1
|
Tripathi M, Thakur Y, Syed R, Asatkar AK, Alqahtani MS, Das D, Agrawal R, Verma B, Pande R. In-vitro and in-silico analysis and antitumor studies of novel Cu(II) and V(V) complexes of N-p-Tolylbenzohydroxamic acid. Int J Biol Macromol 2024; 268:131768. [PMID: 38663706 DOI: 10.1016/j.ijbiomac.2024.131768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 03/07/2024] [Accepted: 04/20/2024] [Indexed: 05/04/2024]
Abstract
Copper(L2Cu) and vanadium(L2VOCl) complexes of N-p-tolylbenzohydroxamic acid (LH) ligand have been investigated for DNA binding efficacy by multiple analytical, spectral, and computational techniques. The results revealed that complexes as groove binders as evidenced by UV absorption. Fluorescence studies including displacement assay using classical intercalator ethidium bromide as fluorescent probe also confirmed as groove binders. The viscometric analysis too supports the inferences as strong groove binders for both the complexes. Molecular docking too exposed DNA as a target to the complexes which precisely binds L2Cu, in the minor groove region while L2VOCl in major groove region. Molecular dynamic simulation performed on L2Cu complex revealing the interaction of complex with DNA within 20 ns time. The complex stacked into the nitrogen bases of oligonucleotides and the bonding features were intrinsically preserved for longer simulation times. In-vitro cytotoxicity study was undertaken employing MTT assay against the breast cancer cell line (MCF-7). Potential cytotoxic activities were observed for L2Cu and L2VOCl complexes with IC50 values of showing 71 % and 74 % of inhibition respectively.
Collapse
Affiliation(s)
- Mamta Tripathi
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India.
| | - Yamini Thakur
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India; Department of Chemistry, Govt. J. Yoganandam Chhattisgarh College, Raipur C.G. - 492001
| | - Rabbani Syed
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Ashish Kumar Asatkar
- Department of Chemistry, Satya Narayan Agrawal Govt. Arts and Commerce College, Kohka-Neora, Dist. Raipur, CG 493114, India
| | - Mohammad S Alqahtani
- Department of Pharmaceutics, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Devashish Das
- Department of Chemical Engineering, Konkuk University, Seoul, South Korea
| | - Rainy Agrawal
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Bharati Verma
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| | - Rama Pande
- School of Studies in Chemistry, Pt. Ravishankar Shukla University, Raipur 492010, Chhattisgarh, India
| |
Collapse
|
2
|
Romero IE, Postigo A, Bonesi SM. Preparation of Carbazoles Involving 6π-Electrocyclization, Photoredox-, Electrochemical-, and Thermal Cyclization Reactions: Mechanistic Insights. Chemistry 2024; 30:e202303229. [PMID: 38032158 DOI: 10.1002/chem.202303229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Indexed: 12/01/2023]
Abstract
Carbazole is a heterocyclic motif that can be found in a diverse array of natural and unnatural products displaying a wide range of biological and physiological properties. Furthermore, this heterocycle is part of electronic materials like photoconducting polymers and organic optoelectronic materials owing to its excellent photophysical characteristics. Consequently, the development of synthetic strategies for carbazole scaffolds holds potential significance in biological and material fields. In this regard, a variety of preparation methods has been developed to exploit their efficient and distinct formation of new C-C and C-heteroatom bonds under mild conditions and enabling broad substrate diversity and functional group tolerance. Therefore, this review focuses on the synthesis of a set of carbazole derivatives describing a variety of methodologies that involve direct irradiation, photosensitization, photoredox, electrochemical and thermal cyclization reactions.
Collapse
Affiliation(s)
- Ivan E Romero
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- Universidad de Buenos Aires, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 954, Buenos Aires, CP 1113, Argentina
| | - Al Postigo
- Universidad de Buenos Aires, Departamento de Ciencias Químicas, Facultad de Farmacia y Bioquímica, Junín 954, Buenos Aires, CP 1113, Argentina
| | - Sergio M Bonesi
- Universidad de Buenos Aires, Departamento de Química Orgánica, Facultad de Ciencias Exactas y Naturales, Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
- CONICET - Universidad de Buenos Aires, Centro de Investigaciones en Hidratos de Carbono (CIHIDECAR), Ciudad Universitaria, Buenos Aires, C1428EGA, Argentina
| |
Collapse
|
3
|
Galimova MF, Zueva EM, Petrova MM, Dobrynin AB, Kolesnikov IE, Musina EI, Musin RR, Karasik AA, Sinyashin OG. Design of luminescent complexes with different Cu 4I 4 cores based on pyridyl phenoxarsines. Dalton Trans 2024; 53:1087-1098. [PMID: 38099621 DOI: 10.1039/d3dt03273f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
A series of luminescent Cu4I4 clusters with stair-step, cubane, and octahedral geometries supported by a novel type of cyclic As,N-ligand, pyridyl-containing 10-phenoxarsines, were synthesized and characterized by NMR spectroscopy, mass spectrometry, elemental analysis, and single-crystal X-ray diffraction analysis. An unusual arrangement of As,N-bidentate and μ2-iodo ligands was found in the octahedral cluster. The structural diversity of the Cu(I) complexes is reflected in their photophysical properties: the phosphorescence spectra of the compounds display emission in a broad spectral range of 495-597 nm. The complex with the Cu4I4L2 stoichiometry bearing a stair-step Cu4I4 core demonstrates temperature-dependent dual emission. The luminescence properties of all complexes were rationalized by DFT calculations.
Collapse
Affiliation(s)
- Milyausha F Galimova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Ekaterina M Zueva
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Maria M Petrova
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Alexey B Dobrynin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Ilya E Kolesnikov
- Center for Optical and Laser Materials Research, St Petersburg University, 5 Ulianovskaya Street, 198504 Saint Petersburg, Russian Federation
| | - Elvira I Musina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Rustem R Musin
- Kazan National Research Technological University, 68 K. Marx Street, 420015 Kazan, Russian Federation
| | - Andrey A Karasik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| | - Oleg G Sinyashin
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, 8 Arbuzov Street, 420088 Kazan, Russian Federation.
| |
Collapse
|
4
|
Tomás FMA, Calvo NL, Vega NC, Vieyra FEM, Vega DR, Comedi D, Katz NE, Fagalde F. Syntheses, characterization, crystal structures and applications as sensitizers in solar cells of novel heteroleptic Cu(I) complexes containing nitrile-substituted 2,2'-bipyridyl ligands. Dalton Trans 2024; 53:808-819. [PMID: 38087997 DOI: 10.1039/d3dt02777e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Two novel Cu(I) tetradentate heteroleptic complexes, including nitrile-substituted bipyridines that can be anchored to semiconductor surfaces to be assembled in DSSCs, were synthesized and characterized by spectroscopic and electrochemical techniques. The crystal structures of both species were determined by X-ray diffraction. Results from DFT and TD-DFT calculations were found to be consistent with the experimental data. Emission at room temperature was observed for both complexes in the solid state, making them promising alternatives for the development of light-emitting diodes. We report for the first time the experimental evidence of photovoltaic conversion devices formed by Cu(I) complexes anchored to a TiO2 surface by means of nitrile groups present in substituted bipyridines, and subsequently tested as sensitizers for DSSCs, obtaining efficiency values for light to electrical energy conversion similar to those previously reported for analogous complexes with anchoring carboxylic groups.
