competitive with DFT in specific applications requires specialized manpower and computational resources. This prevents the application of the DFTB method to systems for which it was not parameterized. In this work, we explore an approach to address the problem of missing parameters of DFTB by modeling the interactions with missing Slater-Koster parameters with an interatomic interaction potential. When the distance between two atoms modeled at the force-field level is sufficiently large, the approach results in accurate structural and electronic properties. The resulting calculation is therefore a hybrid between DFTB and molecular mechanics, a pure DFTB for atoms with a complete set of interatomic parameterizations, and a mix between DFTB and molecular mechanics for atoms with a missing interatomic parameterization. The approach is expected to be particularly useful for hybrid materials and interfaces. The method is tested on the examples of 2D materials, mixed oxides, and a large-scale calculation of an oxide-oxide interface.
Collapse
Affiliation(s)
- Gekko Budiutama
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552 Japan
| | - Ruicheng Li
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552 Japan
| | - Sergei Manzhos
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552 Japan
| | - Manabu Ihara
- School of Materials and Chemical Technology, Tokyo Institute of Technology, Ookayama 2-12-1, Meguro-ku, Tokyo 152-8552 Japan
| |
Collapse
|
8
|
Góger S, Khabibrakhmanov A, Vaccarelli O, Fedorov DV, Tkatchenko A. Optimized Quantum Drude Oscillators for Atomic and Molecular Response Properties. J Phys Chem Lett 2023:6217-6223. [PMID: 37385598 DOI: 10.1021/acs.jpclett.3c01221] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The quantum Drude oscillator (QDO) is an efficient yet accurate coarse-grained approach that has been widely used to model electronic and optical response properties of atoms and molecules as well as polarization and dispersion interactions between them. Three effective parameters (frequency, mass, and charge) fully characterize the QDO Hamiltonian and are adjusted to reproduce response properties. However, the soaring success of coupled QDOs for many-atom systems remains fundamentally unexplained, and the optimal mapping between atoms/molecules and oscillators has not been established. Here we present an optimized parametrization (OQDO) where the parameters are fixed by using only dipolar properties. For the periodic table of elements as well as small molecules, our model accurately reproduces atomic (spatial) polarization potentials and multipolar dispersion coefficients, elucidating the high promise of the presented model in the development of next-generation quantum-mechanical force fields for (bio)molecular simulations.
Collapse
Affiliation(s)
- Szabolcs Góger
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Almaz Khabibrakhmanov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Ornella Vaccarelli
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Dmitry V Fedorov
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Alexandre Tkatchenko
- Department of Physics and Materials Science, University of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
9
|
Sami S, Marrink SJ. Reactive Martini: Chemical Reactions in Coarse-Grained Molecular Dynamics Simulations. J Chem Theory Comput 2023. [PMID: 37327401 DOI: 10.1021/acs.jctc.2c01186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Chemical reactions are ubiquitous in both materials and the biophysical sciences. While coarse-grained (CG) molecular dynamics simulations are often needed to study the spatiotemporal scales present in these fields, chemical reactivity has not been explored thoroughly in CG models. In this work, a new approach to model chemical reactivity is presented for the widely used Martini CG Martini model. Employing tabulated potentials with a single extra particle for the angle dependence, the model provides a generic framework for capturing bonded topology changes using nonbonded interactions. As a first example application, the reactive model is used to study the macrocycle formation of benzene-1,3-dithiol molecules through the formation of disulfide bonds. We show that starting from monomers, macrocycles with sizes in agreement with experimental results are obtained using reactive Martini. Overall, our reactive Martini framework is general and can be easily extended to other systems. All of the required scripts and tutorials to explain its use are provided online.
Collapse
Affiliation(s)
- Selim Sami
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Siewert J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| |
Collapse
|
10
|
Ma H, Liu J, Shang H, Fan Y, Li Z, Yang J. Multiscale quantum algorithms for quantum chemistry. Chem Sci 2023; 14:3190-3205. [PMID: 36970085 PMCID: PMC10034224 DOI: 10.1039/d2sc06875c] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 02/15/2023] [Indexed: 02/18/2023] Open
Abstract
Exploring the potential applications of quantum computers in material design and drug discovery is attracting more and more attention after quantum advantage has been demonstrated using Gaussian boson sampling. However, quantum resource requirements in material and (bio)molecular simulations are far beyond the capacity of near-term quantum devices. In this work, multiscale quantum computing is proposed for quantum simulations of complex systems by integrating multiple computational methods at different scales of resolution. In this framework, most computational methods can be implemented in an efficient way on classical computers, leaving the critical portion of the computation to quantum computers. The simulation scale of quantum computing strongly depends on available quantum resources. As a near-term scheme, we integrate adaptive variational quantum eigensolver algorithms, second-order Møller-Plesset perturbation theory and Hartree-Fock theory within the framework of the many-body expansion fragmentation approach. This new algorithm is applied to model systems consisting of hundreds of orbitals with decent accuracy on the classical simulator. This work should encourage further studies on quantum computing for solving practical material and biochemistry problems.
Collapse
Affiliation(s)
- Huan Ma
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Jie Liu
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
| | - Honghui Shang
- State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences Beijing 100190 China
| | - Yi Fan
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Zhenyu Li
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| | - Jinlong Yang
- Hefei National Laboratory, University of Science and Technology of China Hefei 230088 China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China Hefei 230026 China
| |
Collapse
|
11
|
He N, Huang M, Evangelista FA. CO Inversion on a NaCl(100) Surface: A Multireference Quantum Embedding Study. J Phys Chem A 2023; 127:1975-1987. [PMID: 36799901 PMCID: PMC9986868 DOI: 10.1021/acs.jpca.2c05844] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
We develop a multireference quantum embedding model to investigate a recent experimental observation of the isomerization of vibrationally excited CO molecules on a NaCl(100) surface [Science 2020, 367, 175-178]. To explore this mechanism, we built a reduced potential energy surface of CO interacting with NaCl(100) using a second-order multireference perturbation theory, modeling the adsorbate-surface interaction with our previously developed active space embedding theory (ASET). We considered an isolated CO molecule on NaCl(100) and a high-coverage CO monolayer (1/1), and for both we generated potential energy surfaces parametrized by the CO stretching, adsorption, and inversion coordinates. These surfaces are used to determine stationary points and adsorption energies and to perform a vibrational analysis of the states relevant to the inversion mechanism. We found that for near-equilibrium bond lengths, CO adsorbed in the C-down configuration is lower in energy than in the O-down configuration. Stretching of the C-O bond reverses the energetic order of these configurations, supporting the accepted isomerization mechanism. The vibrational constants obtained from these potential energy surfaces show a small (< 10 cm-1) blue- and red-shift for the C-down and O-down configurations, respectively, in agreement with experimental assignments and previous theoretical studies. Our vibrational analysis of the monolayer case suggests that the O-down configuration is energetically more stable than the C-down one beyond the 16th vibrational excited state of CO, a value slightly smaller than the one from quasi-classical trajectory simulations (22nd) and consistent with the experiment. Our analysis suggests that CO-CO interactions in the monolayer play an important role in stabilizing highly vibrationally excited states in the O-down configuration and reducing the barrier between the C-down and O-down geometries, therefore playing a crucial role in the inversion mechanism.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Meng Huang
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
12
|
Vuong VQ, Cevallos C, Hourahine B, Aradi B, Jakowski J, Irle S, Camacho C. Accelerating the density-functional tight-binding method using graphical processing units. J Chem Phys 2023; 158:084802. [PMID: 36859078 DOI: 10.1063/5.0130797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Acceleration of the density-functional tight-binding (DFTB) method on single and multiple graphical processing units (GPUs) was accomplished using the MAGMA linear algebra library. Two major computational bottlenecks of DFTB ground-state calculations were addressed in our implementation: the Hamiltonian matrix diagonalization and the density matrix construction. The code was implemented and benchmarked on two different computer systems: (1) the SUMMIT IBM Power9 supercomputer at the Oak Ridge National Laboratory Leadership Computing Facility with 1-6 NVIDIA Volta V100 GPUs per computer node and (2) an in-house Intel Xeon computer with 1-2 NVIDIA Tesla P100 GPUs. The performance and parallel scalability were measured for three molecular models of 1-, 2-, and 3-dimensional chemical systems, represented by carbon nanotubes, covalent organic frameworks, and water clusters.
