1
|
Ortalli S, Ford J, Szpera R, Stoessel B, Trabanco AA, Tredwell M, Gouverneur V. 18F-Difluoromethyl(ene) Motifs via Oxidative Fluorodecarboxylation with [ 18F]Fluoride. Org Lett 2024; 26:9368-9372. [PMID: 39441191 PMCID: PMC11536415 DOI: 10.1021/acs.orglett.4c03611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Herein, we report that α-fluorocarboxylic acids undergo manganese-mediated oxidative 18F-fluorodecarboxylation with [18F]fluoride affording biologically relevant 18F-difluoromethyl(ene)-containing molecules. This no-carrier added process provides a solution to a known challenge in radiochemistry and expands the radiochemical space available for positron emission tomography (PET) ligand discovery. Scalability on a fully automated radiosynthetic platform is exemplified with the production of [18F]4,4-difluoropiperidine that, we demonstrate, is amenable to postlabeling functionalization including N-heteroarylation and amide as well as sulfonamide bond formation.
Collapse
Affiliation(s)
- Sebastiano Ortalli
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Joseph Ford
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Robert Szpera
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Barbara Stoessel
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| | - Andrés A. Trabanco
- Global
Discovery Chemistry, Therapeutics Discovery, Johnson & Johnson Innovative Medicine, Janssen-Cilag, S.A., E-45007 Toledo, Spain
| | - Matthew Tredwell
- Wales
Research and Diagnostic PET Imaging Centre, Cardiff University, University Hospital of Wales, Heath Park, Cardiff CF14 4XN, United
Kingdom
- School
of Chemistry, Cardiff University, Main Building, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Véronique Gouverneur
- Chemistry
Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford OX1 3TA, United Kingdom
| |
Collapse
|
2
|
Huang Q, Lou C, Lv L, Li Z. Photoinduced fluoroalkylation-peroxidation of alkenes enabled by ligand-to-iron charge transfer mediated decarboxylation. Chem Commun (Camb) 2024; 60:12389-12392. [PMID: 39370965 DOI: 10.1039/d4cc04650a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
We report here a photoinduced iron-catalyzed fluoroalkylation-peroxidation of activated and/or unactivated alkenes with fluoroalkyl carboxylic acids and hydroperoxide. The ligand-to-iron charge transfer strategy effectively overcomes the high redox potential of the fluoroalkyl carboxylic acids, facilitating the difunctionalization reaction to occur smoothly under mild reaction conditions. The late-stage functionalization of drug and natural product derivatives was also demonstrated.
Collapse
Affiliation(s)
- Qiuwei Huang
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Chenhao Lou
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Leiyang Lv
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| | - Zhiping Li
- Key Laboratory of Advanced Light Conversion Materials and Biophotonics, School of Chemistry and Life Resources, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
3
|
He XB, Jia X, Zhao PQ, Fang Z, Qing FL. Photoredox-Catalysis Fluorosulfonyldifluoromethylation of Unactivated Alkenes and (Hetero)arenes with ICF 2SO 2F. Org Lett 2024; 26:6900-6904. [PMID: 39115249 DOI: 10.1021/acs.orglett.4c02538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
The fluorosulfonyldifluoromethylation of unactivated alkenes and (hetero)arenes with iododifluoromethanesulfonyl fluoride (ICF2SO2F) under visible light photoredox catalysis was successfully developed. Key to the successful fluorosulfonyldifluoromethylation of aromatic compounds was the usage of AgOTf as an additive to promote the formation of the CF2SO2F radical. The protocol provided a straightforward way to introduce the interesting and useful CF2SO2F group on sp3 and sp2 carbons.
Collapse
Affiliation(s)
- Xu-Biao He
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xin Jia
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Pin-Qiao Zhao
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zeguo Fang
- New Materials and Green Manufacturing Talent Introduction and Innovation Demonstration Base, Hubei University of Technology, Wuhan 430068, China
| | - Feng-Ling Qing
- Key Laboratory of Fluorine and Nitrogen Chemistry and Advanced Materials, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
4
|
Duan M, Shao Q, Zhou Q, Baran PS, Houk KN. Why •CF 2H is nucleophilic but •CF 3 is electrophilic in reactions with heterocycles. Nat Commun 2024; 15:4630. [PMID: 38821941 PMCID: PMC11143314 DOI: 10.1038/s41467-024-48949-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/02/2024] Open
Abstract
Radical substitution is a useful method to functionalize heterocycles, as in the venerable Minisci reaction. Empirically observed regiochemistries indicate that the CF2H radical has a nucleophilic character similar to alkyl radicals, but the CF3 radical is electrophilic. While the difference between •CH3 and •CF3 is well understood, the reason that one and two Fs make little difference but the third has a large effect is puzzling. DFT calculations with M06-2X both reproduce experimental selectivities and also lead to an explanation of this difference. Theoretical methods reveal how the F inductive withdrawal and conjugative donation alter radical properties, but only CF3 becomes decidedly electrophilic toward heterocycles. Here, we show a simple model to explain the radical orbital energy trends and resulting nucleophilicity or electrophilicity of fluorinated radicals.
Collapse
Affiliation(s)
- Meng Duan
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Qianzhen Shao
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Qingyang Zhou
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA
| | - Phil S Baran
- Department of Chemistry, Scripps Research, La Jolla, CA, 92037, USA
| | - K N Houk
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA, 90095, USA.
| |
Collapse
|
5
|
Li X, Majumder S, Tang X, Dolbier WR. Zinc 1,1,2,2-Tetrafluoroethanesulfinate: A Synthetically Useful Oxidative and Photoredox Source of the 1,1,2,2-Tetrafluoroethyl Radical. J Org Chem 2024; 89:5485-5490. [PMID: 38554099 DOI: 10.1021/acs.joc.3c02948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/01/2024]
Abstract
1,1,2,2-Tetrafluoroethyl-containing molecules are of potential importance in drug discovery, but the efficient synthesis of such compounds is still relatively unexplored due to the lack of readily available reagents for the incorporation of the HCF2CF2 group. Herein, we introduce a new reagent, zinc 1,1,2,2-tetrafluoroethanesulfinate, which can be useful for the oxidative tetrafluoroethylation of arylboronic acids and heteroarenes as well as for a novel photoredox, three component hydro-tetrafluoroethylation of two alkenes of complementary reactivity.
Collapse
Affiliation(s)
- Xinjin Li
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- College of Chemistry and Chemical Engineering, Shandong University of Technology, Zibo, Shandong 255000, China
| | - Satyajit Majumder
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Xiaojun Tang
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
- Department of Chemistry, Shanghai University, Shanghai 200444, China
| | - William R Dolbier
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| |
Collapse
|
6
|
Fernandes AJ, Giri R, Houk KN, Katayev D. Review and Theoretical Analysis of Fluorinated Radicals in Direct C Ar-H Functionalization of (Hetero)arenes. Angew Chem Int Ed Engl 2024; 63:e202318377. [PMID: 38282182 DOI: 10.1002/anie.202318377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 01/30/2024]
Abstract
We highlight key contributions in the field of direct radical CAr- H (hetero)aromatic functionalization involving fluorinated radicals. A compilation of Functional Group Transfer Reagents and their diverse activation mechanisms leading to the release of radicals are discussed. The substrate scope for each radical is analyzed and classified into three categories according to the electronic properties of the substrates. Density functional theory computational analysis provides insights into the chemical reactivity of several fluorinated radicals through their electrophilicity and nucleophilicity parameters. Theoretical analysis of their reduction potentials also highlights the remarkable correlation between electrophilicity and oxidizing ability. It is also established that highly fluorinated radicals (e.g. ⋅OCF3) are capable of engaging in single-electron transfer (SET) processes rather than radical addition, which is in good agreement with experimental literature data. A reactivity scale, based on activation barrier of addition of these radicals to benzene is also elaborated using the high accuracy DLPNO-(U)CCSD(T) method.
