1
|
Pan R, Dasgupta S, Pathak T. 1,4,5-Trisubstituted-carboxylated 1,2,3-triazoles: an unconventional class of ribonuclease A inhibitors. Org Biomol Chem 2025; 23:1457-1465. [PMID: 39760170 DOI: 10.1039/d4ob01671h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
The "catalytic triad" present at the active site of ribonuclease A (RNase A) is responsible for the cleavage of the 5'-phosphodiester bond; amino acid residues His12, Lys41 and His119 constituting this triad provide a positively charged environment at the physiological pH. Based on docking studies, 1,4,5-trisubstituted-carboxylated 1,2,3-triazoles (1,4,5-TTs) were identified as a new class of RNase A inhibitors. Therefore, two different groups of 1,4,5-TTs, functionalized with carboxylic acid groups, were synthesized by reacting pre functionalized butyne-1,4-diol derivatives with several aryl/alkyl azides under solvent and catalyst free conditions. Inhibitory properties of the new molecules with heteroatom linked carboxylic acid "CH2XCH2CO2H" (X = S, O) functionalities were investigated by performing qualitative and quantitative biophysical studies. All the "CH2S" and "CH2O" linked acid derivatives (6a-e, 6f'-g' and 6h, and 8a-e, 8f'-g' and 8h) exhibited significant competitive inhibition with inhibition constant values (Ki) ranging from 9 to 34 μM determined by steady state enzyme kinetics. Uracil based bisthioglycolic acid (6h) and carboxylic acid based bisoxyacetic acid (8g') derivatives were found to be the most promising inhibitors with Ki values of 9.9 ± 0.7 and 15.6 ± 0.6 μM, respectively. Additional molecular docking studies revealed that a sufficient number of hydrogen bonding interactions were generated from various functional groups of inhibitors and the amino acid residues present at important subsites of RNase A. The study also established that the free rotating "CH2X" arms of 1,4,5-TTs provided a unique shape to accommodate the molecule within the active site cleft. A fairly good idea about the structure activity relationship (SAR) was obtained by correlating experimentally determined Ki values and the corresponding docking poses. This study reports an unconventional class of non-sugar, non-nucleosidic 1,4,5-TT based competitive inhibitors of RNase A.
Collapse
Affiliation(s)
- Rashmita Pan
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Swagata Dasgupta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| | - Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721 302, India.
| |
Collapse
|
2
|
McFarland AW, Fernando LP, Kellish P, Story SP, Schober GB, Kumar S, Gong C, King A, Gong X, Leutou AS, Arya DP. Nucleic Acid Specificity, Cellular Localization and Reduced Toxicities of Thiazole Orange-Neomycin Conjugates. ChemistryOpen 2024:e202400189. [PMID: 39727224 DOI: 10.1002/open.202400189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024] Open
Abstract
Selective binding of small molecule ligands to nucleic acids with high affinity and limited toxicity remains an important goal in the development of compounds that can probe DNA or RNA in cells. Thiazole orange is a cell semi-permeant, fluorescent cyanine dye, with low background noise, that binds several forms of nucleic acids. However, thiazole orange can exhibit cytotoxicity when used at high concentration and/or with prolonged exposure. Neomycin is a non-fluorescent antibiotic with affinity for several forms of nucleic acids, but does not readily enter mammalian cells. Conjugation of neomycin with thiazole orange can exploit the properties of each individual compound, yielding a small molecule that could be used for nontoxic application in cellular analysis by microscopic imaging. We demonstrate that conjugation of neomycin with thiazole orange increases the cell permeability of neomycin, decreases the cytotoxicity of thiazole orange, and exhibits a greater degree of intracellular RNA targeted localization in the nucleolus, when compared to thiazole orange. Relative to thiazole orange, the conjugated compounds showed a much higher degree of stabilization of the nucleic acids as reflected in a greater denaturation temperature. Ultimately, our studies indicate that the conjugated thiazole orange-neomycin compounds can be used as an RNA targeted, less cytotoxic alternative for cellular labeling.
Collapse
Affiliation(s)
| | | | | | | | | | - Sunil Kumar
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Changjun Gong
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | - Ada King
- NUBAD LLC, Greer, 29650, USA
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| | | | | | - Dev P Arya
- NUBAD LLC, Greer, 29650, USA
- Department of Chemistry, Clemson University, Clemson, SC, 29634, USA
| |
Collapse
|
3
|
Mikutis S, Bernardes GJL. Technologies for Targeted RNA Degradation and Induced RNA Decay. Chem Rev 2024; 124:13301-13330. [PMID: 39499674 PMCID: PMC11638902 DOI: 10.1021/acs.chemrev.4c00472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 10/03/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
The vast majority of the human genome codes for RNA, but RNA-targeting therapeutics account for a small fraction of approved drugs. As such, there is great incentive to improve old and develop new approaches to RNA targeting. For many RNA targeting modalities, just binding is not sufficient to exert a therapeutic effect; thus, targeted RNA degradation and induced decay emerged as powerful approaches with a pronounced biological effect. This review covers the origins and advanced use cases of targeted RNA degrader technologies grouped by the nature of the targeting modality as well as by the mode of degradation. It covers both well-established methods and clinically successful platforms such as RNA interference, as well as emerging approaches such as recruitment of RNA quality control machinery, CRISPR, and direct targeted RNA degradation. We also share our thoughts on the biggest hurdles in this field, as well as possible ways to overcome them.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf Hamied Department of
Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| |
Collapse
|
4
|
Ferraro G, Terán A, Galardo F, Lucignano R, Picone D, Massai L, Fasulo F, Muñoz-García AB, Messori L, Herrero S, Merlino A. Deciphering the role of neutral diruthenium complexes in protein binding. Int J Biol Macromol 2024; 283:137691. [PMID: 39551297 DOI: 10.1016/j.ijbiomac.2024.137691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/11/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
The charge of paddlewheel diruthenium complexes has a major role in defining their interaction with proteins: negatively charged complexes bind proteins non-covalently, while cationic complexes form adducts where the Ru2 core binds to Asp side chains at the equatorial sites, or to the main chain carbonyl groups or the side chains of His, Arg or Lys residues at the axial sites. Here we study the interactions of the neutral compound [Ru2(D-p-FPhF)(O2CCH3)2(O2CO)]·3H2O (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate), a very rare example of a paddlewheel diruthenium compound with three different equatorial ligands, with the model protein bovine pancreatic ribonuclease (RNase A) by means of UV-visible absorption spectroscopy, circular dichroism (CD), electrospray ionization mass spectrometry (ESI-MS) and X-ray crystallography. It is the first attempt to investigate the binding of a neutral diruthenium compound to a protein. ESI-MS data indicate that, in solution, under the investigated experimental conditions, the diruthenium compound binds the protein upon the loss of an acetate ligand. The crystallographic results indicate the replacement of an acetate by two water molecules and the coordination of the [Ru2(D-p-FPhF)(O2CCH3)2(O2CO)(OH2)2]+ ion, that is expected to be a highly reactive species in the absence of the protein, to the imidazole ring of His105 at the axial site. The side chains of Glu9 and His119 are also identified as possible diruthenium binding sites. The binding significantly affects the protein ability to form dimers and higher-order oligomers, without significantly altering its secondary structure content and thermal stability. These data show that: i) Glu side chain has to be considered as a possible alternative binding site for diruthenium compounds, ii) diruthenium containing fragments that would be unstable in solution can be formed upon reaction of diruthenium compounds with a protein, iii) diruthenium compounds could be used as modulators of protein aggregation.
Collapse
Affiliation(s)
- Giarita Ferraro
- Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Aarón Terán
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Francesco Galardo
- Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Rosanna Lucignano
- Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Delia Picone
- Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Lara Massai
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesca Fasulo
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Ana B Muñoz-García
- Department of Physics "Ettore Pancini", University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy
| | - Luigi Messori
- Department of Chemistry "Ugo Schiff", University of Florence, via della Lastruccia 3-13, 50019, Sesto Fiorentino, Florence, Italy
| | - Santiago Herrero
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Sciences, Complutense University of Madrid, Avda. Complutense s/n, 28040, Madrid, Spain; Knowledge Technology Institute, Complutense University of Madrid, Campus de Somosaguas, 28223, Pozuelo de Alarcón, Madrid, Spain
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples Federico II, Complesso Univ. di Monte Sant'Angelo, via Cinthia, 26, 80126 Naples, Italy.
| |
Collapse
|
5
|
Sahoo BK, Velavalapalli VM. Deciphering the biophysical aspects of the interaction of 3,5,4'-trihydroxy-trans-stilbene with ribonuclease A: spectroscopic and computational studies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024:10.1007/s00210-024-03664-w. [PMID: 39607551 DOI: 10.1007/s00210-024-03664-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 11/21/2024] [Indexed: 11/29/2024]
Abstract
Drug-receptor interaction is an important aspect in drug action, drug discovery, and pharmacological aspects. The molecule 3,5,4'-trihydroxy-trans-stilbene known as resveratrol is a natural polyphenol and exhibits diverse biological activities. Ribonuclease A catalyses the degradation of RNA by its ribonucleolytic activity. The report presents the binding interaction of resveratrol with RNase A using experimental and theoretical techniques. Experimental studies revealed the interaction strength of 104 M-1 order with a single binding site. Resveratrol quenched the ribonuclease A fluorescence with a quenching constant of 104 M-1 range. The accessible fraction of the fluorophore was found to be 0.75 besides non-radiative energy transfer from ribonuclease A to resveratrol. The donor-acceptor distance was 2.14 nm from FRET calculations. No visible changes in the protein structure was evident from the circular dichroism studies. The interface residues involved in the interaction were obtained from docking studies. Further, the participation of the active site residues, His 12, His 119, and Lys 41 with interaction indicates the location of resveratrol near to the active site of ribonuclease A and indicates its possible potential to inhibit the ribonuclease A activity. The RMSD of less than 3 Å indicates stable conformation of protein in the complex. The protein RMSF value in the complex less than 3 Å shows no deviation of protein residues over time and thus suggests no conformational variation in the protein after binding.
Collapse
Affiliation(s)
- Bijaya Ketan Sahoo
- Department of Chemistry, School of Science, GITAM Deemed to Be University, Hyderabad Campus, Hyderabad, 502329, India.
| | | |
Collapse
|
6
|
Bonet-Aleta J, Maehara T, Craig BA, Bernardes GJL. Small Molecule RNA Degraders. Angew Chem Int Ed Engl 2024; 63:e202412925. [PMID: 39162084 DOI: 10.1002/anie.202412925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/21/2024]
Abstract
RNA is a central molecule in life, involved in a plethora of biological processes and playing a key role in many diseases. Targeting RNA emerges as a significant endeavor in drug discovery, diverging from conventional protein-centric approaches to tackle various pathologies. Whilst identifying small molecules that bind to specific RNA regions is the first step, the abundance of non-functional RNA segments renders many interactions biologically inert. Consequently, small molecule binding does not necessarily meet stringent criteria for clinical translation, calling for solutions to push the field forward. Converting RNA-binders into RNA-degraders presents a promising avenue to enhance RNA-targeting. This mini-review outlines strategies and exemplars wherein simple small molecule RNA binders are reprogrammed into active degraders through the linkage of functional groups. These approaches encompass mechanisms that induce degradation via endogenous enzymes, termed RIBOTACs, as well as those with functional moieties acting autonomously to degrade RNA. Through this exploration, we aim to offer insights into advancing RNA-targeted therapeutic strategies.