Collapse
Affiliation(s)
- Van-Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, Tennessee 37996, USA
| | - Caterina Cevallos
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| | - Ben Hourahine
- SUPA, Department of Physics, The John Anderson Building, 107 Rottenrow East, Glasgow G4 0NG, United Kingdom
| | - Bálint Aradi
- Bremen Center for Computational Materials Science, Universität Bremen, Bremen, Germany
| | - Jacek Jakowski
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Stephan Irle
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA
| | - Cristopher Camacho
- School of Chemistry, University of Costa Rica, San José 11501-2060, Costa Rica
| |
Collapse
|
13
|
Nakata H, Fedorov DG. Analytic Gradient for Time-Dependent Density Functional Theory Combined with the Fragment Molecular Orbital Method. J Chem Theory Comput 2023; 19:1276-1285. [PMID: 36753486 DOI: 10.1021/acs.jctc.2c01177] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
The analytic energy gradient of energy with respect to nuclear coordinates is derived for the fragment molecular orbital (FMO) method combined with time-dependent density functional theory (TDDFT). The response terms arising from the use of a polarizable embedding are derived. The obtained analytic FMO-TDDFT gradient is shown to be accurate in comparison to both numerical FMO-TDDFT and unfragmented TDDFT gradients, at the level of two- and three-body expansions. The gradients are used for geometry optimizations, molecular dynamics, vibrational calculations, and simulations of IR and Raman spectra of excited states. The developed method is used to optimize the geometry of the ground and excited electronic states of the photoactive yellow protein (PDB: 2PHY).
Collapse
Affiliation(s)
- Hiroya Nakata
- Department of Chemistry, Kyungpook National University, Daegu 41566, South Korea
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
14
|
Nishimura Y, Nakai H. Species-selective nanoreactor molecular dynamics simulations based on linear-scaling tight-binding quantum chemical calculations. J Chem Phys 2023; 158:054106. [PMID: 36754823 DOI: 10.1063/5.0132573] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Here, extensions to quantum chemical nanoreactor molecular dynamics simulations for discovering complex reactive events are presented. The species-selective algorithm, where the nanoreactor effectively works for the selected desired reactants, was introduced to the original scheme. Moreover, for efficient simulations of large model systems with the modified approach, the divide-and-conquer linear-scaling density functional tight-binding method was exploited. Two illustrative applications of the polymerization of propylene and cyclopropane mixtures and the aggregation of sodium chloride from aqueous solutions indicate that species-selective quantum chemical nanoreactor molecular dynamics is a promising method to accelerate the sampling of multicomponent chemical processes proceeding under relatively mild conditions.
Collapse
Affiliation(s)
- Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| |
Collapse
|
15
|
Csizi K, Reiher M. Universal
QM
/
MM
approaches for general nanoscale applications. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2023. [DOI: 10.1002/wcms.1656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
| | - Markus Reiher
- Laboratorium für Physikalische Chemie ETH Zürich Zürich Switzerland
| |
Collapse
|
16
|
Chen WK, Fang WH, Cui G. Extending multi-layer energy-based fragment method for excited-state calculations of large covalently bonded fragment systems. J Chem Phys 2023; 158:044110. [PMID: 36725521 DOI: 10.1063/5.0129458] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Recently, we developed a low-scaling Multi-Layer Energy-Based Fragment (MLEBF) method for accurate excited-state calculations and nonadiabatic dynamics simulations of nonbonded fragment systems. In this work, we extend the MLEBF method to treat covalently bonded fragment ones. The main idea is cutting a target system into many fragments according to chemical properties. Fragments with dangling bonds are first saturated by chemical groups; then, saturated fragments, together with the original fragments without dangling bonds, are grouped into different layers. The accurate total energy expression is formulated with the many-body energy expansion theory, in combination with the inclusion-exclusion principle that is used to delete the contribution of chemical groups introduced to saturate dangling bonds. Specifically, in a two-layer MLEBF model, the photochemically active and inert layers are calculated with high-level and efficient electronic structure methods, respectively. Intralayer and interlayer energies can be truncated at the two- or three-body interaction level. Subsequently, through several systems, including neutral and charged covalently bonded fragment systems, we demonstrate that MLEBF can provide accurate ground- and excited-state energies and gradients. Finally, we realize the structure, conical intersection, and path optimizations by combining our MLEBF program with commercial and free packages, e.g., ASE and SciPy. These developments make MLEBF a practical and reliable tool for studying complex photochemical and photophysical processes of large nonbonded and bonded fragment systems.
Collapse
Affiliation(s)
- Wen-Kai Chen
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Wei-Hai Fang
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Ganglong Cui
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
17
|
Nakai H, Kobayashi M, Yoshikawa T, Seino J, Ikabata Y, Nishimura Y. Divide-and-Conquer Linear-Scaling Quantum Chemical Computations. J Phys Chem A 2023; 127:589-618. [PMID: 36630608 DOI: 10.1021/acs.jpca.2c06965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Fragmentation and embedding schemes are of great importance when applying quantum-chemical calculations to more complex and attractive targets. The divide-and-conquer (DC)-based quantum-chemical model is a fragmentation scheme that can be connected to embedding schemes. This feature article explains several DC-based schemes developed by the authors over the last two decades, which was inspired by the pioneering study of DC self-consistent field (SCF) method by Yang and Lee (J. Chem. Phys. 1995, 103, 5674-5678). First, the theoretical aspects of the DC-based SCF, electron correlation, excited-state, and nuclear orbital methods are described, followed by the two-component relativistic theory, quantum-mechanical molecular dynamics simulation, and the introduction of three programs, including DC-based schemes. Illustrative applications confirmed the accuracy and feasibility of the DC-based schemes.