Collapse
Affiliation(s)
- Federico M A Tomás
- INQUINOA (CONICET-UNT), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.
| | - Natalia L Calvo
- IQUIR (CONICET-UNR) Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, Santa Fe, Argentina
| | - Nadia C Vega
- INFINOA (CONICET-UNT) y Departamento de Física, Facultad de Ciencias Exactas y Tecnología, UNT, Av. Independencia 1800, T4002BLR, S. M. de Tucumán, Argentina
| | | | - Daniel R Vega
- Departamento Física de la Materia Condensada, GIyA, CAC, CNEA, Av. Gral. Paz 1499, B1650KNA, San Martín, Buenos Aires, Argentina
| | - David Comedi
- INFINOA (CONICET-UNT) y Departamento de Física, Facultad de Ciencias Exactas y Tecnología, UNT, Av. Independencia 1800, T4002BLR, S. M. de Tucumán, Argentina
| | - Néstor E Katz
- INQUINOA (CONICET-UNT), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.
| | - Florencia Fagalde
- INQUINOA (CONICET-UNT), Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, T4000INI, San Miguel de Tucumán, Argentina.
| |
Collapse
|
5
|
Kim D, Dang VQ, Teets TS. Improved transition metal photosensitizers to drive advances in photocatalysis. Chem Sci 2023; 15:77-94. [PMID: 38131090 PMCID: PMC10732135 DOI: 10.1039/d3sc04580c] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/22/2023] [Indexed: 12/23/2023] Open
Abstract
To function effectively in a photocatalytic application, a photosensitizer's light absorption, excited-state lifetime, and redox potentials, both in the ground state and excited state, are critically important. The absorption profile is particularly relevant to applications involving solar harvesting, whereas the redox potentials and excited-state lifetimes determine the thermodynamics, kinetics, and quantum yields of photoinduced redox processes. This perspective article focuses on synthetic inorganic and organometallic approaches to optimize these three characteristics of transition-metal based photosensitizers. We include our own work in these areas, which has focused extensively on exceptionally strong cyclometalated iridium photoreductants that enable challenging reductive photoredox transformations on organic substrates, and more recent work which has led to improved solar harvesting in charge-transfer copper(i) chromophores, an emerging class of earth-abundant compounds particularly relevant to solar-energy applications. We also extensively highlight many other complementary strategies for optimizing these parameters and highlight representative examples from the recent literature. It remains a significant challenge to simultaneously optimize all three of these parameters at once, since improvements in one often come at the detriment of the others. These inherent trade-offs and approaches to obviate or circumvent them are discussed throughout.
Collapse
Affiliation(s)
- Dooyoung Kim
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Vinh Q Dang
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| | - Thomas S Teets
- University of Houston, Department of Chemistry 3585 Cullen Blvd. Room 112 Houston TX 77204-5003 USA
| |
Collapse
|
6
|
Powley SL, Riley C, Cho HH, Le Phuoc N, Linnolahti M, Greenham N, Romanov AS. Highly phosphorescent carbene-metal-carboranyl complexes of copper(I) and gold(I). Chem Commun (Camb) 2023; 59:12035-12038. [PMID: 37729393 DOI: 10.1039/d3cc04091g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
New phosphorescent "carbene-metal-carboranyl" (CMC) Cu(I) and Au(I) complexes based on the diamidocarbene (DAC) ligand show up to 68% photoluminescence quantum yield and microsecond range lifetimes. CMC organic light emitting diodes (OLEDs) emit sky-blue and warm white electroluminescence.
Collapse
Affiliation(s)
- Samuel L Powley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Charlotte Riley
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| | - Hwan-Hee Cho
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Nguyen Le Phuoc
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Mikko Linnolahti
- Department of Chemistry, University of Eastern Finland, Joensuu Campus, FI-80101 Joensuu, Finland.
| | - Neil Greenham
- Department of Physics, Cavendish Laboratory, Cambridge University, Cambridge CB3 0HE, UK.
| | - Alexander S Romanov
- Department of Chemistry, The University of Manchester, Oxford Rd., Manchester, M13 9PL, UK.
| |
Collapse
|
7
|
Xie ZL, Gupta N, Niklas J, Poluektov OG, Lynch VM, Glusac KD, Mulfort KL. Photochemical charge accumulation in a heteroleptic copper(i)-anthraquinone molecular dyad via proton-coupled electron transfer. Chem Sci 2023; 14:10219-10235. [PMID: 37772110 PMCID: PMC10529959 DOI: 10.1039/d3sc03428c] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 08/30/2023] [Indexed: 09/30/2023] Open
Abstract
Developing efficient photocatalysts that perform multi electron redox reactions is critical to achieving solar energy conversion. One can reach this goal by developing systems which mimic natural photosynthesis and exploit strategies such as proton-coupled electron transfer (PCET) to achieve photochemical charge accumulation. We report herein a heteroleptic Cu(i)bis(phenanthroline) complex, Cu-AnQ, featuring a fused phenazine-anthraquinone moiety that photochemically accumulates two electrons in the anthraquinone unit via PCET. Full spectroscopic and electrochemical analyses allowed us to identify the reduced species and revealed that up to three electrons can be accumulated in the phenazine-anthraquinone ring system under electrochemical conditions. Continuous photolysis of Cu-AnQ in the presence of sacrificial electron donor produced doubly reduced monoprotonated photoproduct confirmed unambiguously by X-ray crystallography. Formation of this photoproduct indicates that a PCET process occurred during illumination and two electrons were accumulated in the system. The role of the heteroleptic Cu(i)bis(phenanthroline) moiety participating in the photochemical charge accumulation as a light absorber was evidenced by comparing the photolysis of Cu-AnQ and the free AnQ ligand with less reductive triethylamine as a sacrificial electron donor, in which photogenerated doubly reduced species was observed with Cu-AnQ, but not with the free ligand. The thermodynamic properties of Cu-AnQ were examined by DFT which mapped the probable reaction pathway for photochemical charge accumulation and the capacity for solar energy stored in the process. This study presents a unique system built on earth-abundant transition metal complex to store electrons, and tune the storage of solar energy by the degree of protonation of the electron acceptor.
Collapse
Affiliation(s)
- Zhu-Lin Xie
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Nikita Gupta
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Jens Niklas
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | - Oleg G Poluektov
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| | | | - Ksenija D Glusac
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
- Department of Chemistry, University of Illinois at Chicago USA
| | - Karen L Mulfort
- Division of Chemical Sciences and Engineering, Argonne National Laboratory USA
| |
Collapse
|
8
|
Cao S, Wang A, Li K, Lin Z, Yang H, Zhang X, Qiu J, Tai X. A novel tetranuclear Cu(ii) complex for DNA-binding and in vitro anticancer activity. RSC Adv 2023; 13:26324-26329. [PMID: 37671352 PMCID: PMC10476018 DOI: 10.1039/d3ra03624c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 08/29/2023] [Indexed: 09/07/2023] Open
Abstract
A novel tetranuclear Cu(ii) complex (TNC) was successfully synthesized and characterized by X-ray single crystal diffraction. The interaction of the complex with calf thymus DNA (CT-DNA) has been studied by UV-vis absorption titration, fluorescence technology and molecular docking. The results indicated that TNC could bind to the DNA through an intercalative mode. The agarose gel electrophoresis experiment showed that TNC could cleave supercoiled plasmid DNA into linear DNA. The anticancer activity of TNC was tested on four cancer cell lines: MCF7, A549, 4T1 and HepG2. The results indicated that TNC shown significant activity against all of above cell lines.