Collapse
Affiliation(s)
- Anthony J Fernandes
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Rahul Giri
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Kendall N Houk
- Department of Chemistry and Biochemistry, University of California, 90095, Los Angeles, California, United States
| | - Dmitry Katayev
- Department für Chemie und Biochemie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
7
|
Liu G, Shen H, Wang Z. Access to All-Carbon Quaternary Centers by Photocatalytic Fluoroalkylation of α-Halo Carbonyl Compounds. Org Lett 2024; 26:1863-1867. [PMID: 38412234 DOI: 10.1021/acs.orglett.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/29/2024]
Abstract
Perfluoroalkyl groups have become significantly important in pharmaceutical and agrochemical applications. In this study, we present a visible light-mediated photoredox neutral strategy for the fluoroalkylation of tertiary alkyl chlorides under transition-metal-free conditions. This method allows for the facile synthesis of fluoroalkylated all-carbon quaternary centers, exhibiting excellent functional group compatibility. Mechanistic studies reveal the involvement of two reactive radical intermediates and the in situ formation of metal enolates in a radical-polar crossover manner. The versatility of this methodology is demonstrated through synthetic transformations based on the carbonyl group, showcasing its potential for the rapid assembly of diverse organic molecules bearing fluoroalkyl all-carbon quaternary centers.
Collapse
Affiliation(s)
- Gang Liu
- Department of Chemistry, Zhejiang University, Hangzhou 310058, China
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
| | - Haigen Shen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Zhaobin Wang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, Department of Chemistry, School of Science, Westlake University, Hangzhou 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
8
|
Lv W, Yang P, Yuan J, Li J, Liang M, Liu Y, Xing D, Yang L. Phototriggered Fluoroalkylation/Cyclization of Unactivated 1-Acryloyl-2-cyanoindoles: Synthesis of RCOCF 2-Substituted Pyrrolo[1,2- a]indolediones. J Org Chem 2024; 89:3525-3537. [PMID: 38362898 DOI: 10.1021/acs.joc.3c02986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
A photochemical approach toward RCOCF2-substituted pyrrolo[1,2-a]indolediones was developed by the radical cascade difluoroalkylation/cyclization reaction of unactivated 1-acryloyl-2-cyanoindoles with ethyl iododifluoroacetate or iododifluoramides under visible-light irradiation. This transition-metal- and photosensitizer-free protocol afforded diverse difluoroalkylated pyrrolo[1,2-a]indolediones in moderate to good yields under mild reaction conditions. Most appealingly, the reaction can proceed smoothly under sunlight irradiation, which opens a new avenue toward difluoroalkylated pyrrolo[1,2-a]indolediones.
Collapse
Affiliation(s)
- Weixian Lv
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Jiayi Li
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Mengran Liang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yitong Liu
- School of International Education, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Dongliang Xing
- The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| |
Collapse
|
9
|
Bian KJ, Lu YC, Nemoto D, Kao SC, Chen X, West JG. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat Chem 2023; 15:1683-1692. [PMID: 37957278 PMCID: PMC10983801 DOI: 10.1038/s41557-023-01365-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - David Nemoto
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaowei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Julian G West
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
10
|
Shibata H, Nakayama M, Tagami K, Kanbara T, Yajima T. Hydroxy- and Hydro-Perfluoroalkylation of Styrenes by Controlling the Quenching Cycle of Eosin Y. Molecules 2023; 28:7577. [PMID: 38005299 PMCID: PMC10674426 DOI: 10.3390/molecules28227577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/11/2023] [Accepted: 11/12/2023] [Indexed: 11/26/2023] Open
Abstract
Fluoroalkyl compounds are widely used, underscoring a pressing need for the development of methods for their synthesis. However, reports on perfluoroalkylation to styrenes have been sparse. In this study, both hydroxy- and hydro-perfluoroalkylation of styrene were achieved using visible light reactions, catalyzed by eosin Y, by selecting appropriate additives and controlling the eosin Y quenching cycle. These reactions are heavy-metal free, use water as the hydroxyl or hydrogen source, and employ inexpensive and readily available reagents.
Collapse
Affiliation(s)
| | | | | | | | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1 Otsuka, Bukyo-ku, Tokyo 104-8610, Japan
| |
Collapse
|
11
|
Wallace JS, Edirisinghe D, Seyedi S, Noteboom H, Blate M, Balci DD, Abu-Orf M, Sharp R, Brown J, Aga DS. Burning questions: Current practices and critical gaps in evaluating removal of per- and polyfluoroalkyl substances (PFAS) during pyrolysis treatments of biosolids. JOURNAL OF HAZARDOUS MATERIALS LETTERS 2023; 4:100079. [PMID: 37790729 PMCID: PMC10545407 DOI: 10.1016/j.hazl.2023.100079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Concerns surrounding potential health and environmental impacts of per- and polyfluoroalkyl substances (PFAS) are growing at tremendous rates because adverse health impacts are expected with trace-level exposures. Extreme measures are required to mitigate potential PFAS contamination and minimize exposures. Extensive PFAS use results in the release of diverse PFAS species from domestic, industrial, and municipal effluents to wastewater, which partition to biosolids throughout secondary treatment. Biosolids generated during municipal wastewater treatment are a major environmental source of PFAS due to prevailing disposal practices as fertilizers. Pyrolysis is emerging as a viable, scalable technology for PFAS removal from biosolids while retaining nutrients and generating renewable, raw materials for energy generation. Despite early successes of pyrolysis in PFAS removal, significant unknowns remain about PFAS and transformation product fates in pyrolysis products and emissions. Applicable PFAS sampling methods, analytical workflows, and removal assessments are currently limited to a subset of high-interest analytes and matrices. Further, analysis of exhaust gases, particulate matter, fly ashes, and other pyrolysis end-products remain largely unreported or limited due to cost and sampling limitations. This paper identifies critical knowledge gaps on the pyrolysis of biosolids that must be addressed to assess the effectiveness of PFAS removal during pyrolysis treatment.
