1
|
Jung J, An H, Lee J, Han S. Modified Activation-Relaxation Technique (ARTn) Method Tuned for Efficient Identification of Transition States in Surface Reactions. J Chem Theory Comput 2024. [PMID: 39240127 DOI: 10.1021/acs.jctc.4c00767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Exploring potential energy surfaces (PES) is essential for unraveling the underlying mechanisms of chemical reactions and material properties. While the activation-relaxation technique (ARTn) is a state-of-the-art method for identifying saddle points on PES, it often faces challenges in complex energy landscapes, especially on surfaces. In this study, we introduce iso-ARTn, an enhanced ARTn method that incorporates constraints on an orthogonal hyperplane and employs an adaptive active volume. By leveraging a neural network potential (NNP) to conduct an exhaustive saddle point search on the Pt(111) surface with 0.3 monolayers of surface oxygen coverage, iso-ARTn achieves a success rate that is 8.2% higher than the original ARTn, with 40% fewer force calls. Moreover, this method effectively finds various saddle points without compromising the success rate. Combined with kinetic Monte Carlo simulations for event table construction, iso-ARTn with NNP demonstrates the capability to reveal structures consistent with experimental observations. This work signifies a substantial advancement in the investigation of PES, enhancing both the efficiency and breadth of saddle point searches.
Collapse
Affiliation(s)
- Jisu Jung
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Hyungmin An
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea
| | - Jinhee Lee
- Fuel Cell Center, Hyundai Motor Company, Yongin 16891, Korea
| | - Seungwu Han
- Department of Material Science and Engineering, Seoul National University, Seoul 08826, Korea
- Korea Institute for Advanced Study, Seoul 02455, Korea
| |
Collapse
|
2
|
Zhdanov VP. Basics of the reaction kinetics on metallic alloys. Phys Rev E 2024; 110:034804. [PMID: 39425335 DOI: 10.1103/physreve.110.034804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Accepted: 09/05/2024] [Indexed: 10/21/2024]
Abstract
Kinetics of heterogeneous catalytic reactions are often complicated by various factors, and from the perspective of statistical physics the development of the corresponding models is frequently challenging especially in the case of practically important alloy catalysts. To extend the basics in this area, I use a generic kinetic model of N_{2} formation in the NO reaction with such species as CO or H_{2}. The focus is on the reaction on the surface of a bimetallic alloy with low integral fraction of one of the metals so that the alloy is formed only at the surface. The main goal is to illustrate the specifics of the reaction kinetics and to clarify the accuracy of various approximations which are often inevitable for the analysis of such systems. The key results are as follows. (i) In the baseline one-metal case with the Langmuir-type equations, the model predicts the existence of the optimal adsorbate binding energy corresponding to the maximal reaction rate. (ii) With suitable substitution of the symbols, the equations employed for a uniform surface [item (i)] can be used for the mean-field description of reaction on the surface of a random alloy. In particular, the maximum in the dependence of the reaction rate on the binding energy is converted to the maximum with respect to the alloy composition. (iii) The reaction kinetics on the random-alloy surface have been described exactly. The corresponding maximum in the reaction rate is lower and somewhat smeared compared to that predicted in the mean-field approximation for an alloy or for the optimal monometallic catalyst. (iv) The reaction kinetics have been scrutinized also in the case of two-dimensional (2D) segregation of metal atoms at the surface in the limits of slow and rapid adsorbate diffusion between the spots. The kinetics are shown to be qualitatively different in these limits and also compared to the random-alloy case. (v) The thermodynamic criteria for 2D segregation of metal atoms at the surface have been derived as well.
