1
|
Katzer NJ, Kaur M, Sen A, Nimaiyar R, Autschbach J, Arnold PL, Hintermair U. Tetraphenylpentalenide organolanthanide complexes. Chem Commun (Camb) 2024; 60:9749-9752. [PMID: 39171542 PMCID: PMC11513172 DOI: 10.1039/d4cc02570a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
The D2h symmetrical 1,3,4,6-tetraphenylpentalenide is an excellent ligand for the stabilisation of strongly coloured bis(pentalenide) LnIII sandwich complexes. These easily accessible compounds complement previously reported lanthanide organometallics and provide new opportunities to understand the roles of the f-orbitals in electronic structure and bonding.
Collapse
Affiliation(s)
- Nicholas J Katzer
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mandeep Kaur
- Department of Chemistry, University of Bath, BA2 7AY, UK.
| | - Asmita Sen
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | - Rupal Nimaiyar
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
| | - Jochen Autschbach
- Department of Chemistry, University at Buffalo, State University of New York, Buffalo, NY 14260, USA.
| | - Polly L Arnold
- Department of Chemistry, University of California, Berkeley, CA, 94720, USA.
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | | |
Collapse
|
2
|
Jenek NA, Helbig A, Boyt SM, Kaur M, Sanderson HJ, Reeksting SB, Kociok-Köhn G, Helten H, Hintermair U. Understanding and tuning the electronic structure of pentalenides. Chem Sci 2024; 15:12765-12779. [PMID: 39148775 PMCID: PMC11323301 DOI: 10.1039/d3sc04622b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 07/01/2024] [Indexed: 08/17/2024] Open
Abstract
Here we report the first example of systematic tuning of the electronic properties of dianionic pentalenides through a straightforward synthetic protocol which allows the controlled variation of substituents in the 1,3,4,6-positions to produce nine new compounds, representing the largest pentalenide study to date. Both electron-withdrawing as well as electron-donating aromatics have been incorporated to achieve different polarisations of the bicyclic 10π aromatic core as indicated by characteristic 1H and 13C NMR shifts and evaluated by DFT calculations including nucleus-independent chemical shift (NICS) scans, anisotropy of the induced current density (ACID) calculations, and natural bond orbital (NBO) charge distribution analysis. The introduction of methyl substituents to the pentalenide core required positional control in the dihydropentalene precursor to avoid exocyclic deprotonation during the metalation. Frontier orbital analyses showed arylated pentalenides to be slightly weaker donors but much better acceptor ligands than unsubstituted pentalenide. The coordination chemistry potential of our new ligands has been exemplified by the straightforward synthesis of a polarised anti-dirhodium(i) complex.
Collapse
Affiliation(s)
- Niko A Jenek
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Andreas Helbig
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Stuart M Boyt
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Mandeep Kaur
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Hugh J Sanderson
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| | - Shaun B Reeksting
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Gabriele Kociok-Köhn
- Chemical Characterisation Facility, University of Bath Claverton Down Bath BA2 7AY UK
| | - Holger Helten
- Institute of Inorganic Chemistry, Institute for Sustainable Chemistry & Catalysis with Boron (ICB), Julius-Maximilians-Universität Würzburg Am Hubland D-97074 Würzburg Germany
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath Claverton Down Bath BA2 7AY UK
| |
Collapse
|
3
|
Mu Y, Dai Y, Ruiz DA, Liu LL, Xu LP, Tung CH, Kong L. Aromatic 1,4,2,3-Diazadiborole Featuring an Unsymmetrical B=B Entity: A Versatile Synthon for Unusual Boron Heterocycles. Angew Chem Int Ed Engl 2024; 63:e202405905. [PMID: 38771269 DOI: 10.1002/anie.202405905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/21/2024] [Accepted: 05/21/2024] [Indexed: 05/22/2024]
Abstract
The replacement of a CC unit with an isoelectronic BN unit in aromatic systems can give rise to molecules and materials with fascinating properties. We report here the synthesis, characterization, and reactivity of a 1,4,2,3-diazadiborole species, 2, featuring an unprecedented 6π-aromatic BN-heterocyclic moiety that is isoelectronic to cyclopentadienide (Cp-). Bearing an unsymmetrical B=B entity, 2 exhibits reactivity toward oxidants, protic reagents, electrophiles, and unsaturated substrates. This reactivity facilitates the synthesis of a variety of novel mono- and bicyclic organoboron derivatives through mechanisms including ring retention, cleavage/recombination, annulation, and expansion. These findings reveal innovative synthetic routes to BN-embedded aromatic compounds via desymmetrization, affording unique building blocks for synthetic chemistry.
Collapse
Affiliation(s)
- Yu Mu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Yuyang Dai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - David A Ruiz
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Research Center for Chemical Biology and Omics Analysis, College of Science, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Li-Ping Xu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Chen-Ho Tung
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Lingbing Kong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
- State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| |
Collapse
|
4
|
Bührmann L, Albers L, Beuße M, Schmidtmann M, Müller T. Aluminagerma[5]pyramidanes-Formation and Skeletal Rearrangement. Angew Chem Int Ed Engl 2024; 63:e202401467. [PMID: 38470087 DOI: 10.1002/anie.202401467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/13/2024]
Abstract
The salt metathesis reaction of dipotassium germacyclopentadienediide with aluminum(III) dichlorides provides either half-sandwich alumole complexes of germanium(II) or aluminylene germole complexes. Their molecular structure and the delocalized bonding situation, revealed by density functional theory (DFT) calculations, are equally described as isomeric aluminagerma[5]pyramidanes with either the germanium or the aluminum atom in the apical position of the pentagonal pyramid. The product formation and the selectivity of the reaction depends on the third substituent of the aluminum dichloride. Aryl-substituents favor the formation of alumole complexes and Cp*-substituents that of the isomeric germole complexes. With amino-substituents at the aluminum atom mixtures of both isomers are formed and the positional exchange of the two heteroatoms is shown by NMR spectroscopy. The alumole complexes of germanium(II) undergo facile reductive elimination of germanium and form the corresponding alumoles.
Collapse
Affiliation(s)
- Lukas Bührmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Lena Albers
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Maximilian Beuße
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Marc Schmidtmann
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| | - Thomas Müller
- Institute of Chemistry, Carl von Ossietzky University Oldenburg, Carl von Ossietzky-Str. 9-11, D. 26129, Oldenburg, Federal Republic of Germany, EU
| |
Collapse
|
5
|
Lugo-Fuentes LI, Lucas-Rosales VA, Sandoval-Mendoza JA, Shang R, Martínez JP, Jiménez-Halla JOC. Different Reaction Modes Operating in ansa-Half-Sandwich Magnesium Catalysts. Chemistry 2024; 30:e202304130. [PMID: 38350013 DOI: 10.1002/chem.202304130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/22/2024] [Accepted: 02/13/2024] [Indexed: 02/15/2024]
Abstract
Magnesium-based catalysts are becoming popular for hydroelementation reactions specially using p-block reagents. Based on the seminal report from Schäfer's group (ChemCatChem 2022, 14, e202201007), our study demonstrates that the reaction mechanisms exhibit a far greater degree of complexity than originally presumed. Magnesium has a variety of coordination modes (and access to different hybridizations) which allows this electron-deficient centre to modulate its catalytic power depending on the σ-donor properties of the reagent. DFT calculations demonstrate several reaction channels closely operating in these versatile catalysts. In addition, variations in limiting energy barriers resulting from catalyst modifications were examined as a function of the Hammett constant, thereby predicting enhanced efficiency in reaction conversions.