Collapse
Affiliation(s)
- Joshua S. Wallace
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
- RENEW Institute, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| | - Dulan Edirisinghe
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| | - Saba Seyedi
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Haley Noteboom
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Micah Blate
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Derya Dursun Balci
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Mohammad Abu-Orf
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
| | - Robert Sharp
- Hazen and Sawyer, 498 Seventh Avenue, 11th Floor, New York, NY 10018, USA
- Civil & Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA
| | - Jeanette Brown
- Civil & Environmental Engineering, Manhattan College, Riverdale, NY 10471, USA
| | - Diana S. Aga
- Department of Chemistry, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
- RENEW Institute, University at Buffalo – The State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
12
|
Tagami K, Yajima T. Development of Electrophilic Radical Perfluoroalkylation of Electron-Deficient Olefins. CHEM REC 2023; 23:e202300037. [PMID: 37058111 DOI: 10.1002/tcr.202300037] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/31/2023] [Indexed: 04/15/2023]
Abstract
Fluorinated organic compounds have attracted significant attention over the past few decades owing to their unique properties and versatility. An established method for the synthesis of fluorinated organic compounds involves radical perfluoroalkylation reactions towards double bonds. In this radical pathway, electrophilic perfluoroalkyl radicals exhibit excellent reactivity towards electron-rich olefins. Therefore, several splendid perfluoroalkylation reactions of electron-rich olefins have been reported. However, there are only a few examples of reaction involving electron-deficient olefins because of their poor electronic compatibility with perfluoroalkyl radicals. This review focuses on the reports that challenge this long-standing issue. Radical perfluoroalkylation/bifunctionalization reactions of electron-deficient olefins are described according to the radical generation methods.
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| |
Collapse
|
13
|
Kawamura S, Sodeoka M. Understanding and Controlling Fluorinated Diacyl Peroxides and Fluoroalkyl Radicals in Alkene Fluoroalkylations. CHEM REC 2023; 23:e202300202. [PMID: 37522613 DOI: 10.1002/tcr.202300202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/11/2023] [Indexed: 08/01/2023]
Abstract
The demand for practical methods for the synthesis of novel fluoroalkyl molecules is increasing owing to their diverse applications. Our group has achieved efficient difunctionalizing fluoroalkylations of alkenes using fluorinated carboxylic anhydrides as user-friendly fluoroalkyl sources. Fluorinated diacyl peroxide, prepared in situ from carboxylic anhydrides, enables the development of novel reactions when used as a radical fluoroalkylating reagent. In this account, we aim to provide an in-depth understanding of the structure, bonding, and reactivity of fluorinated diacyl peroxides and radicals as well as their control in fluoroalkylation reactions. In the first part of this account, the physical properties and reactivity of diacyl peroxides and fluoroalkyl radicals are described. In the subsequent part, we categorize the reactions into copper-catalyzed and metal-free methods utilizing the oxidizing properties of fluorinated diacyl peroxides. We also outline examples and mechanisms.
Collapse
Affiliation(s)
- Shintaro Kawamura
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| | - Mikiko Sodeoka
- Catalysis and Integrated Research Group, RIKEN Center for Sustainable Resource Science, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
- Synthetic Organic Chemistry Laboratory, RIKEN Cluster for Pioneering Research, 2-1 Hirosawa, Wako, Saitama, 351-0198, Japan
| |
Collapse
|
14
|
Li HP, He XH, Peng C, Li JL, Han B. A straightforward access to trifluoromethylated natural products through late-stage functionalization. Nat Prod Rep 2023; 40:988-1021. [PMID: 36205211 DOI: 10.1039/d2np00056c] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Covering: 2011 to 2021Trifluoromethyl (CF3)-modified natural products have attracted increasing interest due to their magical effect in binding affinity and/or drug metabolism and pharmacokinetic properties. However, the chemo and regioselective construction of natural products (NPs) bearing a CF3 group still remains a long-standing challenge due to the complex chemical scaffolds and diverse reactive sites of NPs. In recent years, the development of late-stage functionalization strategies, including metal catalysis, organocatalysis, light-driven reactions, and electrochemical synthesis, has paved the way for direct trifluoromethylation process. In this review, we summarize the applications of these strategies in the late-stage trifluoromethylation of natural products in the past ten years with particular emphasis on the reaction model of each method. We also discuss the challenges, limitations, and future prospects of this approach.
Collapse
Affiliation(s)
- He-Ping Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Xiang-Hong He
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| | - Jun-Long Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
- Antibiotics Research and Re-evaluation Key Laboratory of Sichuan Province, Sichuan Industrial Institute of Antibiotics, School of Pharmacy, Chengdu University, Chengdu 610106, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
15
|
Chen X, Josephson B, Davis BG. Carbon-Centered Radicals in Protein Manipulation. ACS CENTRAL SCIENCE 2023; 9:614-638. [PMID: 37122447 PMCID: PMC10141601 DOI: 10.1021/acscentsci.3c00051] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Indexed: 05/03/2023]
Abstract
Methods to directly post-translationally modify proteins are perhaps the most straightforward and operationally simple ways to create and study protein post-translational modifications (PTMs). However, precisely altering or constructing the C-C scaffolds pervasive throughout biology is difficult with common two-electron chemical approaches. Recently, there has been a surge of new methods that have utilized single electron/radical chemistry applied to site-specifically "edit" proteins that have started to create this potential-one that in principle could be near free-ranging. This review provides an overview of current methods that install such "edits", including those that generate function and/or PTMs, through radical C-C bond formation (as well as C-X bond formation via C• where illustrative). These exploit selectivity for either native residues, or preinstalled noncanonical protein side-chains with superior radical generating or accepting abilities. Particular focus will be on the radical generation approach (on-protein or off-protein, use of light and photocatalysts), judging the compatibility of conditions with proteins and cells, and novel chemical biology applications afforded by these methods. While there are still many technical hurdles, radical C-C bond formation on proteins is a promising and rapidly growing area in chemical biology with long-term potential for biological editing.
Collapse
Affiliation(s)
- Xuanxiao Chen
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
| | - Brian Josephson
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
| | - Benjamin G. Davis
- Department
of Chemistry, University of Oxford, Oxford, OX1 3TA, U.K.
- The
Rosalind Franklin Institute, Oxfordshire, OX11 OFA, U.K.
- Department
of Pharmacology, University of Oxford, Oxford, OX1 3QT, U.K.
| |
Collapse
|
16
|
Pan X, Talavera M, Braun T. Efficient hydrostannation of fluorinated alkenes. J Fluor Chem 2023. [DOI: 10.1016/j.jfluchem.2023.110116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
|
17
|
Gutiérrez-Bonet Á, Liu W. Synthesis of Alkyl Fluorides and Fluorinated Unnatural Amino Acids via Photochemical Decarboxylation of α-Fluorinated Carboxylic Acids. Org Lett 2023; 25:483-487. [PMID: 36652608 DOI: 10.1021/acs.orglett.2c04144] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Leveraging α-fluoroalkyl or fluorobenzyl radicals to introduce fluorinated motifs allows for the rapid preparation of fluorine-containing building blocks. Herein, we report the generation of α-fluoroalkyl or fluorobenzyl radicals from readily available α-fluorocarboxylic acids under mild reaction conditions and their utilization in the Giese-type addition on Michael acceptors and dehydroamino acids, resulting in the preparation of mono- and difluorinated Michael addition adducts and unnatural fluorinated amino acids.