Collapse
Affiliation(s)
- Javier Bonet-Aleta
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Tomoaki Maehara
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Benjamin A Craig
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| | - Gonçalo J L Bernardes
- Yusuf Hamied Department of Chemistry, University of Cambridge, CB2 1EW, Cambridge, United Kingdom
| |
Collapse
|
7
|
Harmon C, Bui A, Espejo JM, Gancayco M, Le JM, Rangel J, Eggers DK. Solvation free energy in governing equations for DNA hybridization, protein-ligand binding, and protein folding. FEBS Open Bio 2024; 14:1837-1850. [PMID: 39289322 PMCID: PMC11532980 DOI: 10.1002/2211-5463.13897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 08/14/2024] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
This work examines the thermodynamics of model biomolecular interactions using a governing equation that accounts for the participation of bulk water in the equilibria. In the first example, the binding affinities of two DNA duplexes, one of nine and one of 10 base pairs in length, are measured and characterized by isothermal titration calorimetry (ITC) as a function of concentration. The results indicate that the change in solvation free energy that accompanies duplex formation (ΔGS) is large and unfavorable. The duplex with the larger number of G:C pairings yields the largest change in solvation free energy, ΔGS = +460 kcal·mol-1per base pair at 25 °C. A van't Hoff analysis of the data is complicated by the varying degree of intramolecular base stacking within each DNA strand as a function of temperature. A modeling study reveals how the solvation free energy alters the output of a typical ITC experiment and leads to a good, though misleading, fit to the classical equilibrium equation. The same thermodynamic framework is applied to a model protein-ligand interaction, the binding of ribonuclease A with the nucleotide inhibitor 3'-UMP, and to a conformational equilibrium, the change in tertiary structure of α-lactalbumin in molar guanidinium chloride solutions. The ribonuclease study yields a value of ΔGS = +160 kcal·mol-1, whereas the folding equilibrium yields ΔGS ≈ 0, an apparent characteristic of hydrophobic interactions. These examples provide insight on the role of solvation energy in binding equilibria and suggest a pivot in the fundamental application of thermodynamics to solution chemistry.
Collapse
Affiliation(s)
| | - Austin Bui
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | | | - Marc Gancayco
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | - Jennifer M. Le
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | - Juan Rangel
- Chemistry DepartmentSan José State UniversitySan JoséCAUSA
| | | |
Collapse
|
8
|
Ge S, Wang X, Zhao X, Yuan L, Bao X, Sun C, Gong Z, Guo J, Yuan S, Hu D, Yang J, Yuan B, Zhang G. Responsive Multi-Arm PEG-Modified COF Nanocomposites: Dynamic Photothermal, pH/ROS Dual-Responsive, Targeted Carriers for Rheumatoid Arthritis Treatment. Adv Healthc Mater 2024; 13:e2401744. [PMID: 38885286 DOI: 10.1002/adhm.202401744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/12/2024] [Indexed: 06/20/2024]
Abstract
Rheumatoid arthritis (RA) is a chronic immune disease characterized by the infiltration of immune cells and the proliferation of fibroblast-like synoviocytes (FLS) at the joint site, leading to inflammation and joint destruction. However, the available treatment options targeting both inflammatory and proliferative FLS are limited. Herein, this work presents three covalent organic frameworks (COFs) photothermal composite systems modified with multi-armed polyethylene glycols (PEG) for the treatment of RA. These systems exhibit a dual response under low pH and high reactive oxygen species (ROS) conditions at the site of inflammation, with a specific focus on delivering the protein drug ribonuclease A (RNase A). Notably, molecular docking studies reveal the interaction between RNase A and NF-κB p65 protein, and Western blotting confirm its inhibitory effect on NF-κB activity. In vitro and in vivo experiments verify the significant reduction in joint swelling and deformities in adjuvant-induced arthritis (AIA) rats after treatment with RNase A delivered by multi-armed PEG-modified COF ligands, restoring joint morphology to normal. These findings underscore the promising therapeutic potential of COFs for the treatment of RA, highlighting their unique capabilities in addressing both inflammatory and proliferative aspects of the disease and expanding the scope of biomedical applications for COFs.
Collapse
MESH Headings
- Animals
- Polyethylene Glycols/chemistry
- Arthritis, Rheumatoid/metabolism
- Arthritis, Rheumatoid/pathology
- Arthritis, Rheumatoid/drug therapy
- Arthritis, Rheumatoid/therapy
- Rats
- Reactive Oxygen Species/metabolism
- Nanocomposites/chemistry
- Nanocomposites/therapeutic use
- Hydrogen-Ion Concentration
- Metal-Organic Frameworks/chemistry
- Metal-Organic Frameworks/pharmacology
- Ribonuclease, Pancreatic/metabolism
- Ribonuclease, Pancreatic/chemistry
- Arthritis, Experimental/pathology
- Arthritis, Experimental/drug therapy
- Arthritis, Experimental/therapy
- Arthritis, Experimental/metabolism
- Humans
- Drug Carriers/chemistry
- Male
- Molecular Docking Simulation
- Synoviocytes/metabolism
- Synoviocytes/drug effects
Collapse
Affiliation(s)
- Saisai Ge
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinyue Wang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xinru Zhao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Lingling Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xuewei Bao
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Caidie Sun
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zehua Gong
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jun Guo
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Siyu Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Danyou Hu
- Department of Microbiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Jing Yang
- Experimental Teaching Center for Preventive Medicine, School of Public Health, Anhui Medical University, Hefei, 230032, China
| | - Bin Yuan
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Guiyang Zhang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| |
Collapse
|
9
|
Sahoo BK, Velavalapalli VM. Assessing Partial Inhibition of Ribonuclease A Activity by Curcumin through Fluorescence Spectroscopy and Theoretical Studies. J Fluoresc 2024; 34:2641-2654. [PMID: 37870732 DOI: 10.1007/s10895-023-03474-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 10/12/2023] [Indexed: 10/24/2023]
Abstract
Molecular interactions and controlled expression of enzymatic activities are fundamental to all cellular functions in an organism. The active polyphenol in turmeric known as curcumin (CCM) is known to exhibit diverse pharmacological activities. Ribonucleases (RNases) are the hydrolytic enzymes that plays important role in ribonucleic acid (RNA) metabolism. Uncontrolled and unwanted cleavage of RNA by RNases may be the cause of cell death leading to disease states. The protein ribonuclease A (RNase A) in the superfamily of RNases cleaves the RNA besides its role in different diseases like autoimmune diseases, and pancreatic disorders. Interaction of CCM with RNase A have been reported along with the possible role of CCM to inhibit the RNase A enzymatic activity. The interaction strength was found to be 104 M-1 order from spectroscopic results. Quenching of RNase A fluorescence by CCM was 104 M-1 order. Non-radiative energy transfer from RNase A (donor) to CCM (acceptor) suggested a distance of 2.42 nm between the donor-acceptor pair. Circular dichroism studies revealed no structural changes in RNase A after binding. Binding-induced conformational variation in protein was observed from synchronous fluorescence studies. Agarose gel electrophoresis revealed a partial inhibition of the RNase A activity by CCM though not significant. Molecular docking and molecular dynamics studies suggested the residues of RNase A involved in the interaction with supporting the experimental finding for the partial inhibition of the enzyme activity. This study may help in designing new CCM analogues or related structures to understand their differential inhibition of the RNase A activity.
Collapse
Affiliation(s)
- Bijaya Ketan Sahoo
- Department of Chemistry, School of Science, GITAM Deemed to be University, Hyderabad, 502329, India.
| | | |
Collapse
|
10
|
Han H, Santos HA. Nano- and Micro-Platforms in Therapeutic Proteins Delivery for Cancer Therapy: Materials and Strategies. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2409522. [PMID: 39263818 DOI: 10.1002/adma.202409522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/26/2024] [Indexed: 09/13/2024]
Abstract
Proteins have emerged as promising therapeutics in oncology due to their great specificity. Many treatment strategies are developed based on protein biologics, such as immunotherapy, starvation therapy, and pro-apoptosis therapy, while some protein biologics have entered the clinics. However, clinical translation is severely impeded by instability, short circulation time, poor transmembrane transportation, and immunogenicity. Micro- and nano-particles-based drug delivery platforms are designed to solve those problems and enhance protein therapeutic efficacy. This review first summarizes the different types of therapeutic proteins in clinical and research stages, highlighting their administration limitations. Next, various types of micro- and nano-particles are described to demonstrate how they can overcome those limitations. The potential of micro- and nano-particles are then explored to enhance the therapeutic efficacy of proteins by combinational therapies. Finally, the challenges and future directions of protein biologics carriers are discussed for optimized protein delivery.
Collapse
Affiliation(s)
- Huijie Han
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen (UMCG), University of Groningen, Ant. Deusinglaan 1, Groningen, 9713 AV, The Netherlands
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
11
|
Byerly-Duke J, Donovan A, O'Brien EA, Sharma KK, Ibrahim R, Stanley LM, VanVeller B. Complementary Strategies for Installation of Thioimidates into Peptide Backbones. J Org Chem 2024; 89:14755-14761. [PMID: 39364858 DOI: 10.1021/acs.joc.4c01386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2024]
Abstract
Thioimidates are a precursor and synthetic branch point to access either thioamide or amidine isosteres of the native amide (peptide bond). Previous syntheses of thioimidate-containing peptides were prone to side reactivity and required slow, cumbersome steps that were difficult to monitor. We describe a more efficient approach to directly couple thioimidates onto the growing peptide chain. This work also outlines optimal conditions for thioimidate formation on solid support and identifies potential off-target sites for alkylation that impact the choice of protecting group.
Collapse
Affiliation(s)
- Jacob Byerly-Duke
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Aaron Donovan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Emily A O'Brien
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Krishna K Sharma
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Rida Ibrahim
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Levi M Stanley
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Brett VanVeller
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
12
|
Zhao D, Wu X, Rapoport TA. Initiation of ERAD by the bifunctional complex of Mnl1 mannosidase and protein disulfide isomerase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618908. [PMID: 39464000 PMCID: PMC11507893 DOI: 10.1101/2024.10.17.618908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/29/2024]
Abstract
Misfolded glycoproteins in the endoplasmic reticulum (ER) lumen are translocated into the cytosol and degraded by the proteasome, a conserved process called ER-associated protein degradation (ERAD). In S. cerevisiae, the glycan of these proteins is trimmed by the luminal mannosidase Mnl1 (Htm1) to generate a signal that triggers degradation. Curiously, Mnl1 is permanently associated with protein disulfide isomerase (Pdi1). Here, we have used cryo-electron microscopy, biochemical, and in vivo experiments to clarify how this complex initiates ERAD. The Mnl1-Pdi1 complex first de-mannosylates misfolded, globular proteins that are recognized through a C-terminal domain (CTD) of Mnl1; Pdi1 causes the CTD to ignore completely unfolded polypeptides. The disulfides of these globular proteins are then reduced by the Pdi1 component of the complex, generating unfolded polypeptides that can be translocated across the membrane. Mnl1 blocks the canonical oxidative function of Pdi1, but allows it to function as the elusive disulfide reductase in ERAD.
Collapse
Affiliation(s)
- Dan Zhao
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| | - Xudong Wu
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang 310024, China
| | - Tom A. Rapoport
- Howard Hughes Medical Institute and Department of Cell Biology, Harvard Medical School, 240 Longwood Avenue, Boston, MA 02115, USA
| |
Collapse
|
13
|
Aluri KC, Datta D, Waldron S, Taneja N, Qin J, Donnelly DP, Theile CS, Guenther DC, Lei L, Harp JM, Pallan PS, Egli M, Zlatev I, Manoharan M. Single-Stranded Hairpin Loop RNAs (loopmeRNAs) Potently Induce Gene Silencing through the RNA Interference Pathway. J Am Chem Soc 2024. [PMID: 39373383 DOI: 10.1021/jacs.4c07902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Synthetic small interfering RNAs conjugated to trivalent N-acetylgalactosamine (GalNAc) are clinically validated drugs for treatment of liver diseases. Incorporation of phosphorothioate linkages and ribose modifications are necessary for stability, potency, and duration of pharmacology. Although multiple alternative siRNA designs such as Dicer-substrate RNA, shRNA, and circular RNA have been evaluated in vitro and in preclinical studies with some success, clinical applications of these designs are limited as it is difficult to incorporate chemical modifications in these designs. An alternative siRNA design that can incorporate chemical modifications through straightforward synthesis without compromising potency will significantly advance the field. Here, we report a facile synthesis of GalNAc ligand-containing single-stranded loop hairpin RNAs (loopmeRNAs) with clinically relevant chemical modifications. We evaluated the efficiency of novel loopmeRNA designs in vivo and correlated their structure-activity relationship with the support of in vitro metabolism data. Sequences and chemical modifications in the loop region of the loopmeRNA design were optimized for maximal potency. Our studies demonstrate that loopmeRNAs can efficiently silence expression of target genes with comparable efficacy to conventional double-stranded siRNAs but reduced environmental and regulatory burdens.
