1
|
Brand RD, Maass M, Grebenyuk AG, Golub AA, Smarsly BM. Commercial Silica Materials Functionalized with a Versatile Organocatalyst for the Catalysis Of Acylation Reactions in Liquid Media. Chemphyschem 2024:e202400936. [PMID: 39562301 DOI: 10.1002/cphc.202400936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/17/2024] [Accepted: 11/18/2024] [Indexed: 11/21/2024]
Abstract
Silica materials, natural and synthetic variants, represent a promising material for the application in heterogeneous organocatalysis due to their readily modifiable surface and chemical inertness. To achieve high catalyst loadings, usually, porous carriers with high surface areas are used, such as silica monoliths or spherical particles for packed bed reactors. While these commercial materials were shown to be efficient supports, their synthesis is elaborate, and thus less complex and cheaper alternatives are of interest, especially considering scaling up for potential applications. In this work, two commercial silica materials functionalized with the organocatalyst 4-(dimethylamino)pyridine (DMAP) were used in catalytic acylation reactions: a mesoporous silica gel (Siliabond-DMAP) and non-porous silica nanoparticles (Ludox). While both were successfully used in the acylation of phenylethanol, the latter required significantly longer reaction times, presumably due to the lack of mesopores and the associated spatial confinement, as well as agglomeration that limits the active amount of catalyst. Furthermore, we find that the influence of the linker molecule is negligible, since for two different linker motifs the reaction yields and activation energy remain largely similar. Lastly, as main result the commercial material Siliabond-DMAP, despite the non-uniform particles, were employed in a flow setup, thus demonstrating the potential as support material for application in heterogeneous organocatalysis.
Collapse
Affiliation(s)
- Raoul D Brand
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Mareike Maass
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Anatoliy G Grebenyuk
- Department of Quantum Chemistry and Chemical Physics of Nanosystems, Chuiko Institute of Surface Chemistry of National Academy of Sciences of Ukraine, 17 General Naumov Street, 03164, Kyiv, Ukraine
| | - Alexander A Golub
- Department of Chemistry, National University of Kyiv-Mohyla Academy, 2 Skovoroda Street, 04070, Kyiv, Ukraine
| | - Bernd M Smarsly
- Institute of Physical Chemistry, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
- Center for Materials Research, Heinrich-Buff-Ring 16, D-35392, Giessen, Germany
| |
Collapse
|
2
|
Luo B, Dong W, Ma Q, Yang H, Tang W. Synthesis of Biheteroaryls by Pd-Catalyzed Homocoupling of Heteroaryl Bromides. Org Lett 2024; 26:8736-8740. [PMID: 39373387 DOI: 10.1021/acs.orglett.4c03060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Symmetrical biheteroaryl compounds, such as bypyridines and bipyrazoles, are important ligands in transition-metal catalysis. They also serve as synthetic precursors of photo catalysts/sensitizers, bioactive agents, and energetic materials. To facilitate the concise synthesis of these useful structures, an efficient Pd-catalyzed homocoupling of heteroaryl bromides has been successfully established using the electron-rich and sterically hindered monophosphorus ligand BIDIME. The coupling protocol features a tandem Miyaura borylation/Suzuki coupling sequence and exhibits unprecedented tolerance of a wide range of heteroaryl bromides, providing a series of symmetrical biheteroaryls in moderate to good yields. Notably, the use of the corresponding polymeric ligand, PolyBIDIME, enabled the recycling of a palladium catalyst, demonstrating the potential of the homocoupling in practical applications.
Collapse
Affiliation(s)
- Bangke Luo
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenfeng Dong
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Qianjiao Ma
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - He Yang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
3
|
Lin Y, Xu G, Tang W. Chiral Polymeric Diamine Ligands for Iridium-Catalyzed Asymmetric Transfer Hydrogenation. J Am Chem Soc 2024; 146:27736-27744. [PMID: 39319748 DOI: 10.1021/jacs.4c09516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
A series of polymeric chiral diamine ligands are developed by diboron-templated asymmetric reductive couplings, and their iridium complexes Ir-polydiamines are efficient and recyclable catalysts for asymmetric transfer hydrogenation (ATH) of functionalized ketones, affording a series of optically active secondary alcohols in excellent enantioselectivities (up to 99% ee) and unprecedentedly high total TONs (12,000, six cycles). Ir-polydiamine catalysts with longer chains offered higher reactivities, providing a plausible deactivation mechanism and practical solutions of ATH for vitamin B5 and phenylephrine.
Collapse
Affiliation(s)
- Yaodong Lin
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Guangqing Xu
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
| | - Wenjun Tang
- State Key Laboratory of Chemical Biology, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Ling Ling Road, Shanghai 200032, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| |
Collapse
|
4
|
Ding Z, Luo Y, Yuan Q, Wang G, Yu Z, Zhao M, Liu D, Zhang W. Ru-Catalyzed Asymmetric Hydrogenation of α,β-Unsaturated γ-Lactams. J Am Chem Soc 2024; 146:25312-25320. [PMID: 39219059 DOI: 10.1021/jacs.4c09794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
A highly efficient Ru-catalyzed asymmetric hydrogenation of α,β-unsaturated γ-lactams has been developed by using a C2-symmetric ruthenocenyl phosphine-oxazoline as the chiral ligand. This method achieves the enantioselective synthesis of chiral β-substituted γ-lactams in high yields and with excellent enantioselectivities (up to 99% yield with 99% ee). Mechanistic studies based on detailed control experiments and computational investigation revealed that the cationic Ru-complex acts as the active catalytic species; the protonation process of the oxa-π-allyl-Ru complex, which is formed by the migratory insertion of the C=C double bond to the Ru-H bond (the stereocontrolling step) followed by an isomerization process, is the rate-determining step, and the existence of PPh3 is crucial for the highly efficient catalytic behavior. The protocol provides a straightforward and practical pathway for the synthesis of key intermediates for several chiral drugs and bioactive compounds, particularly for the 150 kg-scale industrial production of Brivaracetam, an antiepileptic drug that shows 13-fold more potent binding to the synaptic vesicle protein 2A compared with the well-known Levetiracetam.