Collapse
|
3
|
Che T, Zhou Y, Han X, Najm HN. Adaptive tau-leaping methods for microscopic-lattice kinetic Monte Carlo simulations. J Chem Phys 2024; 161:084107. [PMID: 39177088 DOI: 10.1063/5.0218471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/11/2024] [Indexed: 08/24/2024] Open
Abstract
Traditional Kinetic Monte Carlo (KMC) approaches, rooted in Gillespie's stochastic simulation algorithm, become computationally demanding in systems with a large range of timescales. The goal of this work is to propose and study new adaptive lattice-KMC time integration strategies for spatially non-uniform systems. To that end, two novel adaptive tau-leaping methods and their corresponding time integration strategies are developed based on the idea of the "n-fold" direct KMC method. These strategies allow for the simultaneous execution of multiple reactions, advancing time by adaptively selected coarse increments. We present numerical experiments comparing the proposed methods with existing approaches in a catalytic surface kinetics application involving ammonia decomposition.
Collapse
Affiliation(s)
- Tianshi Che
- Department of Computer Science and Software Engineering, Auburn University, 3112 Shelby Center, Auburn, Alabama 36849, USA
| | - Yang Zhou
- Department of Computer Science and Software Engineering, Auburn University, 3112 Shelby Center, Auburn, Alabama 36849, USA
| | - Xiaoying Han
- Department of Mathematics and Statistics, Auburn University, 221 Parker Hall, Auburn, Alabama 36849, USA
| | - Habib N Najm
- Sandia National Laboratories, P.O. Box 969, MS 9051, Livermore, California 94551, USA
| |
Collapse
|
4
|
Goswami A, Krishna SH, Gounder R, Schneider WF. Kinetic Monte Carlo Analysis Reveals Non-mean-field Active Site Dynamics in Cu-Zeolite-Catalyzed NO x Reduction. ACS Catal 2024; 14:8376-8388. [PMID: 38868104 PMCID: PMC11166141 DOI: 10.1021/acscatal.4c01856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 06/14/2024]
Abstract
Copper-exchanged chabazite (Cu-CHA) zeolites are the preferred catalysts for the selective catalytic reduction of NO x with NH3. The low temperature (473 K) SCR mechanism proceeds through a redox cycle between mobile and ammonia-solvated Cu(I) and Cu(II) complexes, as demonstrated by multiple experimental and computational investigations. The oxidation step requires two Cu(I) to migrate into the same cha cage to activate O2 and form a binuclear Cu(II)-di-oxo complex. Prior steady state and transient kinetic experiments find that the apparent rate constants for oxidation (per Cu ion) are sensitive to catalyst composition and follow nonmean-field kinetics. We develop a nonmean-field kinetic model for NO x SCR that incorporates a composition-dependent Cu(I) volumetric footprint centered at anionic [AlO4]- tetrahedral sites on the CHA lattice. We use Bayesian optimization to parameterize a kinetic Monte Carlo model against available experimental composition-dependent SCR rates and in situ Cu(II) fractions. We find that both rates and Cu(II) fractions of a majority of catalyst compositions can be captured by single oxidation and reduction rate constants combined with a composition-dependent Cu(I) cation footprint, highlighting the contributions of both Cu and Al densities to steady-state SCR performance of Cu-CHA. The work illustrates a pathway for extracting robust molecular insights from the kinetics of a dynamic catalytic system.
