1
|
Li L, Li A, Wang J, Shao J, Zhou H, Peng Z, Lin H, Gao J. Visualizing enterohepatic circulation in vivo by sensitive 19F MRI with a fluorinated ferrous chelate-based small molecule probe. Biomaterials 2025; 317:123073. [PMID: 39848003 DOI: 10.1016/j.biomaterials.2024.123073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/25/2025]
Abstract
Enterohepatic circulation (EHC) is a critical biological process for the normal regulation of many endogenous biomolecules and the increased retention of various exogenous substances. The status of EHC is closely related to the ordinary functioning of several digestive organs. However, it remains a challenge to achieve in vivo real-time visualization of this process. Herein, we rationally design and synthesize a ferrous chelate, DO3A-Fe(II)-9F, with high fluorine content and favorable water solubility for visualizing EHC via19F magnetic resonance imaging (MRI). The assessments on imaging performance reveal an 18-time increase in signal intensity compared to the fluorinated ligand alone. This probe's capability of entering EHC via the mediation of organic anion transporting polypeptides (OATPs) is validated with ex vivo bio-distribution analysis and in vivo uptake-blocking imaging experiments, which allows short-time sensitive 19F MRI of EHC in healthy mice. Additionally, we illustrate its capacity for clearly imaging tampered EHC in the mice with inflammatory bowel diseases (IBD), drug-induced liver injury (DILI) or orthotopic hepatocellular carcinoma (HCC). These results illustrate the promising potential of this probe for in vivo visualization of EHC under different conditions, especially disease conditions, which is beneficial for the study, diagnosis, or even stratification of various diseases.
Collapse
Affiliation(s)
- Lingxuan Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Ao Li
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen, 361005, China
| | - Junjie Wang
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Juan Shao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Huijie Zhou
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Zixiong Peng
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Hongyu Lin
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Shenzhen Research Institute of Xiamen University, Shenzhen, 518000, China.
| | - Jinhao Gao
- The Key Laboratory for Chemical Biology of Fujian Province, The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China; Fujian Provincial Key Laboratory of Chronic Liver Disease and Hepatocellular Carcinoma, Xiamen Key Laboratory of Translational Medical of Digestive System Tumor, Zhongshan Hospital, Xiamen University, Xiamen 361004, China.
| |
Collapse
|
2
|
Tei L, Botta M, Geraldes CFGC. Beyond Gadolinium: The Potential of Manganese Nanosystems in MRI and Multimodal Imaging Agents. Acta Biomater 2025:S1742-7061(25)00384-8. [PMID: 40425122 DOI: 10.1016/j.actbio.2025.05.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Revised: 05/16/2025] [Accepted: 05/22/2025] [Indexed: 05/29/2025]
Abstract
Manganese-based nanoparticles (Mn-NPs) hold great promise as MRI contrast agents and components of theranostic nanoplatforms, serving as a promising alternative to the more established gadolinium(III)-based nanosystems. This potential stems from their unique physicochemical properties and improved safety profile. This review introduces the fundamental principles of relaxation to highlight the key physicochemical characteristics of Mn-based nanosystems that influence their effectiveness. We primarily examine two oxidation states of manganese, Mn(II) and Mn(III), to demonstrate the efficacy of Mn-NPs as relaxation probes, with a brief discussion of one Mn(IV) system. Subsequently, we review recent studies on Mn-NP-based MRI contrast agents, focusing on the correlation between nanoparticle structure and the oxidation state of the paramagnetic centre. For Mn(II), the most common strategy involves utilizing stable Mn-chelates anchored to or encapsulated within the nanoparticles. In contrast, for the higher oxidation state, Mn(III), Mn(III)-porphyrin and phthalocyanine NPs are the primary non-Mn oxide nanosystems of choice. Regarding nanoplatform composition, Mn(II)-based platforms utilizing lipids (micelles or liposomes), polysaccharides (nanogels), dendrimers, metal-organic frameworks, inorganic NPs, and silicas are among the most frequently investigated. While numerous in vitro and in vivo animal MRI studies of Mn nanoplatforms have been reported, none have yet received clinical approval. We describe innovative surface modification and functionalization procedures designed to improve NP characteristics (e.g., size, stability, dispersibility, relaxivity, targeting, and toxicity) and impart multifunctionality for multimodal imaging. These strategies may provide valuable guidance for the development of Mn-NPs toward future clinical applications, particularly in cancer theranostics. STATEMENT OF SIGNIFICANCE: This review provides a critical analysis of the current landscape of Mn-based nanoparticles, which are increasingly being explored as MRI contrast agents and for multimodal imaging. This growing interest is largely driven by concerns over the potential toxicity and environmental impact of traditional Gd-based systems. The review introduces the key structural and dynamic parameters that determine the effectiveness of these nanosystems, highlighting their direct relationship with molecular design. It also examines the crucial stability and kinetic inertness requirements that influence their development. By critically discussing selected recent examples across a diverse range of nanosystems, including micelles, liposomes, silica-based platforms, and MOFs, this review identifies existing challenges and provides key insights to guide their future clinical translation.
Collapse
Affiliation(s)
- Lorenzo Tei
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Mauro Botta
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy.
| | - Carlos F G C Geraldes
- Department of Life Sciences and Coimbra Chemistry Center (CQC-IMS), Faculty of Science and Technology, University of Coimbra, Coimbra, Portugal; CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal.
| |
Collapse
|
3
|
Gwozdzinski K, Pieniazek A, Gwozdzinski L. Nitroxides: Chemistry, Antioxidant Properties, and Biomedical Applications. Molecules 2025; 30:2159. [PMID: 40430331 PMCID: PMC12114102 DOI: 10.3390/molecules30102159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2025] [Revised: 05/08/2025] [Accepted: 05/11/2025] [Indexed: 05/29/2025] Open
Abstract
Nitroxides are stable organic free radicals with a wide range of applications. They have found applications in chemistry, biochemistry, biophysics, molecular biology, and biomedicine as EPR/NMR imaging techniques. As spin labels and probes, they are used in electron paramagnetic resonance (EPR) spectroscopy in the study of proteins, lipids, nucleic acids, and enzymes, as well as for measuring oxygen concentration in cells and cellular organelles, as well as tissues and intracellular pH. Their unique redox properties have allowed them to be used as exogenous antioxidants. In this review, we have discussed the chemical properties of nitroxides and their antioxidant properties. Furthermore, we have considered their use as radioprotectors and protective agents in ischemia/reperfusion in vivo and in vitro. We also presented other applications of nitroxides in protecting cells and tissues from oxidative stress and in protein studies and discussed their use in EPR/MRI.
Collapse
Affiliation(s)
- Krzysztof Gwozdzinski
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.G.); (A.P.)
| | - Anna Pieniazek
- Department of Oncobiology and Epigenetics, Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland; (K.G.); (A.P.)
| | - Lukasz Gwozdzinski
- Department of Pharmacology and Toxicology, Medical University of Lodz, 90-151 Lodz, Poland
| |
Collapse
|
4
|
Wu J, Zhou X, Tsang CY, Mei Q, Zhang Y. Bioengineered nanomaterials for dynamic diagnostics in vivo. Chem Soc Rev 2025. [PMID: 40289891 DOI: 10.1039/d5cs00136f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/30/2025]
Abstract
In vivo diagnostics obtains real-time physiological information directly from the site of interest in a patient's body, providing more accurate disease diagnosis compared with ex vivo diagnostics. Particularly, in vivo dynamic diagnostics allows the continuous monitoring of physiological signals over a period of time, offering deeper insights into disease pathogenesis and progression. However, achieving in situ dynamic diagnostics in deep tissues presents challenges related to energy and signal penetration as well as dynamic monitoring. Bioengineered nanomaterials serve as an ideal platform for in vivo dynamic diagnostics, leveraging energy conversion and biofunctionalization to enable continuous acquisition of physiological information across temporal and spatial scales. In this review, with reference to the studies from the last five years, we summarize the fundamental components that are essential for dynamic diagnosis in vivo. Firstly, an input energy source with high tissue penetration is needed, such as near-infrared (NIR) light, X-rays, magnetic field and ultrasound. Secondly, a nanomaterial class that is responsive to such an energy source to provide a readable output signal is chosen. Thirdly, bioengineered nanoprobes are designed to exhibit spatial, temporal or spatiotemporal changes in the output signal. Finally, different methods are used to analyse the output signal of nanoprobes, such as detecting changes in optical, radiation, magnetic and ultrasound signals. This review also discusses the obstacles and potential solutions for advancing these bioengineered nanomaterials toward clinical translational applications.
Collapse
Affiliation(s)
- Jizhong Wu
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Xinyu Zhou
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| | - Chung Yin Tsang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, 117583, Singapore
| | - Qingsong Mei
- Department of Medical Biochemistry and Molecular Biology, School of Medicine, Jinan University, Guangzhou, Guangdong 510632, China.
| | - Yong Zhang
- Department of Biomedical Engineering, College of Biomedicine, The City University of Hong Kong, Kowloon 999077, Hong Kong.
| |
Collapse
|
5
|
Yuan X, Yu H, Wang L, Uddin MA, Ouyang C. Nitroxide radical contrast agents for safe magnetic resonance imaging: progress, challenges, and perspectives. MATERIALS HORIZONS 2025; 12:1726-1756. [PMID: 39757847 DOI: 10.1039/d4mh00995a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Magnetic resonance imaging (MRI) is considered one of the most valuable diagnostic technologies in the 21st century. To enhance the image contrast of anatomical features, MRI contrast agents have been widely used in clinical MRI diagnosis, especially those based on gadolinium, manganese, and iron oxide. However, these metal-based MRI contrast agents show potential toxicity to patients, which urges researchers to develop novel MRI contrast agents that can replace metal-based MRI contrast agents. Metal-free nitroxide radical contrast agents (NRCAs) effectively overcome the shortcomings of metal-based contrast agents and also have many advantages, including good biocompatibility, prolonged systemic circulation time, and easily functionalized structures. Importantly, since NRCAs acquire MRI signals with standard tissue water 1H relaxation mechanisms, they have great potential to realize clinical translation among many metal-free MRI contrast agents. At present, NRCAs have been proposed as an effective substitute for metal-based MRI contrast agents. Herein, this review first briefly introduces NRCAs, including their composition, classification, mechanism of action, application performances and advantages. Then, this review highlights the progress of NRCAs, including small molecule-based NRCAs and polymer-based NRCAs. Finally, this review also discusses the challenges and future perspectives of NRCAs.
Collapse
Affiliation(s)
- Xunchun Yuan
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Haojie Yu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Li Wang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Md Alim Uddin
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Chenguang Ouyang
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310058, P. R. China.
| |
Collapse
|
6
|
Dias I, Gano L, Chaves S, Santos MA. Gadolinium Complex with Tris-Hydroxypyridinone as an Input for New Imaging Probes: Thermodynamic Stability, Molecular Modeling and Biodistribution. Molecules 2025; 30:1295. [PMID: 40142068 PMCID: PMC11945079 DOI: 10.3390/molecules30061295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/28/2025] Open
Abstract
The development of gadolinium-based magnetic resonance imaging (MRI) contrast agents (CAs) is a highly challenging and demanding research field in metal-coordination medicinal chemistry. The recognized high capacity of hydroxypyridinone (HOPO)-based compounds to coordinate Gd (III) led us to evaluate the set of physic-chemical-biological properties of a new Gd (III) complex with a hexadentate tripodal ligand (H3L) containing three 3,4-HOPO chelating moieties attached to an anchoring cyclohexane backbone. In particular, the thermodynamic stability constants of the complex were evaluated by potentiometry, showing the formation of a highly stable (1:1) Gd-L complex (log βGdL = 26.59), with full coordination even in an acid-neutral pH under the experimental conditions used. Molecular simulations of the Gd (III) complex revealed a minimum energy structure with somewhat-distorted octahedral geometry, involving full metal hexa-coordination by the three bidentate moieties of the ligand arms, indicating that an extra water molecule should be coordinated to the metal ion, an important feature for the CAs (and the required enhancement of water proton relaxivity). In vivo biodistribution studies with the 67Ga complex, as a surrogate of the corresponding Gd complex, showed in vivo stability and rapid excretion from the animal body. Though deserving further investigation, these results may give an input on future perspectives towards new MRI diagnostic agents.