Collapse
Affiliation(s)
- Shuhua Cao
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Anlin Wang
- Affiliated Beijing Chaoyang Hospital, Capital Medical University No. 8 Gongren Tiyuchang Nanlu, Chaoyang District Beijing 100020 P. R. China
| | - Kaoxue Li
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Zhiteng Lin
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Hongwei Yang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xiaolei Zhang
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Jianmei Qiu
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| | - Xishi Tai
- College of Chemistry, Chemical and Environmental Engineering, Weifang University No. 5147 Dongfeng Street Weifang 261061 P. R. China
| |
Collapse
|
9
|
Rabelo R, Toma L, Moliner N, Julve M, Lloret F, Inclán M, García-España E, Pasán J, Ruiz-García R, Cano J. pH-Switching of the luminescent, redox, and magnetic properties in a spin crossover cobalt(ii) molecular nanomagnet. Chem Sci 2023; 14:8850-8859. [PMID: 37621442 PMCID: PMC10445472 DOI: 10.1039/d3sc02777e] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/25/2023] [Indexed: 08/26/2023] Open
Abstract
The ability of mononuclear first-row transition metal complexes as dynamic molecular systems to perform selective functions under the control of an external stimulus that appropriately tunes their properties may greatly impact several domains of molecular nanoscience and nanotechnology. This study focuses on two mononuclear octahedral cobalt(ii) complexes of formula {[CoII(HL)2][CoII(HL)L]}(ClO4)3·9H2O (1) and [CoIIL2]·5H2O (2) [HL = 4'-(4-carboxyphenyl)-2,2':6',2''-terpyridine], isolated as a mixed protonated/hemiprotonated cationic salt or a deprotonated neutral species. This pair of pH isomers constitutes a remarkable example of a dynamic molecular system exhibiting reversible changes in luminescence, redox, and magnetic (spin crossover and spin dynamics) properties as a result of ligand deprotonation, either in solution or solid state. In this last case, the thermal-assisted spin transition coexists with the field-induced magnetisation blockage of "faster" or "slower" relaxing low-spin CoII ions in 1 or 2, respectively. In addition, pH-reversible control of the acid-base equilibrium among dicationic protonated, cationic hemiprotonated, and neutral deprotonated forms in solution enhances luminescence in the UV region. Besides, the reversibility of the one-electron oxidation of the paramagnetic low-spin CoII into the diamagnetic low-spin CoIII ion is partially lost and completely restored by pH decreasing and increasing. The fine-tuning of the optical, redox, and magnetic properties in this novel class of pH-responsive, spin crossover molecular nanomagnets offers fascinating possibilities for advanced multifunctional and multiresponsive magnetic devices for molecular spintronics and quantum computing such as pH-effect spin quantum transformers.
Collapse
Affiliation(s)
- Renato Rabelo
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
- Instituto de Química, Universidade Federal de Goiás 74690-900 Goiânia Brazil
| | - Luminita Toma
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Nicolás Moliner
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Miguel Julve
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Francesc Lloret
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Mario Inclán
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
- Escuela Superior de Ingeniería, Ciencia y Tecnología, Universidad Internacional de Valencia - VIU Valencia Spain
| | - Enrique García-España
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Jorge Pasán
- Departamento de Química, Facultad de Ciencias, Laboratorio de Materiales para Análisis Químico (MAT4LL), Universidad de La Laguna 38200 Tenerife Spain
| | - Rafael Ruiz-García
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| | - Joan Cano
- Instituto de Ciencia Molecular (ICMol), Universitat de València 46980 Paterna (València) Spain
| |
Collapse
|
10
|
Sheokand S, Mondal D, Kote BS, Radhakrishna L, Balakrishna MS. Novel 1,2,3-triazolyl phosphine with a pyridyl functionality: synthesis, coinage metal complexes, photophysical studies and Cu(I) catalyzed C-O coupling of phenols with aryl bromides. Dalton Trans 2023; 52:1785-1796. [PMID: 36655905 DOI: 10.1039/d2dt03791b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
This manuscript describes the synthesis and coinage metal complexes of pyridine appended 1,2,3-triazolyl-phosphine [2-{(C6H4N)(C2(PPh2)N3C6H5)}] (1), photophysical studies and their catalytic application. The reactions of 1 with copper salts afforded dimeric complexes [{Cu(μ2-X)}2{2-(C6H4N)(C2(PPh2)N3C6H5)}2] (2, X = Cl; 3, X = Br; and 4, X = I). The crystal structure indicates that the Cu⋯Cu distance in 4 (2.694 Å) is significantly shorter than that in complexes 3 (3.0387 Å) and 2 (3.104 Å), indicating strong cuprophilic interactions which is also supported by NBO calculations, signifying the involvement of 3dz2 orbitals from each Cu atom contributing to the bonding interaction. The fluorescence studies on complexes 2-4 carried out in the solid state showed broad emission bands around 560 nm on excitation at λex = 420 nm. Complex 4 on treatment with two equivalents of 1,10-phenanthroline yielded a mononuclear complex 5 which showed almost complete quenching of fluorescence in the solid state, clearly indicating that the emissive properties of 4 are mainly due to the Cu⋯Cu interaction, along with (M + X)LCT. The reactions of 1 with silver salts led to the isolation of dimeric complexes [{Ag(μ2-X)}2{2-(C6H4N)(C2(PPh2)N3C6H5)}2] (6, X = Cl; 7, X = Br; and 8, X = I) in good yield. The reaction between 1 and [AuCl(SMe2)] yielded [{AuCl}{2-(C6H4N)(C2(PPh2)N3C6H5)}] (9). The molecular structures of 2-5 and 7-9 were confirmed by single crystal X-ray analysis. The complex 4 is found to be an excellent catalyst for C-O coupling under mild conditions.
Collapse
Affiliation(s)
- Sonu Sheokand
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Dipanjan Mondal
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Basvaraj S Kote
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Latchupatula Radhakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| | - Maravanji S Balakrishna
- Phosphorus Laboratory, Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, India.
| |
Collapse
|
11
|
Ananyan GV, Karapetyan NH, Dalyan YB. The structural features of poly(dG-dC).poly(dG-dC) at complexation with some porphyrins. J Biomol Struct Dyn 2022; 40:10313-10318. [PMID: 34197714 DOI: 10.1080/07391102.2021.1942216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The binding peculiarities of the water-soluble meso-tetra-(4N-hydroxyethylpyridyl) porphyrin (H2TOEtPyP4) and its Cu- and Co-derivatives (CuTOEtPyP4 and CoTOEtPyP4) with synthetic double-stranded alternating polynucleotide poly(dG-dC).poly(dG-dC) were investigated by UV/Vis absorption and circular dichroism (CD) methods. It was shown that the porphyrins with planar structure such as H2TOEtPyP4 and CuTOEtPyP4 interact with poly(dG-dC).poly(dG-dC) via intercalation at low relative concentrations (r = [porphyrin]/[polynucleotide]), while at high r - via intercalation and external binding modes. In the case of no planar porphyrin CoTOEtPyP4 complexation occurs only by external binding mode. The binding constant Kb and the exclusion parameter n calculated for H2TOEtPyP4, CuTOEtPyP4 and CoTOEtPyP4 porphyrins with poly(dG-dC).poly(dG-dC) complexes was 1.50 x107, M-1 (n = 1.76); 9.29 x107, M-1 (n = 1.18); and 0.28 x107, M-1 (n = 2.65) correspondingly. The values of binding parameters for each porphyrin-poly(dG-dC).poly(dG-dC) complexes demonstrated good agreement with the proposed binding models. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Gayane V Ananyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Nelli H Karapetyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| | - Yeva B Dalyan
- Department of Molecular Physics, Yerevan State University, Yerevan, Armenia
| |
Collapse
|
12
|
Gao C, Sun Z, Zhu N, Han H, Li Z, Gu C, Yang Y, Xin X, Qiu Q, Yang W, Wang G, Jin Q. Synthesis, characterization and discussion of two copper(I) complexes with different luminescent properties under the influence of multiple weak forces. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2145959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Chengjie Gao
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhenzhou Sun
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Ning Zhu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Hongliang Han
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Zhongfeng Li
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Chaoyue Gu
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Yuping Yang
- School of Science, Minzu University of China, Beijing, China
| | - Xiulan Xin
- School of Food and Chemical Engineering, Beijing Technology and Business University, Beijing, China
| | - Qiming Qiu
- School of Science, China University of Geosciences, Beijing, China
| | - Wei Yang
- Faculty of Food Science and Technology, Suzhou Polytechnical Institute of Agriculture, Suzhou, China
| | - Guo Wang
- Department of Chemistry, Capital Normal University, Beijing, China
| | - Qionghua Jin
- Department of Chemistry, Capital Normal University, Beijing, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, China
| |
Collapse
|
13
|
Gauthier ES, Kaczmarczyk D, Del Fré S, Favereau L, Caytan E, Cordier M, Vanthuyne N, Williams JAG, Srebro-Hooper M, Crassous J. Helicenic N-heterocyclic carbene copper(I) complex displaying circularly polarized blue fluorescence. Dalton Trans 2022; 51:15571-15578. [PMID: 36169005 DOI: 10.1039/d2dt01925f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Enantiopure copper(I) chloride complexes bearing a monodentate N-(carbo[6]helicenyl)-NHC ligand have been prepared and characterized experimentally and computationally. Their high stability enables the stereochemistry to be probed by X-ray crystallography and NMR spectroscopy. The resolved enantiomeric complexes emit circularly polarized blue fluorescence with glum ∼1.3 × 10-3 in solution. The photophysical and chiroptical properties of these systems, with their helicene-centred origin, are similar to those of the organic helicene-benzimidazole precursor proligand, although the reverse axial chirality configuration is preferentially observed for the complex compared to the ligand.