Collapse
Affiliation(s)
- Zhengdong Ding
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qianjia Yuan
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Guangjie Wang
- Yangzhou Aurisco Pharmaceutical Co., Ltd., No. 28 Jian'an Road, High-Tech Industrial Development Zone, Yangzhou, Jiangsu 225100, China
| | - Zhenpeng Yu
- Yangzhou Aurisco Pharmaceutical Co., Ltd., No. 28 Jian'an Road, High-Tech Industrial Development Zone, Yangzhou, Jiangsu 225100, China
| | - Min Zhao
- Yangzhou Aurisco Pharmaceutical Co., Ltd., No. 28 Jian'an Road, High-Tech Industrial Development Zone, Yangzhou, Jiangsu 225100, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanbin Zhang
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
5
|
Xu S, Xu W, Dong S, Liu D, Zhang W. RuPHOX-Ru Catalyzed Asymmetric Cascade Hydrogenation of 3-Substituted Chromones for the Synthesis of Corresponding Chiral Chromanols. Chemistry 2024; 30:e202400978. [PMID: 38695858 DOI: 10.1002/chem.202400978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Indexed: 06/15/2024]
Abstract
An efficient RuPHOX-Ru catalyzed asymmetric cascade hydrogenation of 3-substituted chromones has been achieved under mild reaction conditions, affording the corresponding chiral 3-substituted chromanols in high yields with excellent enantio- and diastereoselectivities (up to 99 % yield, >99 % ee and >20 : 1 dr). Control reactions and deuterium labelling experiments revealed that a dynamic kinetic resolution process occurs during the subsequent hydrogenation of the C=O double bond, which is responsible for the high performance of the asymmetric cascade hydrogenation. The resulting products allow for several transformations and it was shown that the protocol provides a practical and alternative strategy for the synthesis of chiral 3-substituted chromanols and their derivatives.
Collapse
Affiliation(s)
- Shaofeng Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wenqi Xu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Siqi Dong
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, China
| |
Collapse
|
6
|
He J, Li Z, Li R, Kou X, Liu D, Zhang W. Bimetallic Ru/Ru-Catalyzed Asymmetric One-Pot Sequential Hydrogenations for the Stereodivergent Synthesis of Chiral Lactones. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2400621. [PMID: 38509867 PMCID: PMC11187880 DOI: 10.1002/advs.202400621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 02/23/2024] [Indexed: 03/22/2024]
Abstract
Asymmetric sequential hydrogenations of α-methylene γ- or δ-keto carboxylic acids are established in one-pot using a bimetallic Ru/Ru catalyst system, achieving the stereodivergent synthesis of all four stereoisomers of both chiral γ- and δ-lactones with two non-vicinal carbon stereocenters in high yields (up to 99%) and with excellent stereoselectivities (up to >99% ee and >20:1 dr). The compatibility of the two chiral Ru catalyst systems is investigated in detail, and it is found that the basicity of the reaction system plays a key role in the sequential hydrogenation processes. The protocol can be performed on a gram-scale with a low catalyst loading (up to 11000 S/C) and the resulting products allow for many transformations, particularly for the synthesis of several key intermediates useful for the preparation of chiral drugs and natural products.
Collapse
Affiliation(s)
- Jingli He
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Zhaodi Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Ruhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Xuezhen Kou
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Delong Liu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of PharmacyShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
- Frontiers Science Center for Transformative MoleculesSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University800 Dongchuan RoadShanghai200240China
| |
Collapse
|
7
|
Zhou Z, Kasten K, Kang T, Cordes DB, Smith AD. Enantioselective Synthesis in Continuous Flow: Polymer-Supported Isothiourea-Catalyzed Enantioselective Michael Addition-Cyclization with α-Azol-2-ylacetophenones. Org Process Res Dev 2024; 28:2041-2049. [PMID: 38783855 PMCID: PMC11110067 DOI: 10.1021/acs.oprd.4c00113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/25/2024]
Abstract
A packed reactor bed incorporating a polymer-supported isothiourea HyperBTM catalyst derivative has been used to promote the enantioselective synthesis of a range of heterocyclic products derived from α-azol-2-ylacetophenones and -acetamides combined with alkyl, aryl, and heterocyclic α,β-unsaturated homoanhydrides in continuous flow via an α,β-unsaturated acyl-ammonium intermediate. The products are generated in good to excellent yields and generally in excellent enantiopurity (up to 97:3 er). Scale-up is demonstrated on a 15 mmol scale, giving the heterocyclic product in 68% overall yield with 98:2 er after recrystallization.
Collapse
Affiliation(s)
- Zhanyu Zhou
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Kevin Kasten
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Tengfei Kang
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - David B. Cordes
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| | - Andrew D. Smith
- EaStCHEM, School of Chemistry, University of St. Andrews, North Haugh, St. Andrews KY16 9ST, U.K.
| |
Collapse
|
8
|
Dupont J, Leal BC, Lozano P, Monteiro AL, Migowski P, Scholten JD. Ionic Liquids in Metal, Photo-, Electro-, and (Bio) Catalysis. Chem Rev 2024; 124:5227-5420. [PMID: 38661578 DOI: 10.1021/acs.chemrev.3c00379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Ionic liquids (ILs) have unique physicochemical properties that make them advantageous for catalysis, such as low vapor pressure, non-flammability, high thermal and chemical stabilities, and the ability to enhance the activity and stability of (bio)catalysts. ILs can improve the efficiency, selectivity, and sustainability of bio(transformations) by acting as activators of enzymes, selectively dissolving substrates and products, and reducing toxicity. They can also be recycled and reused multiple times without losing their effectiveness. ILs based on imidazolium cation are preferred for structural organization aspects, with a semiorganized layer surrounding the catalyst. ILs act as a container, providing a confined space that allows modulation of electronic and geometric effects, miscibility of reactants and products, and residence time of species. ILs can stabilize ionic and radical species and control the catalytic activity of dynamic processes. Supported IL phase (SILP) derivatives and polymeric ILs (PILs) are good options for molecular engineering of greener catalytic processes. The major factors governing metal, photo-, electro-, and biocatalysts in ILs are discussed in detail based on the vast literature available over the past two and a half decades. Catalytic reactions, ranging from hydrogenation and cross-coupling to oxidations, promoted by homogeneous and heterogeneous catalysts in both single and multiphase conditions, are extensively reviewed and discussed considering the knowledge accumulated until now.
Collapse
Affiliation(s)
- Jairton Dupont
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Bárbara C Leal
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Lozano
- Departamento de Bioquímica y Biología Molecular B e Inmunología, Facultad de Química, Universidad de Murcia, P.O. Box 4021, E-30100 Murcia, Spain
| | - Adriano L Monteiro
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Pedro Migowski
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| | - Jackson D Scholten
- Institute of Chemistry - Universidade Federal do Rio Grande do Sul - UFRGS, Avenida Bento Gonçalves, 9500, Porto Alegre 91501-970 RS, Brasil
| |
Collapse
|
9
|
Luo D, Liu CH, Chen YB, Wang ST, Fang WH, Zhang J. Stepwise and Controllable Synthesis of Mesoporous Heterotrimetallic Catalysts Based on Predesigned Al 4 Ln 4 Metallocycles. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305833. [PMID: 37973555 PMCID: PMC10787057 DOI: 10.1002/advs.202305833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/06/2023] [Indexed: 11/19/2023]
Abstract
The motivation for making heterometallic compounds stemmed from their emergent synergistic properties and enhanced capabilities for applications. However, the atomically precisely controlled synthesis of heterometallic compounds remains a daunting challenge of the complications that arise when applying several metals and linkers. Herein, a stepwise and controlled method is reported for the accurate addition of second and third metals to homometallic aluminum macrocycles based on the synergistic coordination and hard-soft acid-base theory. These heterometallic compounds showed a good Lewis acid catalytic effect, and the addition of hetero-metals significantly improved the catalytic effect and rate, among that the conversion rate of compound AlOC-133 reached 99.9% within half an hour. This method combines both the independent controllability of stepwise assembly with the universality of one-step methods. Based on the large family of clusters, the establishment of this method paves the way for the controllable and customized molecular-level synthesis of heterometallic materials and creates materials customized for preferential application.