Collapse
Affiliation(s)
- Inês Dias
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - Lurdes Gano
- Centro de Ciências e Tecnologias Nucleares, Instituto Superior Técnico, Universidade de Lisboa, Estrada Nacional 10 (km 139,7), Loures, 2695-066 Bobadela, Portugal;
| | - Sílvia Chaves
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| | - M. Amélia Santos
- Centro de Química Estrutural, Institute of Molecular Sciences, Departamento de Engenharia Química, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001 Lisboa, Portugal
| |
Collapse
|
7
|
Yuan Y, Gao H, Jiang S, You Q, Zhou J, Chen J. Magnetic resonance imaging contrast agents based on albumin nanoparticles. Biomater Sci 2025; 13:408-421. [PMID: 39663837 DOI: 10.1039/d4bm01226g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Despite the potential safety hazards and side effects, small molecular magnetic resonance imaging (MRI) contrast agents have been generally used in clinical medical imaging. The development of stable, but low-toxicity and high-efficiency magnetic resonance contrast agents has been receiving continuous attention and research interest. With the deepening of studies, the combination of small molecular magnetic resonance contrast agents and albumin-based carriers is an effective strategy to obtain new MRI contrast agents with safety, low toxicity, high relaxation efficiency and targeting capability. In particular, the relaxivity values of some albumin-based nano-magnetic resonance contrast agents are greater than 100 mM-1 s-1, which is much higher than the relaxivity values of some small molecule MRI contrast agents. Therefore, herein, current research on albumin nanoparticle related MRI contrast agents is summarized, which is of great significance for clarifying the development direction of contrast agents.
Collapse
Affiliation(s)
- Yuan Yuan
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Hui Gao
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Sunmin Jiang
- Wuxi Maternity and Child Health Care Hospital, Affiliated Women's Hospital of Jiangnan University, Wuxi, 214002, China
| | - Qingjun You
- Wuxi School of Medicine, Jiangnan University, Wuxi, 214122, China
| | - Juan Zhou
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| | - Jinghua Chen
- School of Life Sciences and Health Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
8
|
Li X, Liu Q, Wu M, Wang H, Yang J, Mu X, Zhang XD. Artificially Engineered Nanoprobes for Ultrasensitive Magnetic Resonance Imaging. Adv Healthc Mater 2025; 14:e2403099. [PMID: 39562174 DOI: 10.1002/adhm.202403099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 10/11/2024] [Indexed: 11/21/2024]
Abstract
Magnetic resonance imaging (MRI) is a noninvasive and radiation-free technique used for soft tissue. However, there are some limitations of the MRI modality, such as low sensitivity and poor image resolution. Artificially engineered magnetic nanoprobes have been extensively explored as a versatile platform for ultrasensitive MRI contrast agents due to their unique physiochemical characteristics and tunable magnetic properties. In this review, the emphasis is on recent progress in MRI nanoprobes with different structures and elements, including gadolinium-, iron-, manganese-based and metal-free nanoprobes. The key influencing factors and advanced engineering strategies for modulating the relaxation ratio of MRI nanoprobes are systematically condensed. Furthermore, the widespread and noninvasive visualization applications of MRI nanoprobes for real time monitoring of major organs and accurate disease diagnosing, such as cerebrovascular, ischemia, Alzheimer's disease, liver fibrosis, whole-body tumors, inflammation, as well as multi-mode imaging applications are summarized. Finally, the challenges and prospects for the future development of MRI nanoprobes are discussed, and promising strategies are specifically emphasized for improving biocompatibility, precisely engineering of optimal size, AI-driven prediction and design, and multifunctional self-assembly to enhance diagnostics. This review will provide new inspiration for artificial engineering and nanotechnology-based molecular probes for medical diagnosis and therapy with ultrasensitive MRI.
Collapse
Affiliation(s)
- Xuyan Li
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Qingshan Liu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Menglin Wu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Radiology, Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Hao Wang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
| | - Jiang Yang
- School of Medicine, Sun Yat-sen University, Guangzhou, 510060, China
| | - Xiaoyu Mu
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| | - Xiao-Dong Zhang
- Tianjin Key Laboratory of Brain Science and Neuroengineering, Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, 300072, China
- Department of Physics and Tianjin Key Laboratory of Low Dimensional Materials Physics and Preparing Technology, School of Science, Tianjin University, Tianjin, 300072, China
| |
Collapse
|
9
|
Tang JH, Luo M, Tsao W, Waters EA, Parigi G, Luchinat C, Meade TJ. MR Imaging Reveals Dynamic Aggregation of Multivalent Glycoconjugates in Aqueous Solution. Inorg Chem 2024; 63:24662-24671. [PMID: 39680369 DOI: 10.1021/acs.inorgchem.4c03878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2024]
Abstract
Glycoconjugates forming from the conjugation of carbohydrates to other biomolecules, such as proteins, lipids, or other carbohydrates, are essential components of mammalian cells and are involved in numerous biological processes. Due to the capability of sugars to form multiple hydrogen bonds, many synthetic glycoconjugates are desirable biocompatible platforms for imaging, diagnostics, drugs, and supramolecular self-assemblies. Herein, we present a multimeric galactose functionalized paramagnetic gadolinium (Gd(III)) chelate that displays spontaneous dynamic aggregation in aqueous conditions. The dynamic aggregation of the Gd(III) complex was shown by the concentration-dependent magnetic resonance (MR) relaxation measurements, nuclear magnetic resonance dispersion (NMRD) analysis, and dynamic light scattering (DLS). Notably, these data showed a nonlinear relationship between magnetic resonance relaxation rate and concentrations (0.03-1.35 mM), and a large DLS hydrodynamic radius was observed in the high-concentration solutions. MR phantom images were acquired to visualize real-time dynamic aggregation behaviors in aqueous solutions. The in situ visualization of the dynamic self-assembling process of multivalent glycoconjugates has rarely been reported.
Collapse
Affiliation(s)
- Jian-Hong Tang
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Minrui Luo
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Wilhelmina Tsao
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Emily Alexandria Waters
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| | - Giacomo Parigi
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Claudio Luchinat
- Department of Chemistry and Magnetic Resonance Center (CERM), University of Florence, and Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Via L. Sacconi 6, Sesto Fiorentino 50019, Italy
| | - Thomas J Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, and Radiology, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
10
|
Geraldes CFGC. Manganese Oxide Nanoparticles for MRI-Based Multimodal Imaging and Theranostics. Molecules 2024; 29:5591. [PMID: 39683750 PMCID: PMC11643175 DOI: 10.3390/molecules29235591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/20/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Manganese-based MRI contrast agents have recently attracted much attention as an alternative to Gd-based compounds. Various nanostructures have been proposed for potential applications in in vivo diagnostics and theranostics. This review is focused on the discussion of different types of Mn oxide-based nanoparticles (MnxOy NPs) obtained at the +2, +3 and +4 oxidation states for MRI, multimodal imaging or theranostic applications. These NPs show favorable magnetic properties, good biocompatibility, and an improved toxicity profile relative to Gd(III)-based nanosystems, showing that the Mn paramagnetic ions offer advantages for the next generation of nanoscale MRI and theranostic contrast agents. Their potential for enhancing relaxivity and MRI contrast effects is illustrated through discussion of selected examples published in the past decade.
Collapse
Affiliation(s)
- Carlos F. G. C. Geraldes
- Department of Life Sciences and Coimbra Chemistry Center-Institute of Molecular Sciences (CQC-IMS), Faculty of Science and Technology, University of Coimbra, 3004-531 Coimbra, Portugal; ; Tel.: +351-967661211
- CIBIT—Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, 3004-531 Coimbra, Portugal
| |
Collapse
|
11
|
Fu S, Younis MR, Cai Z, Liu L, Gu H, Ni G, Lui S, Ai H, Song B, Wu M. One-Pot Fabrication of Kinetically Inert Ultrasmall Manganese(II) Chelate-Backboned Polymer Contrast Agents for High-Performance Magnetic Resonance Imaging. NANO LETTERS 2024; 24:14252-14262. [PMID: 39400054 DOI: 10.1021/acs.nanolett.4c03804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Traditional macromolecules or nanoscale Mn2+ chelate-based magnetic resonance imaging (MRI) contrast agents (CAs) suffer from complicated and laborious synthesis processes, relatively low kinetic stability and T1 relaxivity, limiting their clinical applications. Herein, we fabricated a series of kinetically inert Mn2+ chelate-backboned polymers, P(MnL-PEG), through a facile and one-pot polymerization process. Particularly, P(MnL-PEG)-3 demonstrates a significantly higher T1 relaxivity of 23.9 Mn mM-1 s-1 at 1.5 T than that of previously reported small molecules and macromolecules or nanoscale Mn2+ chelate-based CAs. Due to its high T1 relaxivity, extended blood circulation, hepatocyte-specific uptake, and kidneys metabolism, P(MnL-PEG)-3 presents significantly enhanced contrast in blood vessel, liver, and kidneys imaging compared to clinical Gd3+-based CAs (Gd-EOB-DTPA and Gd-DOTA) at a dosage of 0.05 mmol Mn/Gd kg-1 BW, and can accurately diagnose orthotopic H22 liver tumors in vivo in animal models. We anticipate that this work will promote the development of clinically relevant MRI CAs.
Collapse
Affiliation(s)
- Shengxiang Fu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Muhammad Rizwan Younis
- Department of Chemical and Biomolecular Engineering, Samueli School of Engineering, University of California at Los Angeles, Los Angeles, California 90095, United States
| | - Zhongyuan Cai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Li Liu
- Institute of Respiratory Health, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Haojie Gu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Guohua Ni
- Center for High Altitude Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Su Lui
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Hua Ai
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan 610041, China
| | - Bin Song
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Department of Radiology, Sanya People's Hospital, Sanya, Hainan 572022, China
| | - Min Wu
- Department of Radiology and Huaxi MR Research Center (HMRRC), Functional and Molecular Imaging Key Laboratory of Sichuan Province, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
- Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, Sichuan 610041, China
| |
Collapse
|
12
|
Zhao K, Li M, Geng H, Gao Z, Zhang X, Sekhar KPC, Zhang P, Cui J. Synthesis of Antifouling Poly(ethylene glycol) Brushes via "Grafting to" Approach for Improved Biodistribution. Biomacromolecules 2024; 25:6727-6736. [PMID: 39270004 DOI: 10.1021/acs.biomac.4c00947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Abstract
Polyethylene glycol (PEG) modification of materials has been identified to mitigate the challenge of biofouling. However, the practical application of PEGylation has been hampered by a low PEGylation density on the material surface. Therefore, developing efficient strategies to promote the PEGylation density is crucial. In this study, PEG brushes (PBs) with various structures were synthesized and their physicochemical properties and biomedical applications were investigated. Compared to benzaldehyde (BA), o-phthalaldehyde (OPA) exhibited higher reactivity with amine groups, resulting in increased grafting density (as high as 96.3%) and improved antifouling properties of PEG brushes. Bottlebrushes fabricated by PEG-OPA and polylysine demonstrated a prolonged circulation time in blood and enhanced potential for magnetic resonance imaging of tumors. Furthermore, the rigidity of the backbone was found to be crucial for the antifouling properties of PEG brushes both in vitro and in vivo. These findings are significant and provide valuable insights into designing biomaterials with superior antifouling performance.
Collapse
Affiliation(s)
- Kaijie Zhao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Mengqi Li
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Huimin Geng
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Zhiliang Gao
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xiaoman Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Kanaparedu P C Sekhar
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Peiyu Zhang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jiwei Cui
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of Education, School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
- Shandong Key Laboratory of Targeted Drug Delivery and Advanced Pharmaceutics, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
13
|
Amraee A, Sarikhani A, Darvish L, Alamzadeh Z, Irajirad R, Mahdavi SR. Curcumin Coated Ultra-Small Iron Oxide Nanoparticles as T 1 Contrast Agents for Magnetic Resonance Imaging of Cancer Cells. J Biomed Phys Eng 2024; 14:447-456. [PMID: 39391281 PMCID: PMC11462277 DOI: 10.31661/jbpe.v0i0.2201-1447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 02/20/2022] [Indexed: 10/12/2024]
Abstract
Background The application of nanotechnology in the molecular diagnosis and treatment of cancer is essential. Objective This study aimed to investigate the influence of curcumin-coated ultra-small superparamagnetic iron oxide (USPIO) as a T1 contrast agent in Magnetic Resonance Imaging (MRI). Material and Methods In this experimental study, the influence of curcumin-coated USPIO (Fe3O4@C) on the diagnosis of the cancer cell line was investigated. After synthesis, characterization, and relaxation of Fe3O4@C, the contrast changes in T1-weight MRI to mouse colon carcinoma 26 cell line were evaluated in vitro. Results Fe3O4@C nanoparticles (NPs) are good at imaging; based on a relaxometry test, the r1 and r2 relaxivities of Dotarem were 3.139 and 0.603 mM-1s-1, respectively. Additionally, the r1 and r2 relaxivities of Fe3O4@C were 3.792 and 1.3 mM-1s-1, respectively, with the rate of 2.155 of r2/r1 NPs. Conclusion The NPs can be identified as a positive contrast agent with a weight of T1 in MRI. The coresh-ell Fe3O4@C NPs can be effective in cancer treatment and diagnosis because of the therapeutic effects of curcumin and the properties of USPIO.