Collapse
Affiliation(s)
- Hiromi Nakai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Masato Kobayashi
- Department of Chemistry, Faculty of Science, Hokkaido University, Kita 10 Nishi 8, Kita-ku, Sapporo, Hokkaido060-0810, Japan.,Institute for Chemical Reaction Design and Discovery (WPI-ICReDD), Hokkaido University, Kita 21 Nishi 10, Kita-ku, Sapporo, Hokkaido001-0021, Japan
| | - Takeshi Yoshikawa
- Faculty of Pharmaceutical Sciences, Toho University, 2-2-1 Miyama, Funabashi, Chiba274-8510, Japan
| | - Junji Seino
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan.,Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| | - Yasuhiro Ikabata
- Information and Media Center, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan.,Department of Computer Science and Engineering, Toyohashi University of Technology, 1-1 Hibarigaoka, Tempaku-cho, Toyohashi, Aichi441-8580, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo169-8555, Japan
| |
Collapse
|
18
|
Westheimer BM, Gordon MS. General, Rigorous Approach for the Treatment of Interfragment Covalent Bonds. J Phys Chem A 2022; 126:6995-7006. [PMID: 36166638 DOI: 10.1021/acs.jpca.2c04015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A generalized, projection-based transformation of the method-agnostic Fock operator in various ab initio fragment-based quantum chemistry methods has been developed for the treatment of interfragment covalent bonds. This transformation freezes the relevant localized molecular orbital associated with each interfragment bond, thereby restricting the variational subspace of the fragment wave functions, in order to maintain the proper physical characteristics of the involved covalent bonds. In addition, sets of orbitals that would lead to multiple occupancy of certain orbitals are explicitly removed from the variational space. The transformation is developed for the specific case of mutually orthonormal frozen and unfrozen orbitals within each fragment. The newly developed approach is then used to study model systems with two popular ab initio fragment-based methods, and the results of these calculations are compared to those obtained by existing methodologies. Analysis is focused on both quantitative and qualitative accuracy as well as computational scalability and stability. Other methods for which the developed formalisms are appropriate are outlined, and future extensions of the methods are discussed.
Collapse
Affiliation(s)
- Bryce M Westheimer
- Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, Ames, Iowa 50011, United States
| | - Mark S Gordon
- Iowa State University, Ames, Iowa 50011, United States.,Ames Laboratory, Ames, Iowa 50011, United States
| |
Collapse
|
19
|
Bozkaya U, Ermiş B. Linear-Scaling Systematic Molecular Fragmentation Approach for Perturbation Theory and Coupled-Cluster Methods. J Chem Theory Comput 2022; 18:5349-5359. [PMID: 35972734 PMCID: PMC9476663 DOI: 10.1021/acs.jctc.2c00587] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The coupled-cluster (CC) singles and doubles with perturbative
triples [CCSD(T)] method is frequently referred to as the “gold
standard” of modern computational chemistry. However, the high
computational cost of CCSD(T) [O(N7)], where N is the number of basis functions,
limits its applications to small-sized chemical systems. To address
this problem, efficient implementations of linear-scaling coupled-cluster
methods, which employ the systematic molecular fragmentation (SMF)
approach, are reported. In this study, we aim to do the following:
(1) To achieve exact linear scaling and to obtain a pure ab
initio approach, we revise the handling of nonbonded interactions
in the SMF approach, denoted by LSSMF. (2) A new fragmentation algorithm,
which yields smaller-sized fragments, that better fits high-level
CC methods is introduced. (3) A modified nonbonded fragmentation scheme
is proposed to enhance the existent algorithm. Performances of the
LSSMF-CC approaches, such as LSSMF-CCSD(T), are compared with their
canonical versions for a set of alkane molecules, CnH2n+2 (n = 6–10),
which includes 142 molecules. Our results demonstrate that the LSSMF
approach introduces negligible errors compared with the canonical
methods; mean absolute errors (MAEs) are between 0.20 and 0.59 kcal
mol–1 for LSSMF(3,1)-CCSD(T). For a larger alkanes
set (L12), CnH2n+2 (n = 50–70), the performance of
LSSMF for the second-order perturbation theory (MP2) is investigated.
For the L12 set, various bonded and nonbonded levels are considered.
Our results demonstrate that the combination of bonded level 6 with
nonbonded level 2, LSSMF(6,2), provides very accurate results for
the MP2 method with a MAE value of 0.32 kcal mol–1. The LSSMF(6,2) approach yields more than a 26-fold reduction in
errors compared with LSSMF(3,1). Hence, we obtain substantial improvements
over the original SMF approach. To illustrate the efficiency and applicability
of the LSSMF-CCSD(T) approach, we consider an alkane molecule with
10,004 atoms. For this molecule, the LSSMF(3,1)-CCSD(T)/cc-pVTZ energy
computation, on a Linux cluster with 100 nodes, 4 cores, and 5 GB
of memory provided to each node, is performed just in ∼24 h.
As a second test, we consider a biomolecular complex (PDB code: 1GLA), which includes
10,488 atoms, to assess the efficiency of the LSSMF approach. The
LSSMF(3,1)-FNO–CCSD(T)/cc-pVTZ energy computation is completed
in ∼7 days for the biomolecular complex. Hence, our results
demonstrate that the LSSMF-CC approaches are very efficient. Overall,
we conclude the following: (1) The LSSMF(m, n)-CCSD(T) methods can be reliably used for large-scale
chemical systems, where the canonical methods are not computationally
affordable. (2) The accuracy of bonded level 3 is not satisfactory
for large chemical systems. (3) For high-accuracy studies, bonded
level 5 (or higher) and nonbonded level 2 should be employed.