Collapse
Affiliation(s)
- Álvaro Gutiérrez-Bonet
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| | - Wenbin Liu
- Process Research & Development, MRL, Merck & Co., Inc., West Point, Pennsylvania 19486, United States
| |
Collapse
|
18
|
Chernov GI, Levin VV, Dilman AD. Photocatalytic reactions of fluoroalkyl iodides with alkenes. Russ Chem Bull 2023. [DOI: 10.1007/s11172-023-3714-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
19
|
Cheng YY, Hou HY, Liu Y, Yu JX, Chen B, Tung CH, Wu LZ. α-Acylation of Alkenes by a Single Photocatalyst. Angew Chem Int Ed Engl 2022; 61:e202208831. [PMID: 36202761 DOI: 10.1002/anie.202208831] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Indexed: 11/05/2022]
Abstract
A direct strategy for the difunctionalization of alkenes, with acylation occurring at the more substituted alkene position, would be attractive for complex ketone synthesis. We report herein a reaction driven by a single photocatalyst that enables α-acylation in this way with the introduction of a fluoromethyl, alkyl, sulfonyl or thioether group at the β-position of the alkene with high chemo- and regioselectivity under extremely mild conditions. Crucial to the success of this method are rate differences in the kinetics of radical generation through single-electron transfer (SET) between different radical precursors and the excited photocatalyst (PC*). Thus, the β-position of the alkene is first occupied by the group derived from the radical precursor that can be generated most readily, and α-keto acids could be used as an electrophilic reagent for the α-acylation of alkenes.
Collapse
Affiliation(s)
- Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Hong-Yu Hou
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Yu Liu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Ji-Xin Yu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing, 100190, P. R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Reactions of difluoro-pentafluorosulfanyl-iodomethane (SF5CF2I) with electronically different types of alkenes. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
21
|
Tagami K, Ofuji Y, Kanbara T, Yajima T. Metal-free visible-light-induced hydroxy-perfluoroalkylation of conjugated olefins using enamine catalyst. RSC Adv 2022; 12:32790-32795. [PMID: 36425182 PMCID: PMC9667149 DOI: 10.1039/d2ra06679c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Accepted: 11/05/2022] [Indexed: 07/22/2023] Open
Abstract
We developed a simple and sustainable method for the hydroxy-perfluoroalkylation of electron-deficient conjugated olefins and styrenes. In this protcol, in situ generated enamine forms electron-donor-accepter (EDA) complexes with perfluoroalkyl iodide, and reaction proceed with visible-light irradiation. Tertiary amine also interacts with perfluoroalkyl iodide via halogen-bonding, promoting the perfluoroalkyl radical generation. This reaction does not require any transition-metal or photoredox catalyst, and gaseous oxygen is used as the green hydroxy source. Moreover, various commercially available substrates and perfluoroalkyl iodides were tolerated, affording the desired hydroxy-perfluoroalkylated products in good to moderate yields (>50 examples, up to 90%).
Collapse
Affiliation(s)
- Koto Tagami
- Department of Chemistry, Faculty of Science, Ochanomizu University Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| | - Yu Ofuji
- Department of Chemistry, Faculty of Science, Ochanomizu University Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| | - Tadashi Kanbara
- Department of Chemistry, Faculty of Science, Ochanomizu University Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| | - Tomoko Yajima
- Department of Chemistry, Faculty of Science, Ochanomizu University Otsuka, Bunkyo-ku Tokyo 112-8610 Japan
| |
Collapse
|
22
|
Shigenaga S, Shibata H, Tagami K, Kanbara T, Yajima T. Eosin Y-Catalyzed Visible-Light-Induced Hydroperfluoroalkylation of Electron-Deficient Alkenes. J Org Chem 2022; 87:14923-14929. [PMID: 36200531 DOI: 10.1021/acs.joc.2c01827] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The eosin Y-catalyzed hydroperfluoroalkylation of electron-deficient alkenes is described herein. The reaction proceeded smoothly under visible light irradiation and selectively afforded a hydroperfluoroalkylated product. Various perfluoroalkyl bromides and electron-deficient olefins can be used in this reaction, and all chemicals required for this reaction are safe and readily available.
Collapse
Affiliation(s)
- Satsuki Shigenaga
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Haruko Shibata
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Koto Tagami
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tadashi Kanbara
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| | - Tomoko Yajima
- Department of Chemistry, Ochanomizu University, 2-1-1, Otsuka, Bunkyo-ku, Tokyo 112-8610, Japan
| |
Collapse
|
23
|
Li Y, Liang X, Niu K, Gu J, Liu F, Xia Q, Wang Q, Zhang W. Visible-Light-Induced Photocatalyst-Free Radical Trifluoromethylation. Org Lett 2022; 24:5918-5923. [PMID: 35929868 DOI: 10.1021/acs.orglett.2c02150] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
An attractive, versatile, and operationally simple, visible-light-induced, transition-metal-free, photocatalyst-free, and oxidant-free trifluoromethylation has been demonstrated. Triflic anhydride (Tf2O), being inexpensive and readily available, was chosen as the radical trifluoromethyl source. Thianthrene was used as a recyclable Tf2O-activating reagent, and a high-yielding and scalable trifluoromethylation reaction was achieved. Density functional theory and mechanistic studies showed that a free radical homolytic process excited by visible light is involved in this reaction, generating a key trifluoromethyl radical intermediate.
Collapse
Affiliation(s)
- Yufei Li
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Xin Liang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Kaikai Niu
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Jun Gu
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Fang Liu
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qing Xia
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Qingmin Wang
- State Key Laboratory of Elemento-Organic Chemistry, Research Institute of Elemento-Organic Chemistry, College of Chemistry, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Nankai University, Tianjin 300071, China
| | - Weihua Zhang
- Jiangsu Key Laboratory of Pesticide Science, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
24
|
Xie D, Chen H, Wei D, Wei B, Li Z, Zhang J, Yu W, Han B. Regioselective Fluoroalkylphosphorylation of Unactivated Alkenes by Radical‐Mediated Alkoxyphosphine Rearrangement**. Angew Chem Int Ed Engl 2022; 61:e202203398. [DOI: 10.1002/anie.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Dong‐Tai Xie
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Hong‐Lei Chen
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Dian Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Bang‐Yi Wei
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Zheng‐Hu Li
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Jian‐Wu Zhang
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry (SKLAOC) College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 China
| |
Collapse
|
25
|
Baguia H, Evano G. Direct Perfluoroalkylation of C−H Bonds in (Hetero)arenes. Chemistry 2022; 28:e202200975. [DOI: 10.1002/chem.202200975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Hajar Baguia
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| | - Gwilherm Evano
- Laboratoire de Chimie Organique Service de Chimie et Physico-Chimie Organiques Université libre de Bruxelles (ULB) Avenue F. D. Roosevelt 50, CP160/06 1050 Brussels Belgium
| |
Collapse
|
26
|
Wu J, Wu H, Liu X, Zhang Y, Huang G, Zhang C. Nickel-Catalyzed Cross-Coupling of Acyl Chloride with Racemic α-Trifluoromethyl Bromide to Access Chiral α-Trifluoromethyl Ketones. Org Lett 2022; 24:4322-4327. [PMID: 35686818 DOI: 10.1021/acs.orglett.2c01208] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The nickel-catalyzed reductive cross-coupling reaction of acyl chloride with racemic secondary α-trifluoromethyl bromide has been developed. By this chemistry, a series of structurally interesting chiral α-CF3 carbonyl compounds could be accessed with great enantioselectivity and good functional group tolerance. The study of late-stage transformation indicated that this chemistry could be used as the robust method to prepare products that contain a bioactive motif. Furthermore, the importance of the α-trifluoromethyl group to this reaction has been illustrated by control experiments.