Collapse
Affiliation(s)
- Leonardo I Lugo-Fuentes
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Victor A Lucas-Rosales
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - J Antonio Sandoval-Mendoza
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| | - Rong Shang
- Department of Chemistry, Graduate School of Advanced Science and Engineering, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, 739-8526, Hiroshima, Japan
| | - Juan Pablo Martínez
- Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097, Warszawa
| | - J Oscar C Jiménez-Halla
- Departamento de Química, División de Ciencias Naturales y Exactas, Universidad de Guanajuato, Campus Gto, Noria Alta S/N, CP, 36050, Guanajuato, México
| |
Collapse
|
6
|
Werner L, Hagn J, Gerstner A, Radius U. NHC-ligated indenyl- and fluorenyl-substituted Alanes and Gallanes: synthons towards indenyl- and fluorenyl-bridged (AlC) n-heterocycles ( n = 2,3). Dalton Trans 2024; 53:5932-5946. [PMID: 38456748 DOI: 10.1039/d4dt00244j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
Indenyl-(Ind) and fluorenyl-(Fl) substituted NHC-stabilized alanes and gallanes (NHC)·EH2R 1-12 (NHC = IiPrMe, IiPr, IMeMe; E = Al, Ga; R = Ind, Fl) were prepared via reaction of the corresponding NHC-iodoalanes and -gallanes with LiInd and LiFl, respectively. Analogously, the alane adducts with two Ind/Fl substituents (NHC)·AlHR213-18 (NHC = IiPrMe, IiPr, IMeMe; R = Ind, Fl) were obtained by using two equivalents of LiInd/LiFl. Elimination of indene and fluorene was induced thermally affording unusual dimeric and trimeric NHC-alane adducts {(NHC)·AlH2}2-μ-Fl 19-20 and {(NHC)·AlH-μ-R}n21-23 (R = Ind, Fl; n = 2, 3) with bridging indenyl and fluorenyl ligands.
Collapse
Affiliation(s)
- Luis Werner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Julika Hagn
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Alexander Gerstner
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Udo Radius
- Institute for Inorganic Chemistry, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany.
| |
Collapse
|
7
|
Sanderson HJ, Kociok-Köhn G, McMullin CL, Hintermair U. Twinned versus linked organometallics - bimetallic "half-baguette" pentalenide complexes of Rh(I). Dalton Trans 2024; 53:5881-5899. [PMID: 38446046 DOI: 10.1039/d3dt04325h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/07/2024]
Abstract
The application of Mg[Ph4Pn] and Li·K[Ph4Pn] in transmetalation reactions to a range of Rh(I) precursors led to the formation of "half-baguette" anti-[RhI(L)n]2[μ:η5:η5Ph4Pn] (L = 1,5-cyclooctadiene, norbornadiene, ethylene; n = 1, 2) and syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] complexes as well as the related iridium complex anti-[IrI(COD)]2[μ:η5:η5Ph4Pn]. With CO exclusive syn metalation was obtained even when using mono-nuclear Rh(I) precursors, indicating an electronic preference for syn metalation. DFT analysis showed this to be the result of π overlap between the adjacent M(CO)2 units which overcompensates for dz2 repulsion of the metals, an effect which can be overridden by steric clash of the auxiliary ligands to yield anti-configuration as seen in the larger olefin complexes. syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] is a rare example of a twinned organometallic where the two metals are held flexibly in close proximity, but the two d8 Rh(I) centres did not show signs of M-M bonding interactions or exhibit Lewis basic behaviour as in some related mono-nuclear Cp complexes due to the acceptor properties of the ligands. The ligand substitution chemistry of syn-[RhI(CO)2]2[μ:η5:η5Ph4Pn] was investigated with a series of electronically and sterically diverse donor ligands (P(OPh)3, P(OMe)3, PPh3, PMe3, dppe) yielding new mono- and bis-substituted complexes, with E-syn-[RhI(CO)(P{OR})3]2[μ:η5:η5Ph4Pn] (R = Me, Ph) characterised by XRD.
Collapse
Affiliation(s)
- Hugh J Sanderson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Claire L McMullin
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK.
- Institute for Sustainability, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| |
Collapse
|
8
|
Bischoff IA, Morgenstern B, Zimmer M, Koldemir A, Pöttgen R, Schäfer A. Bis(tetrelocenes) - fusing tetrelocenes into close proximity. Dalton Trans 2023; 52:17928-17933. [PMID: 37981853 DOI: 10.1039/d3dt02664g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2023]
Abstract
We report the synthesis and structure of two bis(germanocenes) and a bis(stannocene), obtained by the reaction of unsymmetric ansa bis(cyclopentadienyl) ligands with germanium and tin dichloride. DFT calculations show that the formation of these bis(tetrelocenes) is energetically favoured over the formation of the corresponding [1]tetrelocenophanes. In the crystal structure authenticated structural motif, the two tetrel(II) centers are forced into close proximity to each other, resulting in weak donor-acceptor interactions, according to Natural Bond Orbital (NBO) and Atoms in Molecules (AIM) analyses.
Collapse
Affiliation(s)
- Inga-Alexandra Bischoff
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Bernd Morgenstern
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Michael Zimmer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Aylin Koldemir
- Institute of Inorganic and Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Rainer Pöttgen
- Institute of Inorganic and Analytical Chemistry, Faculty of Chemistry and Pharmacy, University of Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - André Schäfer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
9
|
Stoy A, Jürgensen M, Millidoni C, Berthold C, Ramler J, Martínez S, Buchner MR, Lichtenberg C. Bismuth in Dynamic Covalent Chemistry: Access to a Bowl-Type Macrocycle and a Barrel-Type Heptanuclear Complex Cation. Angew Chem Int Ed Engl 2023; 62:e202308293. [PMID: 37522394 DOI: 10.1002/anie.202308293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/28/2023] [Accepted: 07/31/2023] [Indexed: 08/01/2023]
Abstract
Dynamic covalent chemistry (DCvC) is a powerful and widely applied tool in modern synthetic chemistry, which is based on the reversible cleavage and formation of covalent bonds. One of the inherent strengths of this approach is the perspective to reversibly generate in an operationally simple approach novel structural motifs that are difficult or impossible to access with more traditional methods and require multiple bond cleaving and bond forming steps. To date, these fundamentally important synthetic and conceptual challenges in the context of DCvC have predominantly been tackled by exploiting compounds of lighter p-block elements, even though heavier p-block elements show low bond dissociation energies and appear to be ideally suited for this approach. Here we show that a dinuclear organometallic bismuth compound, containing BiMe2 groups that are connected by a thioxanthene linker, readily undergoes selective and reversible cleavage of its Bi-C bonds upon exposure to external stimuli. The exploitation of DCvC in the field of organometallic heavy p-block chemistry grants access to unprecedented macrocyclic and barrel-type oligonuclear compounds.