Collapse
Affiliation(s)
- Krishna C Aluri
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Dhrubajyoti Datta
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Scott Waldron
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Nate Taneja
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - June Qin
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Daniel P Donnelly
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | | | - Dale C Guenther
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Li Lei
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Joel M Harp
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Pradeep S Pallan
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Martin Egli
- Department of Biochemistry, School of Medicine, Vanderbilt University, Nashville, Tennessee 37232, United States
| | - Ivan Zlatev
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| | - Muthiah Manoharan
- Alnylam Pharmaceuticals, Inc., Cambridge, Massachusetts 02142, United States
| |
Collapse
|
14
|
Zhuang J, Du X, Liu K, Hao J, Wang H, An R, Liang X. DNase II Can Efficiently Digest RNA and Needs to Be Redefined as a Nuclease. Cells 2024; 13:1525. [PMID: 39329709 PMCID: PMC11430429 DOI: 10.3390/cells13181525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/07/2024] [Accepted: 09/09/2024] [Indexed: 09/28/2024] Open
Abstract
DNase II, identified in 1947 and named in 1953, is an acidic DNA endonuclease prevalent across organisms and crucial for normal growth. Despite its expression in nearly all human tissues, as well as its biological significance, DNase II's detailed functions and corresponding mechanisms remain unclear. Although many groups are trying to figure this out, progress is very limited. It is very hard to connect its indispensability with its DNA cleavage activity. In this study, we find that DNase II secreted to saliva can digest RNA in mildly acidic conditions, prompting us to hypothesize that salivary DNase II might digest RNA in the stomach. This finding is consistent with the interesting discovery reported in 1964 that RNA could inhibit DNase II's activity, which has been largely overlooked. This RNA digestion activity is further confirmed by using purified DNase II, showing activity to digest both DNA and RNA effectively. Here, we suggest redesignating DNase II as DNase II (RNase). The biological functions of DNase II are suggested to recycle intracellular RNA or digest external nucleic acids (both RNA and DNA) as nutrients. This discovery may untangle the mystery of DNase II and its significant biofunctions.
Collapse
Affiliation(s)
- Jingyun Zhuang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Xinmei Du
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Kehan Liu
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Jing Hao
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Haoyu Wang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
| | - Ran An
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| | - Xingguo Liang
- State Key Laboratory of Marine Food Processing & Safety Control, College of Food Science and Engineering, Ocean University of China, Qingdao 266404, China; (J.Z.); (X.D.); (K.L.); (J.H.); (H.W.)
- Laboratory for Marine Drugs and Bioproducts, Qingdao Marine Science and Technology Center, Qingdao 266404, China
| |
Collapse
|
15
|
Kaplanskiy MV, Kruglov ML, Vanin AA, Tupikina EY. Dynamics of non-covalent interactions during the P-O bond cleavage reaction by ribonuclease A. Phys Chem Chem Phys 2024; 26:21061-21073. [PMID: 39054927 DOI: 10.1039/d4cp01888e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
In this work, an atomistic-scale investigation of the phosphodiester P-O bond cleavage reaction by the enzyme ribonuclease A was carried out using computer simulation techniques. It is shown that during the reaction the network of non-covalent interactions in the active center of the ribonuclease changes significantly, while the role of these non-covalent interactions is different: coordination of the corresponding groups, electron density transfer, and ligand holding in the active center. It is shown that the process of proton transfer from Asp121 to His119 is the first stage of this reaction; at the same time, the hydrogen bond between the phosphate ligand and the imino group of Arg39 is broken, which, although keeping the ligand in the active center, does not allow the ligand to orient itself more conveniently for subsequent proton transfers. Furthermore, the key step of this reaction occurs: proton transfer with the participation of imidazole rings His12 and His119, in which the guiding role is played by several hydrogen bonds with the participation of Phe120, and the role of an electron density carrier is played by the pnictogen bond between the oxygen of the phosphate ligand and the pyridine-like nitrogen of the imidazole ring His119, which was detected for the first time.
Collapse
Affiliation(s)
- Mark V Kaplanskiy
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Maxim L Kruglov
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Aleksandr A Vanin
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| | - Elena Yu Tupikina
- Institute of Chemistry, St Petersburg State University, St Petersburg, Russia.
| |
Collapse
|
16
|
Kong L, Meng F, Zhou P, Ge R, Geng X, Yang Z, Li G, Zhang L, Wang J, Ma J, Dong C, Zhou J, Wu S, Zhong D, Xie S. An engineered DNA aptamer-based PROTAC for precise therapy of p53-R175H hotspot mutant-driven cancer. Sci Bull (Beijing) 2024; 69:2122-2135. [PMID: 38811338 DOI: 10.1016/j.scib.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/02/2024] [Accepted: 03/07/2024] [Indexed: 05/31/2024]
Abstract
Targeting oncogenic mutant p53 represents an attractive strategy for cancer treatment due to the high frequency of gain-of-function mutations and ectopic expression in various cancer types. Despite extensive efforts, the absence of a druggable active site for small molecules has rendered these mutants therapeutically non-actionable. Here we develop a selective and effective proteolysis-targeting chimera (PROTAC) for p53-R175H, a common hotspot mutant with dominant-negative and oncogenic activity. Using a novel iterative molecular docking-guided post-SELEX (systematic evolution of ligands by exponential enrichment) approach, we rationally engineer a high-performance DNA aptamer with improved affinity and specificity for p53-R175H. Leveraging this resulting aptamer as a binder for PROTACs, we successfully developed a selective p53-R175H degrader, named dp53m. dp53m induces the ubiquitin-proteasome-dependent degradation of p53-R175H while sparing wildtype p53. Importantly, dp53m demonstrates significant antitumor efficacy in p53-R175H-driven cancer cells both in vitro and in vivo, without toxicity. Moreover, dp53m significantly and synergistically improves the sensitivity of these cells to cisplatin, a commonly used chemotherapy drug. These findings provide evidence of the potential therapeutic value of dp53m in p53-R175H-driven cancers.
Collapse
Affiliation(s)
- Lingping Kong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Fanlu Meng
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Ping Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Ruixin Ge
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Xiaoshan Geng
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China
| | - Zhihao Yang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Guo Li
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Linlin Zhang
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jing Wang
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Jinfeng Ma
- Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Cheng Dong
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China
| | - Jun Zhou
- Center for Cell Structure and Function, Collaborative Innovation Center of Cell Biology in Universities of Shandong, College of Life Sciences, Shandong Normal University, Jinan 250014, China; Haihe Laboratory of Cell Ecosystem, State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Sijin Wu
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou 215028, China.
| | - Diansheng Zhong
- Department of Medical Oncology, Tianjin Medical University General Hospital, Tianjin 300052, China.
| | - Songbo Xie
- Department of Ophthalmology, Tianjin Medical University General Hospital, Laboratory of Molecular Ophthalmology, Tianjin Key Laboratory of Ocular Trauma, Tianjin Medical University, Tianjin 300052, China.
| |
Collapse
|
17
|
Ilyas A, Poddar NK, Borkotoky S. Insights into the dynamic interactions of RNase a and osmolytes through computational approaches. J Biomol Struct Dyn 2024; 42:5903-5911. [PMID: 38870351 DOI: 10.1080/07391102.2023.2229445] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 06/20/2023] [Indexed: 06/15/2024]
Abstract
Osmolytes are small organic molecules that are known to stabilize proteins and other biological macromolecules under various stressful conditions. They belong to various categories such as amino acids, methylamines, and polyols. These substances are commonly known as 'compatible solutes' because they do not disrupt cellular processes and help regulate the osmotic balance within cells. In the case of ribonuclease A (RNase A), which is prone to aggregation, the presence of osmolytes can help to maintain its structural stability and prevent unwanted interactions leading to protein aggregation. In this study, we investigated the interaction between RNase A and several osmolytes using molecular docking and molecular dynamics (MD) simulations. We performed molecular docking to predict the binding mode and binding affinity of each osmolyte with RNase A. MD simulations were then carried out to investigate the dynamics and stability of the RNase A-osmolyte complexes. Our results show that two osmolytes, glucosylglycerol and sucrose have favorable binding affinities with RNase A. The possible role of these osmolytes in stabilizing the RNase A and prevention of aggregation is also explored. By providing computational insights into the interaction between RNase A and osmolytes, the study offers valuable information that could aid in comprehending the mechanisms by which osmolytes protect proteins and help in designing therapeutics for protein-related disorders based on osmolytes. These findings may have significant implications for the development of novel strategies aimed at preventing protein misfolding and aggregation in diverse disease conditions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Ashal Ilyas
- Department of Biotechnology, Invertis University, Bareilly, India
| | - Nitesh Kumar Poddar
- Department of Biosciences, Manipal University Jaipur, Jaipur, Rajasthan, India
| | | |
Collapse
|
18
|
Alamgir A, Ghosal S, DeLisa MP, Alabi CA. Bioreversible Anionic Cloaking Enables Intracellular Protein Delivery with Ionizable Lipid Nanoparticles. ACS CENTRAL SCIENCE 2024; 10:1179-1190. [PMID: 38947210 PMCID: PMC11212127 DOI: 10.1021/acscentsci.4c00071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/24/2024] [Accepted: 04/30/2024] [Indexed: 07/02/2024]
Abstract
Protein-based therapeutics comprise a rapidly growing subset of pharmaceuticals, but enabling their delivery into cells for intracellular applications has been a longstanding challenge. To overcome the delivery barrier, we explored a reversible, bioconjugation-based approach to modify the surface charge of protein cargos with an anionic "cloak" to facilitate electrostatic complexation and delivery with lipid nanoparticle (LNP) formulations. We demonstrate that the conjugation of lysine-reactive sulfonated compounds can allow for the delivery of various protein cargos using FDA-approved LNP formulations of the ionizable cationic lipid DLin-MC3-DMA (MC3). We apply this strategy to functionally deliver RNase A for cancer cell killing as well as a full-length antibody to inhibit oncogenic β-catenin signaling. Further, we show that LNPs encapsulating cloaked fluorescent proteins distribute to major organs in mice following systemic administration. Overall, our results point toward a generalizable platform that can be employed for intracellular delivery of a wide range of protein cargos.
Collapse
Affiliation(s)
- Azmain Alamgir
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
| | - Souvik Ghosal
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| | - Matthew P. DeLisa
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Cornell
Institute of Biotechnology, Cornell University, Ithaca, New York 14853, United States
| | - Christopher A. Alabi
- Robert
F. Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, New York 14853, United States
- Department
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United States
| |
Collapse
|
19
|
Da Silva L, Eiby SHJ, Bjerrum MJ, Thulstrup PW, Deamer D, Hassenkam T. Visualizing ribonuclease digestion of RNA-like polymers produced by hot wet-dry cycles. Biochem Biophys Res Commun 2024; 712-713:149938. [PMID: 38640739 DOI: 10.1016/j.bbrc.2024.149938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
Polymerization of nucleotides under prebiotic conditions simulating the early Earth has been extensively studied. Several independent methods have been used to verify that RNA-like polymers can be produced by hot wet-dry cycling of nucleotides. However, it has not been shown that these RNA-like polymers are similar to biological RNA with 3'-5' phosphodiester bonds. In the results described here, RNA-like polymers were generated from 5'-monophosphate nucleosides AMP and UMP. To confirm that the polymers resemble biological RNA, ribonuclease A should catalyze hydrolysis of the 3'-5' phosphodiester bonds between pyrimidine nucleotides to each other or to purine nucleotides, but not purine-purine nucleotide bonds. Here we show AFM images of specific polymers produced by hot wet-dry cycling of AMP, UMP and AMP/UMP (1:1) solutions on mica surfaces, before and after exposure to ribonuclease A. AMP polymers were unaffected by ribonuclease A but UMP polymers disappeared. This indicates that a major fraction of the bonds in the UMP polymers is indeed 3'-5' phosphodiester bonds. Some of the polymers generated from the AMP/UMP mixture also showed clear signs of cleavage. Because ribonuclease A recognizes the ester bonds in the polymers, we show for the first time that these prebiotically produced polymers are in fact similar to biological RNA but are likely to be linked by a mixture of 3'-5' and 2'-5' phosphodiester bonds.