Collapse
Affiliation(s)
- Dan Luo
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Chen-Hui Liu
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Yi-Bo Chen
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - San-Tai Wang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Wei-Hui Fang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| | - Jian Zhang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, P. R. China
| |
Collapse
|
10
|
Murre A, Mikli V, Erkman K, Kanger T. Primary amines as heterogeneous catalysts in an enantioselective [2,3]-Wittig rearrangement reaction. iScience 2023; 26:107822. [PMID: 37810234 PMCID: PMC10550720 DOI: 10.1016/j.isci.2023.107822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/28/2023] [Accepted: 08/31/2023] [Indexed: 10/10/2023] Open
Abstract
A series of heterogeneous catalysts anchored to different polystyrene-based supports has been prepared and applied in an asymmetric [2,3]-Wittig rearrangement reaction of cyclohexanone derivatives. Among them, primary amino acid-derived (aminomethylated)polystyrene-supported catalysts showed excellent reactivity leading to the formation of rearranged products in good enantioselectivities of both diastereomers. Reusability issues connected to the deactivation of the catalyst were proved to be dependent on the end-capping strategy chosen for the blocking of the unreacted active sites of the resin. This issue of end-capping has not previously been in focus. Using bulkier pivaloyl end-capping moiety, we were able to recycle the catalyst in six consecutive cycles with only marginal deceleration of the reaction. Moreover, the epimerization of the product that occurred while conducting a rearrangement reaction in the presence of a homogeneous catalyst was almost fully eliminated by switching the catalytic system to heterogeneous.
Collapse
Affiliation(s)
- Aleksandra Murre
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Valdek Mikli
- Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086 Tallinn, Estonia
| | - Kristin Erkman
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Tõnis Kanger
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
11
|
Karimi M, Ramazani A, Sajjadifar S, Rezayati S. A copper(ii) complex containing pyridine-2-carbaldehyde and its direct binding onto ethylenediamine functionalized with Fe 3O 4@SiO 2 nanoparticles for catalytic applications. RSC Adv 2023; 13:29121-29140. [PMID: 37800129 PMCID: PMC10548530 DOI: 10.1039/d3ra05649j] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 09/23/2023] [Indexed: 10/07/2023] Open
Abstract
In the present study, a copper(ii) complex containing a pyridine-2-carbaldehyde ligand and its direct binding onto ethylenediamine functionalized with Fe3O4@SiO2 nanoparticles [Cu(ii)-Schiff base-(CH2)3-SiO2@Fe3O4] as a heterogeneous magnetic nanocatalyst can be easily prepared using a multi-step method. Next, the structural and magnetic properties of the synthesized nanoparticles were identified using Fourier-transform infrared spectroscopy (FT-IR), inductively coupled plasma (ICP), vibrating-sample magnetometry (VSM), transmission electron microscopy (TEM), field-emission scanning electron microscopy (FE-SEM), thermogravimetric analysis (TGA), PXRD (Powder X-ray diffraction), Brunauer-Emmett-Teller (BET), and energy-dispersive X-ray spectrometry (EDX) techniques. TEM images reveal that the average particle size distribution was found to be in the range of 45-55 nm with spherical shape. The PXRD analysis indicated that the crystallite size was found to be 35.2 nm. The synthesized nanocatalyst exhibited a very good catalytic ability in the synthesis reaction of pyran derivatives and 2-benzylidenemalononitrile derivatives. Product 2-amino-7,7-dimethyl-4-(4-nitrophenyl)-5-oxo-5,6,7,8-tetrahydrobenzo[b]pyran 4e was achieved in 97% yield with a TON of 129.3 and a TOF of 646.6 h-1 and product 2-(4-cyanobenzylidene)malononitrile 3j was achieved in 96% yield with a TON of 128 and a TOF of 984.6 h-1. In addition, the synthesized nanocatalyst was easily separated from the reaction mixture by a magnet and used 7 consecutive times without significant loss of catalytic activity. Also, leaching of copper metal from the synthesized nanocatalyst was very insignificant for this reaction.
Collapse
Affiliation(s)
- Masoud Karimi
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
- Department of Biotechnology, Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan Zanjan 45371-38791 Iran
| | - Sami Sajjadifar
- Department of Chemistry, Payame Noor University PO BOX 19395-4697 Tehran Iran
| | - Sobhan Rezayati
- Department of Chemistry, Faculty of Science, University of Zanjan Zanjan 45371-38791 Iran
| |
Collapse
|
12
|
Zhang Y, Yang X, Li L, Hu Y, Wang S. One-step assembly of a MacMillan catalyst-based phenolic-type polymer. Org Biomol Chem 2023; 21:4465-4472. [PMID: 37191132 DOI: 10.1039/d3ob00624g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
We report herein a "bottom-up" approach for the one-step assembly of a MacMillan catalyst-based phenolic-type polymer (Mac-CP). The resulting self-supported polymeric organocatalyst possesses homogeneously distributed and highly concentrated catalytic sites. Furthermore, Mac-CP is soluble in CH3CN but insoluble in hexane. This unique property can be used to employ the polymer as an efficient catalyst in homogeneous organocatalysis and heterogeneous recycling. As a result, Mac-CP possesses comparable catalytic activity and enantioselectivity to its homogeneous counterpart in the asymmetric Diels-Alder reaction (95% yield, 93% enantiomeric excess (ee) for endo and 92% ee for exo).