Collapse
Affiliation(s)
- Azadeh Amraee
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Sarikhani
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Leili Darvish
- Department of Medical Physics, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Alamzadeh
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Rasoul Irajirad
- Finetech in Medicine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Seyed Rabie Mahdavi
- Department of Medical Physics, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
14
|
Ocampo CMM, Villaraza AJL. A Gd(III)-labelled self-assembling peptide as a potential pH-responsive MRI contrast agent. Dalton Trans 2024; 53:14971-14974. [PMID: 39189442 DOI: 10.1039/d4dt01773k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
A marine-derived peptide labelled with a Gd(III)-chelate was found to self-assemble depending on the solution pH, accompanied by changes in T1-relaxivity (r1) values when in the dispersed or self-assembled form. Such pH-responsive behavior can be advantageous in the development of macromolecular magnetic resonance imaging (MRI) contrast agents which monitor the tissue physiology.
Collapse
|
15
|
Reisi Zargari N, Ebrahimi F, Akhlaghi M, Beiki D, Abdi K, Abbasi MA, Ramezanpour S, Asghari SM. Novel Gd-DTPA-peptide for targeted breast tumor magnetic resonance imaging. Biomed Pharmacother 2024; 178:117189. [PMID: 39059353 DOI: 10.1016/j.biopha.2024.117189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/14/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
The prevalence of breast cancer underscores the imperative for early diagnosis in guiding treatment decisions. This study introduces a novel contrast agent, Gd-DTPA-VGB3, derived from the peptide VGB3 targeting vascular endothelial growth factor receptor-1 (VEGFR1) and VEGFR2, to enhance the contrast of conventional drug Magnevist in breast tumor MRI. The MRI contrast agent was synthesized on rink amide resin via Fmoc strategy, incorporating amino acids, and coupling to diethylenetriaminepentaacetic acid (DTPA). Gadolinium (Gd)-DTPA-VGB3 displayed specific binding to VEGFR1/2 in a displacement binding assay. Gd-DTPA-VGB3 exhibited minimal cytotoxicity to normal MCF-10 cells while inhibiting 4T1 mammary carcinoma cell proliferation. Compared to Magnevist, Gd-DTPA-VGB3 demonstrated a 2.8-fold increase in contrast-to-noise ratio (CNR) (355 vs. 125). Gd-DTPA-VGB3 exhibited enhanced accumulation in 4T1 tumor-bearing mice, resulting in significant signal intensity improvement. The findings highlight Gd-DTPA-VGB3's specific binding to VEGFRs, substantiating its potential as a candidate for enhancing MRI contrast in breast cancer diagnostics.
Collapse
Affiliation(s)
| | - Fatemeh Ebrahimi
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Akhlaghi
- Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| | - Davood Beiki
- Department of Nuclear Pharmacy, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Nuclear Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Khosrou Abdi
- Department of Radiopharmacy and Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Abbasi
- Firoozabadi Hospital Clinical Research Development Unit (FHCRDU), Department of Internal Medicine, School of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Sorour Ramezanpour
- Department of Chemistry, K. N. Toosi University of Technology, Tehran, Iran
| | - S Mohsen Asghari
- Institute of Biochemistry and Biophysics (IBB), University of Tehran, Tehran, Iran.
| |
Collapse
|
16
|
Singh SK, Parihar S, Jain S, Ho JAA, Vankayala R. Light-responsive functional nanomaterials as pioneering therapeutics: a paradigm shift to combat age-related disorders. J Mater Chem B 2024; 12:8212-8234. [PMID: 39058026 DOI: 10.1039/d4tb00578c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
Aging, marked by dysregulated cellular systems, gives rise to a spectrum of age-related disorders, including neurodegeneration, atherosclerosis, immunosenescence, and musculoskeletal issues. These conditions contribute significantly to the global disease burden, posing challenges to health span and economic resources. Current therapeutic approaches, although diverse in mechanism, often fall short in targeting the underlying cellular pathologies. They fail to address the issues compounded by altered pharmacokinetics in the elderly. Nanotechnology emerges as a transformative solution, offering tissue-specific targeted therapies through nanoparticles. Functional nanomaterials (FNMs) respond to internal or external stimuli, with light-responsive nanomaterials gaining prominence. Harnessing the benefits of deep tissue penetration and ease of manipulation particularly in the near-infrared spectrum, light-responsive FNMs present innovative strategies for age-related comorbidities. This review comprehensively summarizes the potential of light-responsive FNM-based approaches for targeting cellular environments in age-related disorders, and also emphasizes the advantages over traditional treatment modalities. Specifically, it focuses on the development of various classes of light-responsive functional nanomaterials including plasmonic nanomaterials, nanomaterials as carriers, upconversion nanomaterials, 2D nanomaterials, transition metal oxide and dichalcogenide nanomaterials and carbon-based nanomaterials against age related diseases. We foresee that such advanced developments in the field of nanotechnology could provide a new hope for clinical diagnosis and treatment of age-related disorders.
Collapse
Affiliation(s)
- Shubham Kumar Singh
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Shivay Parihar
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Sanskar Jain
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
| | - Ja-An Annie Ho
- Bioanalytical Chemistry and Nanobiomedicine Laboratory, Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
- Center for Emerging Materials and Advanced Devices, National Taiwan University, Taipei 10617, Taiwan
- Center for Biotechnology, National Taiwan University, Taipei 10617, Taiwan
| | - Raviraj Vankayala
- Department of Bioscience and Bioengineering, Indian Institute of Technology Jodhpur, Karwar 342030, India.
- Interdisciplinary Research Platform, Smart Healthcare, Indian Institute of Technology Jodhpur, Karwar 342030, India
| |
Collapse
|
17
|
Konwar K, Chaturvedi A, Chakraborty R, Sharma P, Kumar D, Kaushik SD, Babu PD, Mukhopadhyay R, Lodha S, Sen D, Deb P. Interacting Trimagnetic Ensembles for Enhanced Magnetic Resonance Transverse Relaxivity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:15281-15292. [PMID: 38989856 DOI: 10.1021/acs.langmuir.4c01864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/12/2024]
Abstract
An ensemble of nanosystems can be considered to improve magnetic resonance imaging (MRI) transverse relaxivity. Herein, an interacting superparamagnetic competing structure of an isotropic-anisotropic trimagnetic hybrid nanosystem, γ-Fe2O3@δ-MnO2@NiFe2O4, is considered for MRI relaxivity exploration. The interacting superparamagnetic system reveals fascinating dynamic magnetic behavior, where flower-shaped two-dimensional flakes are decorated over nanoparticles. The hybrid nanosystem exhibits modulated shape anisotropy with spin blocking and energy barrier broadening, which help in achieving faster MR transverse relaxivity. The hierarchical architecture ensemble of the trimagnetic landscape shows effective MR transverse relaxivity with a transverse (r2)/longitudinal (r1) relaxivity of 61.5 and potential cell viability. The competing trimagnetic system with regulated activation energy is found to be the underlying reason for such signal enhancement in MRI contrast efficiency. Hence, this study displays a novel pathway correlating MR transverse relaxivity with dynamic magnetic behavior and competing landscape of hierarchical trimagnetic ensembles.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| | | | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Bhabha Atomic Research Centre, Mumbai Centre, R-5 Shed, Mumbai 400085, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur 784028, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur 784028, India
| |
Collapse
|
18
|
Wang J, Wang Z, Li L, Wang M, Chang J, Gao M, Wang D, Li C. Ultra-small Janus nanoparticle-induced activation of ferroptosis for synergistic tumor immunotherapy. Acta Biomater 2024; 181:362-374. [PMID: 38663684 DOI: 10.1016/j.actbio.2024.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/08/2024] [Accepted: 04/21/2024] [Indexed: 05/07/2024]
Abstract
Ferroptosis induced by lipid peroxide (LPO) accumulation is an effective cell death pathway for cancer therapy. However, how to effectively induce ferroptosis at tumor sites and improve its therapeutic effectiveness remains challenging. Here, MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex with tumor-specific targeting and TME response is constructed to overcome immunosuppressive tumor microenvironment (TME) to potentiate the curative effect of ferroptosis by coupling the immune checkpoint indoleamine 2,3-dioxygenase (IDO) inhibitor, NLG919, and hyaluronic acid (HA) to novel ultra-small MnFe2O4@NaGdF4 (MG) nanoparticles with a Janus structure. Firstly, tumor site-precise delivery of MG and NLG919 is achieved with HA targeting. Secondly, MG acts as a magnetic resonance imaging contrast agent, which not only has a good photothermal effect to realize tumor photothermal therapy, but also depletes glutathione and catalyzes the production of reactive oxygen species from endogenous H2O2, which effectively promotes the accumulation of LPO and inhibits the expression of glutathione peroxidase 4, achieving enhanced ferroptosis. Thirdly, NLG919 inhibits the differentiation of Tregs by blocking the tryptophan/kynurenine immune escape pathway, thereby reversing immunosuppressive TME together with the Mn2+-activated cGAS-STING pathway. This work contributes new perspectives for the development of novel ultra-small Janus nanoparticles to reshape immunosuppressive TME and ferroptosis activation. STATEMENT OF SIGNIFICANCE: The Janus structured MnFe2O4@NaGdF4@NLG919@HA (MGNH) nanocomplex was synthesized, which can realize the precise delivery of T1/T2 contrast agents MnFe2O4@NaGdF4 (MG) and NLG919 at the tumor site under the ultra-small Janus structural characteristics and targeted molecule HA. The production of ROS, consumption of GSH, and photothermal properties of MGNH make it possible for CDT/PTT activated ferroptosis, and synergistically disrupt and reprogram tumor growth and immunosuppressive tumor microenvironment with NLG919 and Mn2+-mediated activation of cGAS-STING pathway, achieving CDT/PTT/immunotherapy activated by ferroptosis. Meanwhile, ultra-small structural properties of MGNH facilitate subsequent metabolic clearance by the body, allowing for the minimization of potential biotoxicity associated with its prolonged retention.
Collapse
Affiliation(s)
- Junrong Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Zhifang Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Lei Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Man Wang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Jiaying Chang
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Minghong Gao
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China
| | - Dongmei Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University, Jinhua 321004, PR China.
| | - Chunxia Li
- Institute of Frontier Chemistry, School of Chemistry and Chemical Engineering, Shandong University, Qingdao, Shandong 266237, PR China.
| |
Collapse
|
19
|
Liu G, Li X, Liu X, Lu W, Xue Y, Liu M. Cyclodextrin-conjugated low-molecular-weight polyethyleneimine as a macromolecular contrast agent for tumor-targeted magnetic resonance imaging. RSC Adv 2024; 14:10499-10506. [PMID: 38567319 PMCID: PMC10985534 DOI: 10.1039/d4ra00316k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
Macromolecular contrast agents (CAs) usually possess excellent contrast ability and tumor-targeting ability in comparison with small-molecule CAs, especially for early tumor detection. Herein, cyclodextrin-conjugated low-molecular-weight polyethyleneimine was synthesized as a macromolecular backbone. Afterward, a linear polymer with adamantane terminal and Gd chelates was synthesized, followed by conjugating with the backbone via host-guest interaction. Finally, folic acid was conjugated onto the as-prepared CAs through bioorthogonal chemistry, which endowed the CAs with the capability to accumulate into the tumor region. Compared to Magnevist (r1 = 4.25 mM-1 s-1) used in clinic, the PC/Ad-PEG2000-PLL(DTPA-Gd)-FA exhibited higher longitudinal relaxivity (r1 = 11.62 mM-1 s-1) with excellent biocompatibility. Furthermore, in vivo experiments demonstrated that PC/Ad-PEG2000-PLL(DTPA-Gd)-FA could effectively accumulate in the tumor region and produce a brighter image than that of Magnevist. The H&E staining and metabolic data further illustrated that this CA possessed excellent biocompatibility in vivo. Finally, these results above suggest that this macromolecular CA could be a potential candidate as a MRI CA for tumor-targeted diagnosis.