Collapse
Affiliation(s)
| | | | - Samuel Del Fré
- Faculty of Chemistry, Jagiellonian University, 30-387 Krakow, Poland.
| | | | - Elsa Caytan
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Marie Cordier
- Univ Rennes, CNRS, ISCR - UMR 6226, F-35000 Rennes, France.
| | - Nicolas Vanthuyne
- Aix Marseille University, CNRS Centrale Marseille, iSm2, 13284 Marseille, France
| | | | | | | |
Collapse
|
14
|
Yu H, Yu B, Song Y. Advances in the development of Cu(I) complexes as optical oxygen-sensitive probes. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2089028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Hongcui Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| | - Bo Yu
- College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao, Inner Mongolia, China
| | - Yajiao Song
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Inner Mongolia Minzu University, Tongliao, Inner Mongolia , China
| |
Collapse
|
15
|
Watanabe Y, Washer BM, Zeller M, Savikhin S, Slipchenko LV, Wei A. Copper(I)-Pyrazolate Complexes as Solid-State Phosphors: Deep-Blue Emission through a Remote Steric Effect. J Am Chem Soc 2022; 144:10186-10192. [PMID: 35594145 DOI: 10.1021/jacs.1c13462] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe a novel manifestation of rigidochromic behavior in a series of tetranuclear Cu(I)-pyrazolate (Cu4pz4) macrocycles, with implications for solid-state luminescence at deep-blue wavelengths (<460 nm). The Cu4pz4 emissions are remarkably sensitive to structural effects far from the luminescent core: when 3,5-di-tert-butylpyrazoles are used as bridging ligands, adding a C4 substituent can induce a blue shift of more than 100 nm. X-ray crystal and computational analyses reveal that C4 units influence the conformational behavior of adjacent tert-butyl groups, with a subsequent impact on the global conformation of the Cu4pz4 complex. Emissions are mediated primarily through a cluster-centered triplet (3CC) state; compression of the Cu4 cluster into a nearly close-packed geometry prevents the reorganization of its excited-state structure and preserves the 3CC energy at a high level. The remote steric effect may thus offer alternative strategies toward the design of phosphors with rigid excited-state geometries.
Collapse
Affiliation(s)
- Yuichiro Watanabe
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Benjamin M Washer
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Matthias Zeller
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Sergei Savikhin
- Department of Physics and Astronomy, Purdue University, 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | - Lyudmila V Slipchenko
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States
| | - Alexander Wei
- Department of Chemistry, Purdue University, 560 Oval Drive, West Lafayette, Indiana 47907, United States.,School of Materials Engineering, Purdue University, 701 W. Stadium Avenue, West Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Sureshbabu P, Varghese B, Sujitha E, Sabiah S. Syntheses, Structure, DNA Docking and Antimicrobial Studies of Copper(II) Complexes with Diethylenetriamine and N-Bidentate Ligands. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
17
|
Mononuclear copper(I) complexes bearing 1,3-bis(diphenylphosphino)propane and functional 6-Cyano-2,2′-bipyridine ligands. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
18
|
Wang XF, Tan C, Sun YK, Li N, feng Y, Cheng L, Cao M. Halogen-induced Core Structural Evolution of Four Dinuclear Copper(Ι) Luminescent Coordination Compounds. CrystEngComm 2022. [DOI: 10.1039/d2ce00793b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction of [Cu(CH3CN)4]ClO4 and 2-(diphenylphosphino) pyridine (dppy) along with different halogen reagents NH4X (X = Cl-, Br- and I-), four luminescent di-copper(I) coordination compounds, namely [Cu2(μ-dppy)3Cl]ClO4·H2O (1a), [Cu2(μ-dppy)3Br]ClO4 (2a), Cu2(μ-Br)2(μ-dppy)(η-dppy)2...
Collapse
|
19
|
Lu Y, Li X, Wang J, Zhao F, Wang Y, He H, Wu Y. Synthesis, characterization and DFT studies of luminescent copper(I) complexes containing pyridine-imidazole ligands with tunable π-conjugation system via variation of polyaromatic groups. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2021.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
20
|
Anthracene Cu(I) compounds with fluorescence and two-photon absorption properties. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
21
|
Synthesis, Structure, and Photophysical Properties of Yellow-Green and Blue Photoluminescent Dinuclear and Octanuclear Copper(I) Iodide Complexes with a Disilanylene-Bridged Bispyridine Ligand. Molecules 2021; 26:molecules26226852. [PMID: 34833948 PMCID: PMC8617906 DOI: 10.3390/molecules26226852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/31/2021] [Accepted: 11/03/2021] [Indexed: 11/25/2022] Open
Abstract
The synthesis, structural, and photophysical investigations of CuI complexes with a disilanylene-bridged bispyridine ligand 1 are herein presented. Dinuclear (2) and ladder-like (3) octanuclear copper(I) complexes were straightforwardly prepared by exactly controlling the ratio of CuI/ligand 1. Single-crystal X-ray analysis confirmed that dinuclear complex 2 had no apparent π…π stacking whereas octanuclear complex 3 had π…π stacking in the crystal packing. In the solid state, the complexes display yellow-green (λem = 519 nm, Φ = 0.60, τ = 11 µs, 2) and blue (λem = 478 nm, Φ = 0.04, τ = 2.6 µs, 3) phosphorescence, respectively. The density functional theory calculations validate the differences in their optical properties. The difference in the luminescence efficiency between 2 and 3 is attributed to the presence of π…π stacking and the different luminescence processes.
Collapse
|
22
|
Seidler B, Sittig M, Zens C, Tran JH, Müller C, Zhang Y, Schneider KRA, Görls H, Schubert A, Gräfe S, Schulz M, Dietzek B. Modulating the Excited-State Decay Pathways of Cu(I) 4 H-Imidazolate Complexes by Excitation Wavelength and Ligand Backbone. J Phys Chem B 2021; 125:11498-11511. [PMID: 34617757 DOI: 10.1021/acs.jpcb.1c06902] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cu(I) 4H-imidazolato complexes are excellent photosensitizers with broad and intense light absorption properties, based on an earth-abundant metal, and hold great promise as photosensitizers in artificial photosynthesis and for accumulation of redox equivalents. In this study, the excited-state relaxation dynamics of three novel heteroleptic Cu(I) 4H-imidazolato complexes with phenyl, tolyl, and mesityl side groups are systematically investigated by femtosecond and nanosecond time-resolved transient absorption spectroscopy and theoretical methods, complemented by steady-state absorption spectroscopy and (spectro)electrochemistry. After photoexcitation into the metal-to-ligand charge transfer (MLCT) and intraligand charge transfer absorption band, fast (0.6-1 ps) intersystem crossing occurs into the triplet MLCT manifold. The triplet-state population relaxes via the geometrical planarization of the N-aryl rings on the Cu(I) 4H-imidazolato complexes. Depending on the initial Franck-Condon state, the remaining small singlet state population relaxes into two geometrically distinct minima geometries with similar energy, S1/2,relax and S3/4,relax. Subsequent ground-state recovery from S1/2,relax and internal conversion from S3/4,relax to S1/2,relax take place on a 100 ps time scale. The internal conversion can be understood as hole transfer from a dyz-orbital to a dxz-orbital, which is accompanied with the structural reorganization of the coordination environment. Generally, the photophysical processes are determined by the steric hindrance of the side groups on the ligands. And the excited singlet-state pathways are dependent on the excitation wavelength.