Collapse
Affiliation(s)
- Laura Da Silva
- Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark
| | | | - Morten Jannik Bjerrum
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - Peter Waaben Thulstrup
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, 2100, Copenhagen, Denmark
| | - David Deamer
- Department of Biomolecular Engineering, University of California, Santa Cruz, CA, 95064, USA
| | - Tue Hassenkam
- Globe Institute, University of Copenhagen, 1350, Copenhagen, Denmark.
| |
Collapse
|
20
|
Gotte G. Effects of Pathogenic Mutants of the Neuroprotective RNase 5-Angiogenin in Amyotrophic Lateral Sclerosis (ALS). Genes (Basel) 2024; 15:738. [PMID: 38927674 PMCID: PMC11202570 DOI: 10.3390/genes15060738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 05/28/2024] [Accepted: 05/30/2024] [Indexed: 06/28/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative disease that affects the motoneurons. More than 40 genes are related with ALS, and amyloidogenic proteins like SOD1 and/or TDP-43 mutants are directly involved in the onset of ALS through the formation of polymorphic fibrillogenic aggregates. However, efficacious therapeutic approaches are still lacking. Notably, heterozygous missense mutations affecting the gene coding for RNase 5, an enzyme also called angiogenin (ANG), were found to favor ALS onset. This is also true for the less-studied but angiogenic RNase 4. This review reports the substrate targets and illustrates the neuroprotective role of native ANG in the neo-vascularization of motoneurons. Then, it discusses the molecular determinants of many pathogenic ANG mutants, which almost always cause loss of function related to ALS, resulting in failures in angiogenesis and motoneuron protection. In addition, ANG mutations are sometimes combined with variants of other factors, thereby potentiating ALS effects. However, the activity of the native ANG enzyme should be finely balanced, and not excessive, to avoid possible harmful effects. Considering the interplay of these angiogenic RNases in many cellular processes, this review aims to stimulate further investigations to better elucidate the consequences of mutations in ANG and/or RNase 4 genes, in order to achieve early diagnosis and, possibly, successful therapies against ALS.
Collapse
Affiliation(s)
- Giovanni Gotte
- Biological Chemistry Section, Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| |
Collapse
|
21
|
Campos RB, Capato LA, Soares PM, Tantillo DJ, Orth ES. Thio-Induced Organophosphate Breakdown Promoted by Methimazole: an Experimental and Theoretical Study. Chempluschem 2024; 89:e202300756. [PMID: 38412020 DOI: 10.1002/cplu.202300756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/27/2024] [Accepted: 02/27/2024] [Indexed: 02/28/2024]
Abstract
Investigating the reactivity of small nucleophilic scaffolds is a strategic approach for the design of new catalysts aiming at effective detoxification processes of organophosphorus compounds. The drug methimazole (MMZ) is an interesting candidate featuring two non-equivalent nucleophilic centers. Herein, phosphoryl transfer reactions mediated by MMZ were assessed by means of spectrophotometric kinetic studies, mass spectrometry (MS) analyses, and density functional theory (DFT) calculations using the multi-electrophilic compound O,O-diethyl 2,4-dinitrophenyl phosphate (DEDNPP). MMZ anion acts primarily as an S-nucleophile, exhibiting a nucleophilic activity comparable to that of certain oximes featuring alpha-effect. Selective nucleophilic aromatic substitution was observed, consistent with the DFT prediction of a low energy barrier. Overall, the results bring important advances regarding the mechanistic understanding of nucleophilic dephosphorylation reactions, which comprises a strategic tool for neutralizing toxic organophosphates, hence promoting chemical security.
Collapse
Affiliation(s)
- Renan B Campos
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340, Curitiba, Brazil
| | - Lucas A Capato
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná, Rua Deputado Heitor de Alencar Furtado, 5000, 81280-340, Curitiba, Brazil
| | - Patrícia M Soares
- Chemistry Departament, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| | - Dean J Tantillo
- Department of Chemistry, University of California-Davis, Davis, California, 95616, United States
| | - Elisa S Orth
- Chemistry Departament, Universidade Federal do Paraná (UFPR), CP 19081, CEP 81531-990, Curitiba, PR, Brazil
| |
Collapse
|
22
|
Ganguly C, Rostami S, Long K, Aribam SD, Rajan R. Unity among the diverse RNA-guided CRISPR-Cas interference mechanisms. J Biol Chem 2024; 300:107295. [PMID: 38641067 PMCID: PMC11127173 DOI: 10.1016/j.jbc.2024.107295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024] Open
Abstract
CRISPR-Cas (clustered regularly interspaced short palindromic repeats-CRISPR-associated) systems are adaptive immune systems that protect bacteria and archaea from invading mobile genetic elements (MGEs). The Cas protein-CRISPR RNA (crRNA) complex uses complementarity of the crRNA "guide" region to specifically recognize the invader genome. CRISPR effectors that perform targeted destruction of the foreign genome have emerged independently as multi-subunit protein complexes (Class 1 systems) and as single multi-domain proteins (Class 2). These different CRISPR-Cas systems can cleave RNA, DNA, and protein in an RNA-guided manner to eliminate the invader, and in some cases, they initiate programmed cell death/dormancy. The versatile mechanisms of the different CRISPR-Cas systems to target and destroy nucleic acids have been adapted to develop various programmable-RNA-guided tools and have revolutionized the development of fast, accurate, and accessible genomic applications. In this review, we present the structure and interference mechanisms of different CRISPR-Cas systems and an analysis of their unified features. The three types of Class 1 systems (I, III, and IV) have a conserved right-handed helical filamentous structure that provides a backbone for sequence-specific targeting while using unique proteins with distinct mechanisms to destroy the invader. Similarly, all three Class 2 types (II, V, and VI) have a bilobed architecture that binds the RNA-DNA/RNA hybrid and uses different nuclease domains to cleave invading MGEs. Additionally, we highlight the mechanistic similarities of CRISPR-Cas enzymes with other RNA-cleaving enzymes and briefly present the evolutionary routes of the different CRISPR-Cas systems.
Collapse
Affiliation(s)
- Chhandosee Ganguly
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Saadi Rostami
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Kole Long
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Swarmistha Devi Aribam
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA
| | - Rakhi Rajan
- Department of Chemistry and Biochemistry, Price Family Foundation Institute of Structural Biology, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma, USA.
| |
Collapse
|
23
|
Tran TTQ, Narayanan C, Loes AN, Click TH, Pham NTH, Létourneau M, Harms MJ, Calmettes C, Agarwal PK, Doucet N. Ancestral sequence reconstruction dissects structural and functional differences among eosinophil ribonucleases. J Biol Chem 2024; 300:107280. [PMID: 38588810 PMCID: PMC11101842 DOI: 10.1016/j.jbc.2024.107280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/30/2024] [Accepted: 04/03/2024] [Indexed: 04/10/2024] Open
Abstract
Evolutionarily conserved structural folds can give rise to diverse biological functions, yet predicting atomic-scale interactions that contribute to the emergence of novel activities within such folds remains challenging. Pancreatic-type ribonucleases illustrate this complexity, sharing a core structure that has evolved to accommodate varied functions. In this study, we used ancestral sequence reconstruction to probe evolutionary and molecular determinants that distinguish biological activities within eosinophil members of the RNase 2/3 subfamily. Our investigation unveils functional, structural, and dynamical behaviors that differentiate the evolved ancestral ribonuclease (AncRNase) from its contemporary eosinophil RNase orthologs. Leveraging the potential of ancestral reconstruction for protein engineering, we used AncRNase predictions to design a minimal 4-residue variant that transforms human RNase 2 into a chimeric enzyme endowed with the antimicrobial and cytotoxic activities of RNase 3 members. This work provides unique insights into mutational and evolutionary pathways governing structure, function, and conformational states within the eosinophil RNase subfamily, offering potential for targeted modulation of RNase-associated functions.
Collapse
Affiliation(s)
- Thi Thanh Quynh Tran
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Chitra Narayanan
- Department of Chemistry, York College, City University of New York (CUNY), Jamaica, New York, USA
| | - Andrea N Loes
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Timothy H Click
- Chemistry and Biochemistry, University of Mary, Bismarck, North Dakota, USA
| | - N T Hang Pham
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada
| | - Michael J Harms
- Institute of Molecular Biology and Department of Chemistry and Biochemistry, University of Oregon, Eugene, Oregon, USA
| | - Charles Calmettes
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, Oklahoma, USA
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, Laval, Quebec, Canada; PROTEO, The Quebec Network for Research on Protein Function, Engineering, and Applications, UQAM, Montréal, Quebec, Canada.
| |
Collapse
|
24
|
Zhao T, Sachon E, Micouin L, Piccardi R. α-Silylated Diazoalkynes: New Tools for Bioconjugation of Proteins. Chemistry 2024; 30:e202302807. [PMID: 38305813 DOI: 10.1002/chem.202302807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 01/30/2024] [Accepted: 02/02/2024] [Indexed: 02/03/2024]
Abstract
α-Silylated diazoalkynes are stabilized diazo compounds that can selectively react with carboxylic residues in buffered aqueous media. In-situ fluoride induced desilylation increases this reactivity, leading to a very fast reaction. Application to the selective functionalization of RNase A, followed by post-functionalization using click chemistry, is described. These new reagents expand the toolbox for native protein modification at carboxylic residues.
Collapse
Affiliation(s)
- Tuan Zhao
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Emmanuelle Sachon
- Laboratoire des Biomolécules, LBM, Sorbonne Université, École normale supérieure, PSL University, CNRS, Paris, France
| | - Laurent Micouin
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| | - Riccardo Piccardi
- Laboratoire de Chimie et de Biochimie Pharmacologiques et Toxicologiques, Université Paris Cité, CNRS, F-75006, Paris, France
| |
Collapse
|
25
|
Wralstad EC, Raines RT. Sensitive detection of SARS-CoV-2 main protease 3CL pro with an engineered ribonuclease zymogen. Protein Sci 2024; 33:e4916. [PMID: 38501598 PMCID: PMC10949392 DOI: 10.1002/pro.4916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 01/13/2024] [Accepted: 01/17/2024] [Indexed: 03/20/2024]
Abstract
Alongside vaccines and antiviral therapeutics, diagnostic tools are a crucial aid in combating the COVID-19 pandemic caused by the etiological agent SARS-CoV-2. All common assays for infection rely on the detection of viral sub-components, including structural proteins of the virion or fragments of the viral genome. Selective pressure imposed by human intervention of COVID-19 can, however, induce viral mutations that decrease the sensitivity of diagnostic assays based on biomolecular structure, leading to an increase in false-negative results. In comparison, mutations are unlikely to alter the function of viral proteins, and viral machinery is under less selective pressure from vaccines and therapeutics. Accordingly, diagnostic assays that rely on biomolecular function can be more robust than ones that rely on biopolymer structure. Toward this end, we used a split intein to create a circular ribonuclease zymogen that is activated by the SARS-CoV-2 main protease, 3CLpro . Zymogen activation by 3CLpro leads to a >300-fold increase in ribonucleolytic activity, which can be detected with a highly sensitive fluorogenic substrate. This coupled assay can detect low nanomolar concentrations of 3CLpro within a timeframe comparable to that of common antigen-detection protocols. More generally, the concept of detecting a protease by activating a ribonuclease could be the basis of diagnostic tools for other indications.
Collapse
Affiliation(s)
- Evans C. Wralstad
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Ronald T. Raines
- Department of ChemistryMassachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
26
|
Jiang L, Liang X, Jia J, Han H, Tang J, Li Q. Ribonuclease A-polymer conjugates via in situ growth for cancer treatment. J Mater Chem B 2024; 12:2869-2876. [PMID: 38426261 DOI: 10.1039/d3tb02387g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
Efficient delivery of therapeutic proteins is a critical aspect for protein-based cancer treatment. Herein, an in situ growth approach was employed to prepare ribonuclease A (RNase A)-polymer conjugates by incorporating a cationic polymer, poly(N,N'-dimethylamino-2-ethyl methacrylate) (P(DMAEMA)), and a hydrophobic polymer, poly(N-isopropylacrylamide) (P(NIPAM)), through atom transfer radical polymerization (ATRP). The synthesized RNase A-polymer conjugates (namely R-P(D-b-N)) could preserve the integrity of RNase A and exhibit a unique combination of cationic and hydrophobic properties, leading to enhanced intracellular delivery efficiency. The successful delivery of RNase A by R-P(D-b-N) conjugates effectively triggered the cell apoptosis through the mitochondria-dependent signaling pathway to achieve the anti-proliferative response. Additionally, the conjugates could inhibit cell migration and thus possess the potential for the suppression of tumor metastasis. Overall, our findings highlight that the introduction of cationic and hydrophobic moieties via ATRP provides a versatile platform for the intracellular delivery of therapeutic proteins, offering a new avenue for treating diverse diseases.