Collapse
Affiliation(s)
- Guangkuo Liu
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- School of Optoelectronic Materials & Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Xinxin Li
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
- School of Optoelectronic Materials & Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Xiaojie Liu
- School of Optoelectronic Materials & Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Wangting Lu
- State Key Laboratory of Precision Blasting, Jianghan University Wuhan 430056 China
- School of Optoelectronic Materials & Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| | - Yanan Xue
- Hubei Key Laboratory for Novel Reactor and Green Chemistry Technology, School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology Wuhan 430205 China
| | - Min Liu
- State Key Laboratory of Precision Blasting, Jianghan University Wuhan 430056 China
- School of Optoelectronic Materials & Technology, Institute for Interdisciplinary Research, Jianghan University Wuhan 430056 China
| |
Collapse
|
20
|
Yon M, Esmangard L, Enel M, Desmoulin F, Pestourie C, Leygue N, Mingotaud C, Galaup C, Marty JD. Simple hybrid polymeric nanostructures encapsulating macro-cyclic Gd/Eu based complexes: luminescence properties and application as MRI contrast agent. NANOSCALE 2024; 16:3729-3737. [PMID: 38294340 DOI: 10.1039/d3nr06162k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Lanthanide-based macrocycles are successfully incorporated into hybrid polyionic complexes, formed by adding a mixture of zirconium ions to a solution of a double-hydrophilic block copolymer. The resulting nanoobjects with an average radius of approximately 10-15 nm present good colloidal and chemical stability in physiological media even in the presence of competing ions such as phosphate or calcium ions. The final optical and magnetic properties of these objects benefit from both their colloidal nature and the specific properties of the complexes. Hence these new nanocarriers exhibit enhanced T1 MRI contrast, when administered intravenously to mice.
Collapse
Affiliation(s)
- Marjorie Yon
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Lucie Esmangard
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Morgane Enel
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Franck Desmoulin
- Toulouse NeuroImaging Center (ToNIC), Inserm, University of Toulouse - Paul Sabatier, Toulouse, France
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Carine Pestourie
- CREFRE-Anexplo, University of Toulouse, Inserm, UT3, ENVT, Toulouse, France
| | - Nadine Leygue
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Christophe Mingotaud
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| | - Chantal Galaup
- Laboratoire SPCMIB, CNRS UMR 5068, University of Toulouse, University Toulouse III - Paul Sabatier 118, route de Narbonne 31062, Toulouse Cedex 9, France.
| | - Jean-Daniel Marty
- Laboratoire Softmat, University of Toulouse, CNRS UMR 5623, University Toulouse III - Paul Sabatier, France, 118, route de Narbonne, 31062 Toulouse Cedex 9, France.
| |
Collapse
|
21
|
Li J, Wang Y, Distefano MD, Wagner CR, Pomerantz WCK. Multivalent Fluorinated Nanorings for On-Cell 19F NMR. Biomacromolecules 2024; 25:1330-1339. [PMID: 38254252 PMCID: PMC11375447 DOI: 10.1021/acs.biomac.3c01391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The design of imaging agents with a high fluorine content is necessary for overcoming the challenges of low sensitivity in 19F magnetic resonance imaging (MRI)-based molecular imaging. Chemically self-assembled nanorings (CSANs) provide a strategy to increase the fluorine content through multivalent display. We previously reported an 19F NMR-based imaging tracer, in which case a CSAN-compatible epidermal growth factor receptor (EGFR)-targeting protein E1-dimeric dihydrofolate (E1-DD) was bioconjugated to a highly fluorinated peptide. Despite good 19F NMR performance in aqueous solutions, a limited signal was observed in cell-based 19F NMR using this monomeric construct, motivating further design. Here, we design several new E1-DD proteins bioconjugated to peptides of different fluorine contents. Flow cytometry analysis was used to assess the effect of variable fluorinated peptide sequences on the cellular binding characteristics. Structure-optimized protein, RTC-3, displayed an optimal spectral performance with high affinity and specificity for EGFR-overexpressing cells. To further improve the fluorine content, we next engineered monomeric RTC-3 into CSAN, η-RTC-3. With an approximate eightfold increase in the fluorine content, multivalent η-RTC-3 maintained high cellular specificity and optimal 19F NMR spectral behavior. Importantly, the first cell-based 19F NMR spectra of η-RTC-3 were obtained bound to EGFR-expressing A431 cells, showing a significant amplification in the signal. This new design illustrated the potential of multivalent fluorinated CSANs for future 19F MRI molecular imaging applications.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Mark D Distefano
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
22
|
Orts-Arroyo M, Ten-Esteve A, Ginés-Cárdenas S, Cerdá-Alberich L, Martí-Bonmatí L, Martínez-Lillo J. A Gadolinium(III) Complex Based on Pyridoxine Molecule with Single-Ion Magnet and Magnetic Resonance Imaging Properties. Int J Mol Sci 2024; 25:2112. [PMID: 38396789 PMCID: PMC10889197 DOI: 10.3390/ijms25042112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/30/2024] [Accepted: 02/06/2024] [Indexed: 02/25/2024] Open
Abstract
Pyridoxine (pyr) is a versatile molecule that forms part of the family of B vitamins. It is used to treat and prevent vitamin B6 deficiency and certain types of metabolic disorders. Moreover, the pyridoxine molecule has been investigated as a suitable ligand toward metal ions. Nevertheless, the study of the magnetic properties of metal complexes containing lanthanide(III) ions and this biomolecule is unexplored. We have synthesized and characterized a novel pyridoxine-based GdIII complex of formula [GdIII(pyr)2(H2O)4]Cl3 · 2 H2O (1) [pyr = pyridoxine]. 1 crystallizes in the triclinic system and space group Pī. In its crystal packing, cationic [Gd(pyr)2(H2O)4]3+ entities are connected through H-bonding interactions involving non-coordinating water molecules and chloride anions. In addition, Hirshfeld surfaces of 1 were calculated to further investigate their intermolecular interactions in the crystal lattice. Our investigation of the magnetic properties of 1, through ac magnetic susceptibility measurements, reveals the occurrence of a slow relaxation in magnetization in this mononuclear GdIII complex, indicating an unusual single-ion magnet (SIM) behavior for this pseudo-isotropic metal ion at very low temperatures. We also studied the relaxometric properties of 1, as a potential contrast agent for high-field magnetic resonance imaging (MRI), from solutions of 1 prepared in physiological serum (0.0-3.2 mM range) and measured at 3 T on a clinical MRI scanner. The values of relaxivity obtained for 1 are larger than those of some commercial MRI contrast agents based on mononuclear GdIII systems.
Collapse
Affiliation(s)
- Marta Orts-Arroyo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain;
| | - Amadeo Ten-Esteve
- Radiology Department and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, 46026 Valencia, Spain; (A.T.-E.); (S.G.-C.); (L.C.-A.); (L.M.-B.)
| | - Sonia Ginés-Cárdenas
- Radiology Department and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, 46026 Valencia, Spain; (A.T.-E.); (S.G.-C.); (L.C.-A.); (L.M.-B.)
| | - Leonor Cerdá-Alberich
- Radiology Department and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, 46026 Valencia, Spain; (A.T.-E.); (S.G.-C.); (L.C.-A.); (L.M.-B.)
| | - Luis Martí-Bonmatí
- Radiology Department and Biomedical Imaging Research Group (GIBI230), La Fe University and Polytechnic Hospital and La Fe Health Research Institute, 46026 Valencia, Spain; (A.T.-E.); (S.G.-C.); (L.C.-A.); (L.M.-B.)
| | - José Martínez-Lillo
- Departament de Química Inorgànica, Instituto de Ciencia Molecular (ICMol), Universitat de València, c/Catedrático José Beltrán 2, Paterna, 46980 Valencia, Spain;
| |
Collapse
|
23
|
Hu T, Wan C, Zhan Y, Li X, Zheng Y. Preparation and performance of biocompatible gadolinium polymer as liver-targeting magnetic resonance imaging contrast agent. J Biosci Bioeng 2024; 137:134-140. [PMID: 38195341 DOI: 10.1016/j.jbiosc.2023.12.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/11/2024]
Abstract
A biocompatible macromolecule-conjugated gadolinium chelate complex (PAV2-EDA-DOTA-Gd) as a new liver-specific contrast agent for magnetic resonance imaging (MRI) was synthesized and evaluated. An aspartic acid-valine copolymer was used as a carrier and ethylenediamine as a chemical linker, and the aspartic acid-valine copolymer was covalently linked to the small molecule MRI contrast agent Gd-DOTA (Dotarem) to synthesize a large molecule contrast agent. In vitro MR relaxation showed that the T1-relaxivity of PAV2-EDA-DOTA-Gd (13.7 mmol-1 L s-1) was much higher than that of the small-molecule Gd-DOTA (4.9 mmol-1 L s-1). In vivo imaging of rats showed that the enhancement effect of PAV2-EDA-DOTA-Gd (55.37 ± 2.80%) on liver imaging was 2.6 times that of Gd-DOTA (21.12 ± 3.86%), and it produced a longer imaging window time (40-70 min for PAV2-EDA-DOTA-Gd and 10-30 min for Gd-DOTA). Preliminary safety experiments, such as cell experiments and tissue sectioning, showed that PAV2-EDA-DOTA-Gd had low toxicity and satisfactory biocompatibility. The results of this study indicated that PAV2-EDA-DOTA-Gd had high potential as a liver-specific MRI contrast agent.
Collapse
Affiliation(s)
- Tingting Hu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Chuanling Wan
- School of Science, Changchun Institute of Technology, Changchun 130012, Jilin Province, China
| | - Youyang Zhan
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Xiaojing Li
- Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin Province, China
| | - Yan Zheng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
24
|
Ding L, Lyu Z, Perles-Barbacaru TA, Huang AYT, Lian B, Jiang Y, Roussel T, Galanakou C, Giorgio S, Kao CL, Liu X, Iovanna J, Bernard M, Viola A, Peng L. Modular Self-Assembling Dendrimer Nanosystems for Magnetic Resonance and Multimodality Imaging of Tumors. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2308262. [PMID: 38030568 DOI: 10.1002/adma.202308262] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Bioimaging is a powerful tool for diagnosing tumors but remains limited in terms of sensitivity and specificity. Nanotechnology-based imaging probes able to accommodate abundant imaging units with different imaging modalities are particularly promising for overcoming these limitations. In addition, the nanosized imaging agents can specifically increase the contrast of tumors by exploiting the enhanced permeability and retention effect. A proof-of-concept study is performed on pancreatic cancer to demonstrate the use of modular amphiphilic dendrimer-based nanoprobes for magnetic resonance (MR) imaging (MRI) or MR/near-infrared fluorescence (NIRF) multimodality imaging. Specifically, the self-assembly of an amphiphilic dendrimer bearing multiple Gd3+ units at its terminals, generates a nanomicellar agent exhibiting favorable relaxivity for MRI with a good safety profile. MRI reveals an up to two-fold higher contrast enhancement in tumors than in normal muscle. Encapsulating the NIRF dye within the core of the nanoprobe yields an MR/NIRF bimodal imaging agent for tumor detection that is efficient both for MRI, at Gd3+ concentrations 1/10 the standard clinical dose, and for NIRF imaging, allowing over two-fold stronger fluorescence intensities. These self-assembling dendrimer nanosystems thus constitute effective probes for MRI and MR/NIRF multimodality imaging, offering a promising nanotechnology platform for elaborating multimodality imaging probes in biomedical applications.