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Xiaorong Yang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, P.R. China
| | - Liqi Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Yansong Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| | - Shutao Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 Tianshui South Road, Lanzhou 730000, P. R. China.
| |
Collapse
|
13
|
Xia Y, Ning Y, Liu M, Che FE. Recoverable PEG-Supported Amino Alcohol Ligand for Copper-Catalyzed Enantio- and syn-Selective Henry Reaction with Nitroethanol: Sustainable and Straightforward Access to Chiral syn-2-Nitro-1,3-Diols. J Catal 2022. [DOI: 10.1016/j.jcat.2022.11.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
14
|
Tyula YA, Goudarziafshar H, Yousefi S, Dušek M, Eigner V. Template synthesis, characterization and antibacterial activity of d10 (Zn2+, Cd2+, Hg2+) Schiff base complexes: A novel supramolecular Cd2+ complex with two 1D helical chains, and its Hirshfeld surface analysis. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
15
|
Yang H, Tang W. Enantioselective construction of ortho-sulfur- or nitrogen-substituted axially chiral biaryls and asymmetric synthesis of isoplagiochin D. Nat Commun 2022; 13:4577. [PMID: 35931694 PMCID: PMC9355965 DOI: 10.1038/s41467-022-32360-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/26/2022] [Indexed: 12/23/2022] Open
Abstract
Axially chiral biaryl motifs possessing ortho-heteroatom-substituted functionalities exist widely in the structures of natural products and have served as foundation for constructing prominent chiral organocatalysts, ligands, functional materials, and even bioactive molecules. However, a general and enantioselective synthesis of such chiral structures with high synthetic value is rare. Taking advantage of the BaryPhos-facilitated asymmetric Suzuki-Miyaura cross-coupling, we have established a general, efficient and enantioselective construction of the ortho sulfur- or nitrogen-substituted axially chiral biaryls. The protocol shows excellent compatibility to various functional groups and structural features, delivering chiral biaryl structures with ortho-sulfonyl groups or with ortho-nitro groups at a broad range of molecular diversity and complexity. The immobilization of BaryPhos on polyethylene glycol (PEG) support has enabled homogeneous enantioselective cross-coupling in aqueous media and the palladium catalyst recycling for multiple times. The method has enabled a concise 10-step asymmetric synthesis of isoplagiochin D as well as the construction of chiroptical molecules with circularly polarized luminescence (CPL) properties. Ortho-heteroatom-substituted axially chiral biaryls are valuable structures in synthetic and medicinal chemistry. Here, the authors established an efficient synthesis of these chiral structures via asymmetric cross-coupling.
Collapse
Affiliation(s)
- He Yang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China
| | - Wenjun Tang
- State Key Laboratory of Bio-Organic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, 345 Lingling Road, Shanghai, 200032, China. .,School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou, 310024, China.
| |
Collapse
|
16
|
Wang J, Li J, Wang Y, He S, You H, Chen FE. Polymer-Supported Chiral Heterogeneous Copper Catalyst for Asymmetric Conjugate Addition of Ketones and Imines under Batch and Flow. ACS Catal 2022. [DOI: 10.1021/acscatal.2c02056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Junwen Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Jun Li
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Yan Wang
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Sisi He
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Hengzhi You
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
| | - Fen-Er Chen
- School of science, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Green Pharmaceutical Engineering Research Center, Harbin Institute of Technology (Shenzhen), Taoyuan Street, Nanshan District, Shenzhen 518055, China
- Engineering Center of Catalysis and Synthesis for Chiral Molecules, Department of Chemistry, Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
García-Monzón I, Borges-González J, Martín T. Solid‐Supported Tetrahydropyran‐Based Hybrid Dipeptide Catalysts for Michael Addition of Aldehydes to Nitrostyrenes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | | | - Tomás Martín
- Instituto de Productos Naturales y Agrobiología SPAIN
| |
Collapse
|
18
|
Ghorbani-Choghamarani A, Taherinia Z, Tyula YA. Efficient biodiesel production from oleic and palmitic acid using a novel molybdenum metal-organic framework as efficient and reusable catalyst. Sci Rep 2022; 12:10338. [PMID: 35725895 PMCID: PMC9209509 DOI: 10.1038/s41598-022-14341-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Accepted: 06/06/2022] [Indexed: 11/08/2022] Open
Abstract
In this study, metal-organic framework based on molybdenum and piperidine-4-carboxylic acid, was synthesized through a simple solvothermal method and employed as an effective catalyst for biodiesel production from oleic acid and palmitic acid via esterification reaction. The prepared catalyst was characterized by XRD, FTIR, TGA, DSC, BET, SEM, TEM, ICP-OES, X-ray mapping and EDX analysis. The resulting Mo-MOF catalyst exhibit a rod-like morphology, specific surface area of 56 m2/g, and thermal stability up to 300 °C. The solid catalyst exhibited high activities for esterification of oleic acid and palmitic acid. Moreover, the catalyst could be simply recovered and efficiently reutilized for several times without significant loss in its activity, also obtained results revealed that metal-organic framework could be used for the appropriate and rapid biodiesel production.
Collapse
Affiliation(s)
| | - Zahra Taherinia
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University, Ilam, Iran
| |
Collapse
|
19
|
Menuey EM, Zhou J, Tian S, Brenner RE, Ren Z, Hua DH, Kilway KV, Moteki SA. Chirality-driven self-assembly: application toward renewable/exchangeable resin-immobilized catalysts. Org Biomol Chem 2022; 20:4314-4319. [PMID: 35583170 DOI: 10.1039/d2ob00439a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Resin-immobilized catalysts were prepared through chirality-driven self-assembly. The method allows the resin-immobilized catalyst to be regenerated under mild conditions and in situ catalyst exchange to be carried out quantitatively. The uniqueness of the methodology was demonstrated by the preparation of a catalyst for TEMPO oxidation as well as a two-step sequential TEMPO oxidation/aldol condensation sequence enabled by facile catalyst exchange.
Collapse
Affiliation(s)
- Elizabeth M Menuey
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - John Zhou
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Shuyuan Tian
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Reid E Brenner
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Zhaoyang Ren
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Dr., Manhattan, KS 66506-0401, USA
| | - Duy H Hua
- Department of Chemistry, Kansas State University, 1212 Mid-Campus Dr., Manhattan, KS 66506-0401, USA
| | - Kathleen V Kilway
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| | - Shin A Moteki
- Department of Chemistry, University of Missouri Kansas City, 5100 Rockhill Road, Kansas City, Missouri, 64110-2499, USA.