Collapse
Affiliation(s)
- Juanjuan Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Hongli Wu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Xinyu Liu
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Yuekun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Genping Huang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China
| | - Chun Zhang
- Institute of Molecular Plus, Tianjin Key Laboratory of Molecular Optoelectronic Science, Department of Chemistry, School of Science, Tianjin University, Weijin Road 92, Tianjin 300072, China.,Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| |
Collapse
|
27
|
Xie DT, Chen HL, Wei D, Wei BY, Li ZH, Zhang JW, Yu W, Han B. Regioselective Fluoroalkylphosphorylation of Unactivated Alkenes by Radical–Mediated Alkoxyphosphine Rearrangement. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202203398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Dong-Tai Xie
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Hong-Lei Chen
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Dian Wei
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Bang-Yi Wei
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Zheng-Hu Li
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Jian-Wu Zhang
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Wei Yu
- Lanzhou University College of Chemistry and Chemical Engineering CHINA
| | - Bing Han
- Lanzhou University Department of Chemistry 222 South Tianshui Rd. 730000 Lanzhou CHINA
| |
Collapse
|
28
|
Du P, Sun Q, Li H, Zhang J, Deng H, Jiang H. Silver-catalyzed Radical Cascade Arylthiodifluoromethylation/ Cyclization of Isonitriles for the Synthesis of 6-Phenanthridinyldifluoromethyl Aryl Thioethers. Chem Asian J 2022; 17:e202200088. [PMID: 35319154 DOI: 10.1002/asia.202200088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/07/2022] [Indexed: 11/10/2022]
Abstract
An efficient method for silver-catalyzed radical cascade arylthiodifluoromethylation/cyclization of isonitriles is disclosed. The transformation comprised addition of an arylthiodifluoromethyl radical generated in situ by the oxidative decarboxylation of arylthiodifluoroacetic salts to the isonitrile functionality to construct an ArSCF2 -C bond, followed by intramolecular cyclization to eventually afford 6-phenanthridinyldifluoromethyl aryl thioethers. The protocol provided a variety of 6-phenanthridinyldifluoromethyl aryl thioethers in medium to excellent yields with a good functional group tolerance under mild reaction conditions.
Collapse
Affiliation(s)
- Pengcheng Du
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Hongxiao Li
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, P. R. China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai, 200444, P. R. China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai, 200444, P. R. China.,Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, P. R. China
| |
Collapse
|
29
|
Longendyke GK, Katel S, Wang Y. PFAS fate and destruction mechanisms during thermal treatment: a comprehensive review. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:196-208. [PMID: 34985474 DOI: 10.1039/d1em00465d] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Per- and polyfluoroalkyl substances (PFAS) are persistent chemicals and have been detected throughout the environment. Thermal treatment is the most common remediation approach for PFAS-contaminated solid wastes. Although various thermal treatment techniques have demonstrated the potential to destruct PFAS, the fate of PFAS, removal efficacy, potential emissions, and the formation of incomplete combustion products during thermal treatment are little known. This study provides a critical review on the behavior of PFAS based on different types of thermal treatment technologies with various PFAS-impacted environmental medias that include water, soil, sewage sludge, pure PFAS materials, and other PFAS-containing wastes. Different extents of PFAS thermal destruction are observed across various thermal treatment techniques and operating conditions. PFAS removal and destruction efficiencies rely heavily on PFAS structures, the complex combustion chemistry, the presence or absence of oxygen, temperature, and other operational conditions. This review also covers proposed PFAS thermal destruction mechanisms. Different thermal destruction mechanisms for perfluorooctanoic acid (PFOA) and perfluorooctanesulfonate (PFOS), and other PFAS are reviewed and compared. The majority of studies about PFAS thermal destruction mechanisms were focused on a specific list of PFAS and based mostly on the pyrolysis treatment. The basic pathway for PFAS destruction during pyrolysis is hydrodefluorination, which could be largely influenced by the alkaline condition. Future field-scale research that involves the characterization of PFAS destruction products and incomplete combustion products is needed to address public concerns and better emission control.
Collapse
Affiliation(s)
- Grace K Longendyke
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| | - Sebica Katel
- Biochemistry, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA
| | - Yuxin Wang
- Department of Geological Sciences and Environmental Studies, Binghamton University, 4400 Vestal Pkwy E, Vestal, NY 13850, USA.
| |
Collapse
|
30
|
Liu Z, Li C, Chen J, Li X, Luo F, Cheng F, Liu JJ. Photoactive perylenediimide metal–organic framework for boosting iodoperfluoroalkylation of alkenes and oxidative coupling of amines. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01206a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
A novel photoactive MOF was prepared based on an electron-deficient perylenediimide derivative, which exhibits excellent photocatalytic activities towards the iodoperfluoroalkylation of alkenes and the oxidation of amines to imines.
Collapse
Affiliation(s)
- Zhengfen Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Chao Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian Chen
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Xiaobo Li
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Fumang Luo
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Feixiang Cheng
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| | - Jian-Jun Liu
- College of Chemistry and Environmental Science, Qujing Normal University, Qujing 655011, China
| |
Collapse
|
31
|
Liu Q, Lu Y, Sheng H, Zhang C, Su X, Wang Z, Chen X. Visible‐Light‐Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202111006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Yu Lu
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - He Sheng
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Chao‐Shen Zhang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiao‐Di Su
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Zhi‐Xiang Wang
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Xiang‐Yu Chen
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
32
|
Luo Z, Wan Q, Yu Z, Lin S, Xie Z, Wang X. Photo-fluorination of nanodiamonds catalyzing oxidative dehydrogenation reaction of ethylbenzene. Nat Commun 2021; 12:6542. [PMID: 34764285 PMCID: PMC8586349 DOI: 10.1038/s41467-021-26891-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 10/20/2021] [Indexed: 12/04/2022] Open
Abstract
Styrene is one of the most important industrial monomers and is traditionally synthesized via the dehydrogenation of ethylbenzene. Here, we report a photo-induced fluorination technique to generate an oxidative dehydrogenation catalyst through the controlled grafting of fluorine atoms on nanodiamonds. The obtained catalyst has a fabulous performance with ethylbenzene conversion reaching 70% as well as styrene yields of 63% and selectivity over 90% on a stream of 400 °C, which outperforms other equivalent benchmarks as well as the industrial K-Fe catalysts (with a styrene yield of 50% even at a much higher temperature of ca. 600 °C). Moreover, the yield of styrene remains above 50% after a 500 h test. Experimental characterizations and density functional theory calculations reveal that the fluorine functionalization not only promotes the conversion of sp3 to sp2 carbon to generate graphitic layers but also stimulates and increases the active sites (ketonic C=O). This photo-induced surface fluorination strategy facilitates innovative breakthroughs on the carbocatalysis for the oxidative dehydrogenation of other arenes.