Collapse
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Betül Ermiş
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
20
|
Cencer MM, Suslick BA, Moore JS. From skeptic to believer: The power of models. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
21
|
Cofer-Shabica DV, Menger MFSJ, Ou Q, Shao Y, Subotnik JE, Faraji S. INAQS, a Generic Interface for Nonadiabatic QM/MM Dynamics: Design, Implementation, and Validation for GROMACS/Q-CHEM simulations. J Chem Theory Comput 2022; 18:4601-4614. [PMID: 35901266 DOI: 10.1021/acs.jctc.2c00204] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The accurate description of large molecular systems in complex environments remains an ongoing challenge for the field of computational chemistry. This problem is even more pronounced for photoinduced processes, as multiple excited electronic states and their corresponding nonadiabatic couplings must be taken into account. Multiscale approaches such as hybrid quantum mechanics/molecular mechanics (QM/MM) offer a balanced compromise between accuracy and computational burden. Here, we introduce an open-source software package (INAQS) for nonadiabatic QM/MM simulations that bridges the sampling capabilities of the GROMACS MD package and the excited-state infrastructure of the Q-CHEM electronic structure software. The interface is simple and can be adapted easily to other MD codes. The code supports a variety of different trajectory-based molecular dynamics, ranging from Born-Oppenheimer to surface hopping dynamics. To illustrate the power of this combination, we simulate electronic absorption spectra, free-energy surfaces along a reaction coordinate, and the excited-state dynamics of 1,3-cyclohexadiene in solution.
Collapse
Affiliation(s)
- D Vale Cofer-Shabica
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Maximilian F S J Menger
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| | - Qi Ou
- AI for Science Institute, Beijing 100080, China
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Joseph E Subotnik
- Department of Chemistry, University of Pennsylvania, 231 S. 34 Street, Cret Wing 141D, Philadelphia, Pennsylvania 19104-6243, United States
| | - Shirin Faraji
- Zernike Institute for Advanced Materials, Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747AG Groningen, The Netherlands
| |
Collapse
|
22
|
Hubman A, Urbic T. Structure and thermodynamics of a 2D Lennard-Jones hexagonal fluid. MOLECULAR SIMULATION 2022; 48:1435-1444. [PMID: 37727614 PMCID: PMC10508885 DOI: 10.1080/08927022.2022.2096219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 06/20/2022] [Indexed: 10/17/2022]
Abstract
The thermodynamic and structural properties of the 2D hexagonal soft-sites fluid are examined by integral equation theory benchmarked against extensive Monte Carlo simulations. Hexamers are built of six equal Lennard-Jones segments. Site-site integral equation theory is used to compute site-site correlation functions, excess internal energies and isotherms over a wide range of conditions and compared with results obtained from Monte Carlo simulations. Various approaches for computing the pressure are discussed as well. Satisfactory qualitative agreement between theory and simulations is found with details depending on the applied closure relation.
Collapse
Affiliation(s)
- Anže Hubman
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| | - Tomaz Urbic
- Faculty of Chemistry and Chemical Technology, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
23
|
Liang W, Pei Z, Mao Y, Shao Y. Evaluation of molecular photophysical and photochemical properties using linear response time-dependent density functional theory with classical embedding: Successes and challenges. J Chem Phys 2022; 156:210901. [PMID: 35676148 PMCID: PMC9162785 DOI: 10.1063/5.0088271] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/15/2022] [Indexed: 01/04/2023] Open
Abstract
Time-dependent density functional theory (TDDFT) based approaches have been developed in recent years to model the excited-state properties and transition processes of the molecules in the gas-phase and in a condensed medium, such as in a solution and protein microenvironment or near semiconductor and metal surfaces. In the latter case, usually, classical embedding models have been adopted to account for the molecular environmental effects, leading to the multi-scale approaches of TDDFT/polarizable continuum model (PCM) and TDDFT/molecular mechanics (MM), where a molecular system of interest is designated as the quantum mechanical region and treated with TDDFT, while the environment is usually described using either a PCM or (non-polarizable or polarizable) MM force fields. In this Perspective, we briefly review these TDDFT-related multi-scale models with a specific emphasis on the implementation of analytical energy derivatives, such as the energy gradient and Hessian, the nonadiabatic coupling, the spin-orbit coupling, and the transition dipole moment as well as their nuclear derivatives for various radiative and radiativeless transition processes among electronic states. Three variations of the TDDFT method, the Tamm-Dancoff approximation to TDDFT, spin-flip DFT, and spin-adiabatic TDDFT, are discussed. Moreover, using a model system (pyridine-Ag20 complex), we emphasize that caution is needed to properly account for system-environment interactions within the TDDFT/MM models. Specifically, one should appropriately damp the electrostatic embedding potential from MM atoms and carefully tune the van der Waals interaction potential between the system and the environment. We also highlight the lack of proper treatment of charge transfer between the quantum mechanics and MM regions as well as the need for accelerated TDDFT modelings and interpretability, which calls for new method developments.
Collapse
Affiliation(s)
- WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Zheng Pei
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, People’s Republic of China
| | - Yuezhi Mao
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | - Yihan Shao
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, USA
| |
Collapse
|
24
|
Fedorov DG. Polarization energies in the fragment molecular orbital method. J Comput Chem 2022; 43:1094-1103. [PMID: 35446441 DOI: 10.1002/jcc.26869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 03/25/2022] [Accepted: 04/05/2022] [Indexed: 12/23/2022]
Abstract
Using isolated and polarized states of fragments, a method for computing the polarization energies in density functional theory (DFT) and density-functional tight-binding (DFTB) is developed in the framework of the fragment molecular orbital method. For DFTB, the method is extended into the use of periodic boundary conditions (PBC), for which a new component, a periodic self-polarization energy, is derived. The couplings of the polarization to other components in the pair interaction energy analysis (PIEDA) are derived for DFT and DFTB, and compared to Hartree-Fock and second-order Møller-Plesset perturbation theory (MP2). The effect of the self-consistent (DFT) and perturbative (MP2) treatment of the electron correlation on the polarization is discussed. The difference in the polarization in the bulk (PBC) and micro (cluster) solvation is elucidated.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| |
Collapse
|
25
|
Nakamura T, Fedorov DG. The catalytic activity and adsorption in faujasite and ZSM-5 zeolites: the role of differential stabilization and charge delocalization. Phys Chem Chem Phys 2022; 24:7739-7747. [PMID: 35293902 DOI: 10.1039/d1cp05851g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Adsorption and chemical reactions occurring on industrially important ZSM-5 and faujasite zeolite catalysts are investigated with the quantum-mechanical fragment molecular orbital method combined with periodic boundary conditions. Suitable fragmentation patterns are devised and tested providing important case studies of computing real materials with fragmentation methods. A good accuracy is demonstrated in comparison to full calculations, and a good agreement with the available experimental data is obtained. The full production cycle of p-xylene on faujasite zeolite is mapped. The catalytic role of the zeolite in the dehydration reaction, analyzed with the partition analysis, is attributed to the delocalization of the negative charge over the zeolite. On the other hand, an increase of the barrier in the Diels-Alder reaction by the zeolite is attributed to the preferential stabilization of the reactants over the transition state as demonstrated by the guest-zeolite interaction energy.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba, 305-8568, Japan
| |
Collapse
|
26
|
Liu J, Fan Y, Li Z, Yang J. Quantum algorithms for electronic structures: basis sets and boundary conditions. Chem Soc Rev 2022; 51:3263-3279. [PMID: 35352716 DOI: 10.1039/d1cs01184g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The advantages of quantum computers are believed to significantly change the research paradigm of chemical and materials sciences, where computational characterization and theoretical design play an increasingly important role. It is especially desirable to solve the electronic structure problem, a central problem in chemistry and materials science, efficiently and accurately with well-designed quantum algorithms. Various quantum electronic-structure algorithms have been proposed in the literature. In this article, we briefly review recent progress in this direction with a special emphasis on the basis sets and boundary conditions. Compared to classical electronic structure calculations, there are new considerations in choosing a basis set in quantum algorithms. For example, the effect of the basis set on the circuit complexity is very important in quantum algorithm design. Electronic structure calculations should be performed with an appropriate boundary condition. Simply using a wave function ansatz designed for molecular systems in a material system with a periodic boundary condition may lead to significant errors. Artificial boundary conditions can be used to partition a large system into smaller fragments to save quantum resources. The basis sets and boundary conditions are expected to play a crucial role in electronic structure calculations on future quantum computers, especially for realistic systems.