| |
Collapse
|
20
|
Goudarziafshar H, Yousefi S, Abbasi Tyula Y, Dušek M, Eigner V. Template synthesis, DNA binding, antimicrobial activity, Hirshfeld surface analysis, and 1D helical supramolecular structure of a novel binuclear copper(ii) Schiff base complex. RSC Adv 2022; 12:13580-13592. [PMID: 35530396 PMCID: PMC9069724 DOI: 10.1039/d2ra00719c] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 04/20/2022] [Indexed: 01/27/2023] Open
Abstract
A new binuclear copper(ii) Schiff base complex [Cu2 L2 - (NO3)2]·2CH3OH (1) [L = 2,6-bis((E)-(p-tolylimino)methyl)-4-methoxyphenol] was synthesized using a template method in which the tridentate N2O Schiff base ligand was derived from [1 + 2] condensation of 2,6-diformyl-4-methoxyphenol and p-methyl aniline in the presence of copper(ii) ions as the template agent. The X-ray diffraction analyses revealed that this complex crystallizes in the monoclinic system with space group P21/n. The most remarkable structural feature of 1 is that it contains two types of 1D right-handed helical chains. The molecules are linked by intermolecular hydrogen bonds and π⋯π interactions, then a 3D supramolecular network was constructed. Moreover, the intermolecular interactions on the crystal packing of 1 have been further studied using Hirshfeld surface analysis and corresponding 2D fingerprint plots. Binding interaction of this complex with calf thymus DNA (CT-DNA) has been investigated using absorption and emission studies, viscosity experiments and circular dichroism studies. Complex 1 shows significant binding to the DNA. The results of fluorescence spectroscopy and UV absorption spectroscopy, CD spectroscopy and viscosity indicated that this complex interacted with CT-DNA in a groove binding mode where the binding constant was 1.3 ± 0.2 × 104 L mol-1. Our fluorimeteric study showed that the reaction between 1 and CT-DNA was exothermic (ΔH = 59.6 kJ mol-1; ΔS = 268.79 J mol-1 K-1). Antibacterial activities of the complex were screened by the disc diffusion method against three Gram-positive bacteria (Staphylococcus aureus ATCC 25923, Enterococcus faecalis ATCC 23212 and S. epidermidis ATCC 34384), and three Gram-negative bacteria (Escherichia coli ATCC 25922, Pseudomonas aeruginosa ATCC 27853 and Klebsiella pneumonia ATCC 70063). The results indicated that this complex demonstrated acceptable antibacterial activities.
Collapse
Affiliation(s)
- Hamid Goudarziafshar
- Department of Chemical Engineering, Hamedan University of Technology Hamedan Iran
| | - Somaieh Yousefi
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Yunes Abbasi Tyula
- Department of Chemistry, Faculty of Science, Ilam University P.O. Box 69315516 Ilam Iran
| | - Michal Dušek
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2, 182 21 Praha 8 Czech Republic
| | - Václav Eigner
- Institute of Physics of the Czech Academy of Sciences Na Slovance 2, 182 21 Praha 8 Czech Republic
| |
Collapse
|
21
|
Hayashi Y, Hattori S, Koshino S. Asymmetric flow reactions catalyzed by immobilized diphenylprolinol alkyl ether: Michael reaction and domino reactions. Chem Asian J 2022; 17:e202200314. [DOI: 10.1002/asia.202200314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 04/14/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yujiro Hayashi
- Tohoku University Department of Chemistry 6-3, Aramaki-AzaAobaAobaku 980-8578 Sendai JAPAN
| | - Shusuke Hattori
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| | - Seitaro Koshino
- Tohoku University Graduate School of Science Faculty of Science: Tohoku Daigaku Daigakuin Rigaku Kenkyuka Rigakubu Chemistry JAPAN
| |
Collapse
|
22
|
Rana S, Basu S, Mukhopadhyay C. An environment-friendly methodology for the construction of diversified bicycloacenaphtho[1,2-d]imidazole-8-thione scaffolds using spinel NiFe 2O 4 nanoparticles as a sustainable catalyst. Mol Divers 2022; 26:2561-2573. [PMID: 34978012 DOI: 10.1007/s11030-021-10356-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 11/24/2021] [Indexed: 10/19/2022]
Abstract
Herein, we successfully developed an easy access to bicycloacenaphtho[1,2-d]imidazole-8-thione by one-pot three-component MCRs of acenaphthoquinone, aryl or alkyl isothiocyanates and amines using environmentally benevolent and recyclable spinel NiFe2O4 nanocatalyst in aqueous ethanol. A broad number of products have been synthesized with both EDGs and EWGs present in the ring which increases the diversity of the protocol. The NiFe2O4 nanopowder has been synthesized and thoroughly characterized by powdered XRD, HRTEM, EDX, BET and ICP-AES analysis. The protocol to this bicyclic-heterocycle is noteworthy due to good to excellent yields, practical simplicity and high regioselectivity without any troublesome or hazardous by-products and its easy recovery and reusability of the catalyst. Spinel NiFe2O4 NPs-catalysed synthesis of various bicycloacenaphtho[1,2-d]imidazole-8-thione scaffolds under mild and sustainable conditions.
Collapse
Affiliation(s)
- Soumitra Rana
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata, 700009, India
| | - Soumyadip Basu
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata, 700009, India
| | - Chhanda Mukhopadhyay
- Department of Chemistry, University of Calcutta, 92 APC Road, Kolkata, 700009, India.
| |
Collapse
|
23
|
Chaudhary P, Yadav GD, Damodaran KK, Singh S. Synthesis of new chiral Mn(iii)–salen complexes as recoverable and reusable homogeneous catalysts for the asymmetric epoxidation of styrenes and chromenes. NEW J CHEM 2022. [DOI: 10.1039/d1nj04758b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
New chiral Mn(iii)–salen complexes 1a–e and 2a–e were synthesized from the reaction of C2-symmetric chiral salen ligands and Mn(CH3COO)2·4H2O under an inert atmosphere followed by aerobic oxidation.
Collapse
Affiliation(s)
- Pooja Chaudhary
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Geeta Devi Yadav
- Department of Chemistry, University of Delhi, Delhi-110007, India
| | | | - Surendra Singh
- Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
24
|
Deng L, Liu X, Song S. Recent advances in the asymmetric reduction of imines by recycled catalyst systems. Org Chem Front 2022. [DOI: 10.1039/d1qo01526e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances relating to the asymmetric reduction of imines to afford optically active amines via recyclable catalyst systems are reviewed.
Collapse
Affiliation(s)
- Lidan Deng
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Xingwang Liu
- Chongqing Key Laboratory of Catalysis & Environmental New Materials, Department of Chemical Engineering Chongqing Technology and Business University, Chongqing 400067, China
| | - Shihua Song
- Porton Pharma Solutions Ltd, Fangzheng Avenue, Shuitu, BeiBei District, Chongqing 400067, China
| |
Collapse
|
25
|
Ghanbariasad A, Emami L, Zarenezhad E, Behrouz S, Zarenezhad A, Soltani Rad MN. Synthesis, Biological Evaluation and In silico Studies of 1, 2, 3-triazolyl- Metronidazole Derivatives Against Leishmania Major. NEW J CHEM 2022. [DOI: 10.1039/d2nj00226d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The simple and effective approach for the preparation, of 1,2,3-triazolyl-based metronidazole hybrid analogues as promising anti-leishmania agents using of [CuL-SiO-HA] as a catalyst were described. The catalyst was fully characterized...