Collapse
Affiliation(s)
- Andreas Stoy
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Malte Jürgensen
- Institute of Inorganic Chemistry, Julius-Maximilians-University Würzburg, Am Hubland, 97074, Würzburg, Germany
| | - Christina Millidoni
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Chantsalmaa Berthold
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Jacqueline Ramler
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Sebastián Martínez
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Magnus R Buchner
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| | - Crispin Lichtenberg
- Department of Chemistry, Philipps-University Marburg, Hans-Meerwein-Str. 4, 35032, Marburg, Germany
| |
Collapse
|
10
|
Sanderson HJ, Kociok-Köhn G, Hintermair U. Synthesis, Structure, and Reactivity of Magnesium Pentalenides. Inorg Chem 2023; 62:15983-15991. [PMID: 37712911 PMCID: PMC10548416 DOI: 10.1021/acs.inorgchem.3c02087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Indexed: 09/16/2023]
Abstract
The first magnesium pentalenide complexes have been synthesized via deprotonative metalation of 1,3,4,6-tetraphenyldihydropentalene (Ph4PnH2) with magnesium alkyls. Both the nature of the metalating agent and the reaction solvent influenced the structure of the resulting complexes, and an equilibrium between Mg[Ph4Pn] and [nBuMg]2[Ph4Pn] was found to exist and investigated by NMR, XRD, and UV-vis spectroscopic techniques. Studies on the reactivity of Mg[Ph4Pn] with water, methyl iodide, and trimethylsilylchloride revealed that the [Ph4Pn]2- unit undergoes electrophilic addition at 1,5-positions instead of 1,4-positions known for the unsubstituted pentalenide, Pn2-, highlighting the electronic influence of the four aryl substituents on the pentalenide core. The ratio of syn/anti addition was found to be dependent on the size of the incoming electrophile, with methylation yielding a 60:40 mixture, while silylation yielded exclusively the anti-isomer.
Collapse
Affiliation(s)
- Hugh J. Sanderson
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| | - Gabriele Kociok-Köhn
- Material
and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2
7AY, U.K.
| | - Ulrich Hintermair
- Department
of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
- Institute
for Sustainability, University of Bath, Claverton Down, Bath BA2 7AY, U.K.
| |
Collapse
|
11
|
Sergeieva T, Demirer TI, Wuttke A, Mata RA, Schäfer A, Linker GJ, Andrada DM. Revisiting the origin of the bending in group 2 metallocenes AeCp 2 (Ae = Be-Ba). Phys Chem Chem Phys 2023. [PMID: 37482883 PMCID: PMC10395002 DOI: 10.1039/d2cp05020j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
Metallocenes are well-established compounds in organometallic chemistry, and can exhibit either a coplanar structure or a bent structure according to the nature of the metal center (E) and the cyclopentadienyl ligands (Cp). Herein, we re-examine the chemical bonding to underline the origins of the geometry and stability observed experimentally. To this end, we have analysed a series of group 2 metallocenes [Ae(C5R5)2] (Ae = Be-Ba and R = H, Me, F, Cl, Br, and I) with a combination of computational methods, namely energy decomposition analysis (EDA), polarizability model (PM), and dispersion interaction densities (DIDs). Although the metal-ligand bonding nature is mainly an electrostatic interaction (65-78%), the covalent character is not negligible (33-22%). Notably, the heavier the metal center, the stronger the d-orbital interaction with a 50% contribution to the total covalent interaction. The dispersion interaction between the Cp ligands counts only for 1% of the interaction. Despite that orbital contributions become stronger for heavier metals, they never represent the energy main term. Instead, given the electrostatic nature of the metallocene bonds, we propose a model based on polarizability, which faithfully predicts the bending angle. Although dispersion interactions have a fair contribution to strengthen the bending angle, the polarizability plays a major role.
Collapse
Affiliation(s)
- Tetiana Sergeieva
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - T Ilgin Demirer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Axel Wuttke
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute for Physical Chemistry, Georg-August-University Göttingen, Tammannstrasse 6, D-37077 Göttingen, Germany.
| | - André Schäfer
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Gerrit-Jan Linker
- MESA+ Institute for Nanotechnology, University of Twente, 7522 NB Enschede, The Netherlands.
| | - Diego M Andrada
- Department of Chemistry, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
12
|
Tamizmani M, Tidwell JR, Reinheimer EW, Lindley BM, Martin CD. Triple-Decker Iron and Cobalt Complexes Featuring a Bridging 1,2-Diboratabenzene Ligand. Inorg Chem 2023; 62:7150-7154. [PMID: 37130277 DOI: 10.1021/acs.inorgchem.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Neutral triple-decker iron and cobalt complexes with a bridging 1,2-diboratabenzene ligand were accessed by reactions of a dilithium 1,2-diboratabenzene reagent with [Cp*FeCl]2 and [Cp*CoCl]2, respectively. While 1,2-diboratabenzene metal complexes are known, these represent the first examples of the ligand bridging two metals.
Collapse
Affiliation(s)
- Masilamani Tamizmani
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - John R Tidwell
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Eric W Reinheimer
- Rigaku Americas Corporation, The Woodlands, Texas 77381, United States
| | - Brian M Lindley
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| | - Caleb D Martin
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, Texas 76798, United States
| |
Collapse
|
13
|
Hu C, Liu LL. Utilization of a Tris(carbene)borate Ligand for Umpolung Reactivity of a Nucleophilic Tin(II) Cation Salt. Inorg Chem 2023; 62:3592-3600. [PMID: 36763989 DOI: 10.1021/acs.inorgchem.2c04258] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
We show that a tris(carbene)borate (TCB) ligand, namely [PhB(tBuIm)3]- ([PhB(tBuIm)3]- = phenyltris(3-tert-butylimidazol-2-ylidene)borato), is capable of stabilizing an unprecedented nucleophilic Sn(II) cation salt. Unlike known Sn(II) cations, the strong electron-donating ability of [PhB(tBuIm)3]- makes the cationic tin atom electron-rich, σ-donating yet slightly π-accepting, which allows for the ensuing facile oxidation with o-chloranil and S8 as well as coordination with coinage metals. The former oxidations give the Sn(IV) cation salts, while the latter reactions produce the metal complexes. The electronic structures of these species are thoroughly probed by quantum chemical computations. These results uncover an added role for TCB ligands in isolating unprecedented p-block species.