Collapse
Affiliation(s)
- Bianca Seidler
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Maria Sittig
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Clara Zens
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Jens H Tran
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Carolin Müller
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Ying Zhang
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Kilian R A Schneider
- Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Helmar Görls
- Institute of Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, Humboldtstr. 8, 07743 Jena, Germany
| | - Alexander Schubert
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany
| | - Stefanie Gräfe
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Fraunhofer Institute for Applied Optics and Precision Engineering (Fraunhofer IOF), Albert-Einstein-Str.7, 07745 Jena, Germany
| | - Martin Schulz
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry, Friedrich Schiller University Jena, Helmholtzweg 4, 07743 Jena, Germany.,Department Functional Interfaces, Leibniz Institute of Photonic Technology Jena (Leibniz-IPHT), Albert-Einstein-Str. 9, 07745 Jena, Germany.,Centre for Energy and Environmental Chemistry Jena (CEEC-Jena), Friedrich Schiller University Jena, Philosophenweg 7a, 07743 Jena, Germany
| |
Collapse
|
23
|
Dai D, Song L, Liang Y, Wang J, Zhou Y, Shen H, Chai W. Heteroleptic cuprous complexes of a diimine MePBO ligand and their structure influence on phosphorescent color: Syntheses, structure characterizations, properties and TD‐DFT calculations. Z Anorg Allg Chem 2021. [DOI: 10.1002/zaac.202100114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ding‐Qiu Dai
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Li Song
- Department of Chemistry Zhejiang Sci-Tech University Hangzhou 310018 P.R. China
| | - Yu Liang
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Jian‐Teng Wang
- Jinan Cigarettes Factory China Tobacco Shandong Industrial Co. Ltd. Jinan 250101 P. R. China
| | - Yi‐Ming Zhou
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Hang‐Yan Shen
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| | - Wen‐Xiang Chai
- College of Materials and Chemistry China Jiliang University Hangzhou 310018 P.R. China
| |
Collapse
|
24
|
Kakizoe D, Nishikawa M, Ohkubo T, Sanga M, Iwamura M, Nozaki K, Tsubomura T. Photophysical Properties of Simple Palladium(0) Complexes Bearing Triphenylphosphine Derivatives. Inorg Chem 2021; 60:9516-9528. [PMID: 34105940 DOI: 10.1021/acs.inorgchem.1c00631] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pd(0) complexes with monodentate phosphine ligands, [Pd(P)n] (n = 3, 4), are well-known catalysts. However, the nature of the Pd(0) complex, especially the basic photophysical properties of the Pd(0) complexes, has not been extensively explored. In this work, we measured the general photophysical properties and crystal structures of Pd(0)-bearing PPh3 derivatives in the solid state and in solution. In the solid state, four-coordinated Pd(0) complexes exhibited blue-yellow emission. On the other hand, three-coordinated Pd(0) complexes displayed yellow-orange emission. In solution, orange emission of three-coordinated complexes was observed, and prompt fluorescence was detected using time-resolved emission spectroscopy, which suggests a thermally activated delayed fluorescence mechanism. Density functional theory (DFT) and time-dependent DFT calculations show that the difference in the transition mechanism between the [Pd(PPh3)4] and [Pd(PPh3)3] complexes explains the different emission colors. The emitting states of both complexes have metal-to-ligand charge-transfer character, but the metal-centered d → p transition is considerably incorporated for emission of the tris complex.
Collapse
Affiliation(s)
- Daichi Kakizoe
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Michihiro Nishikawa
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Takuma Ohkubo
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| | - Masashi Sanga
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Munetaka Iwamura
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Koichi Nozaki
- Graduate School of Science and Engineering, Toyama University, Gofuku, Toyama 930-8355, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, Kichijoji-kitamachi, Musashino, Tokyo 180-8633, Japan
| |
Collapse
|
25
|
Fu Y, Wang F, Sheng H, Hu F, Wang Z, Xu M, Bian Y, Jiang X, Tiedje JM. Removal of extracellular antibiotic resistance genes using magnetic biochar/quaternary phosphonium salt in aquatic environments: A mechanistic study. JOURNAL OF HAZARDOUS MATERIALS 2021; 411:125048. [PMID: 33429312 DOI: 10.1016/j.jhazmat.2021.125048] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 06/12/2023]
Abstract
The proliferation and spread of antibiotic resistance genes (ARGs) is becoming a worldwide crisis. Extracellular DNA encoding ARGs (eARGs) in aquatic environment plays a critical role in the dispersion of antimicrobial resistance genes. Strategies to control the dissemination of eARGs are urgently required for ecological safety and human health. Towards this goal, magnetic biochar/quaternary phosphonium salt (MBQ), was used to investigate the efficiency and removal mechanism for eARGs. Magnetic biochar modified by quaternary phosphonium salt enhanced the adsorption capacity of extracellular DNA to approximately 9 folds, compared to that of the unmodified. DNA adsorption by MBQ was mainly dominated by chemisorption in heterogeneous systems and was promoted in acidic and low-salt environment. The generation of •OH and MBQ colloid jointly cleaved DNA into fragments, facilitating the adsorption of the phosphate backbone of DNA onto MBQ through electrostatic force as well as the conformational transition of DNA. Furthermore, quantification of extracellular DNA after MBQ was applied in water demonstrated that over 92.7% of resistance genes were removed, indicating a significantly reduced risk of propagation of antimicrobial resistance in aquatic environments. These findings have a practical significance in the application of MBQ in mitigating the spread of ARGs in aquatic environment.
Collapse
Affiliation(s)
- Yuhao Fu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Hongjie Sheng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fang Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ziquan Wang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - James M Tiedje
- Center for Microbial Ecology, Department of Plant, Soil and Microbial Sciences, Michigan State University, MI 48824, USA
| |
Collapse
|
26
|
Design, XRD/HSA-interactions, spectral, thermal, Solvatochromism and DNA-binding of two [Cu(phen)(triene)]Br2 complexes: Experimental and DFT/TD-DFT investigations. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.129983] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Saleh DI, Mahmoud SF, Etaiw SEH. Nanoscale supramolecular architectures assembly of copper cyanide, organotin, and 1,10‐phenanthroline coordination polymers: Design and biological applications. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Dalia I. Saleh
- Department of Chemistry, College of Science Taif University Taif Saudi Arabia
| | - Samy F. Mahmoud
- Department of Biotechnology, College of Science Taif University Taif Saudi Arabia
| | | |
Collapse
|
28
|
Yuan H, Cheng B, Lei J, Jiang L, Han Z. Promoting photocatalytic CO 2 reduction with a molecular copper purpurin chromophore. Nat Commun 2021; 12:1835. [PMID: 33758178 PMCID: PMC7987958 DOI: 10.1038/s41467-021-21923-9] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/11/2021] [Indexed: 11/09/2022] Open
Abstract
CO2 reduction through artificial photosynthesis represents a prominent strategy toward the conversion of solar energy into fuels or useful chemical feedstocks. In such configuration, designing highly efficient chromophores comprising earth-abundant elements is essential for both light harvesting and electron transfer. Herein, we report that a copper purpurin complex bearing an additional redox-active center in natural organic chromophores is capable to shift the reduction potential 540 mV more negative than its organic dye component. When this copper photosensitizer is employed with an iron porphyrin as the catalyst and 1,3-dimethyl-2-phenyl-2,3-dihydro-1H-benzo[d]imidazole as the sacrificial reductant, the system achieves over 16100 turnover number of CO from CO2 with a 95% selectivity (CO vs H2) under visible-light irradiation, which is among the highest reported for a homogeneous noble metal-free system. This work may open up an effective approach for the rational design of highly efficient chromophores in artificial photosynthesis.