Collapse
|
26
|
Xu G, Bing L, Sun J, Jia B, Bai S. Fractal Features of the Catalytic Performances of Bimodal Mesoporous Silica‐Supported Organocatalysts Derived from Bipyridine‐Proline for Asymmetric Aldol Reaction. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Guangpeng Xu
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Liujie Bing
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Jihong Sun
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Bingying Jia
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| | - Shiyang Bai
- Beijing Key Laboratory for Green Catalysis and Separation Department of Environmental and Chemical Engineering Beijing University of Technology Beijing 100124 P. R. China
| |
Collapse
|
27
|
Microporous Volumes from Nitrogen Adsorption at 77 K: When to Use a Different Standard Isotherm? Catalysts 2021. [DOI: 10.3390/catal11121544] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
This work reviews the application of various standard isotherms to evaluate the micropore volume in a range of microporous materials. The selected materials have quite different surface chemistry, and are relevant due to their properties for adsorption and catalysis: zeolites, activated carbons, clay-based materials and MOFs. Some cases were analysed before and after being used as supports in the heterogenization of homogeneous catalysts. The discussion is centred, but not limited, to the three standard isotherms that are mostly employed in the literature (t-curve, non-porous carbon and non-porous hydroxylated silica) for the assessment of the micropore volume. For a given material the values of the micropore volumes from the different standard isotherms were compared, particularly against the values from the largely used t-curve. The cases where major discrepancies were found could normally be ascribed to samples that have a broad micropore size distribution.
Collapse
|
28
|
Synthesis and DFT studies of 1,2-disubstituted benzimidazoles using expeditious and magnetically recoverable CoFe2O4/Cu(OH)2 nanocomposite under solvent-free condition. JOURNAL OF SAUDI CHEMICAL SOCIETY 2021. [DOI: 10.1016/j.jscs.2021.101394] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
29
|
Zhang B, Reek JNH. Supramolecular Strategies for the Recycling of Homogeneous Catalysts. Chem Asian J 2021; 16:3851-3863. [PMID: 34606169 PMCID: PMC9297887 DOI: 10.1002/asia.202100968] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 09/29/2021] [Indexed: 11/11/2022]
Abstract
Supramolecular approaches are increasingly used in the development of homogeneous catalysts and they also provide interesting new tools for the recycling of metal-based catalysts. Various non-covalent interactions have been utilized for the immobilization homogeneous catalysts on soluble and insoluble support. By non-covalent anchoring the supported catalysts obtained can be recovered via (nano-) filtration or such catalytic materials can be used in continuous flow reactors. Specific benefits from the reversibility of catalyst immobilization by non-covalent interactions include the possibility to re-functionalize the support material and the use as "boomerang" type catalyst systems in which the catalyst is captured after a homogeneous reaction. In addition, new reactor design with implemented recycling strategies becomes possible, such as a reverse-flow adsorption reactor (RFA) that combines a homogeneous reactor with selective catalyst adsorption/desorpion. Next to these non-covalent immobilization strategies, supramolecular chemistry can also be used to generate the support, for example by generation of self-assembled gels with catalytic function. Although the stability is a challenging issue, some self-assembled gel materials have been successfully utilized as reusable heterogeneous catalysts. In addition, catalytically active coordination cages, which are frequently used to achieve specific activity or selectivity, can be bound to support by ionic interactions or can be prepared in structured solid materials. These new heterogenized cage materials also have been used successfully as recyclable catalysts.
Collapse
Affiliation(s)
- Bo Zhang
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| | - Joost N. H. Reek
- Homogeneous, Supramolecular and Bio-Inspired CatalysisVan't Hoff Institute for Molecular SciencesUniversity of AmsterdamScience Park 9041098 XHAmsterdamThe Netherlands
| |
Collapse
|
30
|
Moeini N, Molaei S, Ghadermazi M. Dysprosium (III) Supported on CoFe2O4 MNPs as a Heterogeneous Catalyst for the Selective Oxidation of Sulfides and Synthesis of Symmetrical Disulfides. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131071] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
31
|
Guo Y, Wang WD, Li S, Zhu Y, Wang X, Liu X, Zhang Y. A TEMPO-Functionalized Ordered Mesoporous Polymer as a Highly Active and Reusable Organocatalyst. Chem Asian J 2021; 16:3689-3694. [PMID: 34519415 DOI: 10.1002/asia.202100854] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/12/2021] [Indexed: 11/12/2022]
Abstract
The properties of high stability, periodic porosity, and tunable nature of ordered mesoporous polymers make these materials ideal catalytic nanoreactors. However, their application in organocatalysis has been rarely explored. We report herein for the first time the incorporation of a versatile organocatalyst, 2,2,6,6-tetramethyl-1-piperidinyloxy (TEMPO), into the pores of an FDU-type mesoporous polymer via a pore surface engineering strategy. The resulting FDU-15-TEMPO possesses a highly ordered mesoporous organic framework and enhanced stability, and shows excellent catalytic activity in the selective oxidation of alcohols and aerobic oxidative synthesis of 2-substituted benzoxazoles, benzimidazoles and benzothiazoles. Moreover, the catalyst can be easily recovered and reused for up to 7 consecutive cycles.
Collapse
Affiliation(s)
- Ying Guo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Wei David Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Shengyu Li
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yin Zhu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiaoyu Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Xiao Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, P. R. China
| |
Collapse
|
32
|
Binary CuO/TiO2 nanocomposites as high-performance catalysts for tandem hydrogenation of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
Chiral metal–organic frameworks based on asymmetric synthetic strategies and applications. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214083] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
34
|
Shi S, Zhong Y, Hu Z, Wang L, Yuan M, Ding S, Wang S, Chen C. Chiral Yolk-Shell MOF as an Efficient Nanoreactor for Asymmetric Catalysis in Organic-Aqueous Two-Phase System. Inorg Chem 2021; 60:12714-12718. [PMID: 34424688 DOI: 10.1021/acs.inorgchem.1c01831] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
It remains a great challenge to introduce large and efficient homogeneous asymmetric catalysts into MOFs and other microporous materials as well as retain their degrees of freedom. Herein, a new heterogeneous strategy of homogeneous chiral catalysts is proposed, that is, to construct a yolk-shell MOFs-confined, large-size, and highly efficient homogeneous chiral catalyst, which can be used as a nanoreactor for asymmetric catalytic reactions.