Collapse
Affiliation(s)
- Chaopeng Hu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| | - Liu Leo Liu
- Department of Chemistry and Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
14
|
Müller C, Schu J, Morgenstern B, Zimmer M, Schmidtmann M, Schäfer A. Phosphanyl-substituted tin half-sandwich complexes †. RSC Adv 2023; 13:10249-10253. [PMID: 37006362 PMCID: PMC10065063 DOI: 10.1039/d3ra01384g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 03/22/2023] [Indexed: 04/03/2023] Open
Abstract
Phosphanyl-substituted tin(ii) half sandwich complexes are reported. Due to the Lewis acidic tin center and Lewis basic phosphorous atom they form head-to-tail dimers. Their properties and reactivities were investigated both experimentally and theoretically. Furthermore, related transition metal complexes of these species are presented. Phosphanyl-substituted tin(ii) half sandwich complexes are reported, which exhibit Lewis acidic tin atoms and Lewis basic phosphorous atoms and form head-to-tail dimers.![]()
Collapse
Affiliation(s)
- Carsten Müller
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University66123 SaarbrückenGermany
| | - Justin Schu
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University66123 SaarbrückenGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University66123 SaarbrückenGermany
| | - Michael Zimmer
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University66123 SaarbrückenGermany
| | - Marc Schmidtmann
- School of Mathematics and Science, Institute of Chemistry, Carl von Ossietzky University of Oldenburg26129 OldenburgGermany
| | - André Schäfer
- Faculty of Natural Sciences and Technology, Department of Chemistry, Saarland University66123 SaarbrückenGermany
| |
Collapse
|
15
|
Schüler P, Sengupta S, Koch A, Görls H, Krieck S, Westerhausen M. In situ Grignard Metalation Method, Part II: Scope of the One-Pot Synthesis of Organocalcium Compounds. Chemistry 2022; 28:e202201897. [PMID: 35912418 PMCID: PMC9804548 DOI: 10.1002/chem.202201897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Indexed: 01/05/2023]
Abstract
The in situ Grignard Metalation Method (iGMM) is a straightforward one-pot strategy to synthesize alkaline-earth metal amides in multi-gram scale with high yields via addition of bromoethane to an ethereal suspension of a primary or secondary amine and magnesium (Part I) or calcium (Part II). This method is highly advantageous because no activation of calcium is required prior to the reaction. Contrary to the magnesium-based iGMM, there are some limitations, the most conspicuous one is the large influence of steric factors. The preparation of Ca(hmds)2 succeeds smoothly within a few hours with excellent yields opening the opportunity to prepare large amounts of this reagent. Side reactions and transfer of the iGMM to substituted anilines and N-heterocycles as well as other H-acidic substrates such as cyclopentadienes are studied. Bulky amidines cannot be converted directly to calcium amidinates via the iGMM but stoichiometric calciation with Ca(hmds)2 enables their preparation.
Collapse
Affiliation(s)
- Philipp Schüler
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Simon Sengupta
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Alexander Koch
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Sven Krieck
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| |
Collapse
|
16
|
Sengupta S, Schüler P, Görls H, Liebing P, Krieck S, Westerhausen M. In Situ Grignard Metalation Method for the Synthesis of Hauser Bases. Chemistry 2022; 28:e202201359. [PMID: 35686618 PMCID: PMC9546396 DOI: 10.1002/chem.202201359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Indexed: 12/03/2022]
Abstract
The in situ Grignard Metalation Method (iGMM) is a straightforward one-pot procedure to quickly produce multigram amounts of Hauser bases R2 N-MgBr which are valuable and vastly used metalation reagents and novel electrolytes for magnesium batteries. During addition of bromoethane to a suspension of Mg metal and secondary amine at room temperature in an ethereal solvent, a smooth reaction yields R2 N-MgBr under evolution of ethane within a few hours. A Schlenk equilibrium is operative, interconverting the Hauser bases into their solvated homoleptic congeners Mg(NR2 )2 and MgBr2 depending on the solvent. Scope and preconditions are studied, and side reactions limiting the yield have been investigated. DOSY NMR experiments and X-ray crystal structures of characteristic examples clarify aggregation in solution and the solid state.
Collapse
Affiliation(s)
- Simon Sengupta
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Philipp Schüler
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Phil Liebing
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Sven Krieck
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| |
Collapse
|
17
|
Rong J, Wu Y, Ji X, Zhao T, Yin B, Rao Y, Zhou M, Osuka A, Xu L, Song J. Porphyrinatonickel(II)-Cyclopentene and Porphyrinatonickel(II)-Cyclopentadiene Hybrids: Zirconacyclopentadiene-Mediated Syntheses, Structures, and Mechanistic Study. Org Lett 2022; 24:6128-6132. [PMID: 35960173 DOI: 10.1021/acs.orglett.2c02120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The reaction of meso-formyl Ni(II) porphyrin 1 with zirconacyclopentadiene 2 in the presence of AlCl3 afforded four products 3, 4, 5, and 6 with a total yield of over 85%. The structures of these compounds are well-characterized by 1H NMR an d13C NMR spectroscopy, HRMS, and X-ray single-crystal diffraction. The mechanism is proposed mainly on the basis of isotopic labeling experiments, which showed that a Friedel-Crafts-type reaction and β-H shift may be critical during the formation of 5 and 6.
Collapse
Affiliation(s)
- Jian Rong
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yidan Wu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiaoheng Ji
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Tingting Zhao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Bangshao Yin
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yutao Rao
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Mingbo Zhou
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Atsuhiro Osuka
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Ling Xu
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| | - Jianxin Song
- Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, College of Chemistry and Chemical Engineering, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
18
|
Banerjee S, Vanka K. Computational insights into hydroboration with acyclic α-Borylamido-germylene and stannylene catalysts: Cooperative dual catalysis the key to system efficiency. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.115907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
19
|
Nimax PR, Sünkel K. Coordination Chemistry of Polynitriles, Part X. [Li{C5(CN)5}(H2O)]: Synthesis, Molecular and Crystal Structure of the Last Missing Alkali Metal Pentacyanocyclopentadienide. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202200202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Patrick Rene Nimax
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen GERMANY
| | - Karlheinz Sünkel
- Ludwig-Maximilians-Universität München: Ludwig-Maximilians-Universitat Munchen Chemistry Butenandtstr. 9 81377 München GERMANY
| |
Collapse
|
20
|
Staub LH, Lambert J, Müller C, Morgenstern B, Zimmer M, Warken J, Koldemir A, Block T, Pöttgen R, Schäfer A. Bis(di- tert-butylindenyl)tetrelocenes. Dalton Trans 2022; 51:10714-10720. [PMID: 35421889 DOI: 10.1039/d2dt00582d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis and characterization of bis(di-tert-butylindenyl) germanium(II), tin(II) and lead(II) complexes are reported, which includes the first structurally authenticated example of a bis(indenyl)germanocene. The species were studied in detail in solution and in the solid, which includes single crystal X-ray diffraction and NMR spectroscopy, as well as Mössbauer spectroscopy of the tin compound.