Collapse
Affiliation(s)
- Anshuman Goswami
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| | - Siddarth H. Krishna
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - Rajamani Gounder
- Charles
D. Davidson School of Chemical Engineering, Purdue University, 480 Stadium Mall Drive, West Lafayette, Indiana 47907, United States
| | - William F. Schneider
- Department
of Chemical and Biomolecular Engineering, University of Notre Dame, Notre
Dame, Indiana 46556, United States
| |
Collapse
|
5
|
Prats H, Pajares A, Viñes F, Ramírez de la Piscina P, Sayós R, Homs N, Illas F. On the Capabilities of Transition Metal Carbides for Carbon Capture and Utilization Technologies. ACS APPLIED MATERIALS & INTERFACES 2024; 16:28505-28516. [PMID: 38785134 PMCID: PMC11163407 DOI: 10.1021/acsami.4c03735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 05/25/2024]
Abstract
The search for cheap and active materials for the capture and activation of CO2 has led to many efforts aimed at developing new catalysts. In this context, earth-abundant transition metal carbides (TMCs) have emerged as promising candidates, garnering increased attention in recent decades due to their exceptional refractory properties and resistance to sintering, coking, and sulfur poisoning. In this work, we assess the use of Group 5 TMCs (VC, NbC, and TaC) as potential materials for carbon capture and sequestration/utilization technologies by combining experimental characterization techniques, first-principles-based multiscale modeling, vibrational analysis, and catalytic experiments. Our findings reveal that the stoichiometric phase of VC exhibits weak interactions with CO2, displaying an inability to adsorb or dissociate it. However, VC often exhibits the presence of surface carbon vacancies, leading to significant activation of CO2 at room temperature and facilitating its catalytic hydrogenation. In contrast, stoichiometric NbC and TaC phases exhibit stronger interactions with CO2, capable of adsorbing and even breaking of CO2 at low temperatures, particularly notable in the case of TaC. Nevertheless, NbC and TaC demonstrate poor catalytic performance for CO2 hydrogenation. This work suggests Group 5 TMCs as potential materials for CO2 abatement, emphasizes the importance of surface vacancies in enhancing catalytic activity and adsorption capability, and provides a reference for using the infrared spectra as a unique identifier to detect oxy-carbide phases or surface C vacancies within Group 5 TMCs.
Collapse
Affiliation(s)
- Hector Prats
- Department
of Chemistry, Physical and Theoretical Chemistry Laboratory, University of Oxford, South Parks Road, Oxford OX1 3QZ, U.K.
| | - Arturo Pajares
- Sustainable
Materials, Flemish Institute for Technological
Research (VITO NV), Boeretang 200, Mol 2400, Belgium
| | - Francesc Viñes
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Pilar Ramírez de la Piscina
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica and Institut de Nanociència
i Nanotecnologia (IN2UB), Universitat de
Barcelona, Martí
i Franquès 1-11, Barcelona 08028, Spain
| | - Ramon Sayós
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| | - Narcís Homs
- Departament
de Química Inorgànica i Orgànica, Secció
de Química Inorgànica and Institut de Nanociència
i Nanotecnologia (IN2UB), Universitat de
Barcelona, Martí
i Franquès 1-11, Barcelona 08028, Spain
- Institut
de Recerca en Energia de Catalunya (IREC), Jardins de les Dones de Negre 1, Barcelona 08930, Spain
| | - Francesc Illas
- Departament
de Ciència de Materials i Química Física &
Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, Martí i Franquès 1-11, Barcelona 08028, Spain
| |
Collapse
|
6
|
Li XY, Ou P, Duan X, Ying L, Meng J, Zhu B, Gao Y. Dynamic Active Sites In Situ Formed in Metal Nanoparticle Reshaping under Reaction Conditions. JACS AU 2024; 4:1892-1900. [PMID: 38818067 PMCID: PMC11134379 DOI: 10.1021/jacsau.4c00088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 06/01/2024]
Abstract
Understanding the nonequilibrium transformation of nanocatalysts under reaction conditions is important because metastable atomic structures may be created during the process, which offers unique activities in reactions. Although reshaping of metal nanoparticles (NPs) under reaction conditions has been widely recognized, the dynamic reshaping process has been less studied at the atomic scale. Here, we develop an atomistic kinetic Monte Carlo model to simulate the complete reshaping process of Pt nanoparticles in a CO environment and reveal the in situ formation of atomic clusters on the NP surface, a new type of active site beyond conventional understanding, boosting the reactivities in the CO oxidation reaction. Interestingly, highly active peninsula and inactive island clusters both form on the (111) facets and interchange in varying states of dynamic equilibrium, which influences the catalytic activities significantly. This study provides new fundamental knowledge of nanocatalysis and new guidance for the rational design of nanocatalysts.