Collapse
Affiliation(s)
- Lin Jiang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Xiao Liang
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jiaxin Jia
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Haobo Han
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
| | - Jun Tang
- Department of Polymer Science, College of Chemistry, Jilin University, Changchun 130012, China.
| | - Quanshun Li
- Key Laboratory for Molecular Enzymology and Engineering of Ministry of Education, School of Life Sciences, Jilin University, Changchun 130012, China.
- Center for Supramolecular Chemical Biology, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
27
|
Li J, Kang X, Guidi I, Lu L, Fernández-Millán P, Prats-Ejarque G, Boix E. Structural determinants for tRNA selective cleavage by RNase 2/EDN. Structure 2024; 32:328-341.e4. [PMID: 38228145 DOI: 10.1016/j.str.2023.12.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/03/2023] [Accepted: 12/20/2023] [Indexed: 01/18/2024]
Abstract
tRNA-derived fragments (tRFs) have emerged as key players of immunoregulation. Some RNase A superfamily members participate in the shaping of the tRFs population. By comparing wild-type and knockout macrophage cell lines, our previous work revealed that RNase 2 can selectively cleave tRNAs. Here, we confirm the in vitro protein cleavage pattern by screening of synthetic tRNAs, single-mutant variants, and anticodon-loop DNA/RNA hairpins. By sequencing of tRF products, we identified the cleavage selectivity of recombinant RNase 2 with base specificity at B1 (U/C) and B2 (A) sites, consistent with a previous cellular study. Lastly, protein-hairpin complexes were predicted by MD simulations. Results reveal the contribution of the α1, loop 3 and loop 4, and β6 RNase 2 regions, where residues Arg36/Asn39/Gln40/Asn65/Arg68/Arg132 provide interactions, spanning from P-1 to P2 sites that are essential for anticodon loop recognition. Knowledge of RNase 2-specific tRFs generation might guide new therapeutic approaches for infectious and immune-related diseases.
Collapse
Affiliation(s)
- Jiarui Li
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| | - Xincheng Kang
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Irene Guidi
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Lu Lu
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Pablo Fernández-Millán
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Guillem Prats-Ejarque
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain
| | - Ester Boix
- Department of Biochemistry and Molecular Biology, Faculty of Biosciences, Universitat Autònoma de Barcelona (UAB), Cerdanyola del Vallès, 08193 Barcelona, Spain.
| |
Collapse
|
28
|
Miyagi M, Nakazawa T. Significance of Histidine Hydrogen-Deuterium Exchange Mass Spectrometry in Protein Structural Biology. BIOLOGY 2024; 13:37. [PMID: 38248468 PMCID: PMC10813008 DOI: 10.3390/biology13010037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/04/2024] [Accepted: 01/06/2024] [Indexed: 01/23/2024]
Abstract
Histidine residues play crucial roles in shaping the function and structure of proteins due to their unique ability to act as both acids and bases. In other words, they can serve as proton donors and acceptors at physiological pH. This exceptional property is attributed to the side-chain imidazole ring of histidine residues. Consequently, determining the acid-base dissociation constant (Ka) of histidine imidazole rings in proteins often yields valuable insights into protein functions. Significant efforts have been dedicated to measuring the pKa values of histidine residues in various proteins, with nuclear magnetic resonance (NMR) spectroscopy being the most commonly used technique. However, NMR-based methods encounter challenges in assigning signals to individual imidazole rings and require a substantial amount of proteins. To address these issues associated with NMR-based approaches, a mass-spectrometry-based method known as histidine hydrogen-deuterium exchange mass spectrometry (His-HDX-MS) has been developed. This technique not only determines the pKa values of histidine imidazole groups but also quantifies their solvent accessibility. His-HDX-MS has proven effective across diverse proteins, showcasing its utility. This review aims to clarify the fundamental principles of His-HDX-MS, detail the experimental workflow, explain data analysis procedures and provide guidance for interpreting the obtained results.
Collapse
Affiliation(s)
- Masaru Miyagi
- Department of Pharmacology, Case Western Reserve University, 10900 Euclid Avenue, Cleveland, OH 44106-4988, USA
| | - Takashi Nakazawa
- Department of Chemistry, Nara Women’s University, Nara 630-8506, Japan
| |
Collapse
|
29
|
Deng L, Kumar J, Rose R, McIntyre W, Fabris D. Analyzing RNA posttranscriptional modifications to decipher the epitranscriptomic code. MASS SPECTROMETRY REVIEWS 2024; 43:5-38. [PMID: 36052666 DOI: 10.1002/mas.21798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 05/23/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The discovery of RNA silencing has revealed that non-protein-coding sequences (ncRNAs) can cover essential roles in regulatory networks and their malfunction may result in severe consequences on human health. These findings have prompted a general reassessment of the significance of RNA as a key player in cellular processes. This reassessment, however, will not be complete without a greater understanding of the distribution and function of the over 170 variants of the canonical ribonucleotides, which contribute to the breathtaking structural diversity of natural RNA. This review surveys the analytical approaches employed for the identification, characterization, and detection of RNA posttranscriptional modifications (rPTMs). The merits of analyzing individual units after exhaustive hydrolysis of the initial biopolymer are outlined together with those of identifying their position in the sequence of parent strands. Approaches based on next generation sequencing and mass spectrometry technologies are covered in depth to provide a comprehensive view of their respective merits. Deciphering the epitranscriptomic code will require not only mapping the location of rPTMs in the various classes of RNAs, but also assessing the variations of expression levels under different experimental conditions. The fact that no individual platform is currently capable of meeting all such demands implies that it will be essential to capitalize on complementary approaches to obtain the desired information. For this reason, the review strived to cover the broadest possible range of techniques to provide readers with the fundamental elements necessary to make informed choices and design the most effective possible strategy to accomplish the task at hand.
Collapse
Affiliation(s)
- L Deng
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - J Kumar
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - R Rose
- Department of Advanced Research Technologies, New York University Langone Health Center, New York, USA
| | - W McIntyre
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| | - Daniele Fabris
- Department of Chemistry, University of Connecticut, Storrs, Connecticut, USA
| |
Collapse
|
30
|
Anand V, Prabhakaran HS, Prakash A, Hussain MS, Kumar M. Differential processing of CRISPR RNA by LinCas5c and LinCas6 of Leptospira. Biochim Biophys Acta Gen Subj 2023; 1867:130469. [PMID: 37797871 DOI: 10.1016/j.bbagen.2023.130469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/07/2023]
Abstract
Leptospira interrogans serovar Copenhageni's genome harbors two CRISPR-Cas systems belonging to subtypes I-B and I-C. However, in L. interrogans, the subtype I-C locus lacks an array component essential for assembling an interference complex. Thus, the reason for sustaining the expense of a cluster of cas genes (I-C) is obscure. Type I-C (previously Dvulg) is the only CRISPR subtype that engages Cas5c, a Cas5 variant, to process precursor CRISPR-RNA (pre-crRNA). In this study, thus, the recombinant Cas5c (rLinCas5c) of L.interrogans and its mutant variants were cloned, expressed, and purified. The purified rLinCas5c is illustrated as metal-independent, sequence, and size-specific cleavage on repeat RNA and pre-crRNA of subtype I-B or orphan CRISPR array. However, the Cas6-bound mature crRNA of subtype I-B fends off from the rLinCas5c activity. In addition, rLinCas5c holds metal and size-dependent DNase activity. The bioinformatics analysis of LinCas5c inferred that it belongs to the subgroup Cas5c-B. Substitution of Phe141 with a more conserved His residue and deletion of unique (β1'-β2') insertions usher a gain of rLinCas5c activity over nucleic acid. Overall, our results uncover the functional diversity of Cas5c ribonucleases and infer an incognito auxiliary role in the absence of a cognate CRISPR array.
Collapse
Affiliation(s)
- Vineet Anand
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Harshini Sheeja Prabhakaran
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Aman Prakash
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Md Saddam Hussain
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Manish Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
31
|
Tian Y, Wan N, Zhang H, Shao C, Ding M, Bao Q, Hu H, Sun H, Liu C, Zhou K, Chen S, Wang G, Ye H, Hao H. Chemoproteomic mapping of the glycolytic targetome in cancer cells. Nat Chem Biol 2023; 19:1480-1491. [PMID: 37322158 DOI: 10.1038/s41589-023-01355-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 05/04/2023] [Indexed: 06/17/2023]
Abstract
Hyperactivated glycolysis is a metabolic hallmark of most cancer cells. Although sporadic information has revealed that glycolytic metabolites possess nonmetabolic functions as signaling molecules, how these metabolites interact with and functionally regulate their binding targets remains largely elusive. Here, we introduce a target-responsive accessibility profiling (TRAP) approach that measures changes in ligand binding-induced accessibility for target identification by globally labeling reactive proteinaceous lysines. With TRAP, we mapped 913 responsive target candidates and 2,487 interactions for 10 major glycolytic metabolites in a model cancer cell line. The wide targetome depicted by TRAP unveils diverse regulatory modalities of glycolytic metabolites, and these modalities involve direct perturbation of enzymes in carbohydrate metabolism, intervention of an orphan transcriptional protein's activity and modulation of targetome-level acetylation. These results further our knowledge of how glycolysis orchestrates signaling pathways in cancer cells to support their survival, and inspire exploitation of the glycolytic targetome for cancer therapy.
Collapse
Affiliation(s)
- Yang Tian
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ning Wan
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hanqing Zhang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chang Shao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Ming Ding
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Qiuyu Bao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiyang Hu
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Huiyong Sun
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Chenguang Liu
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Kun Zhou
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Shuai Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Cardiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Model Animal Research Center, Nanjing University, Nanjing, China
| | - Guangji Wang
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hui Ye
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| | - Haiping Hao
- Jiangsu Provincial Key Laboratory of Drug Metabolism and Pharmacokinetics, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
32
|
Chen X, Zheng Q, Cai W, Sheng J, Wang M. Biodegradable Hydrogen-Bonded Organic Framework for Cytosolic Protein Delivery. ACS APPLIED MATERIALS & INTERFACES 2023; 15:54346-54352. [PMID: 37967322 DOI: 10.1021/acsami.3c14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2023]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a novel class of porous nanomaterials that show great potential for intracellular delivery of protein therapeutics. However, the inherent challenges in interfacing protein with HOFs, and the need for spatiotemporally controlling the release of protein within cells, have constrained their therapeutic potential. In this study, we report novel biodegradable hydrogen-bonded organic frameworks, termed DS-HOFs, specially designed for the cytosolic delivery of protein therapeutics in cancer cells. The synthesis of DS-HOFs involves the self-assembly of 4-[tris(4-carbamimidoylphenyl) methyl] benzenecarboximidamide (TAM) and 4,4'-dithiobisbenzoic acid (DTBA), governed by intermolecular hydrogen-bonding interactions. DS-HOFs exhibit high efficiency in encapsulating a diverse range of protein cargos, underpinned by the hydrogen-bonding interactions between the protein residue and DS-HOF subcomponents. Notably, DS-HOFs are selectively degraded in cancer cells triggered by the distinct intracellular reductive microenvironments, enabling an enhanced and selective release of protein inside cancer cells. Additionally, we demonstrate that the efficient delivery of bacterial effector protein DUF5 using DS-HOFs depletes the mutant RAS in cancer cells to prohibit tumor cell growth both in vitro and in vivo. The design of biodegradable HOFs for cytosolic protein delivery provides a powerful and promising strategy to expand the therapeutic potential of proteins for cancer therapy.
Collapse
Affiliation(s)
- Xianghan Chen
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qizhen Zheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weiqi Cai
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jinhan Sheng
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ming Wang
- Beijing National Laboratory for Molecular Science, CAS Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
33
|
Mehta NV, Abhyankar A, Degani MS. Elemental exchange: Bioisosteric replacement of phosphorus by boron in drug design. Eur J Med Chem 2023; 260:115761. [PMID: 37651875 DOI: 10.1016/j.ejmech.2023.115761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/12/2023] [Accepted: 08/23/2023] [Indexed: 09/02/2023]
Abstract
Continuous efforts are being directed toward the employment of boron in drug design due to its advantages and unique characteristics including a plethora of target engagement modes, lower metabolism, and synthetic accessibility, among others. Phosphates are components of multiple drug molecules as well as clinical candidates, since they play a vital role in various biochemical functions, being components of nucleotides, energy currency- ATP as well as several enzyme cofactors. This review discusses the unique chemistry of boron functionalities as phosphate bioisosteres - "the boron-phosphorus elemental exchange strategy" as well as the superiority of boron groups over other commonly employed phosphate bioisosteres. Boron phosphate-mimetics have been utilized for the development of enzyme inhibitors as well as novel borononucleotides. Both the boron functionalities described in this review-boronic acids and benzoxaboroles-contain a boron connected to two oxygens and one carbon atom. The boron atom of these functional groups coordinates with a water molecule in the enzyme site forming a tetrahedral molecule which mimics the phosphate structure. Although boron phosphate-mimetic molecules - FDA-approved Crisaborole and phase II/III clinical candidate Acoziborole are products of the boron-phosphorus bioisosteric elemental exchange strategy, this technique is still in its infancy. The review aims to promote the use of this strategy in future medicinal chemistry projects.