Collapse
Affiliation(s)
- Ling Ding
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Zhenbin Lyu
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Teodora-Adriana Perles-Barbacaru
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Adela Ya-Ting Huang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Baoping Lian
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Yifan Jiang
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Tom Roussel
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Christina Galanakou
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Suzanne Giorgio
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| | - Chai-Lin Kao
- Department of Medicinal and Applied Chemistry, Drug Development and Value Creation Research Center, Kaohsiung Medical University, 100 Shih-Chuan 1st Road, Kaohsiung, 80708, Taiwan
| | - Xiaoxuan Liu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Discovery for Metabolic Diseases, Center of Drug Discovery, Center of Advanced Pharmaceuticals and Biomaterials, China Pharmaceutical University, Nanjing, 210009, P. R. China
| | - Juan Iovanna
- Centre de Recherche en Cancérologie de Marseille, INSERM U1068, CNRS, UMR 7258, Institut Paoli-Calmettes, Aix Marseille Université, Marseille, 13273, France
| | - Monique Bernard
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Angèle Viola
- Aix Marseille University, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), UMR 7339, Marseille, 13385, France
| | - Ling Peng
- Aix Marseille University, CNRS, Centre Interdisciplinaire de Nanoscience de Marseille (UMR 7325), Equipe Labellisée Ligue Contre le Cancer, Marseille, 13288, France
| |
Collapse
|
25
|
Konwar K, Kaushik SD, Babu PD, Chaturvedi A, Kumar D, Chakraborty R, Mukhopadhyay R, Sharma P, Lodha S, Sen D, Deb P. Integrative Modulation of Magnetic Resonance Transverse and Longitudinal Relaxivity in a Cell-Viable Bimagnetic Ensemble, γ-Fe 2O 3@ZnFe 2O 4. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:1793-1803. [PMID: 38181379 DOI: 10.1021/acs.langmuir.3c03049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2024]
Abstract
The potential application of magnetic nanosystems as magnetic resonance imaging (MRI) contrast agents has been thoroughly investigated. This work seeks to attain robust MRI-contrast efficiency by designing an interacting landscape of a bimagnetic ensemble of zinc ferrite nanorods and maghemite nanoparticles, γ-Fe2O3@ZnFe2O4. Because of competing spin clusters and structural anisotropy triggered by isotropic γ-Fe2O3 and anisotropic ZnFe2O4, γ-Fe2O3@ZnFe2O4 undergoes the evolution of cluster spin-glass state as evident from the critical slowing down law. Such interacting γ-Fe2O3@ZnFe2O4 with spin flipping of 1.2 × 10-8 s and energy barrier of 8.2 × 10-14 erg reflects enhanced MRI-contrast signal. Additionally, γ-Fe2O3@ZnFe2O4 is cell-viable to noncancerous HEK 293 cell-line and shows no pro-tumorigenic activity as observed in MDA-MB-231, an extremely aggressive triple-negative breast cancer cell line. As a result, γ-Fe2O3@ZnFe2O4 is a feasible option for an MRI-contrast agent having longitudinal relaxivity, r1, of 0.46 s-1mM-1 and transverse relaxivity, r2, of 15.94 s-1mM-1, together with r2/r1 of 34.65 at 1.41 T up to a modest metal concentration of 0.1 mM. Hence, this study addresses an interacting isotropic/anisotropic framework with faster water proton decay in MR-relaxivity resulting in phantom signal amplification.
Collapse
Affiliation(s)
- Korobi Konwar
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| | - Som Datta Kaushik
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Peram Delli Babu
- UGC-DAE Consortium for Scientific Research, Mumbai Centre, R-5 Shed, Bhabha Atomic Research Centre, Mumbai 400085, India
| | | | - Dinesh Kumar
- Centre of Biomedical Research, SGPGIMS Campus, Lucknow 226014, India
| | - Rituraj Chakraborty
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Rupak Mukhopadhyay
- Department of Molecular Biology and Biotechnology, Tezpur University (Central University), Tezpur784028, India
| | - Pooja Sharma
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Saurabh Lodha
- Department of Electrical Engineering, IIT Bombay, Mumbai 400076, India
| | - Debasis Sen
- Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai 400085, India
| | - Pritam Deb
- Department of Physics, Tezpur University (Central University), Tezpur-784028, India
| |
Collapse
|
26
|
Wang X, Zhang M, Li Y, Cong H, Yu B, Shen Y. Research Status of Dendrimer Micelles in Tumor Therapy for Drug Delivery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304006. [PMID: 37635114 DOI: 10.1002/smll.202304006] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/16/2023] [Indexed: 08/29/2023]
Abstract
Dendrimers are a family of polymers with highly branched structure, well-defined composition, and extensive functional groups, which have attracted great attention in biomedical applications. Micelles formed by dendrimers are ideal nanocarriers for delivering anticancer agents due to the explicit study of their characteristics of particle size, charge, and biological properties such as toxicity, blood circulation time, biodistribution, and cellular internalization. Here, the classification, preparation, and structure of dendrimer micelles are reviewed, and the specific functional groups modified on the surface of dendrimers for tumor active targeting, stimuli-responsive drug release, reduced toxicity, and prolonged blood circulation time are discussed. In addition, their applications are summarized as various platforms for biomedical applications related to cancer therapy including drug delivery, gene transfection, nano-contrast for imaging, and combined therapy. Other applications such as tissue engineering and biosensor are also involved. Finally, the possible challenges and perspectives of dendrimer micelles for their further applications are discussed.
Collapse
Affiliation(s)
- Xijie Wang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yanan Li
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
- School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, China
| | - Bing Yu
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering, College of Materials Science and Engineering, Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, China
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Center for Bionanoengineering, and Department of, Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| |
Collapse
|
27
|
Qiu T, Wu T, Lu M, Xie Y, Zhang M, Luo D, Chen Z, Yin B, Zhou Y, Ling Y. Reticular Chemistry of the Fcu-Type Gd(III)-Doped Metal-Organic Framework for T 1 -Weighted Magnetic Resonance Imaging. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303063. [PMID: 37415511 DOI: 10.1002/smll.202303063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/26/2023] [Indexed: 07/08/2023]
Abstract
Nanoscale metal-organic frameworks (nanoMOFs) are emerging as an important class of nanomaterials for the systematical investigation of biomedically relevant structure-property relationship (SPR) due to their highly tailorable features. In this work, the reticular chemistry approach is shown to explore the SPR of a fcu-type Zr(IV)-nanoMOF for T1 -weighted magnetic resonance imaging (MRI). Isoreticular replacement of the eight-coordinated square-antiprismatic Zr(IV) by nine-coordinated Gd(III) brings a stoichiometric water capped on the square-antiprismatic site, enabling the relaxation transfer in the inner-sphere, giving the r1 value of 4.55 mM-1 ·s-1 at the doping ratio of Gd : Zr = 1 : 1. Then, these isoreticular engineering studies provide feasible ways to facilitate the relaxation transfer in the second- and outer-sphere of the Gd(III)-doped Zr-oxo cluster for the relaxation respectively. Finally, these in vitro and in vivo MRI studies revealed that the Gd(III)-doped Zr-oxo cluster aggregated underlying the fcu-type framework surpasses its discrete molecular cluster for MRI. These results demonstrated that there is plenty of room inside MOFs for T1 -weighted MRI by reticular chemistry.
Collapse
Affiliation(s)
- Tianze Qiu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Tianze Wu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Mingzhu Lu
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yuxi Xie
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Mengmeng Zhang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Dan Luo
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhenxia Chen
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital North, Fudan University, Shanghai, 201907, China
| | - Yaming Zhou
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Yun Ling
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
28
|
Franco L, Isse AA, Barbon A, Altomare L, Hyppönen V, Rosa J, Olsson V, Kettunen M, Melone L. Redox Properties and in Vivo Magnetic Resonance Imaging of Cyclodextrin-Polynitroxides Contrast Agents. Chemphyschem 2023; 24:e202300100. [PMID: 37431722 DOI: 10.1002/cphc.202300100] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/12/2023]
Abstract
This paper reports the synthesis, characterization and in vivo application of water-soluble supramolecular contrast agents (Mw: 5-5.6 kDa) for MRI obtained from β-cyclodextrin functionalized with different kinds of nitroxide radicals, both with piperidine structure (CD2 and CD3) and with pyrrolidine structure (CD4 and CD5). As to the stability of the radicals in presence of ascorbic acid, CD4 and CD5 have low second order kinetic constants (≤0.05 M-1 s-1 ) compared to CD2 (3.5 M-1 s-1 ) and CD3 (0.73 M-1 s-1 ). Relaxivity (r1 ) measurements on compounds CD3-CD5 were carried out at different magnetic field strength (0.7, 3, 7 and 9.4 T). At 0.7 T, r1 values comprised between 1.5 mM-1 s-1 and 1.9 mM-1 s-1 were found while a significant reduction was observed at higher fields (r1 ≈0.6-0.9 mM-1 s-1 at 9.4 T). Tests in vitro on HEK293 human embryonic kidney cells, L929 mouse fibroblasts and U87 glioblastoma cells indicated that all compounds were non-cytotoxic at concentrations below 1 μmol mL-1 . MRI in vivo was carried out at 9.4 T on glioma-bearing rats using the compounds CD3-CD5. The experiments showed a good lowering of T1 relaxation in tumor with a retention of the contrast for at least 60 mins confirming improved stability also in vivo conditions.
Collapse
Affiliation(s)
- Lorenzo Franco
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Abdirisak Ahmed Isse
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Antonio Barbon
- Department of Chemical Sciences, University of Padova, Via Marzolo 1, 35131, Padova, Italy
| | - Lina Altomare
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
| | - Viivi Hyppönen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Jessica Rosa
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Venla Olsson
- Molecular Medicine, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Mikko Kettunen
- Metabolic MR Imaging, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
- Kuopio Biomedical Imaging Unit, A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Neulaniementie 2, 70211, Kuopio, Finland
| | - Lucio Melone
- Department of Chemistry, Materials and Chemical Engineering "G.Natta", Politecnico di Milano, Via Mancinelli 7, 20131, Milano, Italy
- Centro di Ricerca per l'Energia, l'Ambiente e il Territorio (CREAT), Università Telematica eCampus, Via Isimbardi 10, 22060, Novedrate, Italy
| |
Collapse
|
29
|
Carniato F, Ricci M, Tei L, Garello F, Furlan C, Terreno E, Ravera E, Parigi G, Luchinat C, Botta M. Novel Nanogels Loaded with Mn(II) Chelates as Effective and Biologically Stable MRI Probes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302868. [PMID: 37345577 DOI: 10.1002/smll.202302868] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/01/2023] [Indexed: 06/23/2023]
Abstract
Here it is described nanogels (NG) based on a chitosan matrix, which are covalently stabilized by a bisamide derivative of Mn-t-CDTA (t-CDTA = trans-1,2-diaminocyclohexane-N,N,N',N'-tetraacetic acid). the Mn(II) complex acts both as a contrast medium and as a cross-linking agent. These nanogels are proposed as an alternative to the less stable paramagnetic nanogels obtained by electrostatic interactions between the polymeric matrix and paramagnetic Gd(III) chelates. The present novel nanogels show: i) relaxivity values seven times higher than that of typical monohydrated Mn(II) chelates at the clinical fields, thanks to the combination of a restricted mobility of the complex with a fast exchange of the metal-bound water molecule; ii) high stability of the formulation over time at pH 5 and under physiological conditions, thus excluding metal leaking or particles aggregation; iii) good extravasation and accumulation, with a maximum contrast achieved at 24 h post-injection in mice bearing subcutaneous breast cancer tumor; iv) high T1 contrast (1 T) in the tumor 24 h post-injection. These improved properties pave the way for the use of these paramagnetic nanogels as promising magnetic resonance imaging (MRI) probes for in vitro and in vivo preclinical applications.