Collapse
Affiliation(s)
- Liane Hildegard Staub
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Jessica Lambert
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Carsten Müller
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Bernd Morgenstern
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Michael Zimmer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Joshua Warken
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| | - Aylin Koldemir
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Theresa Block
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - Rainer Pöttgen
- Institute of Inorganic and Analytical Chemistry, Westfälische Wilhelms-Universität Münster, Corrensstrasse 30, 48149 Münster, Germany
| | - André Schäfer
- Department of Chemistry, Faculty of Natural Sciences and Technology, Saarland University, Campus Saarbrücken, 66123 Saarbrücken, Germany.
| |
Collapse
|
21
|
Hierlmeier G, Wolf R. Bulking up Cp BIG: A Penta-Terphenyl Cyclopentadienyl Ligand. Organometallics 2022; 41:776-784. [PMID: 35368714 PMCID: PMC8965875 DOI: 10.1021/acs.organomet.2c00009] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Indexed: 12/13/2022]
Abstract
![]()
The modification
of cyclopentadienyl ligands with carefully selected
substituents is a widely used strategy for tuning their steric
and electronic properties. We describe the synthesis of an extremely
bulky penta-terphenyl cyclopentadienyl ligand (CpT5) by
arylation of cyclopentadiene. Deprotonation reactions with various
group 1 metals and bases afforded a complete series of alkali metal
salts MCpT5 (M = Li–Cs). The compounds were isolated
as solvate-free salts, which were characterized by multinuclear nuclear
magnetic resonance spectroscopy, ultraviolet–visible spectroscopy,
and elemental analysis. Single-crystal X-ray diffraction studies of
LiCpT5, NaCpT5 (crystallized as a solvate with
one tetrahydrofuran molecule per formula unit), and KCpT5 revealed the formation of metallocene-like sandwich structures in
the solid state.
Collapse
Affiliation(s)
- Gabriele Hierlmeier
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| | - Robert Wolf
- Institute of Inorganic Chemistry, University of Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
22
|
Westerhausen M, J. M, Görls H. Synthesis and Structure of a New Bulky Hybrid Scorpionate/Cyclopentadienyl Ligand and its Lithium Complex. Z Anorg Allg Chem 2022. [DOI: 10.1002/zaac.202100385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Baguli S, Mondal S, Mandal C, Goswami S, Mukherjee D. Cyclopentadienyl Complexes of the Alkaline Earths in Light of the Periodic Trends. Chem Asian J 2022; 17:e202100962. [PMID: 34825506 DOI: 10.1002/asia.202100962] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/02/2021] [Indexed: 11/09/2022]
Abstract
The electron-rich cyclopentadienyl and the analogous indenyl and fluorenyl ligands (collectively denoted here as Cp') have been impactful in stabilizing electron-deficient metal centers including the highly electropositive alkaline earths. Being in the s-block, the group 2 metals follow a major periodic variation in their atomic and ionic properties which is reflected in those Cp' compounds. This article presents an overview of this class of compounds for all the five metals from beryllium to barium (radium is excluded for its radioactivity), highlighting their systematic variation.
Collapse
Affiliation(s)
- Sudip Baguli
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Sumana Mondal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Chhotan Mandal
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Santu Goswami
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| | - Debabrata Mukherjee
- Department of Chemical Sciences, Indian Institute of Science Education and Research Kolkata, Mohanpur Nadia, 741246, West Bengal, India
| |
Collapse
|
24
|
Aluminum(III) di- and monochlorides incorporating an N,N'-chelating iminophosphonamide ligand: synthesis and structures. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
25
|
Mikhailov IE, Dushenko GA, Minkin VI. Pentacarboxycyclopentadienes in Organic Synthesis. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021110014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
26
|
Kieser JM, Jones LO, Uible MC, Zeller M, Schatz GC, Bart SC. Late to the Party: Synthesis and Characterization of Tellurium and Selenium Half-Sandwich Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jerod M. Kieser
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Leighton O. Jones
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Madeleine C. Uible
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| | - George C. Schatz
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Suzanne C. Bart
- H. C. Brown Laboratory, Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
27
|
Schüler P, Görls H, Krieck S, Westerhausen M. One-Step Synthesis and Schlenk-Type Equilibrium of Cyclopentadienylmagnesium Bromides. Chemistry 2021; 27:15508-15515. [PMID: 34468050 PMCID: PMC8597043 DOI: 10.1002/chem.202102636] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Indexed: 12/23/2022]
Abstract
In the in situ Grignard metalation method (iGMM), the addition of bromoethane to a suspension of magnesium turnings and cyclopentadienes [C5 H6 (HCp), C5 H5 -Si(iPr)3 (HCpTIPS )] in diethyl ether smoothly yields heteroleptic [(Et2 O)Mg(CpR )(μ-Br)]2 (CpR =Cp (1), CpTIPS (2)). The Schlenk equilibrium of 2 in toluene leads to ligand exchange and formation of homoleptic [Mg(CpR )2 ] (3) and [(Et2 O)MgBr(μ-Br)]2 (4). Interfering solvation and aggregation as well as ligand redistribution equilibria hamper a quantitative elucidation of thermodynamic data for the Schlenk equilibrium of 2 in toluene. In ethereal solvents, mononuclear species [(Et2 O)2 Mg(CpTIPS )Br] (2'), [(Et2 O)n Mg(CpTIPS )2 ] (3'), and [(Et2 O)2 MgBr2 ] (4') coexist. Larger coordination numbers can be realized with cyclic ethers like tetrahydropyran allowing crystallization of [(thp)4 MgBr2 ] (5). The interpretation of the temperature-dependency of the Schlenk equilibrium constant in diethyl ether gives a reaction enthalpy ΔH and reaction entropy ΔS of -11.5 kJ mol-1 and 60 J mol-1 , respectively.