Collapse
Affiliation(s)
- Jie Liu
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Yi Fan
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Zhenyu Li
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| | - Jinlong Yang
- Hefei National Laboratory for Physical Sciences at Microscale, University of Science and Technology of China, Hefei, Anhui 230026, China.
| |
Collapse
|
27
|
Chodkiewicz M, Pawlędzio S, Woińska M, Woźniak K. Fragmentation and transferability in Hirshfeld atom refinement. IUCRJ 2022; 9:298-315. [PMID: 35371499 PMCID: PMC8895009 DOI: 10.1107/s2052252522000690] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 01/19/2022] [Indexed: 05/06/2023]
Abstract
Hirshfeld atom refinement (HAR) is one of the most effective methods for obtaining accurate structural parameters for hydrogen atoms from X-ray diffraction data. Unfortunately, it is also relatively computationally expensive, especially for larger molecules due to wavefunction calculations. Here, a fragmentation approach has been tested as a remedy for this problem. It gives an order of magnitude improvement in computation time for larger organic systems and is a few times faster for metal-organic systems at the cost of only minor differences in the calculated structural parameters when compared with the original HAR calculations. Fragmentation was also applied to polymeric and disordered systems where it provides a natural solution to problems that arise when HAR is applied. The concept of fragmentation is closely related to the transferable aspherical atom model (TAAM) and allows insight into possible ways to improve TAAM. Hybrid approaches combining fragmentation with the transfer of atomic densities between chemically similar atoms have been tested. An efficient handling of intermolecular interactions was also introduced for calculations involving fragmentation. When applied in fragHAR (a fragmentation approach for polypeptides) as a replacement for the original approach, it allowed for more efficient calculations. All of the calculations were performed with a locally modified version of Olex2 combined with a development version of discamb2tsc and ORCA. Care was taken to efficiently use the power of multicore processors by simple implementation of load-balancing, which was found to be very important for lowering computational time.
Collapse
Affiliation(s)
- Michał Chodkiewicz
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Sylwia Pawlędzio
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Magdalena Woińska
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| | - Krzysztof Woźniak
- Biological and Chemical Research Centre, Department of Chemistry, University of Warsaw, Żwirki i Wigury 101, Warszawa 02-089, Poland
| |
Collapse
|
28
|
Fedorov DG, Nakamura T. Free Energy Decomposition Analysis Based on the Fragment Molecular Orbital Method. J Phys Chem Lett 2022; 13:1596-1601. [PMID: 35142207 DOI: 10.1021/acs.jpclett.2c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A decomposition of the free energy is developed in the many-body expansion framework of the fragment molecular orbital (FMO) method combined with umbrella sampling molecular dynamics (MD). In FMO/MD simulations, performed with density-functional tight-binding and periodic boundary conditions, all atoms are treated quantum mechanically. The free energy is computed and decomposed for a series of SN2 Menshutkin reactions in water. The barrier lowering by the solvent is attributed to the competition between the solvent polarization and the solute-solvent interactions including charge transfer.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
29
|
Abstract
Quantum embedding schemes are a promising way to extend multireference computations to large molecules with strong correlation effects localized on a small number of atoms. This work introduces a second-order active-space embedding theory [ASET(2)] which improves upon mean-field frozen embedding by treating fragment-environment interactions via an approximate canonical transformation. The canonical transformation employed in ASET(2) is formulated using the driven similarity renormalization group. The ASET(2) scheme is benchmarked on the N═N bond dissociation in pentyldiazene, the S0 to S1 excitation in 1-octene, and the interaction energy of the O2-benzene complex. The ASET(2) explicit treatment of fragment-environment interactions beyond the mean-field level generally improves the accuracy of embedded computations, and it becomes necessary to achieve an accurate description of excitation energies of 1-octene and the singlet-triplet gap of the O2-benzene complex.
Collapse
Affiliation(s)
- Nan He
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| | - Chenyang Li
- Key Laboratory of Theoretical and Computational Photochemistry, Ministry of Education, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Francesco A Evangelista
- Department of Chemistry and Cherry Emerson Center for Scientific Computation, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
30
|
Nakamura T, Yokaichiya T, Fedorov DG. Analysis of Guest Adsorption on Crystal Surfaces Based on the Fragment Molecular Orbital Method. J Phys Chem A 2022; 126:957-969. [PMID: 35080391 DOI: 10.1021/acs.jpca.1c10229] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
For gaining insights into interactions in periodic systems, an analysis is developed based on the fragment molecular orbital method combined with periodic boundary conditions. The adsorption energy is decomposed into guest and surface polarization and deformation energy, guest-surface and guest-guest interactions, and the vibrational free energy. The analysis is applied to the adsorption of guest molecules to Ih (001) ice surface. The cooperativity effects result in a non-linear change in the adsorption energy with coverage due to many-body effects. The role of dispersion is found to be dominant for guests with long hydrophobic tails. A rule is proposed relating the length of the alkyl tail with the formation of the guest layer. The computed binding enthalpies are in good agreement with experimental values. For high coverage, adsorbed molecules can form an ordered layer known as self-assembled monolayer.
Collapse
Affiliation(s)
- Taiji Nakamura
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Tomoko Yokaichiya
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
31
|
Tölle J, Neugebauer J. The Seamless Connection of Local and Collective Excited States in Subsystem Time-Dependent Density Functional Theory. J Phys Chem Lett 2022; 13:1003-1018. [PMID: 35061387 DOI: 10.1021/acs.jpclett.1c04023] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
The theoretical understanding of photoinduced processes in multichromophoric systems requires, as an essential ingredient, the possibility of accurately describing their electronically excited states. However, the size of these systems often prohibits the usage of conventional electronic-structure methods, so that often multiscale approaches based on phenomenologically motivated models are employed. In contrast, subsystem time-dependent density functional theory (sTDDFT) allows for a subsystem-based ab initio description of multichromophoric systems and therefore allows for, in principle, an exact description of photoinduced processes. This Perspective aims to outline the theoretical foundations and commonly used practical realizations as well as to illustrate benefits of recent developments and open issues in the field of sTDDFT. Prospective, potential future applications and possible methodological developments are discussed.