Collapse
Affiliation(s)
- Namrashee V Mehta
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| | - Arundhati Abhyankar
- Shri Vile Parle Kelavani Mandal's Dr Bhanuben Nanavati College of Pharmacy, Gate No.1, Mithibai College Campus, Vile Parle West, Mumbai, 400056, Maharashtra, India.
| | - Mariam S Degani
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Nathalal Parekh Marg, Matunga, Mumbai, 400019, Maharashtra, India.
| |
Collapse
|
34
|
Fukuda M, Graewert MA, Jeffries CM, Svergun DI, Yamazaki T, Koga A, Yamanaka Y. Small conformational changes in IgG1 detected as acidic charge variants by cation exchange chromatography. Anal Biochem 2023; 680:115302. [PMID: 37652129 DOI: 10.1016/j.ab.2023.115302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/17/2023] [Accepted: 08/28/2023] [Indexed: 09/02/2023]
Abstract
Fully characterizing the post-translational modifications present in charge variants of therapeutic monoclonal antibodies (mAbs), particularly acidic variants, is challenging and remains an open area of investigation. In this study, to test the possibility that chromatographically separated acidic fractions of therapeutic mAbs contain conformational variants, we undertook a mAb refolding approach using as a case study an IgG1 that contains many unidentified acidic peaks with few post-translational modifications, and examined whether different acidic peak fractions could be generated corresponding to these variants. The IgG1 drug substance was denatured by guanidine hydrochloride, without a reducing agent present, and gradually refolded by stepwise dialysis against arginine hydrochloride used as an aggregation suppressor. Each acidic chromatographic peak originally contained in the IgG1 drug substance was markedly increased by this stepwise refolding process, indicating that these acidic variants are conformational variants. However, no conformational changes were detected by small-angle X-ray scattering experiments for the whole IgG1, indicating that the conformational changes are minor. Chromatographic, thermal and fluorescence analyses suggested that the conformational changes are a localized denaturation effect centred around the aromatic amino acid regions. This study provides new insights into the characterization of acidic variants that are currently not fully understood.
Collapse
Affiliation(s)
- Masakazu Fukuda
- Formulation Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan; Laboratory of Functional Molecular Chemistry, Kobe Pharmaceutical University, 4-19-1, Motoyamakita-machi, Higashinada-ku, Kobe, 658-8558, Japan.
| | - Melissa A Graewert
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, c/o Deutsches Elektronen Synchrotron (DESY), 22607, Hamburg, Germany
| | - Cy M Jeffries
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, c/o Deutsches Elektronen Synchrotron (DESY), 22607, Hamburg, Germany
| | - Dmitri I Svergun
- European Molecular Biology Laboratory (EMBL) Hamburg Unit, c/o Deutsches Elektronen Synchrotron (DESY), 22607, Hamburg, Germany
| | - Tadao Yamazaki
- Formulation Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Akiko Koga
- Formulation Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| | - Yuji Yamanaka
- Formulation Development Department, Chugai Pharmaceutical Co., Ltd., 5-5-1 Ukima, Kita-ku, Tokyo, 115-8543, Japan
| |
Collapse
|
35
|
Noro I, Bettin I, Fasoli S, Smania M, Lunardi L, Giannini M, Andreoni L, Montioli R, Gotte G. Human RNase 1 can extensively oligomerize through 3D domain swapping thanks to the crucial contribution of its C-terminus. Int J Biol Macromol 2023; 249:126110. [PMID: 37536419 DOI: 10.1016/j.ijbiomac.2023.126110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
Human ribonuclease (RNase) 1 and bovine RNase A are the proto-types of the secretory "pancreatic-type" (pt)-RNase super-family. RNase A can oligomerize through the 3D domain swapping (DS) mechanism upon acetic acid (HAc) lyophilisation, producing enzymatically active oligomeric conformers by swapping both N- and C-termini. Also some RNase 1 mutants were found to self-associate through 3D-DS, however forming only N-swapped dimers. Notably, enzymatically active dimers and larger oligomers of wt-RNase 1 were collected here, in higher amount than RNase A, from HAc lyophilisation. In particular, RNase 1 self-associates through the 3D-DS of its N-terminus and, at a higher extent, of the C-terminus. Since RNase 1 is four-residues longer than RNase A, we further analyzed its oligomerization tendency in a mutant lacking the last four residues. The C-terminus role has been investigated also in amphibian onconase (ONC®), a pt-RNase that can form only a N-swapped dimer, since its C-terminus, that is three-residues longer than RNase A, is locked by a disulfide bond. While ONC mutants designed to unlock or cut this constraint were almost unable to dimerize, the RNase 1 mutant self-associated at a higher extent than the wt, suggesting a specific role of the C-terminus in the oligomerization of different RNases. Overall, RNase 1 reaches here the highest ability, among pt-RNases, to extensively self-associate through 3D-DS, paving the way for new investigations on the structural and biological properties of its oligomers.
Collapse
Affiliation(s)
- Irene Noro
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Ilaria Bettin
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Sabrina Fasoli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Marcello Smania
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Luca Lunardi
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Michele Giannini
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Leonardo Andreoni
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy
| | - Riccardo Montioli
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| | - Giovanni Gotte
- Department of Neuroscience, Biomedicine, and Movement Sciences, Biological Chemistry Section, University of Verona, Strada Le Grazie 8, I-37134 Verona, Italy.
| |
Collapse
|
36
|
Santos MFA, Pessoa JC. Interaction of Vanadium Complexes with Proteins: Revisiting the Reported Structures in the Protein Data Bank (PDB) since 2015. Molecules 2023; 28:6538. [PMID: 37764313 PMCID: PMC10536487 DOI: 10.3390/molecules28186538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
The structural determination and characterization of molecules, namely proteins and enzymes, is crucial to gaining a better understanding of their role in different chemical and biological processes. The continuous technical developments in the experimental and computational resources of X-ray diffraction (XRD) and, more recently, cryogenic Electron Microscopy (cryo-EM) led to an enormous growth in the number of structures deposited in the Protein Data Bank (PDB). Bioinorganic chemistry arose as a relevant discipline in biology and therapeutics, with a massive number of studies reporting the effects of metal complexes on biological systems, with vanadium complexes being one of the relevant systems addressed. In this review, we focus on the interactions of vanadium compounds (VCs) with proteins. Several types of binding are established between VCs and proteins/enzymes. Considering that the V-species that bind may differ from those initially added, the mentioned structural techniques are pivotal to clarifying the nature and variety of interactions of VCs with proteins and to proposing the mechanisms involved either in enzymatic inhibition or catalysis. As such, we provide an account of the available structural information of VCs bound to proteins obtained by both XRD and/or cryo-EM, mainly exploring the more recent structures, particularly those containing organic-based vanadium complexes.
Collapse
Affiliation(s)
- Marino F. A. Santos
- Associate Laboratory i4HB—Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- UCIBIO—Applied Molecular Biosciences Unit, Chemistry Department, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - João Costa Pessoa
- Centro de Química Estrutural, Departamento de Engenharia Química, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
37
|
Fang L, Xiao L, Jun YW, Onishi Y, Kool ET. Reversible 2'-OH acylation enhances RNA stability. Nat Chem 2023; 15:1296-1305. [PMID: 37365334 DOI: 10.1038/s41557-023-01246-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/19/2023] [Indexed: 06/28/2023]
Abstract
The presence of a hydroxyl group at the 2'-position in its ribose makes RNA susceptible to hydrolysis. Stabilization of RNAs for storage, transport and biological application thus remains a serious challenge, particularly for larger RNAs that are not accessible by chemical synthesis. Here we present reversible 2'-OH acylation as a general strategy to preserve RNA of any length or origin. High-yield polyacylation of 2'-hydroxyls ('cloaking') by readily accessible acylimidazole reagents effectively shields RNAs from both thermal and enzymatic degradation. Subsequent treatment with water-soluble nucleophilic reagents removes acylation adducts quantitatively ('uncloaking') and recovers a remarkably broad range of RNA functions, including reverse transcription, translation and gene editing. Furthermore, we show that certain α-dimethylamino- and α-alkoxy- acyl adducts are spontaneously removed in human cells, restoring messenger RNA translation with extended functional half-lives. These findings support the potential of reversible 2'-acylation as a simple and general molecular solution for enhancing RNA stability and provide mechanistic insights for stabilizing RNA regardless of length or origin.
Collapse
Affiliation(s)
- Linglan Fang
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Lu Xiao
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | - Yong Woong Jun
- Department of Chemistry, Stanford University, Stanford, CA, USA
| | | | - Eric T Kool
- Department of Chemistry, Stanford University, Stanford, CA, USA.
- Sarafan ChEM-H Institute, Stanford University, Stanford, CA, USA.
| |
Collapse
|
38
|
Ma H, Xing F, Zhou Y, Yu P, Luo R, Xu J, Xiang Z, Rommens PM, Duan X, Ritz U. Design and fabrication of intracellular therapeutic cargo delivery systems based on nanomaterials: current status and future perspectives. J Mater Chem B 2023; 11:7873-7912. [PMID: 37551112 DOI: 10.1039/d3tb01008b] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2023]
Abstract
Intracellular cargo delivery, the introduction of small molecules, proteins, and nucleic acids into a specific targeted site in a biological system, is an important strategy for deciphering cell function, directing cell fate, and reprogramming cell behavior. With the advancement of nanotechnology, many researchers use nanoparticles (NPs) to break through biological barriers to achieving efficient targeted delivery in biological systems, bringing a new way to realize efficient targeted drug delivery in biological systems. With a similar size to many biomolecules, NPs possess excellent physical and chemical properties and a certain targeting ability after functional modification on the surface of NPs. Currently, intracellular cargo delivery based on NPs has emerged as an important strategy for genome editing regimens and cell therapy. Although researchers can successfully deliver NPs into biological systems, many of them are delivered very inefficiently and are not specifically targeted. Hence, the development of efficient, target-capable, and safe nanoscale drug delivery systems to deliver therapeutic substances to cells or organs is a major challenge today. In this review, on the basis of describing the research overview and classification of NPs, we focused on the current research status of intracellular cargo delivery based on NPs in biological systems, and discuss the current problems and challenges in the delivery process of NPs in biological systems.
Collapse
Affiliation(s)
- Hong Ma
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Fei Xing
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Yuxi Zhou
- Department of Periodontology, Justus-Liebig-University of Giessen, Ludwigstraße 23, 35392 Giessen, Germany
| | - Peiyun Yu
- LIMES Institute, Department of Molecular Brain Physiology and Behavior, University of Bonn, Carl-Troll-Str. 31, 53115 Bonn, Germany
| | - Rong Luo
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Jiawei Xu
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Zhou Xiang
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
| | - Pol Maria Rommens
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| | - Xin Duan
- Department of Orthopedic Surgery, Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu, China.
- Department of Orthopedic Surgery, The Fifth People's Hospital of Sichuan Province, Chengdu, China
| | - Ulrike Ritz
- Department of Orthopaedics and Traumatology, Biomatics Group, University Medical Center of the Johannes Gutenberg University, Langenbeckstr. 1, 55131 Mainz, Germany.
| |
Collapse
|
39
|
Munro J, Gillen SL, Mitchell L, Laing S, Karim SA, Rink CJ, Waldron JA, Bushell M. Optimisation of Sample Preparation from Primary Mouse Tissue to Maintain RNA Integrity for Methods Examining Translational Control. Cancers (Basel) 2023; 15:3985. [PMID: 37568801 PMCID: PMC10417042 DOI: 10.3390/cancers15153985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/26/2023] [Accepted: 07/31/2023] [Indexed: 08/13/2023] Open
Abstract
The protein output of different mRNAs can vary by two orders of magnitude; therefore, it is critical to understand the processes that control gene expression operating at the level of translation. Translatome-wide techniques, such as polysome profiling and ribosome profiling, are key methods for determining the translation rates occurring on specific mRNAs. These techniques are now widely used in cell lines; however, they are underutilised in tissues and cancer models. Ribonuclease (RNase) expression is often found to be higher in complex primary tissues in comparison to cell lines. Methods used to preserve RNA during lysis often use denaturing conditions, which need to be avoided when maintaining the interaction and position of the ribosome with the mRNA is required. Here, we detail the cell lysis conditions that produce high-quality RNA from several different tissues covering a range of endogenous RNase expression levels. We highlight the importance of RNA integrity for accurate determination of the global translation status of the cell as determined by polysome gradients and discuss key aspects to optimise for accurate assessment of the translatome from primary mouse tissue.