Collapse
Affiliation(s)
- Huiqing Yuan
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Banggui Cheng
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Jingxiang Lei
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Long Jiang
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China
| | - Zhiji Han
- MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
29
|
Rios N, Fuentes F, Oliveros D, Mora JR, Garcia-Garfido JM, Otero Y. Synthesis, characterization, and photophysical properties of a new 2,5-di(aryl)phosphole derivative and their trigonal copper–phosphole complexes. J COORD CHEM 2021. [DOI: 10.1080/00958972.2021.1873959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Neskarlys Rios
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Franmerly Fuentes
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
| | - Deivi Oliveros
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito, Quito, Ecuador
| | - José R. Mora
- Departamento de Ingeniería Química, Grupo de Química Computacional y Teórica (QCT), Universidad San Francisco de Quito, Quito, Ecuador
| | - Juan M. Garcia-Garfido
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
- Departamento de Física, Universidad de Santiago de Chile, Santiago, Chile
| | - Yomaira Otero
- Centro de Química, Instituto Venezolano de Investigaciones Científicas (IVIC), Caracas, Venezuela
- Departamento de Química, Facultad de Ciencias Exactas y Naturales, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| |
Collapse
|
30
|
Levín P, Ruiz MC, Romo AIB, Nascimento OR, Di Virgilio AL, Oliver AG, Ayala AP, Diógenes ICN, León IE, Lemus L. Water-mediated reduction of [Cu(dmp) 2(CH 3CN)] 2+: implications of the structure of a classical complex on its activity as an anticancer drug. Inorg Chem Front 2021. [DOI: 10.1039/d1qi00233c] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
[Cu(dmp)2(CH3CN)]2+ can be reduced in acetonitrile containing water due to steric constraints of the ligands. Hydroxyl radicals are produced from water oxidation. We take advantage of this reaction to evaluate the anticancer activity of the complex.
Collapse
Affiliation(s)
- Pedro Levín
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| | - María C. Ruiz
- Centro de Química Inorgánica CEQUINOR (CONICET-UNLP)
- La Plata
- Argentina
| | - Adolfo I. B. Romo
- Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Otaciro R. Nascimento
- Departamento de Física Interdiciplinar
- Instituto de Física de São Carlos Universidade de São Paulo
- CEP 13560-970 São Carlos
- Brazil
| | | | - Allen G. Oliver
- Department of Chemistry and Biochemistry
- University of Notre Dame
- 46556-5670 Notre Dame
- USA
| | | | - Izaura C. N. Diógenes
- Departamento de Química Orgânica e Inorgânica Universidade Federal do Ceará
- Fortaleza
- Brazil
| | - Ignacio E. León
- Centro de Química Inorgánica CEQUINOR (CONICET-UNLP)
- La Plata
- Argentina
| | - Luis Lemus
- Departamento de Química de los Materiales
- Facultad de Química y Biología
- Universidad de Santiago de Chile
- Santiago
- Chile
| |
Collapse
|
31
|
Luo CL, Hu CX, Shang P, Wen GZ, Zhu JJ, Xuan YH, Xia BL, Liu YC, Jiang ZH, Dong G, Zhang W, Gui LC, Jiang XF. Synthesis of heteroleptic phosphine–copper( i) complexes: fluorescence sensing and catalytic properties. NEW J CHEM 2021. [DOI: 10.1039/d0nj06095j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A series of heteroleptic Cu(i) complexes were precisely synthesized using different bipyridine and diphosphine ligands. These complexes exhibited fluorescence sensing towards silver ions and high catalytic activity towards the CuAAC reaction.
Collapse
|
32
|
Hu CX, Xuan YH, Jiang ZH, Lu T, Yang J, Yuan H, Tian YP, Sun ZG, Jiang XF. Self-assembly of cuprous iodide cluster-based calix[4]resorcinarenes and photocatalytic properties. CrystEngComm 2021. [DOI: 10.1039/d1ce01069g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Cluster-based complexes 1 and 2 with [Cu6I5] and [Cu8I8] polynuclear motifs were constructed via a conformation-adaptive self-assembly strategy, respectively. Two Cu(i) complexes exhibited photocatalytic activity to the CuAAC reaction in water solution.
Collapse
Affiliation(s)
- Chu-Xing Hu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Ya-Hui Xuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Zi-Hao Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Tao Lu
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Jie Yang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Hui Yuan
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - You-Ping Tian
- College of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, Guizhou, 550025, P.R. China
| | - Zheng-Guang Sun
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| | - Xuan-Feng Jiang
- Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, Hubei Key Laboratory of Polymer Science, School of Materials Science and Engineering, Hubei University, Wuhan, Hubei, 430062, P. R. China
| |
Collapse
|
33
|
Zhu L, Li J, Yang J, Au-Yeung HY. Cross dehydrogenative C-O coupling catalysed by a catenane-coordinated copper(i). Chem Sci 2020; 11:13008-13014. [PMID: 34094485 PMCID: PMC8163234 DOI: 10.1039/d0sc05133k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Catalytic activity of copper(i) complexes supported by phenanthroline-containing catenane ligands towards a new C(sp3)–O dehydrogenative cross-coupling of phenols and bromodicarbonyls is reported. As the phenanthrolines are interlocked by the strong and flexible mechanical bond in the catenane, the active catalyst with an open copper coordination site can be revealed only transiently and the stable, coordinatively saturated Cu(i) pre-catalyst is quickly regenerated after substrate transformation. Compared with a control Cu(i) complex supported by non-interlocked phenanthrolines, the catenane-supported Cu(i) is highly efficient with a broad substrate scope, and can be applied in gram-scale transformations without a significant loss of the catalytic activity. This work demonstrates the advantages of the catenane ligands that provide a dynamic and responsive copper coordination sphere, highlighting the potential of the mechanical bond as a design element in transition metal catalyst development. The use of a catenane-supported copper(i) complex for the cross dehydrogenative C–O coupling of phenols and bromodicarbonyls is described.![]()
Collapse
Affiliation(s)
- Lihui Zhu
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jiasheng Li
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Jun Yang
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| | - Ho Yu Au-Yeung
- Department of Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China .,State Key Laboratory of Synthetic Chemistry, The University of Hong Kong Pokfulam Road Hong Kong P. R. China
| |
Collapse
|
34
|
Wong CL, Cheng YH, Poon CT, Yam VWW. Synthesis, Photophysical, Photochromic, and Photomodulated Resistive Memory Studies of Dithienylethene-Containing Copper(I) Diimine Complexes. Inorg Chem 2020; 59:14785-14795. [PMID: 32914626 DOI: 10.1021/acs.inorgchem.0c02089] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A series of dithienylethene-containing copper(I) diimine complexes have been synthesized and structurally characterized. Systematic studies on their photophysics, electrochemistry, and photochromism have been carried out. The photoinduced color changes of the copper(I) complexes have been achieved by photoexcitation into the metal-to-ligand charge-transfer (MLCT) absorption bands, indicating the photosensitization of light-induced cyclization by the 3MLCT excited state. In addition, by an increase in either the steric bulkiness around the copper(I) center or the structural rigidity of the complexes, the quantum efficiencies of photoluminescence and photocyclization can be effectively enhanced because of suppression of the flattening distortion of the complexes at the MLCT excited state. Furthermore, one of the complexes has been employed as an active component in the fabrication of solution-processed resistive memory devices. Notable lowering of the switching threshold voltage of the binary memory devices has been realized through photocyclization of the dithienylethene-containing copper(I) system.
Collapse
Affiliation(s)
- Cheok-Lam Wong
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yat-Hin Cheng
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Chun-Ting Poon
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Vivian Wing-Wah Yam
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
35
|
Yamazaki Y, Tsukuda T, Furukawa S, Dairiki A, Sawamura S, Tsubomura T. A Series of Mixed-Ligand Cu(I) Complexes Comprising Diphosphine-Disulfide Ligands: Effects of Diphosphine Ligands on Luminescent Properties. Inorg Chem 2020; 59:12375-12384. [PMID: 32830956 DOI: 10.1021/acs.inorgchem.0c01445] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mixed-ligand Cu(I) complexes have attracted attention as alternatives to the noble- and/or rare-metal complexes, because of their remarkable photofunctions. To develop mixed-ligand Cu(I) complexes with rich photofunctions, an investigation of a suitable combination of ligands has captured more and more research interests. Herein, we report the first examples of emissive heteroleptic diphosphine-disulfide Cu(I) complexes combined with diphosphine ligands. The systematic study using a series of diphosphine ligands revealed that large π-conjugated bridging moieties between the two P atoms in the diphosphine ligands result in higher light-emission performance. When the diphosphine ligand was (R)-BINAP ((R)-BINAP = (R)-(+)-2,2'-bis(diphenylphosphino)-1,1'-binaphthyl), the Cu(I) complex had an emission quantum yield (Φem) of 0.13 and a long emission lifetime (τem = 118 μs).