Collapse
Affiliation(s)
- Xiao-Yan Li
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Pengfei Ou
- Department
of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Xinyi Duan
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Lei Ying
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Jun Meng
- Shanghai
Institute of Applied Physics, Chinese Academy of Sciences, Shanghai 201800, China
| | - Beien Zhu
- Photon
Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Yi Gao
- Photon
Science Research Center for Carbon Dioxide, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
- Key
Laboratory of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy
of Sciences, Shanghai 201210, China
| |
Collapse
|
7
|
Fang W, Zhu YC, Cheng Y, Hao YP, Richardson JO. Robust Gaussian Process Regression Method for Efficient Tunneling Pathway Optimization: Application to Surface Processes. J Chem Theory Comput 2024; 20:3766-3778. [PMID: 38708859 PMCID: PMC11099967 DOI: 10.1021/acs.jctc.4c00158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 04/17/2024] [Accepted: 04/17/2024] [Indexed: 05/07/2024]
Abstract
Simulation of surface processes is a key part of computational chemistry that offers atomic-scale insights into mechanisms of heterogeneous catalysis, diffusion dynamics, and quantum tunneling phenomena. The most common theoretical approaches involve optimization of reaction pathways, including semiclassical tunneling pathways (called instantons). The computational effort can be demanding, especially for instanton optimizations with an ab initio electronic structure. Recently, machine learning has been applied to accelerate reaction-pathway optimization, showing great potential for a wide range of applications. However, previous methods still suffer from numerical and efficiency issues and were not designed for condensed-phase reactions. We propose an improved framework based on Gaussian process regression for general transformed coordinates, which has improved efficiency and numerical stability, and we propose a descriptor that combines internal and Cartesian coordinates suitable for modeling surface processes. We demonstrate with 11 instanton optimizations in three representative systems that the improved approach makes ab initio instanton optimization significantly cheaper, such that it becomes not much more expensive than a classical transition-state theory rate calculation.
Collapse
Affiliation(s)
- Wei Fang
- Department
of Chemistry, Shanghai Key Laboratory of Molecular Catalysis and Innovative
Materials, Fudan University, Shanghai 200438, P. R. China
- Laboratory
of Physical Chemistry, ETH Zürich, Zürich 8093, Switzerland
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Yu-Cheng Zhu
- State
Key Laboratory for Artificial Microstructure and Mesoscopic Physics,
Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, China
| | - Yihan Cheng
- State
Key Laboratory for Artificial Microstructure and Mesoscopic Physics,
Frontier Science Center for Nano-optoelectronics and School of Physics, Peking University, Beijing 100871, China
| | - Yi-Ping Hao
- State
Key Laboratory of Molecular Reaction Dynamics and Center for Theoretical
Computational Chemistry, Dalian Institute
of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P. R. China
| | - Jeremy O. Richardson
- Department
of Chemistry and Applied Biosciences, ETH
Zürich, Zürich 8093, Switzerland
| |
Collapse
|
8
|
Lozano-Reis P, Gamallo P, Sayós R, Illas F. Comprehensive Density Functional and Kinetic Monte Carlo Study of CO 2 Hydrogenation on a Well-Defined Ni/CeO 2 Model Catalyst: Role of Eley-Rideal Reactions. ACS Catal 2024; 14:2284-2299. [PMID: 38384940 PMCID: PMC10877572 DOI: 10.1021/acscatal.3c05336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/28/2023] [Accepted: 01/16/2024] [Indexed: 02/23/2024]
Abstract
A detailed multiscale study of the mechanism of CO2 hydrogenation on a well-defined Ni/CeO2 model catalyst is reported that couples periodic density functional theory (DFT) calculations with kinetic Monte Carlo (kMC) simulations. The study includes an analysis of the role of Eley-Rideal elementary steps for the water formation step, which are usually neglected on the overall picture of the mechanism, catalytic activity, and selectivity. The DFT calculations for the chosen model consisting of a Ni4 cluster supported on CeO2 (111) show large enough adsorption energies along with low energy barriers that suggest this catalyst to be a good option for high selective CO2 methanation. The kMC simulations results show a synergic effect between the two 3-fold hollow sites of the supported Ni4 cluster with some elementary reactions dominant in one site, while other reactions prefer the another, nearly equivalent site. This effect is even more evident for the simulations explicitly including Eley-Rideal steps. The kMC simulations reveal that CO is formed via the dissociative pathway of the reverse water-gas shift reaction, while methane is formed via a CO2 → CO → HCO → CH → CH2 → CH3 → CH4 mechanism. Overall, our results show the importance of including the Eley-Rideal reactions and point to small Ni clusters supported on the CeO2 (111) surface as potential good catalysts for high selective CO2 methanation under mild conditions, while very active and selective toward CO formation at higher temperatures.