Collapse
Affiliation(s)
- Shunli Shi
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Yicheng Zhong
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Zhuo Hu
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Lei Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Mingwei Yuan
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Shunmin Ding
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Shuhua Wang
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| | - Chao Chen
- Key Laboratory of Jiangxi Province for Environment and Energy Catalysis, College of Chemistry, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
35
|
Crowley DC, Brouder TA, Kearney AM, Lynch D, Ford A, Collins SG, Maguire AR. Exploiting Continuous Processing for Challenging Diazo Transfer and Telescoped Copper-Catalyzed Asymmetric Transformations. J Org Chem 2021; 86:13955-13982. [PMID: 34379975 PMCID: PMC8524431 DOI: 10.1021/acs.joc.1c01310] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
![]()
Generation and use
of triflyl azide in flow enables efficient synthesis
of a range of α-diazocarbonyl compounds, including α-diazoketones,
α-diazoamides, and an α-diazosulfonyl ester, via both
Regitz-type diazo transfer and deacylative/debenzoylative diazo-transfer
processes with excellent yields and offers versatility in the solvent
employed, in addition to addressing the hazards associated with handling
of this highly reactive sulfonyl azide. Telescoping the generation
of triflyl azide and diazo-transfer process with highly enantioselective
copper-mediated intramolecular aromatic addition and C–H insertion
processes demonstrates that the reaction stream containing the α-diazocarbonyl
compound can be obtained in sufficient purity to pass directly over
the immobilized copper bis(oxazoline) catalyst without detrimentally
impacting the catalyst enantioselectivity.
Collapse
Affiliation(s)
- Daniel C Crowley
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Thomas A Brouder
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Aoife M Kearney
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Denis Lynch
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Alan Ford
- School of Chemistry, Analytical and Biological Chemistry Research Facility, University College Cork, Cork, Ireland
| | - Stuart G Collins
- School of Chemistry, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| | - Anita R Maguire
- School of Chemistry and School of Pharmacy, Analytical and Biological Chemistry Research Facility, Synthesis and Solid State Pharmaceutical Centre, University College Cork, Cork, Ireland
| |
Collapse
|
36
|
Sato E, Fujii M, Tanaka H, Mitsudo K, Kondo M, Takizawa S, Sasai H, Washio T, Ishikawa K, Suga S. Application of an Electrochemical Microflow Reactor for Cyanosilylation: Machine Learning-Assisted Exploration of Suitable Reaction Conditions for Semi-Large-Scale Synthesis. J Org Chem 2021; 86:16035-16044. [PMID: 34355889 DOI: 10.1021/acs.joc.1c01242] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cyanosilylation of carbonyl compounds provides protected cyanohydrins, which can be converted into many kinds of compounds such as amino alcohols, amides, esters, and carboxylic acids. In particular, the use of trimethylsilyl cyanide as the sole carbon source can avoid the need for more toxic inorganic cyanides. In this paper, we describe an electrochemically initiated cyanosilylation of carbonyl compounds and its application to a microflow reactor. Furthermore, to identify suitable reaction conditions, which reflect considerations beyond simply a high yield, we demonstrate machine learning-assisted optimization. Machine learning can be used to adjust the current and flow rate at the same time and identify the conditions needed to achieve the best productivity.
Collapse
Affiliation(s)
- Eisuke Sato
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Mayu Fujii
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Hiroki Tanaka
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Koichi Mitsudo
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| | - Masaru Kondo
- Department of Quantum Beam Science, Graduate School of Science and Engineering, Ibaraki University, 4-12-1 Nakanarusawa, Hitachi, Ibaraki 316-8511, Japan
| | - Shinobu Takizawa
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Hiroaki Sasai
- Department of Synthetic Organic Chemistry, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Takeshi Washio
- Artificial Intelligence Research Center, ISIR, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan.,Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kazunori Ishikawa
- Department of Reasoning for Intelligence, The Institute of Scientific and Industrial Research (ISIR), Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Seiji Suga
- Division of Applied Chemistry, Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-naka, Kita-ku, Okayama 700-8530, Japan
| |
Collapse
|
37
|
Zhang X, Li P, Xu B, Wang J, Fan G, Zhang X, Liu X, Zhang K, Jiang W. In Situ Hydrogen Activation Inspiring Efficient One-Pot Hydrogenation of Halogenated Nitrobenzenes over Ni–Co-Based Composites. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c00330] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xianwen Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Ping Li
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Bin Xu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Jingxia Wang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Sichuan, Chengdu 610101, P. R. China
| | - Guangyin Fan
- School of Chemistry and Chemical Engineering, Sichuan Normal University, Sichuan, Chengdu 610000, P. R. China
| | - Xiaobin Zhang
- Radiation Chemistry Department, Sichuan Institute of Atomic Energy, Sichuan, Chengdu 610101, P. R. China
| | - Xiaoqiang Liu
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Kaiming Zhang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| | - Weidong Jiang
- School of Chemistry and Environmental Engineering, Sichuan University of Science & Engineering, Sichuan, Zigong 643000, P. R. China
| |
Collapse
|
38
|
Rhodium nanoparticles supported on 2-(aminomethyl)phenols-modified Fe3O4 spheres as a magnetically recoverable catalyst for reduction of nitroarenes and the degradation of dyes in water. Catal Letters 2021. [DOI: 10.1007/s10562-021-03688-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
39
|
Zhang H, Lou LL, Yu K, Liu S. Advances in Chiral Metal-Organic and Covalent Organic Frameworks for Asymmetric Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2005686. [PMID: 33734597 DOI: 10.1002/smll.202005686] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 11/21/2020] [Indexed: 06/12/2023]
Abstract
Asymmetric catalysis is of crucial importance owing to the huge and rising demand for optically pure substances. Metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), as two emerging crystalline porous materials, have presented great promising applications for heterogeneous asymmetric catalysis. The unique properties, such as, highly regular porous structures, prominent structural tunability, and well-ordered catalytic sites, render chiral MOFs (CMOFs) and chiral COFs (CCOFs) highly active and enantioselective for a large number of asymmetric catalytic organic transformations. Furthermore, they provide a useful platform for facile mechanistic understanding and catalyst design. This review provides an overview of the advancements in CMOFs and CCOFs for asymmetric catalysis. The designs, syntheses and structures of these crystalline porous materials, and their asymmetric catalytic performance are described. And the perspectives on challenges and opportunities in development of CMOFs and CCOFs are discussed. It is anticipated that this review will shed light on the heterogeneous asymmetric catalysis with CMOFs and CCOFs and motivate further research in this promising field.
Collapse
Affiliation(s)
- Hao Zhang
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Lan-Lan Lou
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
| | - Kai Yu
- MOE Key Laboratory of Pollution Processes and Environmental Criteria and Tianjin Key Laboratory of Environmental Technology for Complex Transmedia Pollution, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Shuangxi Liu
- Institute of New Catalytic Materials Science, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, China
- MOE Key Laboratory of Advanced Energy Materials Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, China
| |
Collapse
|
40
|
Videcrantz Faurschou N, Marcus Pedersen C. Self-Promoted Stereoselective Glycosylations - Past, Present, Future. CHEM REC 2021; 21:3063-3075. [PMID: 34028947 DOI: 10.1002/tcr.202100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/26/2021] [Indexed: 11/06/2022]
Abstract
Self-promoted glycosylations have generally not received much attention, despite having the advantages of being easy to perform and often highly stereoselective. This account covers the work done in this field and the mechanistic aspects of self-promoted glycosylations are discussed, with a main focus on the stereoselectivity of the reactions. Most self-promoted glycosylations utilize trichloroacetimidate donors, but examples of self-promoted reactions with other donors have been described and will be discussed. Self-promoted glycosylation strategies can provide a basis for new stereoselective glycosylation methodologies.