Collapse
Affiliation(s)
- Philipp Schüler
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Helmar Görls
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Sven Krieck
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| | - Matthias Westerhausen
- Institute of Inorganic and Analytical ChemistryFriedrich Schiller University JenaHumboldtstraße 807743JenaGermany
| |
Collapse
|
28
|
Boyt SM, Jenek NA, Sanderson HJ, Kociok-Köhn G, Hintermair U. Synthesis of a Tetraphenyl-Substituted Dihydropentalene and Its Alkali Metal Hydropentalenide and Pentalenide Complexes. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00495] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Stuart M. Boyt
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Niko A. Jenek
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Hugh J. Sanderson
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Gabriele Kociok-Köhn
- Material and Chemical Characterisation Facility, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| | - Ulrich Hintermair
- Department of Chemistry, University of Bath, Claverton Down, Bath BA2 7AY, U.K
- Centre for Sustainable & Circular Technologies, University of Bath, Claverton Down, Bath BA2 7AY, U.K
| |
Collapse
|
29
|
Nechaev MS. Tetrylenes: Electronic Structure, Stability, Reactivity, and Ligand Properties—A Comparative DFT Study. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00440] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mikhail S. Nechaev
- A.V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow 119991, Russia
| |
Collapse
|
30
|
N‐nacnac stabilized tetrylenes: access to silicon hydride systems
via
migration processes. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
31
|
Affiliation(s)
- Fabio Mazzotta
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| | - Doris Kunz
- Institut für Anorganische Chemie, Eberhard Karls Universität Tübingen, Auf der Morgenstelle 18, 72076 Tübingen, Germany
| |
Collapse
|
32
|
Abstract
Although silylene-carbonyl complexes are known for decades, only recently isolable examples have been accomplished. In this work, the bonding situation is re-evaluated to explain the origins of their remarkable stability within the Kohn-Sham molecular orbital theory framework. It is shown that the chemical bond can be understood as CO interaction with the silylene via a donor-acceptor interaction: a σ-donation from the σCO into the empty p-orbital of silicon, and a π-back donation from the sp2 lone pair of silicon into the π*CO antibonding orbitals. Notably, it was established that the driving force behind the surprisingly stable Si-CO compounds, however, is another π-back donation from a perpendicular bonding R-Si σ-orbital into the π*CO antibonding orbitals. Consequently, the pyramidalization of the central silicon atom cannot be associated with the strength of the π-back donation, in sharp contrast to the established chemical bonding model. Considering this additional bonding interaction not only shed light on the bonding situation, but is also an indispensable key for broadening the scope of silylene-carbonyl chemistry.
Collapse
Affiliation(s)
- Tetiana Sergeieva
- Inorganic and Computational Chemistry GroupChemistry DepartmentSaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Debdeep Mandal
- Inorganic and Computational Chemistry GroupChemistry DepartmentSaarland UniversityCampus C4.166123SaarbrückenGermany
| | - Diego M. Andrada
- Inorganic and Computational Chemistry GroupChemistry DepartmentSaarland UniversityCampus C4.166123SaarbrückenGermany
| |
Collapse
|
33
|
Dabringhaus P, Barthélemy A, Krossing I. The Coordination Chemistry and Clustering of Subvalent Ga
+
and In
+
upon Addition of σ‐Donor Ligands. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100129] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Philipp Dabringhaus
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg i.Br. Germany
| | - Antoine Barthélemy
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg i.Br. Germany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburg Materials Research Center FMF Albert-Ludwigs-Universität Freiburg Albertstraße 21 79104 Freiburg i.Br. Germany
| |
Collapse
|
34
|
Peddarao T, Baishya A, Sarkar N, Acharya R, Nembenna S. Conjugated Bis‐Guanidines (CBGs) as
β
‐Diketimine Analogues: Synthesis, Characterization of CBGs/Their Lithium Salts and CBG Li Catalyzed Addition of B−H and TMSCN to Carbonyls. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100141] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Thota Peddarao
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Ashim Baishya
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Nabin Sarkar
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Rudresh Acharya
- School of Biological Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| | - Sharanappa Nembenna
- School of Chemical Sciences National Institute of Science Education and Research (NISER) Homi Bhabha National Institute (HBNI) Bhubaneswar 752050 India
| |
Collapse
|
35
|
Frey NC, Dornshuld EV, Webster CE. Benchmarking the Fluxional Processes of Organometallic Piano-Stool Complexes. Molecules 2021; 26:2310. [PMID: 33923446 PMCID: PMC8073612 DOI: 10.3390/molecules26082310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/09/2021] [Accepted: 04/13/2021] [Indexed: 11/16/2022] Open
Abstract
The correlation consistent Composite Approach for transition metals (ccCA-TM) and density functional theory (DFT) computations have been applied to investigate the fluxional mechanisms of cyclooctatetraene tricarbonyl chromium ((COT)Cr(CO)3) and 1,3,5,7-tetramethylcyclooctatetraene tricarbonyl chromium, molybdenum, and tungsten ((TMCOT)M(CO)3 (M = Cr, Mo, and W)) complexes. The geometries of (COT)Cr(CO)3 were fully characterized with the PBEPBE, PBE0, B3LYP, and B97-1 functionals with various basis set/ECP combinations, while all investigated (TMCOT)M(CO)3 complexes were fully characterized with the PBEPBE, PBE0, and B3LYP methods. The energetics of the fluxional dynamics of (COT)Cr(CO)3 were examined using the correlation consistent Composite Approach for transition metals (ccCA-TM) to provide reliable energy benchmarks for corresponding DFT results. The PBE0/BS1 results are in semiquantitative agreement with the ccCA-TM results. Various transition states were identified for the fluxional processes of (COT)Cr(CO)3. The PBEPBE/BS1 energetics indicate that the 1,2-shift is the lowest energy fluxional process, while the B3LYP/BS1 energetics (where BS1 = H, C, O: 6-31G(d'); M: mod-LANL2DZ(f)-ECP) indicate the 1,3-shift having a lower electronic energy of activation than the 1,2-shift by 2.9 kcal mol-1. Notably, PBE0/BS1 describes the (CO)3 rotation to be the lowest energy process, followed by the 1,3-shift. Six transition states have been identified in the fluxional processes of each of the (TMCOT)M(CO)3 complexes (except for (TMCOT)W(CO)3), two of which are 1,2-shift transition states. The lowest-energy fluxional process of each (TMCOT)M(CO)3 complex (computed with the PBE0 functional) has a ΔG‡ of 12.6, 12.8, and 13.2 kcal mol-1 for Cr, Mo, and W complexes, respectively. Good agreement was observed between the experimental and computed 1H-NMR and 13C-NMR chemical shifts for (TMCOT)Cr(CO)3 and (TMCOT)Mo(CO)3 at three different temperature regimes, with coalescence of chemically equivalent groups at higher temperatures.
Collapse
Affiliation(s)
| | | | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, 310 President’s Circle, Starkville, MS 39762-9573, USA; (N.C.F.); (E.V.D.)
| |
Collapse
|
36
|
Müller C, Warken J, Huch V, Morgenstern B, Bischoff I, Zimmer M, Schäfer A. Diphosphanylmetallocenes of Main-Group Elements. Chemistry 2021; 27:6500-6510. [PMID: 33411379 PMCID: PMC8252418 DOI: 10.1002/chem.202005198] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Indexed: 12/23/2022]
Abstract
Several 1,1'-diphosphanyl-substituted metallocenes of magnesium (magnesocenes) were synthesized, structurally characterized, and their reactivity and coordination chemistry were investigated. Transmetalation of these magnesocenes gives access to group 14 metallocenes (tetrelocenes), as well as to group 15 stibonocenes. These s- and p-block metallocenes represent a novel class of bis(phosphanyl) ligands, exhibiting Lewis-amphiphilic character. Their coordination chemistry towards different transition-metal and main-group fragments was investigated and different complexes are presented.