Collapse
Affiliation(s)
- Pablo Lozano-Reis
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Pablo Gamallo
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Ramón Sayós
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| | - Francesc Illas
- Departament de Ciència
de Materials i Química Física & Institut de Química
Teòrica i Computacional (IQTCUB), Universitat de Barcelona, C. Martí i Franquès 1, 08028 Barcelona, Spain
| |
Collapse
|
9
|
Le TH, Ferro-Costas D, Fernández-Ramos A, Ortuño MA. Combined DFT and Kinetic Monte Carlo Study of UiO-66 Catalysts for γ-Valerolactone Production. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2024; 128:1049-1057. [PMID: 38293690 PMCID: PMC10823797 DOI: 10.1021/acs.jpcc.3c06053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 12/21/2023] [Accepted: 01/02/2024] [Indexed: 02/01/2024]
Abstract
Zr-based metal-organic frameworks (MOFs) are excellent heterogeneous porous catalysts due to their thermal stability. Their tunability via node and linker modifications makes them amenable for theoretical studies on catalyst design. However, detailed benchmarks on MOF-based reaction mechanisms combined with kinetics analysis are still scarce. Thus, we here evaluate different computational models and density functional theory (DFT) methods followed by kinetic Monte Carlo studies for a case reaction relevant in biomass upgrading, i.e., the conversion of methyl levulinate to γ-valerolactone catalyzed by UiO-66. We show the impact of cluster versus periodic models, the importance of the DF of choice, and the direct comparison to experimental data via simulated kinetics data. Overall, we found that Perdew-Burke-Ernzerhof (PBE), a widely employed method in plane-wave periodic calculations, greatly overestimates reaction rates, while M06 with cluster models better fits the available experimental data and is recommended whenever possible.
Collapse
Affiliation(s)
- Thanh-Hiep
Thi Le
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - David Ferro-Costas
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento
de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Antonio Fernández-Ramos
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
- Departamento
de Química Física, Facultade de Química, Universidade de Santiago de Compostela, 15782 Santiago
de Compostela, Spain
| | - Manuel A. Ortuño
- Centro
Singular de Investigación en Química Biolóxica
e Materiais Moleculares (CIQUS), Universidade
de Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
10
|
Benson RL, Yadavalli SS, Stamatakis M. Speeding up the Detection of Adsorbate Lateral Interactions in Graph-Theoretical Kinetic Monte Carlo Simulations. J Phys Chem A 2023; 127:10307-10319. [PMID: 37988475 PMCID: PMC11065322 DOI: 10.1021/acs.jpca.3c05581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Kinetic Monte Carlo (KMC) has become an indispensable tool in heterogeneous catalyst discovery, but realistic simulations remain computationally demanding on account of the need to capture complex and long-range lateral interactions between adsorbates. The Zacros software package (https://zacros.org) adopts a graph-theoretical cluster expansion (CE) framework that allows such interactions to be computed with a high degree of generality and fidelity. This involves solving a series of subgraph isomorphism problems in order to identify relevant interaction patterns in the lattice. In an effort to reduce the computational burden, we have adapted two well-known subgraph isomorphism algorithms, namely, VF2 and RI, for use in KMC simulations and implemented them in Zacros. To benchmark their performance, we simulate a previously established model of catalytic NO oxidation, treating the O* lateral interactions with a series of progressively larger CEs. For CEs with long-range interactions, VF2 and RI are found to provide impressive speedups relative to simpler algorithms. RI performs best, giving speedups reaching more than 150× when combined with OpenMP parallelization. We also simulate a recently developed methane cracking model, showing that RI offers significant improvements in performance at high surface coverages.