Collapse
Affiliation(s)
- Fabio Carniato
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Marco Ricci
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Lorenzo Tei
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| | - Francesca Garello
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Chiara Furlan
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Enzo Terreno
- Molecular Imaging Centre, Department of Molecular Biotechnology and Health Sciences, University of Torino, Torino, 10126, Italy
| | - Enrico Ravera
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Giacomo Parigi
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
| | - Claudio Luchinat
- Magnetic Resonance Center (CERM), University of Florence, Sesto Fiorentino, 50019, Italy
- Department of Chemistry "Ugo Schiff", University of Florence, Sesto Fiorentino, 50019, Italy
- Consorzio Interuniversitario Risonanze Magnetiche Metallo Proteine (CIRMMP), Sesto Fiorentino, 50019, Italy
- Giotto Biotech S.r.l., Sesto Fiorentino, 50019, Italy
| | - Mauro Botta
- Dipartimento di Scienze e Innovazione Tecnologica, Università del Piemonte Orientale, Viale T. Michel 11, Alessandria, 15121, Italy
| |
Collapse
|
30
|
Li J, Kirberger SE, Wang Y, Cui H, Wagner CR, Pomerantz WCK. Design of Highly Fluorinated Peptides for Cell-based 19F NMR. Bioconjug Chem 2023; 34:1477-1485. [PMID: 37523271 PMCID: PMC10699466 DOI: 10.1021/acs.bioconjchem.3c00245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
The design of imaging agents with high fluorine content is essential for overcoming the challenges associated with signal detection limits in 19F MRI-based molecular imaging. In addition to perfluorocarbon and fluorinated polymers, fluorinated peptides offer an additional strategy for creating sequence-defined 19F magnetic resonance imaging (MRI) imaging agents with a high fluorine signal. Our previously reported unstructured trifluoroacetyllysine-based peptides possessed good physiochemical properties and could be imaged at high magnetic field strength. However, the low detection limit motivated further improvements in the fluorine content of the peptides as well as removal of nonspecific cellular interactions. This research characterizes several new highly fluorinated synthetic peptides composed of highly fluorinated amino acids. 19F NMR analysis of peptides TB-1 and TB-9 led to highly overlapping, intense fluorine resonances and acceptable aqueous solubility. Flow cytometry analysis and fluorescence microscopy further showed nonspecific binding could be removed in the case of TB-9. As a preliminary experiment toward developing molecular imaging agents, a fluorinated EGFR-targeting peptide (KKKFFKK-βA-YHWYGYTPENVI) and an EGFR-targeting protein complex E1-DD bioconjugated to TB-9 were prepared. Both bioconjugates maintained good 19F NMR performance in aqueous solution. While the E1-DD-based imaging agent will require further engineering, the success of cell-based 19F NMR of the EGFR-targeting peptide in A431 cells supports the potential use of fluorinated peptides for molecular imaging.
Collapse
Affiliation(s)
- Jiaqian Li
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Steven E Kirberger
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Yiao Wang
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Huarui Cui
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Carston R Wagner
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Department of Medicinal Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - William C K Pomerantz
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| |
Collapse
|
31
|
Li Z, Bai R, Yi J, Zhou H, Xian J, Chen C. Designing Smart Iron Oxide Nanoparticles for MR Imaging of Tumors. CHEMICAL & BIOMEDICAL IMAGING 2023; 1:315-339. [PMID: 37501794 PMCID: PMC10369497 DOI: 10.1021/cbmi.3c00026] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 07/29/2023]
Abstract
Iron oxide nanoparticles (IONPs) possess unique magnetism and good biocompatibility, and they have been widely applied as contrast agents (CAs) for magnetic resonance imaging (MRI). Traditional CAs typically show a fixed enhanced signal, thus exhibiting the limitations of low sensitivity and a lack of specificity. Nowadays, the progress of stimulus-responsive IONPs allows alteration of the relaxation signal in response to internal stimuli of the tumor, or external stimuli, thus providing an opportunity to overcome those limitations. This review summarizes the current status of smart IONPs as tumor imaging MRI CAs that exhibit responsiveness to endogenous stimuli, such as pH, hypoxia, glutathione, and enzymes, or exogenous stimuli, such as magnets, light, and so on. We discuss the challenges and future opportunities for IONPs as MRI CAs and comprehensively illustrate the applications of these stimuli-responsive IONPs. This review will help provide guidance for designing IONPs as MRI CAs and further promote the reasonable design of magnetic nanoparticles and achieve early and accurate tumor detection.
Collapse
Affiliation(s)
- Zhenzhen Li
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Ru Bai
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Jia Yi
- Guangdong
Provincial Development and Reform Commission, Guangzhou 510031, China
| | - Huige Zhou
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
| | - Junfang Xian
- Department
of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, China
| | - Chunying Chen
- CAS
Key Laboratory for Biomedical Effects of Nanoparticles and Nanosafety
& CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, China
- University
of Chinese Academy of Sciences, Beijing 100049, China
- Research
Unit of Nanoscience and Technology, Chinese
Academy of Medical Sciences, Beijing 100021, China
- The
GBA National Institute for Nanotechnology Innovation, Guangzhou 510700, China
| |
Collapse
|
32
|
Ernenwein D, Geisler I, Pavlishchuk A, Chmielewski J. Metal-Assembled Collagen Peptide Microflorettes as Magnetic Resonance Imaging Agents. Molecules 2023; 28:molecules28072953. [PMID: 37049716 PMCID: PMC10095756 DOI: 10.3390/molecules28072953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/15/2023] [Accepted: 03/22/2023] [Indexed: 03/29/2023] Open
Abstract
Magnetic resonance imaging (MRI) is a medical imaging technique that provides detailed information on tissues and organs. However, the low sensitivity of the technique requires the use of contrast agents, usually ones that are based on the chelates of gadolinium ions. In an effort to improve MRI signal intensity, we developed two strategies whereby the ligand DOTA and Gd(III) ions are contained within Zn(II)-promoted collagen peptide (NCoH) supramolecular assemblies. The DOTA moiety was included in the assembly either via a collagen peptide sidechain (NHdota) or through metal–ligand interactions with a His-tagged DOTA conjugate (DOTA-His6). SEM verified that the morphology of the NCoH assembly was maintained in the presence of the DOTA-containing peptides (microflorettes), and EDX and ICP-MS confirmed that Gd(III) ions were incorporated within the microflorettes. The Gd(III)-loaded DOTA florettes demonstrated higher intensities for the T1-weighted MRI signal and higher longitudinal relaxivity (r1) values, as compared to the clinically used contrast agent Magnevist. Additionally, no appreciable cellular toxicity was observed with the collagen microflorettes loaded with Gd(III). Overall, two peptide-based materials were generated that have potential as MRI contrast agents.
Collapse
|
33
|
Chen J, Mao L, Jiang Y, Liu H, Wang X, Meng L, Du Q, Han J, He L, Huang H, Wang Y, Xiong C, Wei Y, Nie Z. Revealing the In Situ Behavior of Aggregation-Induced Emission Nanoparticles and Their Biometabolic Effects via Mass Spectrometry Imaging. ACS NANO 2023; 17:4463-4473. [PMID: 36802559 DOI: 10.1021/acsnano.2c10058] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Simultaneous imaging of exogenous nanomaterials and endogenous metabolites in situ remains challenging and is beneficial for a systemic understanding of the biological behavior of nanomaterials at the molecular level. Here, combined with label-free mass spectrometry imaging, visualization and quantification of the aggregation-induced emission nanoparticles (NPs) in tissue were realized as well as related endogenous spatial metabolic changes simultaneously. Our approach enables us to identify the heterogeneous deposition and clearance behavior of nanoparticles in organs. The accumulation of nanoparticles in normal tissues results in distinct endogenous metabolic changes such as oxidative stress as indicated by glutathione depletion. The low passive delivery efficiency of nanoparticles to tumor foci suggested that the enrichment of NPs in tumors did not benefit from the abundant tumor vessels. Moreover, spatial-selective metabolic changes upon NPs mediated photodynamic therapy was identified, which enables understanding of the NPs induced apoptosis in the process of cancer therapy. This strategy allows us to simultaneously detect exogenous nanomaterials and endogenous metabolites in situ, hence to decipher spatial selective metabolic changes in drug delivery and cancer therapy processes.
Collapse
Affiliation(s)
- Junyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Liucheng Mao
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuming Jiang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Huihui Liu
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Xiao Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Lingwei Meng
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Qiuyao Du
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Jing Han
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuying He
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
| | - Hongye Huang
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yawei Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Caiqiao Xiong
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Yen Wei
- Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Zongxiu Nie
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100190, China
- College of Chemical Engineering, Jiujiang University, Jiujiang, Jiangxi 332005, China
| |
Collapse
|
34
|
Nie Z, Zhang K, Chen X, Wang J, Gao H, Zheng B, Wu Q, Guo Y, Liu X, Wang X. A Multifunctional Integrated Metal-Free MRI Agent for Early Diagnosis of Oxidative Stress in a Mouse Model of Diabetic Cardiomyopathy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206171. [PMID: 36596646 PMCID: PMC9982554 DOI: 10.1002/advs.202206171] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/18/2022] [Indexed: 06/17/2023]
Abstract
Reactive oxygen species (ROS) are closely associated with the progression of diabetic cardiomyopathy (DCM) and can be regarded as one of its early biomarkers. Magnetic resonance imaging (MRI) is emerging as a powerful tool for the detection of cardiac abnormalities, but the sensitive and direct ROS-response MRI probe remains to be developed. This restricts the early diagnosis of DCM and prevents timely clinical interventions, resulting in serious and irreversible pathophysiological abnormalities. Herein, a novel ROS-response contrast-enhanced MRI nanoprobe (RCMN) is developed by multi-functionalizing fluorinated carbon nanosheets (FCNs) with multi-hydroxyl and 2,2,6,6-tetramethylpiperidin-1-oxyl groups. RCMNs capture ROS and then gather in the heart provisionally, which triggers MRI signal changes to realize the in vivo detection of ROS. In contrast to the clinical MRI agents, the cardiac abnormalities of disease mice is detected 8 weeks in advance with the assistance of RCMNs, which greatly advances the diagnostic window of DCM. To the best of the knowledge, this is the first ROS-response metal-free T2 -weighted MRI probe for the early diagnosis of DCM mice model. Furthermore, RCMNs can timely scavenge excessively produced ROS to alleviate oxidative stress.
Collapse
Affiliation(s)
- Zhuang Nie
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Kun Zhang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xinyu Chen
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Jingxin Wang
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Huile Gao
- Key Laboratory of Drug‐Targeting and Drug Delivery System of the Education MinistrySichuan Engineering Laboratory for Plant‐Sourced Drug and Sichuan Research Center for Drug Precision Industrial TechnologyWest China School of PharmacySichuan UniversityChengdu610064P. R. China
| | - Bingwen Zheng
- Time Medical Ltd., Hong Kong Science & Technology ParkHong Kong999077P. R. China
| | - Qihong Wu
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Yingkun Guo
- Department of RadiologyKey Laboratory of Birth Defects and Related Diseases of Women and Children of Ministry of EducationWest China Second University HospitalSichuan University20# South Renmin RoadChengduSichuan610041P. R. China
| | - Xiangyang Liu
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| | - Xu Wang
- College of Polymer Science and EngineeringState Key Laboratory of Polymer Material and EngineeringSichuan UniversityChengdu610065P. R. China
| |
Collapse
|
35
|
Botta M, Geraldes CFGC, Tei L. High spin Fe(III)-doped nanostructures as T 1 MR imaging probes. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2023; 15:e1858. [PMID: 36251471 DOI: 10.1002/wnan.1858] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 12/05/2022]
Abstract
Magnetic Resonance Imaging (MRI) T1 contrast agents based on Fe(III) as an alternative to Gd-based compounds have been under intense scrutiny in the last 6-8 years and a number of nanostructures have been designed and proposed for in vivo diagnostic and theranostic applications. Excluding the large family of superparamagnetic iron oxides widely used as T2 -MR imaging agents that will not be covered by this review, a considerable number and type of nanoparticles (NPs) have been employed, ranging from amphiphilic polymer-based NPs, NPs containing polyphenolic binding units such as melanin-like or polycatechols, mixed metals such as Fe/Gd or Fe/Au NPs and perfluorocarbon nanoemulsions. Iron(III) exhibits several favorable magnetic properties, high biocompatibility and improved toxicity profile that place it as the paramagnetic ion of choice for the next generation of nanosized MRI and theranostic contrast agents. An analysis of the examples reported in the last decade will show the opportunities for relaxivity and MR-contrast enhancement optimization that could bring Fe(III)-doped NPs to really compete with Gd(III)-based nanosystems. This article is categorized under: Diagnostic Tools > In Vivo Nanodiagnostics and Imaging Diagnostic Tools > Diagnostic Nanodevices Therapeutic Approaches and Drug Discovery > Nanomedicine for Oncologic Disease.