Collapse
Affiliation(s)
- June Munro
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah L. Gillen
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Louise Mitchell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Sarah Laing
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Saadia A. Karim
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Curtis J. Rink
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| | - Joseph A. Waldron
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
| | - Martin Bushell
- Cancer Research UK Beatson Institute, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1BD, UK
- School of Cancer Sciences, University of Glasgow, Garscube Estate, Switchback Road, Bearsden, Glasgow G61 1QH, UK
| |
Collapse
|
40
|
Uchida S, Lau CYJ, Oba M, Miyata K. Polyplex designs for improving the stability and safety of RNA therapeutics. Adv Drug Deliv Rev 2023; 199:114972. [PMID: 37364611 DOI: 10.1016/j.addr.2023.114972] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/15/2023] [Accepted: 06/21/2023] [Indexed: 06/28/2023]
Abstract
Nanoparticle-based delivery systems have contributed to the recent clinical success of RNA therapeutics, including siRNA and mRNA. RNA delivery using polymers has several distinct properties, such as enabling RNA delivery into extra-hepatic organs, modulation of immune responses to RNA, and regulation of intracellular RNA release. However, delivery systems should overcome safety and stability issues to achieve widespread therapeutic applications. Safety concerns include direct damage to cellular components, innate and adaptive immune responses, complement activation, and interaction with surrounding molecules and cells in the blood circulation. The stability of the delivery systems should balance extracellular RNA protection and controlled intracellular RNA release, which requires optimization for each RNA species. Further, polymer designs for improving safety and stability often conflict with each other. This review covers advances in polymer-based approaches to address these issues over several years, focusing on biological understanding and design concepts for delivery systems rather than material chemistry.
Collapse
Affiliation(s)
- Satoshi Uchida
- Department of Advanced Nanomedical Engineering, Medical Research Institute, Tokyo Medical and Dental University (TMDU), 1-5-45 Yushima, Bunkyo-ku, Tokyo, 113-8510, Japan; Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan; Innovation Center of NanoMedicine (iCONM), Kawasaki Institute of Industrial Promotion, 3-25-14 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| | - Chun Yin Jerry Lau
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Makoto Oba
- Medical Chemistry, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto, 606-0823, Japan
| | - Kanjiro Miyata
- Department of Materials Engineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan.
| |
Collapse
|
41
|
Mikutis S, Rebelo M, Yankova E, Gu M, Tang C, Coelho AR, Yang M, Hazemi ME, Pires de Miranda M, Eleftheriou M, Robertson M, Vassiliou GS, Adams DJ, Simas JP, Corzana F, Schneekloth JS, Tzelepis K, Bernardes GJL. Proximity-Induced Nucleic Acid Degrader (PINAD) Approach to Targeted RNA Degradation Using Small Molecules. ACS CENTRAL SCIENCE 2023; 9:892-904. [PMID: 37252343 PMCID: PMC10214512 DOI: 10.1021/acscentsci.3c00015] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Indexed: 05/31/2023]
Abstract
Nature has evolved intricate machinery to target and degrade RNA, and some of these molecular mechanisms can be adapted for therapeutic use. Small interfering RNAs and RNase H-inducing oligonucleotides have yielded therapeutic agents against diseases that cannot be tackled using protein-centered approaches. Because these therapeutic agents are nucleic acid-based, they have several inherent drawbacks which include poor cellular uptake and stability. Here we report a new approach to target and degrade RNA using small molecules, proximity-induced nucleic acid degrader (PINAD). We have utilized this strategy to design two families of RNA degraders which target two different RNA structures within the genome of SARS-CoV-2: G-quadruplexes and the betacoronaviral pseudoknot. We demonstrate that these novel molecules degrade their targets using in vitro, in cellulo, and in vivo SARS-CoV-2 infection models. Our strategy allows any RNA binding small molecule to be converted into a degrader, empowering RNA binders that are not potent enough to exert a phenotypic effect on their own. PINAD raises the possibility of targeting and destroying any disease-related RNA species, which can greatly expand the space of druggable targets and diseases.
Collapse
Affiliation(s)
- Sigitas Mikutis
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Maria Rebelo
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Eliza Yankova
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Muxin Gu
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
| | - Cong Tang
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Ana R. Coelho
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Mo Yang
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Madoka E. Hazemi
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - Marta Pires de Miranda
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| | - Maria Eleftheriou
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Max Robertson
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
| | - George S. Vassiliou
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
| | - David J. Adams
- Experimental
Cancer Genetics, Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, U.K.
| | - J. Pedro Simas
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
- Católica
Biomedical Research and Católica Medical School, Universidade Católica Portuguesa, 1649-023 Lisboa, Portugal
| | - Francisco Corzana
- Departamento
de Química, Centro de Investigación en Síntesis
Química, Universidad de La Rioja, 26006 Logroño, Spain
| | - John S. Schneekloth
- Chemical
Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, Maryland 21702, United States
| | - Konstantinos Tzelepis
- Wellcome-MRC
Cambridge Stem Cell Institute, University
of Cambridge, Cambridge CB2 0AW, U.K.
- Milner
Therapeutics Institute, University of Cambridge, Puddicombe Way, Cambridge CB2 0AW, U.K.
| | - Gonçalo J. L. Bernardes
- Yusuf
Hamied Department of Chemistry, University
of Cambridge, Lensfield Road, Cambridge CB2 1EW, U.K.
- Instituto
de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, Universidade de Lisboa, Avenida Professor Egas Moniz, 1649-028, Lisboa, Portugal
| |
Collapse
|
42
|
Huang T, Snell KC, Kalia N, Gardezi S, Guo L, Harris ME. Kinetic analysis of RNA cleavage by coronavirus Nsp15 endonuclease: Evidence for acid base catalysis and substrate dependent metal ion activation. J Biol Chem 2023:104787. [PMID: 37149147 PMCID: PMC10158045 DOI: 10.1016/j.jbc.2023.104787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/08/2023] Open
Abstract
Understanding the functional properties of SARS-CoV-2 nonstructural proteins is essential for defining their roles in the viral life cycle, developing improved therapeutics and diagnostics, and countering future variants. Coronavirus nonstructural protein Nsp15 is a hexameric U-specific endonuclease whose functions, substrate specificity, mechanism, and dynamics have not been fully defined. Previous studies report SARS-CoV-2 Nsp15 requires Mn2+ ions for optimal activity; however, the effects of divalent ions on Nsp15 reaction kinetics have not been investigated in detail. Here, we analyzed the single and multiple turnover kinetics for model single-stranded RNA substrates. Our data confirm that divalent ions are dispensable for catalysis and show that Mn2+ activates Nsp15 cleavage of two different ssRNA oligonucleotide substrates, but not a dinucleotide. Furthermore, biphasic kinetics of ssRNA substrates demonstrates that Mn2+ stabilizes alternative enzyme states that have faster substrate cleavage on the enzyme. However, we did not detect Mn2+-induced conformational changes using CD and fluorescence spectroscopy. The pH-rate profiles in the presence and absence of Mn2+ are consistent with active site ionizable groups with similar pKas of ca. 4.8-5.2. We found the Rp stereoisomer phosphorothioate modification at the scissile phosphate had minimal effect on catalysis, which supports a mechanism involving an anionic transition state. In contrast, the Sp stereoisomer is inactive due to weak binding, consistent with models that position the non-bridging phosphoryl oxygen deep in the active site. Together, these kinetic data demonstrate that Nsp15 employs a conventional acid-base catalytic mechanism passing through an anionic transition state, and that divalent ion activation is substrate-dependent.
Collapse
Affiliation(s)
- Tong Huang
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Kimberly C Snell
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Nidhi Kalia
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Shahbaz Gardezi
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Lily Guo
- Department of Chemistry, University of Florida, Gainesville, FL 32611
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, FL 32611.
| |
Collapse
|
43
|
Pourali P, Dzmitruk V, Pátek M, Neuhöferová E, Svoboda M, Benson V. Fate of the capping agent of biologically produced gold nanoparticles and adsorption of enzymes onto their surface. Sci Rep 2023; 13:4916. [PMID: 36966192 PMCID: PMC10039949 DOI: 10.1038/s41598-023-31792-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/17/2023] [Indexed: 03/27/2023] Open
Abstract
Enzymotherapy based on DNase I or RNase A has often been suggested as an optional strategy for cancer treatment. The efficacy of such procedures is limited e.g. by a short half-time of the enzymes or a low rate of their internalization. The use of nanoparticles, such as gold nanoparticles (AuNPs), helps to overcome these limits. Specifically, biologically produced AuNPs represent an interesting variant here due to naturally occurring capping agents (CA) on their surface. The composition of the CA depends on the producing microorganism. CAs are responsible for the stabilization of the nanoparticles, and promote the direct linking of targeting and therapeutic molecules. This study provided proof of enzyme adsorption onto gold nanoparticles and digestion efficacy of AuNPs-adsorbed enzymes. We employed Fusarium oxysporum extract to produce AuNPs. These nanoparticles were round or polygonal with a size of about 5 nm, negative surface charge of about - 33 mV, and maximum absorption peak at 530 nm. After the adsorption of DNAse I, RNase A, or Proteinase K onto the AuNPs surface, the nanoparticles exhibited shifts in surface charge (values between - 22 and - 13 mV) and maximum absorption peak (values between 513 and 534 nm). The ability of AuNP-enzyme complexes to digest different targets was compared to enzymes alone. We found a remarkable degradation of ssDNA, and dsDNA by AuNP-DNAse I, and a modest degradation of ssRNA by AuNP-RNase A. The presence of particular enzymes on the AuNP surface was proved by liquid chromatography-mass spectrometry (LC-MS). Using SDS-PAGE electrophoresis, we detected a remarkable digestion of collagen type I and fibrinogen by AuNP-proteinase K complexes. We concluded that the biologically produced AuNPs directly bound DNase I, RNase A, and proteinase K while preserving their ability to digest specific targets. Therefore, according to our results, AuNPs can be used as effective enzyme carriers and the AuNP-enzyme conjugates can be effective tools for enzymotherapy.
Collapse
Affiliation(s)
- Parastoo Pourali
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Volha Dzmitruk
- Center of Molecular Structure, Institute of Biotechnology, Czech Academy of Sciences, 252 50, Prague, Czech Republic
| | - Miroslav Pátek
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Eva Neuhöferová
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic
| | - Milan Svoboda
- Institute of Analytical Chemistry, Czech Academy of Sciences, 602 00, Brno, Czech Republic
| | - Veronika Benson
- Institute of Microbiology, Czech Academy of Sciences, 142 20, Prague, Czech Republic.
| |
Collapse
|
44
|
Bernard DN, Narayanan C, Hempel T, Bafna K, Bhojane PP, Létourneau M, Howell EE, Agarwal PK, Doucet N. Conformational exchange divergence along the evolutionary pathway of eosinophil-associated ribonucleases. Structure 2023; 31:329-342.e4. [PMID: 36649708 PMCID: PMC9992247 DOI: 10.1016/j.str.2022.12.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 11/24/2022] [Accepted: 12/20/2022] [Indexed: 01/18/2023]
Abstract
The evolutionary role of conformational exchange in the emergence and preservation of function within structural homologs remains elusive. While protein engineering has revealed the importance of flexibility in function, productive modulation of atomic-scale dynamics has only been achieved on a finite number of distinct folds. Allosteric control of unique members within dynamically diverse structural families requires a better appreciation of exchange phenomena. Here, we examined the functional and structural role of conformational exchange within eosinophil-associated ribonucleases. Biological and catalytic activity of various EARs was performed in parallel to mapping their conformational behavior on multiple timescales using NMR and computational analyses. Despite functional conservation and conformational seclusion to a specific domain, we show that EARs can display similar or distinct motional profiles, implying divergence rather than conservation of flexibility. Comparing progressively more distant enzymes should unravel how this subfamily has evolved new functions and/or altered their behavior at the molecular level.