Collapse
Affiliation(s)
- Johannes Tölle
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
32
|
Bozkaya U, Ermiş B, Alagöz Y, Ünal A, Uyar AK. MacroQC 1.0: An electronic structure theory software for large-scale applications. J Chem Phys 2022; 156:044801. [DOI: 10.1063/5.0077823] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
- Uğur Bozkaya
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Betül Ermiş
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Yavuz Alagöz
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Aslı Ünal
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| | - Ali Kaan Uyar
- Department of Chemistry, Hacettepe University, Ankara 06800, Turkey
| |
Collapse
|
33
|
Westheimer BM, Gordon MS. Scalable ab initio fragmentation methods based on a truncated expansion of the non-orthogonal molecular orbital model. J Chem Phys 2021; 155:154101. [PMID: 34686043 DOI: 10.1063/5.0064864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
An alternative formulation of the non-orthogonal molecular orbital model of electronic structure theory is developed based on the expansion of the inverse molecular orbital overlap matrix. From this model, a hierarchy of ab initio fragment-based quantum chemistry methods, referred to as the nth-order expanded non-orthogonal molecular orbital methods, are developed using a minimal number of approximations, each of which is frequently employed in intermolecular interaction theory. These novel methods are compared to existing fragment-based quantum chemistry methods, and the implications of those significant differences, where they exist, between the methods developed herein and those already existing methods are examined in detail. Computational complexities and theoretical scaling are also analyzed and discussed. Future extensions for the hierarchy of methods, to account for additional intrafragment and interfragment interactions, are outlined.
Collapse
Affiliation(s)
| | - Mark S Gordon
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
34
|
Scholz L, Neugebauer J. Protein Response Effects on Cofactor Excitation Energies from First Principles: Augmenting Subsystem Time-Dependent Density-Functional Theory with Many-Body Expansion Techniques. J Chem Theory Comput 2021; 17:6105-6121. [PMID: 34524815 DOI: 10.1021/acs.jctc.1c00551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
We investigate the possibility of describing protein response effects on a chromophore excitation by means of subsystem time-dependent density-functional theory (sTDDFT) in combination with a many-body expansion (MBE) approach. While sTDDFT is in principle intrinsically able to include such contributions, addressing cofactor excitations in protein models or entire proteins with full environment-response treatments is currently out of reach. Taking different model structures of the green fluorescent protein (GFP) and bovine rhodopsin as examples, we demonstrate that an embedded-MBE approach based on sTDDFT in its simplest version leads to a good agreement of the predicted protein response effect already at second order. To reproduce reference response effects from nonsubsystem TDDFT calculations quantitatively (error ≤ 5%), however, a third- or even fourth-order MBE may be required. For the latter case, we explore a selective inclusion of fourth-order terms that drastically reduces the computational burden. In addition, we demonstrate how this sTDDFT-MBE treatment can be utilized as an analysis tool to identify residues with dominant response contributions. This, in turn, can be employed to arrive at smaller structural models for light-absorbing proteins, which still feature all of the main characteristics in terms of photoresponse properties.
Collapse
Affiliation(s)
- Linus Scholz
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| | - Johannes Neugebauer
- Theoretische Organische Chemie, Organisch-Chemisches Institut and Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149 Münster, Germany
| |
Collapse
|
35
|
Redd JJ, Cancio AC. Analysis of atomic Pauli potentials and their large-Z limit. J Chem Phys 2021; 155:134112. [PMID: 34624989 DOI: 10.1063/5.0059283] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Modeling the Pauli energy, the contribution to the kinetic energy caused by Pauli statistics, without using orbitals is the open problem of orbital-free density functional theory. An important aspect of this problem is correctly reproducing the Pauli potential, the response of the Pauli kinetic energy to a change in density. We analyze the behavior of the Pauli potential of non-relativistic neutral atoms under Lieb-Simon scaling-the process of taking nuclear charge and particle number to infinity, in which the kinetic energy tends to the Thomas-Fermi limit. We do this by mathematical analysis of the near-nuclear region and by calculating the exact orbital-dependent Pauli potential using the approach of Levy and Ouyang for closed-shell atoms out to element Z = 976. In rough analogy to Lieb and Simon's own findings for the charge density, we find that the potential does not converge smoothly to the Thomas-Fermi limit on a point-by-point basis but separates into several distinct regions of behavior. Near the nucleus, the potential approaches a constant given by the difference in energy between the lowest and highest occupied eigenvalues. We discover a transition region in the outer core where the potential deviates unexpectedly and predictably from both the Thomas-Fermi potential and the gradient expansion correction to it. These results may provide insight into the semi-classical description of Pauli statistics and new constraints to aid the improvement of orbital-free density functional theory functionals.
Collapse
Affiliation(s)
- Jeremy J Redd
- Department of Physics, Utah Valley University, Orem, Utah 84058, USA
| | - Antonio C Cancio
- Department of Physics and Astronomy, Ball State University, Muncie, Indiana 47306, USA
| |
Collapse
|
36
|
Electron density from the fragment molecular orbital method combined with density-functional tight-binding. Chem Phys Lett 2021. [DOI: 10.1016/j.cplett.2021.138900] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
37
|
Westermayr J, Marquetand P. Machine Learning for Electronically Excited States of Molecules. Chem Rev 2021; 121:9873-9926. [PMID: 33211478 PMCID: PMC8391943 DOI: 10.1021/acs.chemrev.0c00749] [Citation(s) in RCA: 173] [Impact Index Per Article: 57.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Indexed: 12/11/2022]
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data
Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
38
|
Keith JA, Vassilev-Galindo V, Cheng B, Chmiela S, Gastegger M, Müller KR, Tkatchenko A. Combining Machine Learning and Computational Chemistry for Predictive Insights Into Chemical Systems. Chem Rev 2021; 121:9816-9872. [PMID: 34232033 PMCID: PMC8391798 DOI: 10.1021/acs.chemrev.1c00107] [Citation(s) in RCA: 223] [Impact Index Per Article: 74.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Indexed: 12/23/2022]
Abstract
Machine learning models are poised to make a transformative impact on chemical sciences by dramatically accelerating computational algorithms and amplifying insights available from computational chemistry methods. However, achieving this requires a confluence and coaction of expertise in computer science and physical sciences. This Review is written for new and experienced researchers working at the intersection of both fields. We first provide concise tutorials of computational chemistry and machine learning methods, showing how insights involving both can be achieved. We follow with a critical review of noteworthy applications that demonstrate how computational chemistry and machine learning can be used together to provide insightful (and useful) predictions in molecular and materials modeling, retrosyntheses, catalysis, and drug design.