Collapse
Affiliation(s)
- Mauro Botta
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Carlos F G C Geraldes
- Faculty of Science and Technology, Department of Life Sciences and Coimbra Chemistry Center, University of Coimbra, Coimbra, Portugal.,CIBIT-Coimbra Institute for Biomedical Imaging and Translational Research, University of Coimbra, Coimbra, Portugal
| | - Lorenzo Tei
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| |
Collapse
|
36
|
Karageorgou MA, Bouziotis P, Stiliaris E, Stamopoulos D. Radiolabeled Iron Oxide Nanoparticles as Dual Modality Contrast Agents in SPECT/MRI and PET/MRI. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:503. [PMID: 36770463 PMCID: PMC9919131 DOI: 10.3390/nano13030503] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/23/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
During the last decades, the utilization of imaging modalities such as single photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance imaging (MRI) in every day clinical practice has enabled clinicians to diagnose diseases accurately at early stages. Radiolabeled iron oxide nanoparticles (RIONs) combine their intrinsic magnetic behavior with the extrinsic character of the radionuclide additive, so that they constitute a platform of multifaceted physical properties. Thus, at a practical level, RIONs serve as the physical parent of the so-called dual-modality contrast agents (DMCAs) utilized in SPECT/MRI and PET/MRI applications due to their ability to combine, at real time, the high sensitivity of SPECT or PET together with the high spatial resolution of MRI. This review focuses on the synthesis and in vivo investigation of both biodistribution and imaging efficacy of RIONs as potential SPECT/MRI or PET/MRI DMCAs.
Collapse
Affiliation(s)
| | - Penelope Bouziotis
- Institute of Nuclear & Radiological Sciences & Technology, Energy & Safety, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| | - Efstathios Stiliaris
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Dimosthenis Stamopoulos
- Department of Physics, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Institute of Nanoscience & Nanotechnology, National Center for Scientific Research “Demokritos”, 15341 Athens, Greece
| |
Collapse
|
37
|
Dey U, Chattopadhyay A. The Potential of Gadolinium Ascorbate Nanoparticles as a Safer Contrast Agent. J Phys Chem B 2023; 127:346-358. [PMID: 36574624 DOI: 10.1021/acs.jpcb.2c05831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
There have been health concerns raised against the use of gadolinium (Gd)-based magnetic resonance imaging contrast agents. The primary observation is that Gd ions are prone to leaking into the bloodstream, causing nephrogenic systemic fibrosis as one of the side effects. In addition, such leakage of the ions inhibits easy clearance from the body. Herein we propose that Gd-ascorbate nanoparticles could be one of the safer choices as they are rather stable in aqueous dispersion and they do not get affected by Zn or Fe ions in the medium. The magnetic properties of the ions are preserved in the nanoparticles, and particles when sufficiently small may be amenable to renal clearance from the human body. Thus, when an aqueous solution of Gd-acetate and ascorbic acid was left to evolve with time, a Gd-ascorbate complex was formed that led to the formation of nanoparticles with time. The sizes of the nanoparticles increased with time, and when the particles were sufficiently large, they precipitated out of the medium. In addition, smaller nanoparticles were consistently present at all times of observations. UV-vis, photoluminescence and FTIR spectroscopy, mass spectrometry, and transmission electron microscopy analyses confirmed the formation of nanoparticles of Gd-ascorbate complex. In addition, magnetic measurements confirmed the high relaxivity of the nanoparticles as compared to the parent salt, indicating the effectiveness of the nanoparticles as contrast agents. Density functional theory-based calculations of the molecular complex-based nanoparticles accounted for the experimental observations.
Collapse
Affiliation(s)
- Ujjala Dey
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India
| | - Arun Chattopadhyay
- Department of Chemistry, Indian Institute of Technology Guwahati, Guwahati 781039, India.,Centre for Nanotechnology, Indian Institute of Technology Guwahati, Guwahati 781039, India
| |
Collapse
|
38
|
Li A, Luo X, Chen D, Li L, Lin H, Gao J. Small Molecule Probes for 19F Magnetic Resonance Imaging. Anal Chem 2023; 95:70-82. [PMID: 36625117 DOI: 10.1021/acs.analchem.2c04539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Ao Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Xiangjie Luo
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Dongxia Chen
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Lingxuan Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Hongyu Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| | - Jinhao Gao
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Fujian Provincial Key Laboratory of Chemical Biology, and Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen361005, China
| |
Collapse
|
39
|
Zhang X, Wang X, Li Z, Du J, Xiao X, Pan D, Zhang H, Tian X, Gong Q, Gu Z, Luo K. Lactose-modified enzyme-sensitive branched polymers as a nanoscale liver cancer-targeting MRI contrast agent. NANOSCALE 2023; 15:809-819. [PMID: 36533522 DOI: 10.1039/d2nr04020d] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Signal enhancement of magnetic resonance imaging (MRI) in the diseased region is dependent on the molecular structure of the MRI contrast agent. In this study, a macromolecular contrast agent, Branched-LAMA-DOTA-Cy5.5-Gd (BLDCGd), was prepared to target liver cancer. Due to the affinity of lactose to the Asialoglycoprotein receptor (ASGPR) over-expressed on the surface of liver cancer cells, lactose was selected as the targeting moiety in the contrast agent. A cathepsin B-sensitive tetrapeptide, GFLG, was used as a linkage moiety to construct a cross-linked macromolecular structure of the contrast agent, and the contrast agent could be degraded into fragments for clearance. A small-molecular-weight molecule, DOTA-Gd, and a fluorescent dye, Cy5.5, were conjugated to the macromolecular structure via a thiol-ene click reaction. The contrast agent, BLDCGd, had a high molecular weight (81 kDa) and a small particle size (59 ± 12 nm). Its longitudinal relaxivity (12.62 mM-1 s-1) was 4-fold that of the clinical agent DTPA-Gd (3.42 mM-1 s-1). Signal enhancement of up to 184% was observed at the tumor site in an H22 cell-based mouse model. A high accumulation level of BLDCGd in the liver tumor observed from MRI was confirmed from the fluorescence images obtained from the same contrast agent. BLDCGd showed no toxicity to HUVECs and H22 cells in vitro, and low blood chemistry indexes and no distinct histopathological abnormalities were also observed in vivo after injection of BLDCGd since it could be metabolized through the kidneys according to the in vivo MRI results of major organs. Therefore, the branched macromolecule BLDCGd could have great potential as an efficacious and bio-safe nanoscale MRI contrast agent for clinical diagnosis of liver cancer.
Collapse
Affiliation(s)
- Xiaoqin Zhang
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xiaoming Wang
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Department of Radiology, Chongqing General Hospital, No. 118, Xingguang Avenue, Liangjiang New Area, Chongqing, 401147, China
| | - Zhiqian Li
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Jun Du
- School of Basic Medical Science, Southwest Medical University, Luzhou,646000, China
| | - Xueyang Xiao
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Dayi Pan
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute Claremont, CA 91711, USA
| | - Xiaohe Tian
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Qiyong Gong
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, China
| | - Zhongwei Gu
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
| | - Kui Luo
- Department of Radiology, Huaxi MR Research Center (HMRRC), Department of Biotherapy, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China.
- Functional and Molecular Imaging Key Laboratory of Sichuan Province and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
40
|
Li D, Yang J, Xu Z, Li Y, Sun Y, Wang Y, Zou H, Wang K, Yang L, Wu L, Sun X. c-Met-Targeting 19F MRI Nanoparticles with Ultralong Tumor Retention for Precisely Detecting Small or Ill-Defined Colorectal Liver Metastases. Int J Nanomedicine 2023; 18:2181-2196. [PMID: 37131548 PMCID: PMC10149079 DOI: 10.2147/ijn.s403190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 04/20/2023] [Indexed: 05/04/2023] Open
Abstract
Purpose Precisely detecting colorectal liver metastases (CLMs), the leading cause of colorectal cancer-associated mortality, is extremely important. 1H MRI with high soft tissue resolution plays a key role in the diagnosing liver lesions; however, precise detecting CLMs by 1H MRI is a great challenge due to the limited sensitivity. Even though contrast agents may improve the sensitivity, due to their short half-life, repeated injections are required to monitor the changes of CLMs. Herein, we synthesized c-Met-targeting peptide-functionalized perfluoro-15-crown-5-ether nanoparticles (AH111972-PFCE NPs), for highly sensitive and early diagnosis of small CLMs. Methods The size, morphology and optimal properties of the AH111972-PFCE NPs were characterized. c-Met specificity of the AH111972-PFCE NPs was validated by in vitro experiment and in vivo 19F MRI study in the subcutaneous tumor murine model. The molecular imaging practicability and long tumor retention of the AH111972-PFCE NPs were evaluated in the liver metastases mouse model. The biocompatibility of the AH111972-PFCE NPs was assessed by toxicity study. Results AH111972-PFCE NPs with regular shape have particle size of 89.3 ± 17.8 nm. The AH111972-PFCE NPs exhibit high specificity, strong c-Met-targeting ability, and precise detection capability of CLMs, especially small or ill-defined fused metastases in 1H MRI. Moreover, AH111972-PFCE NPs could be ultralong retained in metastatic liver tumors for at least 7 days, which is conductive to the implementation of continuous therapeutic efficacy monitoring. The NPs with minimal side effects and good biocompatibility are cleared mainly via the spleen and liver. Conclusion The c-Met targeting and ultralong tumor retention of AH111972-PFCE NPs will contribute to increasing therapeutic agent accumulation in metastatic sites, laying a foundation for CLMs diagnosis and further c-Met targeted treatment integration. This work provides a promising nanoplatform for the future clinical application to patients with CLMs.
Collapse
Affiliation(s)
- Daoshuang Li
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Jie Yang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Zuoyu Xu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yingbo Li
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yige Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Yuchen Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Hongyan Zou
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Kai Wang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Lili Yang
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Lina Wu
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
| | - Xilin Sun
- Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- NHC Key Laboratory of Molecular Probe and Targeted Diagnosis and Therapy, Molecular Imaging Research Center (MIRC) of Harbin Medical University, Harbin, Heilongjiang, People’s Republic of China
- Correspondence: Xilin Sun; Lina Wu, Department of Nuclear Medicine, the Fourth Hospital of Harbin Medical University, 766 Xiangan N Street, Songbei District, Harbin, Heilongjiang, 150028, People’s Republic of China, Tel +86-451-88118600, Fax +86-451-82576509, Email ;
| |
Collapse
|
41
|
Lu Y, Liang Z, Feng J, Huang L, Guo S, Yi P, Xiong W, Chen S, Yang S, Xu Y, Li Y, Chen X, Shen Z. Facile Synthesis of Weakly Ferromagnetic Organogadolinium Macrochelates-Based T 1 -Weighted Magnetic Resonance Imaging Contrast Agents. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 10:e2205109. [PMID: 36377432 PMCID: PMC9811448 DOI: 10.1002/advs.202205109] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/14/2022] [Indexed: 05/08/2023]
Abstract
To surmount the major concerns of commercial small molecule Gd chelates and reported Gd-based contrast agents (GBCAs) for magnetic resonance imaging (MRI), a new concept of organogadolinium macrochelates (OGMCs) constructed from the coordination between Gd3+ and macromolecules is proposed. A library of macromolecules were screened for Gd3+ coordination, and two candidates [i.e., poly(acrylic acid) (PAA), and poly(aspartic acid) (PASP)] succeeded in OGMC formation. Under optimized synthesis conditions, both Gd-PAA12 and Gd-PASP11 OGMCs are outstanding T1 -weighted CAs owing to their super high r1 values (> 50 mm-1 s-1 , 3.0 T) and ultralow r2 /r1 ratios (< 1.6, 3.0 T). The ferromagnetism of OGMCs is completely different from the paramagnetism of commercial and reported GBCAs. The ferromagnetism is very weak (Ms < 1.0 emu g-1 ) leading to a low r2 , which is preferred for T1 MRI. Gd3+ is not released from the OGMC Gd-PAA12 and Gd-PASP11, ensuring biosafety for in vivo applications. The safety and T1 -weighted MRI efficiencies of the OGMC Gd-PAA12 and Gd-PASP11 are tested in cells and mice. The synthesis method of the OGMCs is facile and easy to be scaled up. Consequently, the OGMC Gd-PAA12 and Gd-PASP11 are superior T1 -weighted CAs with promising translatability to replace the commercial Gd chelates.