Collapse
Affiliation(s)
- Yasuomi Yamazaki
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Toshiaki Tsukuda
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Shota Furukawa
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Ayumi Dairiki
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Shota Sawamura
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, 3-3-1 Kichijoji-kitamachi, Musashino-shi, Tokyo, 180-8633, Japan
| |
Collapse
|
36
|
Lee K, Lai PN, Parveen R, Donahue CM, Wymore MM, Massman BA, Vlaisavljevich B, Teets TS, Daly SR. Modifying the luminescent properties of a Cu(i) diphosphine complex using ligand-centered reactions in single crystals. Chem Commun (Camb) 2020; 56:9110-9113. [PMID: 32648569 DOI: 10.1039/d0cc03427d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Here we report how reactions at a chemically reactive diphosphine shift the long-lived luminescent colour of a crystalline three-coordinate Cu(i) complex from green to blue. The results demonstrate how vapochromism and single-crystal-to-single-crystal transformations can be achieved using ligand-centered reactions.
Collapse
Affiliation(s)
- Kyounghoon Lee
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Po-Ni Lai
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, TX 77204, USA
| | - Riffat Parveen
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Courtney M Donahue
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Mikayla M Wymore
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Blake A Massman
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, IA 52242, USA.
| | - Bess Vlaisavljevich
- Department of Chemistry, The University of South Dakota, 414 E. Clark Street, Vermillion, SD 57069, USA
| | - Thomas S Teets
- Department of Chemistry, University of Houston, 3585 Cullen Boulevard, Room 112, Houston, TX 77204, USA
| | - Scott R Daly
- Department of Chemistry, The University of Iowa, E331 Chemistry Building, Iowa City, IA 52242, USA.
| |
Collapse
|
37
|
Wang D, Song L, Wang Y, Guo J, Shen H, Wang X, Chai W. Heteroleptic [Cu(NN)P
2
]
+
‐type cuprous complexes and their structural modulation on phosphorescent color: Synthesis, structural characterization, properties, and theoretical calculations. Appl Organomet Chem 2020. [DOI: 10.1002/aoc.5561] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Dan‐Dan Wang
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Li Song
- Department of ChemistryZhejiang Sci‐Tech University Hangzhou 310018 China
| | - You‐Yu Wang
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Jia‐Yu Guo
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Hang‐Yan Shen
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| | - Xiao‐Rong Wang
- Hangzhou Huaguang Advanced Welding Materials Co., Ltd Hangzhou 310018 China
| | - Wen‐Xiang Chai
- College of Materials and ChemistryChina Jiliang University Hangzhou 310018 China
| |
Collapse
|
38
|
Li J, Wang L, Zhao Z, Li X, Yu X, Huo P, Jin Q, Liu Z, Bian Z, Huang C. Two‐Coordinate Copper(I)/NHC Complexes: Dual Emission Properties and Ultralong Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2020; 59:8210-8217. [DOI: 10.1002/anie.201916379] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Indexed: 11/07/2022]
Affiliation(s)
- Jiayi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiaoyue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiao Yu
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Qionghua Jin
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Chunhui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| |
Collapse
|
39
|
Li J, Wang L, Zhao Z, Li X, Yu X, Huo P, Jin Q, Liu Z, Bian Z, Huang C. Two‐Coordinate Copper(I)/NHC Complexes: Dual Emission Properties and Ultralong Room‐Temperature Phosphorescence. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916379] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Jiayi Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Liding Wang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zifeng Zhao
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiaoyue Li
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Xiao Yu
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Peihao Huo
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Qionghua Jin
- Department of ChemistryCapital Normal University Beijing 100048 China
| | - Zhiwei Liu
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Zuqiang Bian
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| | - Chunhui Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS)State Key Laboratory of Rare Earth Materials Chemistry and ApplicationsBeijing Engineering Technology Research Centre of Active DisplayCollege of Chemistry and Molecular EngineeringPeking University Beijing 100871 China
| |
Collapse
|
40
|
Wang DD, Wang JT, Song L, Wang YY, Chai WX. A new heteroleptic phosphorescent cuprous complex supported by a BINAP ligand: synthesis, structure, luminescence properties and theoretical analyses. ACTA CRYSTALLOGRAPHICA SECTION C-STRUCTURAL CHEMISTRY 2020; 76:177-185. [PMID: 32022713 DOI: 10.1107/s2053229620000601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 01/17/2020] [Indexed: 11/10/2022]
Abstract
Luminescent cuprous complexes are an important class of coordination compounds due to their relative abundance, low cost and ability to display excellent luminescence. The heteroleptic cuprous complex solvate rac-(acetonitrile-κN)(3-aminopyridine-κN)[2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl-κ2P,P']copper(I) hexafluoridophosphate dichloromethane monosolvate, [Cu(C5H6N2)(C2H3N)(C44H32P2)]PF6·CH2Cl2, conventionally abbreviated as [Cu(3-PyNH2)(CH3CN)(BINAP)]PF6·CH2Cl2, (I), where BINAP and 3-PyNH2 represent 2,2'-bis(diphenylphosphanyl)-1,1'-binaphthyl and 3-aminopyridine, respectively, is described. In this complex solvate, the asymmetric unit consists of a cocrystallized dichloromethane molecule, a hexafluoridophosphate anion and a complete racemic heteroleptic cuprous complex cation in which the cuprous centre, in a tetrahedral CuP2N2 coordination, is coordinated by two P atoms from the BINAP ligand, one N atom from the 3-PyNH2 ligand and another N atom from a coordinated acetonitrile molecule. The UV-Vis absorption and photoluminescence properties of this heteroleptic cuprous complex have been studied on polycrystalline powder samples, which had been verified by powder X-ray diffraction before recording the spectra. Time-dependent density functional theory (TD-DFT) calculations and a wavefunction analysis reveal that the orange-yellow phosphorescence emission should originate from intra-ligand (BINAP) charge transfer mixed with a little of the metal-to-ligand charge transfer 3(IL+ML)CT excited state.
Collapse
Affiliation(s)
- Dan Dan Wang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Jian Teng Wang
- Jinan Cigarettes Factory, China Tobacco Shandong Industrial Co. Ltd, Jinan 250101, People's Republic of China
| | - Li Song
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People's Republic of China
| | - You Yu Wang
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| | - Wen Xiang Chai
- College of Materials and Chemistry, China Jiliang University, Hangzhou 310018, People's Republic of China
| |
Collapse
|
41
|
Wang DD, Zhu QM, Song L, Guo JY, Shen HY, Wang XR, Chai WX. A new series of three-coordinate cuprous complexes formed by steric hindrance of a phosphine ligand: Synthesis, structure characterization, properties and TD-DFT calculations. Polyhedron 2020. [DOI: 10.1016/j.poly.2019.114178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
42
|
Hou B, Li Z, Zhang Q, Chen P, Liu J. Novel water-soluble Cu( ii) complexes based on acylhydrazone porphyrin ligands for DNA binding and in vitro anticancer activity as potential therapeutic targeting candidates. NEW J CHEM 2020. [DOI: 10.1039/d0nj02842h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Three novel water-soluble Cu(ii) complexes featuring miscellaneous acylhydrazone tricationic porphyrin ligands (named Cu-Por1, Cu-Por2 and Cu-Por3) were successfully prepared and isolated.