Collapse
Affiliation(s)
- Zhishan Luo
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Qiang Wan
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zhiyang Yu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Sen Lin
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China
| | - Zailai Xie
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
- College of Chemical Engineering, Fuzhou University, Fuzhou, Fujian, 350108, People's Republic of China.
| |
Collapse
|
33
|
Yerien DE, Lantaño B, Barata‐Vallejo S, Postigo A. Catalytic Fluoroalkylation Reactions of Alkoxy‐substituted (Hetero)Arenes. ChemCatChem 2021. [DOI: 10.1002/cctc.202100997] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Damian E. Yerien
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| | - Beatriz Lantaño
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| | - Sebastián Barata‐Vallejo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
- ISOF Consiglio Nazionale delle Ricerche Via P. Gobetti 101 40129 Bologna Italy
| | - Al Postigo
- Departamento de Ciencias Químicas Facultad de Farmacia y Bioquímica Universidad de Buenos Aires Junín 954 CP 1113 Buenos Aires Argentina
| |
Collapse
|
34
|
Liu Q, Lu Y, Sheng H, Zhang CS, Su XD, Wang ZX, Chen XY. Visible-Light-Induced Selective Photolysis of Phosphonium Iodide Salts for Monofluoromethylations. Angew Chem Int Ed Engl 2021; 60:25477-25484. [PMID: 34490742 DOI: 10.1002/anie.202111006] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Indexed: 11/09/2022]
Abstract
The sigma (σ)-hole effect has emerged as a promising tool to construct novel architectures endowed with new properties. A simple yet effective strategy for the generation of monofluoromethyl radicals is a continuing challenge within the synthetic community. Fluoromethylphosphonium salts are easily available, air- and thermally stable, as well as simple-to-handle. Herein, we report the ability of the σ-hole effect to facilitate the visible-light-triggered photolysis of phosphonium iodide salts, a charge-transfer complex, selectively giving fluoromethyl radicals. The usefulness and versatility of this new protocol are demonstrated through the mono-, di-, and trifluoromethylation of a variety of alkenes.
Collapse
Affiliation(s)
- Qiang Liu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu Lu
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - He Sheng
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chao-Shen Zhang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Di Su
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
35
|
Bartolomei B, Gentile G, Rosso C, Filippini G, Prato M. Turning the Light on Phenols: New Opportunities in Organic Synthesis. Chemistry 2021; 27:16062-16070. [PMID: 34339553 DOI: 10.1002/chem.202102276] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Indexed: 11/09/2022]
Abstract
Phenols ( I ) are extremely relevant chemical functionalities in natural, synthetic and industrial chemistry. Their corresponding electron-rich anions, namely phenolates ( I ), are characterized by interesting physicochemical properties that can be drastically altered upon light excitation. Specifically, phenolates ( I ) become strong reducing agents in the excited state and are able to generate reactive radicals from suitable precursors via single-electron transfer processes. Thus, these species can photochemically trigger strategic bond-forming reactions, including their direct aromatic C-H functionalization. Moreover, substituted phenolate anions can act as photocatalysts to enable synthetically useful organic transformations. An alternative mechanistic manifold is represented by the ability of phenolate derivatives I to form ground state electron donor-acceptor (EDA) complexes with electron-poor radical sources. These complementary scenarios have paved the way for the development of a wide range of relevant organic reactions. In this Minireview, we present the main examples of this research field, and give insight on emerging trends in phenols photocatalysis towards richer organic synthesis.
Collapse
Affiliation(s)
- Beatrice Bartolomei
- University of Trieste Department of Chemical and Pharmaceutical Sciences: Universita degli Studi di Trieste Dipartimento di Scienze Chimiche e Farmaceutiche, Chemical and Pharmaceutical Sciences, ITALY
| | - Giuseppe Gentile
- University of Trieste, Chemical and Pharmaceutical Sciences, ITALY
| | - Cristian Rosso
- University of Trieste, Chemical and Pharmaceutical Sciences, ITALY
| | | | - Maurizio Prato
- Università di Trieste, Dipartimento di Scienze Chimiche e Farmaceutiche, Piazzale Europa 1, 34127, Trieste, ITALY
| |
Collapse
|
36
|
Ofuji Y, Kanbara T, Yajima T. Radical cyclization reaction of iodine containing fluoroolefines. J Fluor Chem 2021. [DOI: 10.1016/j.jfluchem.2021.109805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Sletten EM, Jaye JA. Simple Synthesis of Fluorinated Ene-Ynes via In Situ Generation of Allenes. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/s-0037-1610774] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
AbstractFluorination of small molecules is a key route toward modulating reactivity and bioactivity. The 1,3 ene-yne functionality is an important synthon towards complex products, as well as a common functionality in biologically active molecules. Here, we present a new synthetic route towards fluorinated ene-ynes from simple starting materials. We employ gas chromatography-mass spectrometry analysis to probe the sequential eliminations necessary for this transformation and observe an allene intermediate. The ene-yne products are sufficiently fluorous to enable purification via fluorous extraction. This methodology will allow facile access to functional, fluorous ene-ynes.
Collapse
|
38
|
Liu Y, Ling Y, Ge H, Lu L, Shen Q. Rational Design and Development of
Low‐Price
, Scalable,
Shelf‐Stable
and Broadly Applicable Electrophilic Sulfonium
Ylide‐Based
Trifluoromethylating Reagents. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yafei Liu
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Yijing Ling
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Hangming Ge
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Long Lu
- Shanghai Institute of Organic Chemistry Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| | - Qilong Shen
- Key Laboratory of Organofluorine Chemistry Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road Shanghai 200032 China
| |
Collapse
|
39
|
Cheng M, Guo C, Li W, Gross ML. Free‐Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202014096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ming Cheng
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
- Current address: Department of Molecular Medicine The Scripps Research Institute La Jolla CA 92037 USA
| | - Chunyang Guo
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics Washington University School of Medicine St. Louis MO 63130 USA
| | - Michael L. Gross
- Department of Chemistry Washington University in St. Louis One Brookings Drive Saint Louis MO 63130 USA
| |
Collapse
|
40
|
Cheng M, Guo C, Li W, Gross ML. Free-Radical Membrane Protein Footprinting by Photolysis of Perfluoroisopropyl Iodide Partitioned to Detergent Micelle by Sonication. Angew Chem Int Ed Engl 2021; 60:8867-8873. [PMID: 33751812 PMCID: PMC8083173 DOI: 10.1002/anie.202014096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 12/29/2020] [Indexed: 12/14/2022]
Abstract
A free-radical footprinting approach is described for integral membrane protein (IMP) that extends, significantly, the "fast photochemical oxidation of proteins" (FPOP) platform. This new approach exploits highly hydrophobic perfluoroisopropyl iodide (PFIPI) together with tip sonication to ensure efficient transport into the micelle interior, allowing laser dissociation and footprinting of the transmembrane domains. In contrast to water soluble footprinters, PFIPI footprints both the hydrophobic intramembrane and the hydrophilic extramembrane domains of the IMP vitamin K epoxide reductase (VKOR). The footprinting is fast, giving high coverage for Tyr (100 %) and Trp. The incorporation of the reagent with sonication does not significantly affect VKOR's enzymatic function, and tyrosine iodination does not compromise protease digestion and the subsequent analysis. The locations for the modifications are largely consistent with the corresponding solvent accessibilities, recommending this approach for future membrane protein footprinting.