Collapse
Affiliation(s)
- Carsten Müller
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - Joshua Warken
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - Volker Huch
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - Bernd Morgenstern
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - Inga‐Alexandra Bischoff
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - Michael Zimmer
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - André Schäfer
- Faculty of Natural Sciences and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| |
Collapse
|
37
|
|
38
|
Lauk S, Zimmer M, Morgenstern B, Huch V, Müller C, Sitzmann H, Schäfer A. Tetra- and Pentaisopropylcyclopentadienyl Complexes of Group 15 Elements. Organometallics 2021. [DOI: 10.1021/acs.organomet.1c00008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Sergej Lauk
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
- University of Kaiserslautern, Department of Chemistry, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Federal Republic of Germany
| | - Michael Zimmer
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Bernd Morgenstern
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Volker Huch
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Carsten Müller
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| | - Helmut Sitzmann
- University of Kaiserslautern, Department of Chemistry, Erwin-Schrödinger-Str. 54, 67663 Kaiserslautern, Federal Republic of Germany
| | - André Schäfer
- Saarland University, Faculty of Natural Sciences and Technology, Department of Chemistry, Campus Saarbrücken, 66123 Saarbrücken, Federal Republic of Germany
| |
Collapse
|
39
|
Ding Y, Ruth PN, Herbst-Irmer R, Stalke D, Yang Z, Roesky HW. Pentamethyl- and 1,2,4-tri(tert-butyl)cyclopentadienyl containing p-block complexes - differences and similarities. Dalton Trans 2021; 50:2067-2074. [PMID: 33480907 DOI: 10.1039/d0dt04412a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The sterically encumbered cyclopentadienyl ligand 1,2,4-(Me3C)3C5H2 (Cp''') was used to stabilize efficiently the main group metals of Al, Ga, In, Ge and Sn, respectively. The σ-bonded gallium compounds [η1-Cp'''Ga(μ-X)X]2 (X = Cl, 2; X = I, 3) and indium compound [η1-Cp'''In(μ-Br)nBu]2 (7) exhibit dimers through halogen bridges. Reduction of 2 with 2 equivalents of KC8 leads almost to the same amount of η1-Cp'''Ga(THF)Cl2 (4) and η5-Cp'''Ga (5), respectively. The exception is compound 5, which is obtained by reducing 2 or 3 with 4 equivalents of KC8. Compound 5 as Lewis base reacts with GaI3 readily forming the Lewis acid-base adduct product η5-Cp'''Ga → GaI3 (6). Moreover, compounds with the Cp''' ligand stabilize heavier low-valent group 14 elements for example [η5-Cp'''EII]+[EIICl3]- (E = Ge 8, Sn 9), which are π-bonded ionic compounds that possess a low-valent cation and an anion. In the cation of [η5-Cp'''EII]+, the Cp''' ligand adopts an η5-coordination mode with germanium and tin, respectively, which present half-sandwich complexes. While the EII fragment interacts with five π electrons from the Cp''' unit to generate an electron-octet arrangement at the respective element. All new reported structures are comparing well with the corresponding compounds containing the pentamethylcyclopentadienyl (Cp*) ligand.
Collapse
Affiliation(s)
- Yi Ding
- School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, P. R. China.
| | | | | | | | | | | |
Collapse
|
40
|
Anga S, Acharya J, Chandrasekhar V. An Unsymmetric Imino-Phosphanamidinate Ligand and its Y(III) Complex: Synthesis, Characterization, and Catalytic Hydroboration of Carbonyl Compounds. J Org Chem 2021; 86:2224-2234. [PMID: 33290079 DOI: 10.1021/acs.joc.0c02383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An imino-phosphanamide ligand, [NHIiPr2Me2P(Ph)NH-2,6-iPr2C6H3] (LH), containing two different N-substituents was prepared by the direct reaction of the lithium salt of N-heterocyclic imine (NHI) with phenylchloro-2,6-diisopropylphenyl phosphanamine, PhP(Cl)NH-2,6-iPr2-C6H3. Reaction of LH with Y(N(SiMe3)2)3 afforded the heteroleptic complex, [{L}Y(N(SiMe3)2)2] (1), by elimination of HN(SiMe3)2. Compound 1 was characterized by multinuclear NMR and X-ray crystallography. In the complex, the Y(III) center was found to be tetracoordinate in a distorted tetrahedral geometry. The ligand, imino-phosphanamidinate, [L]-, functions in a chelating manner, and its coordination to Y(III) results in a distorted 4-membered YPN2 ring. As a proof of principle of its activity, 1 was used as a precatalyst for the hydroboration of various aldehydes and ketones using HBpin as the hydrogen source. The hydroboration reaction was rapid and clean even with low catalyst loadings (0.01-0.1 mol %). In addition, a very good functional group tolerance was observed in these reactions.
Collapse
Affiliation(s)
- Srinivas Anga
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India
| | - Joydev Acharya
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally 500046, Hyderabad, India.,Department of Chemistry, IIT Kanpur, Kanpur 208016, India
| |
Collapse
|
41
|
Abstract
Metallocenes with interlinked cyclopentadienide ligands are commonly referred to as ansa-metallocenes or metallocenophanes. These can have drastically different properties than their unbridged parent compounds. While this concept is best known for transition metals such as iron, it can also be adopted for many main-group elements. This review aims to summarize recent advances in the field of metallocenophanes based on main-group elements of group 2, group 13, group 14 and group 15, focusing on synthesis, structure and properties of these compounds.
Collapse
Affiliation(s)
- Lisa Wirtz
- Faculty of Natural Science and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| | - André Schäfer
- Faculty of Natural Science and TechnologyDepartment of ChemistrySaarland UniversityCampus Saarbrücken66123SaarbrückenGermany
| |
Collapse
|
42
|
Coordination of indium monohalide with group-10 metal carbonyls [TM(CO)3(InX)]: a DFT study. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01297-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
43
|
Mazzotta F, Zitzer G, Speiser B, Kunz D. Electron-Deficient Imidazolium Substituted Cp Ligands and their Ru Complexes. Chemistry 2020; 26:16291-16305. [PMID: 32996227 PMCID: PMC7756557 DOI: 10.1002/chem.202002801] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Indexed: 12/27/2022]
Abstract
The synthesis of electron-poor mono-, di- and tri(imidazolium)-substituted Cp-ylides is presented and their electronic properties are discussed based on NMR spectroscopy, X-ray structure analyses, electrochemical investigations and DFT calculations as well as by their reactivity toward [Ru(CH3 CN)3 Cp*](PF6 ). With mono- and di(imidazolium)-substituted cyclopentadienides the respective monocationic and dicationic ruthenocences are formed (X-ray), whereas tri(imidazolium) cyclopentadienides are too electron-poor to form the ruthenocenes. Cyclic voltammetric analysis of the ruthenocenes shows reversible oxidation at a potential that increases with every additional electron-withdrawing imidazolium substituent at the Cp ligand by 0.53-0.55 V in an electrolyte based on a weakly coordinating anion. A reversible oxidation can be observed for the free 1,3-disubstituted ligand as well.