Collapse
Affiliation(s)
- Raz L. Benson
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | - Sai Sharath Yadavalli
- Department of Chemical Engineering, University College London, Torrington Place, London WC1E 7JE, U.K.
| | | |
Collapse
|
11
|
Mercado E, Jung HT, Kim C, Garcia AL, Nonaka AJ, Bell JB. Surface coverage dynamics for reversible dissociative adsorption on finite linear lattices. J Chem Phys 2023; 159:144107. [PMID: 37823463 DOI: 10.1063/5.0171207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 09/25/2023] [Indexed: 10/13/2023] Open
Abstract
Dissociative adsorption onto a surface introduces dynamic correlations between neighboring sites not found in non-dissociative absorption. We study surface coverage dynamics where reversible dissociative adsorption of dimers occurs on a finite linear lattice. We derive analytic expressions for the equilibrium surface coverage as a function of the number of reactive sites, N, and the ratio of the adsorption and desorption rates. Using these results, we characterize the finite size effect on the equilibrium surface coverage. For comparable N's, the finite size effect is significantly larger when N is even than when N is odd. Moreover, as N increases, the size effect decays more slowly in the even case than in the odd case. The finite-size effect becomes significant when adsorption and desorption rates are considerably different. These finite-size effects are related to the number of accessible configurations in a finite system where the odd-even dependence arises from the limited number of accessible configurations in the even case. We confirm our analytical results with kinetic Monte Carlo simulations. We also analyze the surface-diffusion case where adsorbed atoms can hop into neighboring sites. As expected, the odd-even dependence disappears because more configurations are accessible in the even case due to surface diffusion.
Collapse
Affiliation(s)
- Enrique Mercado
- Department of Applied Mathematics, University of California, Merced, California 95343, USA
| | - Hyun Tae Jung
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, South Korea
| | - Changho Kim
- Department of Applied Mathematics, University of California, Merced, California 95343, USA
| | - Alejandro L Garcia
- Department of Physics and Astronomy, San Jose State University, San Jose, California 95192, USA
| | - Andy J Nonaka
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| | - John B Bell
- Center for Computational Sciences and Engineering, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
12
|
Van Speybroeck V, Bocus M, Cnudde P, Vanduyfhuys L. Operando Modeling of Zeolite-Catalyzed Reactions Using First-Principles Molecular Dynamics Simulations. ACS Catal 2023; 13:11455-11493. [PMID: 37671178 PMCID: PMC10476167 DOI: 10.1021/acscatal.3c01945] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/27/2023] [Indexed: 09/07/2023]
Abstract
Within this Perspective, we critically reflect on the role of first-principles molecular dynamics (MD) simulations in unraveling the catalytic function within zeolites under operating conditions. First-principles MD simulations refer to methods where the dynamics of the nuclei is followed in time by integrating the Newtonian equations of motion on a potential energy surface that is determined by solving the quantum-mechanical many-body problem for the electrons. Catalytic solids used in industrial applications show an intriguing high degree of complexity, with phenomena taking place at a broad range of length and time scales. Additionally, the state and function of a catalyst critically depend on the operating conditions, such as temperature, moisture, presence of water, etc. Herein we show by means of a series of exemplary cases how first-principles MD simulations are instrumental to unravel the catalyst complexity at the molecular scale. Examples show how the nature of reactive species at higher catalytic temperatures may drastically change compared to species at lower temperatures and how the nature of active sites may dynamically change upon exposure to water. To simulate rare events, first-principles MD simulations need to be used in combination with enhanced sampling techniques to efficiently sample low-probability regions of phase space. Using these techniques, it is shown how competitive pathways at operating conditions can be discovered and how broad transition state regions can be explored. Interestingly, such simulations can also be used to study hindered diffusion under operating conditions. The cases shown clearly illustrate how first-principles MD simulations reveal insights into the catalytic function at operating conditions, which could not be discovered using static or local approaches where only a few points are considered on the potential energy surface (PES). Despite these advantages, some major hurdles still exist to fully integrate first-principles MD methods in