Collapse
Affiliation(s)
- John A. Keith
- Department
of Chemical and Petroleum Engineering Swanson School of Engineering, University of Pittsburgh, Pittsburgh, Pennsylvania 15261, United States
| | - Valentin Vassilev-Galindo
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| | - Bingqing Cheng
- Accelerate
Programme for Scientific Discovery, Department
of Computer Science and Technology, 15 J. J. Thomson Avenue, Cambridge CB3 0FD, United Kingdom
| | - Stefan Chmiela
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Michael Gastegger
- Department
of Software Engineering and Theoretical Computer Science, Technische Universität Berlin, 10587, Berlin, Germany
| | - Klaus-Robert Müller
- Machine
Learning Group, Technische Universität
Berlin, 10587, Berlin, Germany
- Department
of Artificial Intelligence, Korea University, Anam-dong, Seongbuk-gu, Seoul, 02841, Korea
- Max-Planck-Institut für Informatik, 66123 Saarbrücken, Germany
- Google Research, Brain Team, 10117 Berlin, Germany
| | - Alexandre Tkatchenko
- Department
of Physics and Materials Science, University
of Luxembourg, L-1511 Luxembourg City, Luxembourg
| |
Collapse
|
39
|
Abstract
Electronically excited states of molecules are at the heart of photochemistry, photophysics, as well as photobiology and also play a role in material science. Their theoretical description requires highly accurate quantum chemical calculations, which are computationally expensive. In this review, we focus on not only how machine learning is employed to speed up such excited-state simulations but also how this branch of artificial intelligence can be used to advance this exciting research field in all its aspects. Discussed applications of machine learning for excited states include excited-state dynamics simulations, static calculations of absorption spectra, as well as many others. In order to put these studies into context, we discuss the promises and pitfalls of the involved machine learning techniques. Since the latter are mostly based on quantum chemistry calculations, we also provide a short introduction into excited-state electronic structure methods and approaches for nonadiabatic dynamics simulations and describe tricks and problems when using them in machine learning for excited states of molecules.
Collapse
Affiliation(s)
- Julia Westermayr
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Vienna Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währinger Strasse 17, 1090 Vienna, Austria
- Data Science @ Uni Vienna, University of Vienna, Währinger Strasse 29, 1090 Vienna, Austria
| |
Collapse
|
40
|
Zobel JP, González L. The Quest to Simulate Excited-State Dynamics of Transition Metal Complexes. JACS AU 2021; 1:1116-1140. [PMID: 34467353 PMCID: PMC8397362 DOI: 10.1021/jacsau.1c00252] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Indexed: 05/15/2023]
Abstract
This Perspective describes current computational efforts in the field of simulating photodynamics of transition metal complexes. We present the typical workflows and feature the strengths and limitations of the different contemporary approaches. From electronic structure methods suitable to describe transition metal complexes to approaches able to simulate their nuclear dynamics under the effect of light, we give particular attention to build a bridge between theory and experiment by critically discussing the different models commonly adopted in the interpretation of spectroscopic experiments and the simulation of particular observables. Thereby, we review all the studies of excited-state dynamics on transition metal complexes, both in gas phase and in solution from reduced to full dimensionality.
Collapse
Affiliation(s)
- J. Patrick Zobel
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| | - Leticia González
- Institute
of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
- Vienna
Research Platform on Accelerating Photoreaction Discovery, University of Vienna, Währingerstr. 19, 1090 Vienna Austria
| |
Collapse
|
41
|
Abstract
Vibrational energies are partitioned into the contributions of molecular parts called segments, for instance, residues in proteins. The fragment molecular orbital method is used to facilitate vibrational calculations of large systems at the DFTB and HF-3c levels. The vibrational analysis is combined with the partitioning of the electronic energy, yielding free-energy contributions of segments to the binding energy, pinpointing hot spots for drug discovery and other studies. The analysis is illustrated on two protein-ligand complexes in solution.
Collapse
Affiliation(s)
- Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), Central 2, Umezono 1-1-1, Tsukuba 305-8568, Japan
| |
Collapse
|
42
|
Abstract
Abstract
Theoretical and computational chemistry aims to develop chemical theory and to apply numerical computation and simulation to reveal the mechanism behind complex chemical phenomena via quantum theory and statistical mechanics. Computation is the third pillar of scientific research together with theory and experiment. Computation enables scientists to test, discover, and build models/theories of the corresponding chemical phenomena. Theoretical and computational chemistry has been advanced to a new era due to the development of high-performance computational facilities and artificial intelligence approaches. The tendency to merge electronic structural theory with quantum chemical dynamics and statistical mechanics is of increasing interest because of the rapid development of on-the-fly dynamic simulations for complex systems plus low-scaling electronic structural theory. Another challenging issue lies in the transition from order to disorder, from thermodynamics to dynamics, and from equilibrium to non-equilibrium. Despite an increasingly rapid emergence of advances in computational power, detailed criteria for databases, effective data sharing strategies, and deep learning workflows have yet to be developed. Here, we outline some challenges and limitations of the current artificial intelligence approaches with an outlook on the potential future directions for chemistry in the big data era.
Collapse
|
43
|
Nishimoto Y, Fedorov DG. The fragment molecular orbital method combined with density-functional tight-binding and periodic boundary conditions. J Chem Phys 2021; 154:111102. [PMID: 33752370 DOI: 10.1063/5.0039520] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The density-functional tight-binding (DFTB) formulation of the fragment molecular orbital method is combined with periodic boundary conditions. Long-range electrostatics and dispersion are evaluated with the Ewald summation technique. The first analytic derivatives of the energy with respect to atomic coordinates and lattice parameters are formulated. The accuracy of the method is established in comparison to numerical gradients and DFTB without fragmentation. The largest elementary cell in this work has 1631 atoms. The method is applied to elucidate the polarization, charge transfer, and interactions in the solution.
Collapse
Affiliation(s)
- Yoshio Nishimoto
- Graduate School of Science, Kyoto University, Kitashirakawa Oiwakecho, Sakyoku, Kyoto 606-8502, Japan
| | - Dmitri G Fedorov
- Research Center for Computational Design of Advanced Functional Materials (CD-FMat), National Institute of Advanced Industrial Science and Technology (AIST), 1-1-1 Umezono, Tsukuba, Ibaraki 305-8568, Japan
| |
Collapse
|
44
|
Abstract
Computational methods for modeling biochemical processes implemented in GAMESS package are reviewed; in particular, quantum mechanics combined with molecular mechanics (QM/MM), semi-empirical, and fragmentation approaches. A detailed summary of capabilities is provided for the QM/MM implementation in QuanPol program and the fragment molecular orbital (FMO) method. Molecular modeling and visualization packages useful for biochemical simulations with GAMESS are described. GAMESS capabilities with corresponding references are tabulated for reader's convenience.