Collapse
Affiliation(s)
- Bingjie Hou
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Zhenzhen Li
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Qian Zhang
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Peiyu Chen
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| | - Jiacheng Liu
- Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education
- Key Laboratory of Polymer Materials of Gansu Province
- Key Laboratory of Bioelectrochemistry & Environmental Analysis of Gansu Province
- College of Chemistry and Chemical Engineering
- Northwest Normal University
| |
Collapse
|
43
|
Qu Y, Wang C, Zhao K, Wu Y, Huang G, Han X, Wu H. Syntheses, structures and properties of two mononuclear copper(I) complexes with N-heterocyclic ligands. J COORD CHEM 2019. [DOI: 10.1080/00958972.2019.1675049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Yao Qu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Cong Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Kun Zhao
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Yancong Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Guozhen Huang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Xintong Han
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| | - Huilu Wu
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu, P. R. China
| |
Collapse
|
44
|
Two Cu(I) complexes constructed by different N-heterocyclic benzoxazole ligands: Syntheses, structures and fluorescent properties. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2019.04.108] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
45
|
Engl S, Reiser O. Making Copper Photocatalysis Even More Robust and Economic: Photoredox Catalysis with [CuII
(dmp)2
Cl]Cl. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900839] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Sebastian Engl
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93053 Regensburg Germany
| | - Oliver Reiser
- Institute of Organic Chemistry; University of Regensburg; Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
46
|
Yamazaki Y, Onoda T, Ishikawa J, Furukawa S, Tanaka C, Utsugi T, Tsubomura T. Photocatalytic CO 2 Reduction Using Various Heteroleptic Diimine-Diphosphine Cu(I) Complexes as Photosensitizers. Front Chem 2019; 7:288. [PMID: 31114784 PMCID: PMC6502988 DOI: 10.3389/fchem.2019.00288] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 04/08/2019] [Indexed: 11/13/2022] Open
Abstract
The development of efficient redox-photosensitizers based on the earth-abundant metal ions as an alternative toward noble- and/or rare-metal based photosensitizers is very desirable. In recent years, heteroleptic diimine-diphosphine Cu(I) complexes have been well investigated as one of the most remarkable candidates because of their great potentials as efficient photosensitizers. Here, we investigated the effects of the structure of the diphosphine ligands on the photosensitizing abilities using a series of Cu(I) complexes bearing 2,9-dimethyl-4,7-diphenyl-1,10-phenanthroline (dmpp) and various diphosphine ligands in order to explore the suitable structure for the photosensitizing reactions. The number of methylene chains between the two phosphorous atoms in the diphosphine ligands was systematically changed from two to four, and the relationship between the length of the carbon chains and the photosensitizing abilities were investigated by conducting photocatalytic CO2 reduction with the Cu(I) complexes as photosensitizers. Turnover frequencies of the CO2 reduction drastically increased with increasing the length of the carbon chains. The systematic study herein reported suggests that the large P-Cu-P angles should be one of the most important factors for enhancing the photosensitizing abilities.
Collapse
Affiliation(s)
- Yasuomi Yamazaki
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Takayuki Onoda
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Jun Ishikawa
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Shota Furukawa
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Chinatsu Tanaka
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Tomoya Utsugi
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| | - Taro Tsubomura
- Department of Materials and Life Science, Seikei University, Musashino-shi, Japan
| |
Collapse
|
47
|
Haleel AK, Rafi UM, Mahendiran D, Mitu L, Veena V, Rahiman AK. DNA profiling and in vitro cytotoxicity studies of tetrazolo[1,5-a]pyrimidine-based copper(II) complexes. Biometals 2019; 32:611-626. [PMID: 31098735 DOI: 10.1007/s10534-019-00196-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2018] [Accepted: 04/09/2019] [Indexed: 01/09/2023]
Abstract
A series of N-benzoylated mononuclear copper(II) complexes of the type [Cu(L1-6)Cl2] (1-6), where L1= ethyl 4-benzoyl-5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, L2= ethyl 4-(4-nitrobenzoyl)-5-methyl-7-aryl-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, L3 = ethyl 4-benzoyl-5-methyl-7-(4-methoxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, L4 = ethyl 4-(4-nitrobenzoyl)-5-methyl-7-(4-methoxyphenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate, L5 = ethyl 4-benzoyl-5-methyl-7-(4-chlorophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate and L6 = ethyl 4-(4-nitrobenzoyl)-5-methyl-7-(4-chlorophenyl)-4,7-dihydrotetrazolo[1,5-a]pyrimidine-6-carboxylate have been synthesized and characterized by spectral methods. Electron paramagnetic resonance spectra of complexes show four lines, characteristic of square planar geometry. The binding studies of the complexes with calf thymus DNA (CT-DNA) revealed groove mode of binding, which were further supported by molecular docking studies. Gel electrophoresis experiments demonstrated the ability of the complexes to cleave plasmid DNA in the absence of activators. Further, the cytotoxicity activity of the complexes were examined on three cancerous cell lines (lung (A549), cervical (HeLa) and colon (HCT-15)), and on two normal cells (human embryonic kidney (HEK) and peripheral blood mononuclear cells (PBMC)) by MTT assay.
Collapse
Affiliation(s)
- Azees Khan Haleel
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai, 600 014, India
| | - Ummer Muhammed Rafi
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai, 600 014, India
| | - Dharmasivam Mahendiran
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai, 600 014, India.,Molecular Pharmacology and Pathology Program, Department of Pathology, Bosch Institute, University of Sydney, Sydney, NSW, 2006, Australia
| | - Liviu Mitu
- Department of Chemistry, Faculty of Science, University of Pitesti, 110 040, Pitesti, Romania
| | - Vijaykumar Veena
- Department of Biotechnology, School of Chemical and Biological Sciences, REVA University, Bangalore, 560 064, India
| | - Aziz Kalilur Rahiman
- Post-Graduate and Research Department of Chemistry, The New College (Autonomous), Chennai, 600 014, India.
| |
Collapse
|
48
|
Wang L, Guo Y, Yu B, Zhang W, Li T, Qu J. Simple cuprous iodide complex-based crystals with deep blue emission and high photoluminescence quantum yield up to 100%. Appl Organomet Chem 2019. [DOI: 10.1002/aoc.4731] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Liyang Wang
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| | - Yanxue Guo
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| | - Baoyi Yu
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| | - Wei Zhang
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| | - Tengzhou Li
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| | - Jianglan Qu
- Department of Applied Chemistry, Key Laboratory of Urban Agriculture (North China), Ministry of Agriculture; Beijing University of Agriculture; Beijing 102206 China
| |
Collapse
|
49
|
Biswas A, Sarkar S, Samanta R. Rh
III
‐Catalyzed Straightforward Synthesis of Benzophenanthroline and Benzophenanthrolinone Derivatives using Anthranils. Chemistry 2019; 25:3000-3004. [DOI: 10.1002/chem.201806373] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Revised: 01/11/2019] [Indexed: 12/21/2022]
Affiliation(s)
- Aniruddha Biswas
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Souradip Sarkar
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| | - Rajarshi Samanta
- Department of ChemistryIndian Institute of Technology Kharagpur Kharagpur 721302 India
| |
Collapse
|
50
|
Carbonell-Vilar JM, Fresta E, Armentano D, Costa RD, Viciano-Chumillas M, Cano J. Photoluminescent Cu(i) vs. Ag(i) complexes: slowing down emission in Cu(i) complexes by pentacoordinate low-lying excited states. Dalton Trans 2019; 48:9765-9775. [DOI: 10.1039/c9dt00772e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Replacement of copper(i) ions by silver(i) improves the solid-state photoluminescence properties.
Collapse
Affiliation(s)
| | - Elisa Fresta
- IMDEA Materials Institute
- Madrid
- Spain
- Universidad Autónoma de Madrid
- Departamento de Física Aplicada
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche (CTC)
- Università della Calabria
- 87030 Rende
- Italy
| | | | | | - Joan Cano
- Institut de Ciència Molecular (ICMol)
- Universitat de València
- 46980 Paterna
- Spain
| |
Collapse
|