Collapse
Affiliation(s)
- Fabio Mazzotta
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Georg Zitzer
- Institut für Organische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Bernd Speiser
- Institut für Organische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| | - Doris Kunz
- Institut für Anorganische ChemieEberhard Karls Universität TübingenAuf der Morgenstelle 1872076TübingenGermany
| |
Collapse
|
44
|
Laverny A, Cramer N. Accessing Monosubstituted Cyclopentadienyl Rhodium(I) and Iridium(I) Complexes by a Simultaneous Nucleophilic Addition-Metalation Approach to Fulvenes. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00550] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH4305, 1015 Lausanne, Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis, Institute of Chemical Sciences and Engineering, École Polytechnique Fédérale de Lausanne (EPFL), SB-ISIC, BCH4305, 1015 Lausanne, Switzerland
| |
Collapse
|
45
|
Schorpp M, Krossing I. Stack by Stack: From the Free Cyclopentadienylgermanium Cation Via Heterobimetallic Main-Group Sandwiches to Main-Group Sandwich Coordination Polymers. Chemistry 2020; 26:14109-14117. [PMID: 32745294 PMCID: PMC7702131 DOI: 10.1002/chem.202002932] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/27/2020] [Indexed: 01/17/2023]
Abstract
Heterobimetallic cationic sandwich complexes [M(μ-Cp)M'Cp]+ of group 13 (M=Ga, In) and group 14 (M'=Ge, Sn) elements have been prepared as [WCA]- salts (WCA=Al(ORF )4 ; ORF =OC(CF3 )3 ). Their molecular structures include free apical gallium or indium atoms. The sandwich complexes were formed in the reactions of [M(HMB)]+ [WCA]- (HMB=C6 Me6 ) with the free metallocenes [M'Cp2 ]. Their structures are related to known stannocene and stannocenium salts; the unprecedented germanium analogues, namely the free germanocenium cation [GeCp]+ and the corresponding triple-decker complex cation [CpGe(μ-Cp)GeCp]+ , are described herein. By variation of the reaction conditions, these sandwich complexes can be transformed into the group 13/14 mixed cationic coordination polymer [{In(HMB)(μ-SnCp2 )}n ][WCA]n . This polymeric chain motif was also successfully replicated by the synthesis of complexes [{Ga/In(HMB)(μ-FeCp2 )}n ][WCA]n containing FeCp2 as a bridging ligand.
Collapse
Affiliation(s)
- Marcel Schorpp
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Ingo Krossing
- Institut für Anorganische und Analytische Chemie and Freiburger Materialforschungszentrum (FMF)Albert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
46
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202008166] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
47
|
Mas‐Roselló J, Herraiz AG, Audic B, Laverny A, Cramer N. Chiral Cyclopentadienyl Ligands: Design, Syntheses, and Applications in Asymmetric Catalysis. Angew Chem Int Ed Engl 2020; 60:13198-13224. [DOI: 10.1002/anie.202008166] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Indexed: 01/26/2023]
Affiliation(s)
- Josep Mas‐Roselló
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Ana G. Herraiz
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Benoît Audic
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Aragorn Laverny
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| | - Nicolai Cramer
- Laboratory of Asymmetric Catalysis and Synthesis Institute of Chemical Sciences and Engineering Ecole Polytechnique Fédérale de Lausanne (EPFL) Lausanne Switzerland
| |
Collapse
|
48
|
Medina-Dzul K, Molares-Meza S, Garay-Tapia A, Alvarado-López CJ, Sánchez M. Influence of halogens on organometallic open pentadienyl lanthanum complexes XLa(C5H7)2 (X = H, F–I). MONATSHEFTE FUR CHEMIE 2020. [DOI: 10.1007/s00706-020-02682-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
49
|
Loan HP, Bui TQ, My TTA, Hai NTT, Quang DT, Tat PV, Hiep DT, Trung NT, Quy PT, Nhung NTA. In-Depth Investigation of a Donor-Acceptor Interaction on the Heavy-Group-14@Group-13-Diyls in Transition-Metal Tetrylone Complexes: Structure, Bonding, and Property. ACS OMEGA 2020; 5:21271-21287. [PMID: 32875264 PMCID: PMC7450610 DOI: 10.1021/acsomega.0c03237] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 08/04/2020] [Indexed: 06/11/2023]
Abstract
Stabilization for tetrylone complexes, which carry ylidone(0) ligands [(CO)5W-X (YCp*)2] (X = Ge, Sn, Pb; Y = B-Tl), has become an active theoretical research because of their promising application. Structure, bonding, and quantum properties of the transition-metal donor-acceptor complexes were theoretically investigated at the level of theory BP86 with several types of basis sets including SVP, TZVPP, and TZ2P+. The optimized structures reveal that all ligands X (YCp*)2 are strongly bonded in tilted modes to the metal fragment W(CO)5, and Cp* rings are mainly η5-bonded to atom X. DFT-based bonding analysis results in an implication that the stability of W-X bond strength primarily stems from the donation (CO)5W ← X(YCp*)2 formed by both σ- and π-bondings and the electrostatic interaction ΔE elstat. The W-X bond possesses a considerable polarizability toward atom X, and analysis on its hybridization is either sp2-characteristic or mainly p-characteristic. EDA-NOCV-based results further imply that the ligands XY perform as significant σ-donors but minor π-donors. The visual simulations of NOCV pairs and the deformation densities assemble a comprehensive summary on different components of the chemical bond via σ- and π-types in the complexes. This work contributes to the literature as an in-depth overview on predicted molecular structures and quantum parameters of the complexes [(CO)5W-X(YCp*)2] (X = Ge, Sn, Pb; Y = B-Tl), conducive to either further theoretical reference or extending experimental research.
Collapse
Affiliation(s)
- Huynh
Thi Phuong Loan
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Thanh Q. Bui
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Tran Thi Ai My
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Nguyen Thi Thanh Hai
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| | - Duong Tuan Quang
- Department
of Chemistry, University of Education, Hue
University, Hue City 530000, Vietnam
| | - Pham Van Tat
- Institute
of Development and Applied Economics, Hoa
Sen University, Ho Chi
Minh City 700000, Vietnam
| | - Dang Tan Hiep
- Office
of Academic Affairs, HCMC University of
Food Industry, Ho Chi Minh City 700000, Vietnam
| | - Nguyen Tien Trung
- Laboratory
of Computational Chemistry and Modeling, Faculty of Natural Sciences, Quy Nhon University, Quy Nhon City 590000, Vietnam
| | - Phan Tu Quy
- Department
of Natural Sciences & Technology, Tay
Nguyen University, Buon Ma
Thuot City 630000, Vietnam
| | - Nguyen Thi Ai Nhung
- Department
of Chemistry, University of Sciences, Hue
University, Hue City 530000, Vietnam
| |
Collapse
|
50
|
Affiliation(s)
| | - Yann Sarazin
- CNRS, ISCR‐UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|