Collapse
|
45
|
Vuong VQ, Madridejos JML, Aradi B, Sumpter BG, Metha GF, Irle S. Density-functional tight-binding for phosphine-stabilized nanoscale gold clusters. Chem Sci 2020; 11:13113-13128. [PMID: 34094493 PMCID: PMC8163209 DOI: 10.1039/d0sc04514d] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 10/21/2020] [Indexed: 12/19/2022] Open
Abstract
We report a parameterization of the second-order density-functional tight-binding (DFTB2) method for the quantum chemical simulation of phosphine-ligated nanoscale gold clusters, metalloids, and gold surfaces. Our parameterization extends the previously released DFTB2 "auorg" parameter set by connecting it to the electronic parameter of phosphorus in the "mio" parameter set. Although this connection could technically simply be accomplished by creating only the required additional Au-P repulsive potential, we found that the Au 6p and P 3d virtual atomic orbital energy levels exert a strong influence on the overall performance of the combined parameter set. Our optimized parameters are validated against density functional theory (DFT) geometries, ligand binding and cluster isomerization energies, ligand dissociation potential energy curves, and molecular orbital energies for relevant phosphine-ligated Au n clusters (n = 2-70), as well as selected experimental X-ray structures from the Cambridge Structural Database. In addition, we validate DFTB simulated far-IR spectra for several phosphine- and thiolate-ligated gold clusters against experimental and DFT spectra. The transferability of the parameter set is evaluated using DFT and DFTB potential energy surfaces resulting from the chemisorption of a PH3 molecule on the gold (111) surface. To demonstrate the potential of the DFTB method for quantum chemical simulations of metalloid gold clusters that are challenging for traditional DFT calculations, we report the predicted molecular geometry, electronic structure, ligand binding energy, and IR spectrum of Au108S24(PPh3)16.
Collapse
Affiliation(s)
- Van Quan Vuong
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville TN USA
| | | | - Bálint Aradi
- Bremen Center for Computational Materials Science, University of Bremen Bremen Germany
| | - Bobby G Sumpter
- Center for Nanophase Materials Sciences, Oak Ridge National Laboratory Oak Ridge TN USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory Oak Ridge TN USA
| | - Gregory F Metha
- Department of Chemistry, The University of Adelaide South Australia 5005 Australia
| | - Stephan Irle
- Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee Knoxville TN USA
- Computational Sciences and Engineering Division, Oak Ridge National Laboratory Oak Ridge TN USA
| |
Collapse
|
46
|
Liu Y, Hu J, Hou H, Wang B. Development and application of a ReaxFF reactive force field for molecular dynamics of perfluorinatedketones thermal decomposition. Chem Phys 2020. [DOI: 10.1016/j.chemphys.2020.110888] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
47
|
Ono J, Imai M, Nishimura Y, Nakai H. Hydroxide Ion Carrier for Proton Pumps in Bacteriorhodopsin: Primary Proton Transfer. J Phys Chem B 2020; 124:8524-8539. [DOI: 10.1021/acs.jpcb.0c05507] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Junichi Ono
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
| | - Minori Imai
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yoshifumi Nishimura
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Hiromi Nakai
- Waseda Research Institute for Science and Engineering (WISE), Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB), Kyoto University, 1-30 Goryo-Ohara, Nishikyo-ku, Kyoto 615-8245, Japan
- Department of Chemistry and Biochemistry, School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| |
Collapse
|
48
|
Mosquera MA, Jones LO, Borca CH, Ratner MA, Schatz GC. Domain Separated Density Functional Theory for Reaction Energy Barriers and Optical Excitations. J Phys Chem A 2020; 124:5954-5962. [DOI: 10.1021/acs.jpca.0c03596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Martín A. Mosquera
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Carlos H. Borca
- Department of Chemical and Biological Engineering, Princeton University, 41 Olden Street, Princeton, New Jersey 08544, United States
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| |
Collapse
|
49
|
ReaxFF reactive force field development and application for molecular dynamics simulations of heptafluoroisobutyronitrile thermal decomposition. Chem Phys Lett 2020. [DOI: 10.1016/j.cplett.2020.137554] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
He J, Casanova D, Fang WH, Long R, Prezhdo OV. MAI Termination Favors Efficient Hole Extraction and Slow Charge Recombination at the MAPbI 3/CuSCN Heterojunction. J Phys Chem Lett 2020; 11:4481-4489. [PMID: 32423207 DOI: 10.1021/acs.jpclett.0c01467] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Photoinduced charge separation is the key step determining the efficiency of photon-to-electron conversion in solar cells, while charge carrier lifetimes govern the overall solar cell performance. Experiments report that copper(I) thiocyanate (CuSCN) is a very promising hole extraction layer for perovskite solar cells. Using nonadiabatic molecular dynamics combined with ab initio time-domain density functional theory, we show that termination of CH3NH3PbI3 (MAPbI3) at MAPbI3/CuSCN heterojunctions has a strong influence on both charge separation and recombination. Both processes are favored by MAI termination, compared to PbI2 termination. Because the MAPbI3 valence band originates from iodine orbitals while the conduction band arises from Pb orbitals, MAI termination places holes close to CuSCN, favoring extraction, and creates an MAI barrier for recombination of electrons in MAPbI3 and holes in CuSCN. The opposite is true for PbI2 termination. The origin of these effects is attributed solely to the properties of the MAPbI3 surfaces, and therefore, the conclusions should apply to other hole-transporting materials and can be generalized to other perovskites. Importantly, the simulations show that the injected hole remains hot for several hundreds of femtoseconds, allowing it to escape the interfacial region and prevent formation of bound excitons. This study suggests that metal halide perovskites should be treated with an organic precursor, such as MAI, prior to the formation of their interfaces with hole-transporting materials. The reported results advance the fundamental understanding of the highly unusual properties of metal halide perovskites and provide specific guidelines for optimizing the performance of perovskite solar cells and other devices.
Collapse
Affiliation(s)
- Jinlu He
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - David Casanova
- Donostia International Physics Center (DIPC), 20018 Donostia, Euskadi, Spain
- IKERBASQUE, Basque Foundation for Science, 48013 Bilbao, Euskadi, Spain
| | - Wei-Hai Fang
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Run Long
- College of Chemistry, Key Laboratory of Theoretical & Computational Photochemistry of Ministry of Education, Beijing Normal University, Beijing 100875, P. R. China
| | - Oleg V Prezhdo
- Department of Chemistry, University of Southern California, Los Angeles, California 90089, United States
| |
Collapse
|