Collapse
Affiliation(s)
- Yudie Lu
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Zhiyu Liang
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Jie Feng
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Lin Huang
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Shuai Guo
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Peiwei Yi
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Wei Xiong
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Sijin Chen
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Sugeun Yang
- Department of Biomedical ScienceBK21 FOUR Program in Biomedical Science and EngineeringInha University College of MedicineIncheon22212South Korea
| | - Yikai Xu
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Yan Li
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
| | - Xiaoyuan Chen
- Departments of Diagnostic Radiology, Surgery, Chemical and Biomolecular Engineering, and Biomedical EngineeringClinical Imaging Research CentreNanomedicine Translational Research ProgramYong Loo Lin School of Medicine and Faculty of EngineeringNational University of SingaporeSingapore119228Singapore
| | - Zheyu Shen
- School of Biomedical EngineeringSouthern Medical UniversityGuangzhouGuangdong510515China
- Medical Imaging CenterNanfang HospitalSouthern Medical UniversityGuangzhouGuangdong510515China
| |
Collapse
|
42
|
Preparation of Temperature-Responsive Antibody–Nanoparticles by RAFT-Mediated Grafting from Polymerization. Polymers (Basel) 2022; 14:polym14214584. [DOI: 10.3390/polym14214584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/22/2022] [Accepted: 10/24/2022] [Indexed: 10/31/2022] Open
Abstract
Herein, we report the preparation of temperature-responsive antibody–nanoparticles by the direct polymerization of N-isopropylacrylamide (NIPAAm) from immunoglobulin G (IgG). To this end, a chain transfer agent (CTA) was introduced into IgG, followed by the precipitation polymerization of NIPAAm in an aqueous medium via reversible addition–fragmentation chain transfer polymerization above the lower critical solution temperature (LCST). Consequently, antibody–polymer particles with diameters of approximately 100–200 nm were formed. Owing to the entanglement of the grafted polymers via partial chemical crosslinking, the antibody–nanoparticles maintained their stability even at temperatures below the LCST. Further, the dispersed nanoparticles could be collected by thermal precipitation above the LCST. Additionally, the antibody–nanoparticles formulation could maintain its binding constant and exhibited a good resistance against enzymatic treatment. Thus, the proposed antibody–nanoparticles can be useful for maximizing the therapeutic potential of antibody–drug conjugates or efficacies of immunoassays and antibody recovery and recycling.
Collapse
|
43
|
Lyons T, Kekedjian C, Glaser P, Ohlin CA, van Eldik R, Rodriguez O, Albanese C, Van Keuren E, Stoll SL. Molecular Parameters Promoting High Relaxivity in Cluster-Nanocarrier Magnetic Resonance Imaging Contrast Agents. ACS APPLIED MATERIALS & INTERFACES 2022; 14:10.1021/acsami.2c12584. [PMID: 36283049 PMCID: PMC10502962 DOI: 10.1021/acsami.2c12584] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
We have investigated the mechanism of relaxivity for two magnetic resonance imaging contrast agents that both employ a cluster-nanocarrier design. The first system termed Mn8Fe4-coPS comprises the cluster Mn8Fe4O12(L)16(H2O)4 or Mn8Fe4 (1) (L = carboxylate) co-polymerized with polystyrene to form ∼75 nm nanobeads. The second system termed Mn3Bpy-PAm used the cluster Mn3(O2CCH3)6(Bpy)2 or Mn3Bpy (2) where Bpy = 2,2'-bipyridine, entrapped in ∼180 nm polyacrylamide nanobeads. Here, we investigate the rate of water exchange of the two clusters, and corresponding cluster-nanocarriers, in order to elucidate the mechanism of relaxivity in the cluster-nanocarrier. Swift-Connick analysis of O-17 NMR was used to determine the water exchange rates of the clusters and cluster-nanocarriers. We found distinct differences in the water exchange rate between Mn8Fe4 and Mn8Fe4-coPS, and we utilized these differences to elucidate the nanobead structure. Using the transverse relaxivity from O-17 NMR line widths, we were able to determine the hydration state of the Mn3Bpy (2) cluster as well as Mn3Bpy-PAm. Using these hydration states in the Swift-Connick analysis of O-17 NMR, we found the water exchange rate to be extremely close in value for the cluster Mn3Bpy and cluster-nanocarrier Mn3Bpy-PAm.
Collapse
Affiliation(s)
- Trevor Lyons
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Chloe Kekedjian
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Priscilla Glaser
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - C André Ohlin
- Department of Chemistry, Umeå University, Umeå907 36, Sweden
| | - Rudi van Eldik
- Faculty of Chemistry, Nicolaus Copernicus University, Torun87 100, Poland
- Inorganic Chemistry, Department of Chemistry and Pharmacy, University of Erlangen-Nuremberg, Egerlandstrasse 1, Erlangen91058, Germany
| | - Olga Rodriguez
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.20057, United States
| | - Christopher Albanese
- Department of Oncology, Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, D.C.20057, United States
- Department of Radiology, Georgetown University Medical Center, Washington, D.C.20057, United States
| | - Edward Van Keuren
- Department of Physics, and Institute for Soft Matter Synthesis and Metrology, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| | - Sarah L Stoll
- Department of Chemistry, Georgetown University, 37th and O Streets NW, Washington, D.C.20057, United States
| |
Collapse
|
44
|
Taylor NG, Reis MH, Varner TP, Rapp JL, Sarabia A, Leibfarth FA. A dual initiator approach for oxygen tolerant RAFT polymerization. Polym Chem 2022; 13:4798-4808. [PMID: 37799166 PMCID: PMC10552776 DOI: 10.1039/d2py00603k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
Reversible-deactivation radical polymerizations are privileged approaches for the synthesis of functional and hybrid materials. A bottleneck for conducting these processes is the need to maintain oxygen free conditions. Herein we report a broadly applicable approach to "polymerize through" oxygen using the synergistic combination of two radical initiators having different rates of homolysis. The in situ monitoring of the concentrations of oxygen and monomer simultaneously provided insight into the function of the two initiators and enabled the identification of conditions to effectively remove dissolved oxygen and control polymerization under open-to-air conditions. By understanding how the surface area to volume ratio of reaction vessels influence open-to-air polymerizations, well-defined polymers were produced using acrylate, styrenic, and methacrylate monomers, which each represent an expansion of scope for the "polymerizing through" oxygen approach. Demonstration of this method in tubular reactors using continuous flow chemistry provided a more complete structure-reactivity understanding of how reaction headspace influences PTO RAFT polymerizations.
Collapse
Affiliation(s)
- Nicholas G Taylor
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Marcus H Reis
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Travis P Varner
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Johann L Rapp
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Alexis Sarabia
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Frank A Leibfarth
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
45
|
Synthesis of Carbosilane and Carbosilane-Siloxane Dendrons Based on Limonene. Polymers (Basel) 2022; 14:polym14163279. [PMID: 36015536 PMCID: PMC9416742 DOI: 10.3390/polym14163279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 11/16/2022] Open
Abstract
In this work, carbosilane dendrons of the first, second, and third generations were obtained on the basis of a natural terpenoid, limonene. Previously, we have shown the possibility of selective hydrosilylation and hydrothiolation of limonene. It is proved that during hydrosilylation, only the isoprenyl double bond reacts, while the cyclohexene double bond does not undergo into the hydrosilylation reaction. However, the cyclohexene double bond reacts by hydrothiolation. This selectivity makes it possible to use limonene as a dendron growth center, while maintaining a useful function—a double bond at the focal point. Thus, the sequence of hydrosilylation and Grignard reactions based on limonene formed carbosilane dendrons. After that, the end groups were blocked by heptamethyltrisiloxane or butyllithium. The obtained substances were characterized using NMR spectroscopy, elemental analysis and GPC. Thus, the proposed methodology for the synthesis of carbosilane dendrons based on the natural terpenoid limonene opens up wide possibilities for obtaining various macromolecules: dendrimers, Janus dendrimers, dendronized polymers, and macroinitiators.
Collapse
|
46
|
Rammohan N, Randall JW, Yadav P. History of Technological Advancements towards MR-Linac: The Future of Image-Guided Radiotherapy. J Clin Med 2022; 11:jcm11164730. [PMID: 36012969 PMCID: PMC9409689 DOI: 10.3390/jcm11164730] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/27/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022] Open
Abstract
Image-guided radiotherapy (IGRT) enables optimal tumor targeting and sparing of organs-at-risk, which ultimately results in improved outcomes for patients. Magnetic resonance imaging (MRI) revolutionized diagnostic imaging with its superior soft tissue contrast, high spatiotemporal resolution, and freedom from ionizing radiation exposure. Over the past few years there has been burgeoning interest in MR-guided radiotherapy (MRgRT) to overcome current challenges in X-ray-based IGRT, including but not limited to, suboptimal soft tissue contrast, lack of efficient daily adaptation, and incremental exposure to ionizing radiation. In this review, we present an overview of the technologic advancements in IGRT that led to MRI-linear accelerator (MRL) integration. Our report is organized in three parts: (1) a historical timeline tracing the origins of radiotherapy and evolution of IGRT, (2) currently available MRL technology, and (3) future directions and aspirations for MRL applications.
Collapse
|
47
|
Xia HY, Li BY, Zhao Y, Han YH, Wang SB, Chen AZ, Kankala RK. Nanoarchitectured manganese dioxide (MnO2)-based assemblies for biomedicine. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214540] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
48
|
Dey AD, Bigham A, Esmaeili Y, Ashrafizadeh M, Moghaddam FD, Tan SC, Yousefiasl S, Sharma S, Maleki A, Rabiee N, Kumar AP, Thakur VK, Orive G, Sharifi E, Kumar A, Makvandi P. Dendrimers as nanoscale vectors: Unlocking the bars of cancer therapy. Semin Cancer Biol 2022; 86:396-419. [PMID: 35700939 DOI: 10.1016/j.semcancer.2022.06.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 03/06/2022] [Accepted: 06/09/2022] [Indexed: 11/18/2022]
Abstract
Chemotherapy is the first choice in the treatment of cancer and is always preferred to other approaches such as radiation and surgery, but it has never met the need of patients for a safe and effective drug. Therefore, new advances in cancer treatment are now needed to reduce the side effects and burdens associated with chemotherapy for cancer patients. Targeted treatment using nanotechnology are now being actively explored as they could effectively deliver therapeutic agents to tumor cells without affecting normal cells. Dendrimers are promising nanocarriers with distinct physiochemical properties that have received considerable attention in cancer therapy studies, which is partly due to the numerous functional groups on their surface. In this review, we discuss the progress of different types of dendrimers as delivery systems in cancer therapy, focusing on the challenges, opportunities, and functionalities of the polymeric molecules. The paper also reviews the various role of dendrimers in their entry into cells via endocytosis, as well as the molecular and inflammatory pathways in cancer. In addition, various dendrimers-based drug delivery (e.g., pH-responsive, enzyme-responsive, redox-responsive, thermo-responsive, etc.) and lipid-, amino acid-, polymer- and nanoparticle-based modifications for gene delivery, as well as co-delivery of drugs and genes in cancer therapy with dendrimers, are presented. Finally, biosafety concerns and issues hindering the transition of dendrimers from research to the clinic are discussed to shed light on their clinical applications.
Collapse
Affiliation(s)
- Asmita Deka Dey
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials-National Research Council (IPCB-CNR), Viale J.F. Kennedy 54-Mostra d'Oltremare pad. 20, 80125 Naples, Italy
| | - Yasaman Esmaeili
- Biosensor Research Center (BRC), School of Advanced Technologies in Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956 Istanbul, Turkey
| | - Farnaz Dabbagh Moghaddam
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Satar Yousefiasl
- School of Dentistry, Hamadan University of Medical Sciences, 6517838736 Hamadan, Iran
| | - Saurav Sharma
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, 45139-56184 Zanjan, Iran; Cancer Research Centre, Shahid Beheshti University of Medical Sciences, 1989934148 Tehran, Iran
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, South Korea; School of Engineering, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 117600, Singapore; NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 119077, Singapore
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, Edinburgh EH9 3JG, UK; School of Engineering, University of Petroleum & Energy Studies (UPES), Dehradun 248007, Uttarakhand, India; Centre for Research & Development, Chandigarh University, Mohali 140413, Punjab, India
| | - Gorka Orive
- NanoBioCel Research Group, School of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; University Institute for Regenerative Medicine and Oral Implantology - UIRMI (UPV/EHU-Fundación Eduardo Anitua), Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, Iran; Institute of Polymers, Composites and Biomaterials, National Research Council (IPCB-CNR), Naples, 80125 Italy.
| | - Arun Kumar
- Chitkara College of Pharmacy, Chitkara University, Punjab, India.
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Centre for Materials Interfaces, Pontedera, 56025 Pisa, Italy.
| |
Collapse
|
49
|
Fernandes T, Daniel-da-Silva AL, Trindade T. Metal-dendrimer hybrid nanomaterials for sensing applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214483] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
50
|
Patel V, Patel P, Patel JV, Patel PM. Dendrimer as a versatile platform for biomedical application: A review. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100516] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|