Collapse
Affiliation(s)
- David N Bernard
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Chitra Narayanan
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; Department of Chemistry, New Jersey City University, Jersey City, NJ 07305, USA
| | - Tim Hempel
- Department of Mathematics and Computer Science, Freie Universität Berlin, Arnimallee 12, 14195 Berlin, Germany; Department of Physics, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
| | - Khushboo Bafna
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Purva Prashant Bhojane
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Myriam Létourneau
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada
| | - Elizabeth E Howell
- Department of Biochemistry & Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Pratul K Agarwal
- Department of Physiological Sciences and High-Performance Computing Center, Oklahoma State University, Stillwater, OK 74078, USA.
| | - Nicolas Doucet
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique (INRS), Université du Québec, 531 Boulevard des Prairies, Laval, QC H7V 1B7, Canada; PROTEO, the Québec Network for Research on Protein Function, Engineering, and Applications, Université Laval, 1045 Avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
45
|
Xu Y, Harris ME, York DM, Wong KY. Altered Mechanisms for Acid-Catalyzed RNA Cleavage and Isomerization Reactions Models. J Chem Theory Comput 2023; 19:1322-1332. [PMID: 36753428 PMCID: PMC10069163 DOI: 10.1021/acs.jctc.2c01277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
RNA strand cleavage by 2'-O-transphosphorylation is catalyzed not only by numerous nucleolytic RNA enzymes (ribozymes) but also by hydroxide or hydronium ions. In experiments, both cleavage of the 5'-linked nucleoside and isomerization between 3',5'- and 2',5'-phosphodiesters occur under acidic conditions, while only the cleavage reaction is observed under basic conditions. An ab initio path-integral approach for simulating kinetic isotope effects is used to reveal the reaction mechanisms for RNA cleavage and isomerization reactions under acidic conditions. Moreover, the proposed mechanisms can also be combined through the experimental pH-rate profiles.
Collapse
Affiliation(s)
- Yuqing Xu
- School of Physics and Optoelectronic Engineering, Ludong University, Yantai 264025, China
| | - Michael E Harris
- Department of Chemistry, University of Florida, Gainesville, Florida 32611, United States
| | - Darrin M York
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, New Jersey 08854, United States
| | - Kin-Yiu Wong
- Department of Physics, High Performance Cluster Computing Centre, Institute of Advanced Materials, Institute of Computational and Theoretical Studies, Hong Kong Baptist University, 224 Waterloo Road, Kowloon Tong, Hong Kong
- Institute of Research and Continuing Education, Hong Kong Baptist University (Shenzhen), Shenzhen 518057, China
| |
Collapse
|
46
|
Zeng J, Tao Y, Giese TJ, York DM. QDπ: A Quantum Deep Potential Interaction Model for Drug Discovery. J Chem Theory Comput 2023; 19:1261-1275. [PMID: 36696673 PMCID: PMC9992268 DOI: 10.1021/acs.jctc.2c01172] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
We report QDπ-v1.0 for modeling the internal energy of drug molecules containing H, C, N, and O atoms. The QDπ model is in the form of a quantum mechanical/machine learning potential correction (QM/Δ-MLP) that uses a fast third-order self-consistent density-functional tight-binding (DFTB3/3OB) model that is corrected to a quantitatively high-level of accuracy through a deep-learning potential (DeepPot-SE). The model has the advantage that it is able to properly treat electrostatic interactions and handle changes in charge/protonation states. The model is trained against reference data computed at the ωB97X/6-31G* level (as in the ANI-1x data set) and compared to several other approximate semiempirical and machine learning potentials (ANI-1x, ANI-2x, DFTB3, MNDO/d, AM1, PM6, GFN1-xTB, and GFN2-xTB). The QDπ model is demonstrated to be accurate for a wide range of intra- and intermolecular interactions (despite its intended use as an internal energy model) and has shown to perform exceptionally well for relative protonation/deprotonation energies and tautomers. An example application to model reactions involved in RNA strand cleavage catalyzed by protein and nucleic acid enzymes illustrates QDπ has average errors less than 0.5 kcal/mol, whereas the other models compared have errors over an order of magnitude greater. Taken together, this makes QDπ highly attractive as a potential force field model for drug discovery.
Collapse
Affiliation(s)
- Jinzhe Zeng
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Yujun Tao
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Timothy J. Giese
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | - Darrin M. York
- Laboratory for Biomolecular Simulation Research, Institute for Quantitative Biomedicine and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| |
Collapse
|
47
|
Park SH, Jeong SJ, Ha SC. Structural basis for the toxic activity of MafB2 from maf genomic island 2 (MGI-2) in N. meningitidis B16B6. Sci Rep 2023; 13:3365. [PMID: 36849501 PMCID: PMC9970974 DOI: 10.1038/s41598-023-30528-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 02/24/2023] [Indexed: 03/01/2023] Open
Abstract
The Maf polymorphic toxin system is involved in conflict between strains found in pathogenic Neisseria species such as Neisseria meningitidis and Neisseria gonorrhoeae. The genes encoding the Maf polymorphic toxin system are found in specific genomic islands called maf genomic islands (MGIs). In the MGIs, the MafB and MafI encode toxin and immunity proteins, respectively. Although the C-terminal region of MafB (MafB-CT) is specific for toxic activity, the underlying enzymatic activity that renders MafB-CT toxic is unknown in many MafB proteins due to lack of homology with domain of known function. Here we present the crystal structure of the MafB2-CTMGI-2B16B6/MafI2MGI-2B16B6 complex from N. meningitidis B16B6. MafB2-CTMGI-2B16B6 displays an RNase A fold similar to mouse RNase 1, although the sequence identity is only ~ 14.0%. MafB2-CTMGI-2B16B6 forms a 1:1 complex with MafI2MGI-2B16B6 with a Kd value of ~ 40 nM. The complementary charge interaction of MafI2MGI-2B16B6 with the substrate binding surface of MafB2-CTMGI-2B16B6 suggests that MafI2MGI-2B16B6 inhibits MafB2-CTMGI-2B16B6 by blocking access of RNA to the catalytic site. An in vitro enzymatic assay showed that MafB2-CTMGI-2B16B6 has ribonuclease activity. Mutagenesis and cell toxicity assays demonstrated that His335, His402 and His409 are important for the toxic activity of MafB2-CTMGI-2B16B6, suggesting that these residues are critical for its ribonuclease activity. These data provide structural and biochemical evidence that the origin of the toxic activity of MafB2MGI-2B16B6 is the enzymatic activity degrading ribonucleotides.
Collapse
Affiliation(s)
- So Hyeon Park
- grid.49100.3c0000 0001 0742 4007Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sun Ju Jeong
- grid.49100.3c0000 0001 0742 4007Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk 37673 Republic of Korea
| | - Sung Chul Ha
- Beamline Department, Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Gyeongbuk, 37673, Republic of Korea.
| |
Collapse
|
48
|
Lee J, Jo I, Kwon AR, Ha NC. Crystal Structure of the Metallo-Endoribonuclease YbeY from Staphylococcus aureus. J Microbiol Biotechnol 2023; 33:28-34. [PMID: 36457189 PMCID: PMC9895993 DOI: 10.4014/jmb.2209.09019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 11/15/2022] [Accepted: 11/17/2022] [Indexed: 12/03/2022]
Abstract
Endoribonuclease YbeY is specific to the single-stranded RNA of ribosomal RNAs and small RNAs. This enzyme is essential for the maturation and quality control of ribosomal RNA in a wide range of bacteria and for virulence in some pathogenic bacteria. In this study, we determined the crystal structure of YbeY from Staphylococcus aureus at a resolution of 1.9 Å in the presence of zinc chloride. The structure showed a zinc ion at the active site and two molecules of tricarboxylic acid citrate, which were also derived from the crystallization conditions. Our structure showed the zinc ion-bound local environment at the molecular level for the first time. Molecular comparisons were performed between the carboxylic moieties of citrate and the phosphate moiety of the RNA backbone, and a model of YbeY in complex with a single strand of RNA was subsequently constructed. Our findings provide molecular insights into how the YbeY enzyme recognizes single-stranded RNA in bacteria.
Collapse
Affiliation(s)
- Jinwook Lee
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea
| | - Inseong Jo
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea,Current address: Infectious Diseases Therapeutic Research Center, Korea Research Institute of Chemical Technology, Daejeon 34114, Republic of Korea
| | - Ae-Ran Kwon
- Department of Beauty Care, College of Medical Science, Daegu Haany University, Gyeongsan 38610, Republic of Korea
| | - Nam-Chul Ha
- Research Institute of Agriculture and Life Sciences, Center for Food and Bioconvergence, Department of Agricultural Biotechnology, CALS, Seoul National University, Seoul 08826, Republic of Korea,Corresponding author Phone: +82-2-880-4853 E-mail:
| |
Collapse
|
49
|
Zhou T, Yuan S, Qian P, Wu Y. Enzymes in Nanomedicine for Anti-tumor Therapy. Chem Res Chin Univ 2023. [DOI: 10.1007/s40242-023-2349-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
50
|
Ashton MN, Worsham AE, Strawn MD, Fisher GD, Perry CJ, Ferguson MP, Zumwalt M, Brindley GW, Hashemi J, Mansouri H, Slauterbeck JR, Hardy DM. Degraded RNA from Human Anterior Cruciate Ligaments Yields Valid Gene Expression Profiles. Int J Mol Sci 2023; 24:1895. [PMID: 36768233 PMCID: PMC9916516 DOI: 10.3390/ijms24031895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/12/2023] [Accepted: 01/13/2023] [Indexed: 01/21/2023] Open
Abstract
Correlating gene expression patterns with biomechanical properties of connective tissues provides insights into the molecular processes underlying the tissue growth and repair. Cadaveric specimens such as human knees are widely considered suitable for biomechanical studies, but their usefulness for gene expression experiments is potentially limited by the unavoidable, nuclease-mediated degradation of RNA. Here, we tested whether valid gene expression profiles can be obtained using degraded RNA from human anterior cruciate ligaments (ACLs). Human ACL RNA (N = 6) degraded in vitro by limited ribonuclease digestion resemble highly degraded RNA isolated from cadaveric tissue. PCR threshold cycle (Ct) values for 90 transcripts (84 extracellular matrix, 6 housekeeping) in degraded RNAs variably ranged higher than values obtained from their corresponding non-degraded RNAs, reflecting both the expected loss of target templates in the degraded preparations as well as differences in the extent of degradation. Relative Ct values obtained for mRNAs in degraded preparations strongly correlated with the corresponding levels in non-degraded RNA, both for each ACL as well as for the pooled results from all six ACLs. Nuclease-mediated degradation produced similar, strongly correlated losses of housekeeping and non-housekeeping gene mRNAs. RNA degraded in situ yielded comparable results, confirming that in vitro digestion effectively modeled degradation by endogenous ribonucleases in frozen and thawed ACL. We conclude that, contrary to conventional wisdom, PCR-based expression analyses can yield valid mRNA profiles even from RNA preparations that are more than 90% degraded, such as those obtained from connective tissues subjected to biomechanical studies. Furthermore, legitimate quantitative comparisons between variably degraded tissues can be made by normalizing data to appropriate housekeeping transcripts.
Collapse
Affiliation(s)
- Megan N. Ashton
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Asha E. Worsham
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew D. Strawn
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Geoffrey D. Fisher
- Department of Anesthesiology, Virginia Commonwealth University, Richmond, VA 23298, USA
| | - Cody J. Perry
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Matthew P. Ferguson
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Mimi Zumwalt
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - George W. Brindley
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Javad Hashemi
- Department of Ocean & Mechanical Engineering, Florida Atlantic University, Boca Raton, FL 33431, USA
| | - Hossein Mansouri
- Department of Mathematics & Statistics, Texas Tech University, Lubbock, TX 79409, USA
| | - James R. Slauterbeck
- Department of Orthopaedic Surgery, University of South Alabama, Mobile, AL 36604, USA
| | - Daniel M. Hardy
- Department of Cell Biology & Biochemistry, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Orthopaedic Surgery & Rehabilitation, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|