Collapse
Affiliation(s)
- Ming Cheng
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
- Current address: Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, 92037, USA
| | - Chunyang Guo
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO, 63130, USA
| | - Michael L Gross
- Department of Chemistry, Washington University in St. Louis, One Brookings Drive, Saint Louis, MO, 63130, USA
| |
Collapse
|
41
|
Wang P, Du P, Sun Q, Zhang J, Deng H, Jiang H. Silver-catalyzed decarboxylative radical allylation of α,α-difluoroarylacetic acids for the construction of CF 2-allyl bonds. Org Biomol Chem 2021; 19:2023-2029. [PMID: 33594399 DOI: 10.1039/d0ob02546a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An efficient silver-catalyzed method of decarboxylative radical allylation of α,α-difluoroarylacetic acids to build CF2-allyl bonds has been developed. Using allylsulfone as an allyl donor, α,α-difluorine substituted arylacetic acids bearing various functional groups are successfully allylated to access a series of 3-(α,α-difluorobenzyl)-1-propylene compounds in moderate to excellent yields in aqueous CH3CN solution under the mild conditions. Experimental studies disclosed that the α-fluorine substitution of arylacetic acid has a great influence on free radical activity and reactivity.
Collapse
Affiliation(s)
- Pingyang Wang
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China.
| | - Pengcheng Du
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China.
| | - Qianqian Sun
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China.
| | - Jianhua Zhang
- Key Laboratory of Advanced Display and System Application, Ministry of Education, Shanghai University, Shanghai, 200072, PR China
| | - Hongmei Deng
- Laboratory for Microstructures, Shanghai University, Shanghai, 200444, PR China
| | - Haizhen Jiang
- Department of Chemistry, Shanghai University, Shanghai, 200444, PR China. and Key Laboratory of Organofluorine Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, PR China
| |
Collapse
|
42
|
Qin H, Zhang J, Qiao K, Zhang D, He W, Liu C, Fang Z, Guo K. Palladium-Catalyzed C2-Regioselective Perfluoroalkylation of the Free (NH)-Heteroarenes. J Org Chem 2021; 86:2840-2853. [PMID: 33433213 DOI: 10.1021/acs.joc.0c02782] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
A highly regioselective and atom-efficient strategy for the construction of fused free (NH) heteroarenes through a palladium-catalyzed perfluoroalkyl insertion reaction has been accomplished. This protocol employed multiple iodofluoroalkanes as practical and available perfluoroalkyl sources to provide an operationally simple and versatile route for the synthesis of perfluoroalkylated indoles. Moreover, indoles without the assistance of guide groups were utilized as substrates, achieving C(sp2)-H site-selective functionalization of indoles in yields up to 95%. Furthermore, this protocol was also used for late-stage C2 perfluoroalkylation of bioactive compounds such as auxin, tryptophan, and melatonin analogues.
Collapse
Affiliation(s)
- Hong Qin
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Jie Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Qiao
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Dong Zhang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Wei He
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Chengkou Liu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Zheng Fang
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China
| | - Kai Guo
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, 30 Puzhu Road South, Nanjing 211816, P. R. China.,State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, P. R. China
| |
Collapse
|
43
|
Meng Z, Zhang X, Shi M. Visible-light mediated cascade cyclization of ene-vinylidenecyclopropanes: access to fluorinated heterocyclic compounds. Org Chem Front 2021. [DOI: 10.1039/d1qo00540e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A visible-light mediated fluorinated cyclization of ene-vinylidenecyclopropanes along with mechanistic investigations is presented.
Collapse
Affiliation(s)
- Zhe Meng
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Xiaoyu Zhang
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| | - Min Shi
- Key Laboratory for Advanced Materials and Institute of Fine Chemicals
- School of Chemistry & Molecular Engineering
- East China University of Science and Technology
- Shanghai 200237
- China
| |
Collapse
|
44
|
Bouad V, Guerre M, Zeliouche S, Améduri B, Totée C, Silly G, Poli R, Ladmiral V. NMR investigations of polytrifluoroethylene (PTrFE) synthesized by RAFT. Polym Chem 2021. [DOI: 10.1039/d0py01753a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Identification of the 1H, 19F, and 13C NMR signals of the end-groups of polytrifluoroethylene synthesized by RAFT polymerisation.
Collapse
Affiliation(s)
| | - Marc Guerre
- Laboratoire des IMRCP
- Université de Toulouse
- CNRS UMR 5623
- Université Paul Sabatier
- 31062 Toulouse Cedex 9
| | | | | | | | | | - Rinaldo Poli
- CNRS
- LCC (Laboratoire de Chimie de Coordination)
- UPS
- INPT
- Université de Toulouse
| | | |
Collapse
|
45
|
Tang L, Yang F, Yang Z, Chen H, Cheng H, Zhang S, Zhou Q, Rao W. Application of Bifunctional 2-Amino-1,4-naphthoquinones in Visible-Light-Promoted Photocatalyst-Free Alkene Perfluoroalkyl-Alkenylation. Org Lett 2020; 23:519-524. [PMID: 33382626 DOI: 10.1021/acs.orglett.0c04036] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A simple and practical photochemical strategy for intermolecular perfluoroalkyl-alkenylation of alkenes with 2-amino-1,4-naphthoquinones and perfluoroalkyl iodides has been demonstrated under visible-light irradiation. Mechanistic studies reveal that easily available 2-amino-1,4-naphthoquinone substrates can serve as efficient photosensitizers to activate perfluoroalkyl iodides through a photoredox process. Therefore, the developed radical relay reaction proceeds smoothly without additional transition metals and photocatalysts.
Collapse
Affiliation(s)
- Lin Tang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China.,Henan Province Key Laboratory of Utilization of Non-metallic Mineral in the Sourth of Henan, Xinyang 464000, China
| | - Fang Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Zhen Yang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hanfei Chen
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Hao Cheng
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Shuaifei Zhang
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Qiuju Zhou
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| | - Weihao Rao
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, China
| |
Collapse
|
46
|
Zhang S, Weniger F, Ye F, Rabeah J, Ellinger S, Zaragoza F, Taeschler C, Neumann H, Brückner A, Beller M. Selective nickel-catalyzed fluoroalkylations of olefins. Chem Commun (Camb) 2020; 56:15157-15160. [PMID: 33210679 DOI: 10.1039/d0cc06652d] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Mild and selective nickel-catalyzed trifluoromethylation and perfluoroalkylation reactions of alkenes were developed to provide fluorinated olefins, including natural products, pharmaceuticals, and variety of synthetic building blocks in good to excellent yields (38 examples). Control experiments, kinetic measurements and in situ EPR studies reveal the importance of radical species and the formation of 1,2-adducts as intermediates.