Collapse
Affiliation(s)
| | - Christian Marcus Pedersen
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen O, Denmark
| |
Collapse
|
41
|
Newar R, Akhtar N, Antil N, Kumar A, Shukla S, Begum W, Manna K. Amino Acid‐Functionalized Metal‐Organic Frameworks for Asymmetric Base–Metal Catalysis. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Rajashree Newar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Naved Akhtar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Neha Antil
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Ajay Kumar
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Sakshi Shukla
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Wahida Begum
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| | - Kuntal Manna
- Department of Chemistry Indian Institute of Technology Delhi Hauz Khas New Delhi 110016 India
| |
Collapse
|
42
|
Newar R, Akhtar N, Antil N, Kumar A, Shukla S, Begum W, Manna K. Amino Acid-Functionalized Metal-Organic Frameworks for Asymmetric Base-Metal Catalysis. Angew Chem Int Ed Engl 2021; 60:10964-10970. [PMID: 33539670 DOI: 10.1002/anie.202100643] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Indexed: 11/07/2022]
Abstract
We report a strategy to develop heterogeneous single-site enantioselective catalysts based on naturally occurring amino acids and earth-abundant metals for eco-friendly asymmetric catalysis. The grafting of amino acids within the pores of a metal-organic framework (MOF), followed by post-synthetic metalation with iron precursor, affords highly active and enantioselective (>99 % ee for 10 examples) catalysts for hydrosilylation and hydroboration of carbonyl compounds. Impressively, the MOF-Fe catalyst displayed high turnover numbers of up to 10 000 and was recycled and reused more than 15 times without diminishing the enantioselectivity. MOF-Fe displayed much higher activity and enantioselectivity than its homogeneous control catalyst, likely due to the formation of robust single-site catalyst in the MOF through site-isolation.
Collapse
Affiliation(s)
- Rajashree Newar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Naved Akhtar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Neha Antil
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Ajay Kumar
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Sakshi Shukla
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Wahida Begum
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Kuntal Manna
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| |
Collapse
|
43
|
Juaristi E. Recent developments in next generation (S)-proline-derived chiral organocatalysts. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132143] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
|
44
|
Brandolese A, Greenhalgh MD, Desrues T, Liu X, Qu S, Bressy C, Smith AD. Horeau amplification in the sequential acylative kinetic resolution of (±)-1,2-diols and (±)-1,3-diols in flow. Org Biomol Chem 2021; 19:3620-3627. [PMID: 33908571 DOI: 10.1039/d1ob00304f] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The sequential acylative kinetic resolution (KR) of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols using a packed bed microreactor loaded with the polystyrene-supported isothiourea, HyperBTM, is demonstrated in flow. The sequential KRs of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols exploits Horeau amplification, with each composed of two successive KR processes, with each substrate class significantly differing in the relative rate constants for each KR process. Optimisation of the continuous flow set-up for both C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diol substrate classes allowed isolation of reaction products in both high enantiopurity and yield. In addition to the successful KR of C2-symmetric (±)-1,2-syn and (±)-1,3-anti-diols, the application of this process to the more conceptually-complex scenario involving the sequential KR of C1-symmetric (±)-1,3-anti-diols was demonstrated, which involves eight independent rate constants.
Collapse
Affiliation(s)
- Arianna Brandolese
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. and Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari, 46, 44121 Ferrara, Italy
| | - Mark D Greenhalgh
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK. and Department of Chemistry, University of Warwick, Coventry, CV4 7AL, UK
| | - Titouan Desrues
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Xueyang Liu
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Shen Qu
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| | - Cyril Bressy
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2 Marseille, France.
| | - Andrew D Smith
- EaStCHEM, School of Chemistry, University of St Andrews, St Andrews, Fife KY16 9ST, UK.
| |
Collapse
|
45
|
Yamamoto T, Takahashi T, Murakami R, Ariki N, Suginome M. Asymmetric O-to-C Aryloxycarbonyl Migration of Indolyl Carbonates Using Single-Handed Dynamic Helical Polyquinoxalines Bearing 4-Aminopyridyl Groups as Chiral Nucleophilic Catalysts. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Takeshi Yamamoto
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Takuya Takahashi
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Ryo Murakami
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Naoto Ariki
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| | - Michinori Suginome
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto 615-8510, Japan
| |
Collapse
|
46
|
Zhang C, Zhu H, Gang K, Tao M, Ma N, Zhang W. Immobilization of copper(II) into polyacrylonitrile fiber toward efficient and recyclable catalyst in Chan-Lam coupling reactions. REACT FUNCT POLYM 2021. [DOI: 10.1016/j.reactfunctpolym.2021.104831] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
47
|
Shukla M, Barick K, Salunke H, Chandra S. Chiral salen - Ni (II) based spherical porous silica as platform for asymmetric transfer hydrogenation reaction and synthesis of potent drug intermediate montekulast. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111367] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
48
|
Wei S, Zhang J, Li S, Ma X. “Ship‐in‐a‐Bottle” Strategy for Immobilization of 9‐Amino(9‐deoxy)
epi
‐Cinchona Alkaloid into Molecularly Imprinted Solid Acid: Acetal Hydrolysis/Asymmetric Aldol Tandem Reaction. ChemCatChem 2021. [DOI: 10.1002/cctc.202001402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Shuai Wei
- College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Jianing Zhang
- College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Shan Li
- College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| | - Xuebing Ma
- College of Chemistry and Chemical Engineering Southwest University Chongqing 400715 P. R. China
| |
Collapse
|
49
|
CoFe2O4/Cu(OH)2 Nanocomposite: Expeditious and magnetically recoverable heterogeneous catalyst for the four component Biginelli/transesterification reaction and their DFT studies. RESULTS IN CHEMISTRY 2021. [DOI: 10.1016/j.rechem.2021.100202] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
|
50
|
Xue ZJ, Lu HY, Fu JG, Feng CG, Lin GQ. An azo-bridged ring system enabled by-standing immobilization of a chiral diene ligand. Org Chem Front 2021. [DOI: 10.1039/d1qo00852h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A family of 9-azabicyclo[3.3.1]nonadiene ligands were developed, and the nitrogen atom in the bridged ring enables a facile immobilization of diene ligands to silica.
Collapse
Affiliation(s)
- Ze-Jian Xue
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Han-Yu Lu
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jian-Guo Fu
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Chen-Guo Feng
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| | - Guo-Qiang Lin
- Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Shanghai, 200032, China
- The Research Center of Chiral Drugs, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China
| |
Collapse
|