Collapse
Affiliation(s)
- Shaoke Zhang
- Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Miller MA, Sletten EM. Perfluorocarbons in Chemical Biology. Chembiochem 2020; 21:3451-3462. [PMID: 32628804 PMCID: PMC7736518 DOI: 10.1002/cbic.202000297] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/03/2020] [Indexed: 01/10/2023]
Abstract
Perfluorocarbons, saturated carbon chains in which all the hydrogen atoms are replaced with fluorine, form a separate phase from both organic and aqueous solutions. Though perfluorinated compounds are not found in living systems, they can be used to modify biomolecules to confer orthogonal behavior within natural systems, such as improved stability, engineered assembly, and cell-permeability. Perfluorinated groups also provide handles for purification, mass spectrometry, and 19 F NMR studies in complex environments. Herein, we describe how the unique properties of perfluorocarbons have been employed to understand and manipulate biological systems.
Collapse
Affiliation(s)
- Margeaux A Miller
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| | - Ellen M Sletten
- Department of Chemistry and Biochemistry, University of California, Los Angeles, 607 Charles E Young Dr E, Los Angeles, CA, 90095, USA
| |
Collapse
|
48
|
Filippini G, Longobardo F, Forster L, Criado A, Di Carmine G, Nasi L, D'Agostino C, Melchionna M, Fornasiero P, Prato M. Light-driven, heterogeneous organocatalysts for C-C bond formation toward valuable perfluoroalkylated intermediates. SCIENCE ADVANCES 2020; 6:6/46/eabc9923. [PMID: 33177092 PMCID: PMC7673726 DOI: 10.1126/sciadv.abc9923] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/23/2020] [Indexed: 05/28/2023]
Abstract
The favorable exploitation of carbon nitride (CN) materials in photocatalysis for organic synthesis requires the appropriate fine-tuning of the CN structure. Here, we present a deep investigation of the structure/activity relationship of CN in the photocatalytic perfluoroalkylation of organic compounds. Four types of CN bearing subtle structural differences were studied via conventional characterization techniques and innovative nuclear magnetic resonance (NMR) experiments, correlating the different structures with the fundamental mechanistic nexus and especially highlighting the importance of the halogen bond strength between the reagent and the catalyst surface. The optimum catalyst exhibited an excellent performance, with a very wide reaction scope, and could prominently trigger the model reaction using natural sunlight. The work lays a platform for establishing a new approach in the development of heterogeneous photocatalysts for organic synthesis related to medical, agricultural, and material chemistry.
Collapse
Affiliation(s)
- Giacomo Filippini
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Francesco Longobardo
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy
| | - Luke Forster
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Alejandro Criado
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia, San Sebastián, Spain
| | - Graziano Di Carmine
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Lucia Nasi
- IMEM-CNR Institute of Materials for Electronics and Magnetism, Parco Area delle Scienze 37/A, I-43124 Parma, Italy
| | - Carmine D'Agostino
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, UK
| | - Michele Melchionna
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
| | - Paolo Fornasiero
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
- ICCOM-CNR Trieste Associate Unit, University of Trieste, via L. Giorgieri 1, 34127 Trieste, Italy
| | - Maurizio Prato
- Department of Chemical and Pharmaceutical Sciences, INSTM, University of Trieste, Via L. Giorgieri 1, 34127 Trieste, Italy.
- CIC biomaGUNE, Paseo de Miramón 182, 20009 Donostia, San Sebastián, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| |
Collapse
|
49
|
Josephson B, Fehl C, Isenegger PG, Nadal S, Wright TH, Poh AWJ, Bower BJ, Giltrap AM, Chen L, Batchelor-McAuley C, Roper G, Arisa O, Sap JBI, Kawamura A, Baldwin AJ, Mohammed S, Compton RG, Gouverneur V, Davis BG. Light-driven post-translational installation of reactive protein side chains. Nature 2020; 585:530-537. [PMID: 32968259 DOI: 10.1038/s41586-020-2733-7] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/15/2020] [Indexed: 02/07/2023]
Abstract
Post-translational modifications (PTMs) greatly expand the structures and functions of proteins in nature1,2. Although synthetic protein functionalization strategies allow mimicry of PTMs3,4, as well as formation of unnatural protein variants with diverse potential functions, including drug carrying5, tracking, imaging6 and partner crosslinking7, the range of functional groups that can be introduced remains limited. Here we describe the visible-light-driven installation of side chains at dehydroalanine residues in proteins through the formation of carbon-centred radicals that allow C-C bond formation in water. Control of the reaction redox allows site-selective modification with good conversions and reduced protein damage. In situ generation of boronic acid catechol ester derivatives generates RH2C• radicals that form the native (β-CH2-γ-CH2) linkage of natural residues and PTMs, whereas in situ potentiation of pyridylsulfonyl derivatives by Fe(II) generates RF2C• radicals that form equivalent β-CH2-γ-CF2 linkages bearing difluoromethylene labels. These reactions are chemically tolerant and incorporate a wide range of functionalities (more than 50 unique residues/side chains) into diverse protein scaffolds and sites. Initiation can be applied chemoselectively in the presence of sensitive groups in the radical precursors, enabling installation of previously incompatible side chains. The resulting protein function and reactivity are used to install radical precursors for homolytic on-protein radical generation; to study enzyme function with natural, unnatural and CF2-labelled post-translationally modified protein substrates via simultaneous sensing of both chemo- and stereoselectivity; and to create generalized 'alkylator proteins' with a spectrum of heterolytic covalent-bond-forming activity (that is, reacting diversely with small molecules at one extreme or selectively with protein targets through good mimicry at the other). Post-translational access to such reactions and chemical groups on proteins could be useful in both revealing and creating protein function.
Collapse
Affiliation(s)
- Brian Josephson
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Charlie Fehl
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Chemistry, Wayne State University, Detroit, MI, USA
| | - Patrick G Isenegger
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Simon Nadal
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Tom H Wright
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Adeline W J Poh
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Ben J Bower
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew M Giltrap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
| | - Lifu Chen
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | | | - Grace Roper
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Oluwatobi Arisa
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Jeroen B I Sap
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Akane Kawamura
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Andrew J Baldwin
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Shabaz Mohammed
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
- The Rosalind Franklin Institute, Harwell, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, Oxford, UK
| | - Veronique Gouverneur
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
| | - Benjamin G Davis
- Chemistry Research Laboratory, Department of Chemistry, University of Oxford, Oxford, UK.
- The Rosalind Franklin Institute, Harwell, UK.
| |
Collapse
|
50
|
García-Domínguez A, West TH, Primozic JJ, Grant KM, Johnston CP, Cumming GG, Leach AG, Lloyd-Jones GC. Difluorocarbene Generation from TMSCF3: Kinetics and Mechanism of NaI-Mediated and Si-Induced Anionic Chain Reactions. J Am Chem Soc 2020; 142:14649-14663. [DOI: 10.1021/jacs.0c06751] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Andrés García-Domínguez
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Thomas H. West
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Johann J. Primozic
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Katie M. Grant
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Craig P. Johnston
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Grant G. Cumming
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| | - Andrew G. Leach
- School of Health Sciences, Stopford Building, The University of Manchester, Oxford Road, Manchester M13 9PT, U.K
| | - Guy C. Lloyd-Jones
- EaStChem, University of Edinburgh, Joseph Black Building, David Brewster Road, Edinburgh EH9 3FJ, U.K
| |
Collapse
|