a standard computational catalytic workflow or to use the output of MD simulations as input for multiple length/time scale methods that aim to bridge to the reactor scale. First of all, methods are needed that allow us to evaluate the interatomic forces with quantum-mechanical accuracy, albeit at a much lower computational cost compared to currently used density functional theory (DFT) methods. The use of DFT limits the currently attainable length/time scales to hundreds of picoseconds and a few nanometers, which are much smaller than realistic catalyst particle dimensions and time scales encountered in the catalysis process. One solution could be to construct machine learning potentials (MLPs), where a numerical potential is derived from underlying quantum-mechanical data, which could be used in subsequent MD simulations. As such, much longer length and time scales could be reached; however, quite some research is still necessary to construct MLPs for the complex systems encountered in industrially used catalysts. Second, most currently used enhanced sampling techniques in catalysis make use of collective variables (CVs), which are mostly determined based on chemical intuition. To explore complex reactive networks with MD simulations, methods are needed that allow the automatic discovery of CVs or methods that do not rely on a priori definition of CVs. Recently, various data-driven methods have been proposed, which could be explored for complex catalytic systems. Lastly, first-principles MD methods are currently mostly used to investigate local reactive events. We hope that with the rise of data-driven methods and more efficient methods to describe the PES, first-principles MD methods will in the future also be able to describe longer length/time scale processes in catalysis. This might lead to a consistent dynamic description of all steps-diffusion, adsorption, and reaction-as they take place at the catalyst particle level.
Collapse
Affiliation(s)
| | - Massimo Bocus
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Pieter Cnudde
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| | - Louis Vanduyfhuys
- Center for Molecular Modeling, Ghent University, Technologiepark 46, 9052 Zwijnaarde, Belgium
| |
Collapse
|
13
|
Xu L, Papanikolaou KG, Lechner BAJ, Je L, Somorjai GA, Salmeron M, Mavrikakis M. Formation of active sites on transition metals through reaction-driven migration of surface atoms. Science 2023; 380:70-76. [PMID: 37023183 DOI: 10.1126/science.add0089] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Adopting low-index single-crystal surfaces as models for metal nanoparticle catalysts has been questioned by the experimental findings of adsorbate-induced formation of subnanometer clusters on several single-crystal surfaces. We used density functional theory calculations to elucidate the conditions that lead to cluster formation and show how adatom formation energies enable efficient screening of the conditions required for adsorbate-induced cluster formation. We studied a combination of eight face-centered cubic transition metals and 18 common surface intermediates and identified systems relevant to catalytic reactions, such as carbon monoxide (CO) oxidation and ammonia (NH3) oxidation. We used kinetic Monte Carlo simulations to elucidate the CO-induced cluster formation process on a copper surface. Scanning tunneling microscopy of CO on a nickel (111) surface that contains steps and dislocations points to the structure sensitivity of this phenomenon. Metal-metal bond breaking that leads to the evolution of catalyst structures under realistic reaction conditions occurs much more broadly than previously thought.
Collapse
Affiliation(s)
- Lang Xu
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | - Barbara A J Lechner
- Department of Chemistry and Catalysis Research Center, School of Natural Sciences, Technical University of Munich, 85748 Garching, Germany
- Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Lisa Je
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Gabor A Somorjai
- Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Miquel Salmeron
- Division of Materials Science, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Manos Mavrikakis
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
14
|
Krishna SH, Goswami A, Wang Y, Jones CB, Dean DP, Miller JT, Schneider WF, Gounder R. Influence of framework Al density in chabazite zeolites on copper ion mobility and reactivity during NOx selective catalytic reduction with NH3. Nat Catal 2023. [DOI: 10.1038/s41929-023-00932-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2023]
|
15
|
Chen BW. Equilibrium and kinetic isotope effects in heterogeneous catalysis: A density functional theory perspective. CATAL COMMUN 2023. [DOI: 10.1016/j.catcom.2023.106654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023] Open
|
16
|
Zhang Y, Wang B, Fan M, Ling L, Zhang R. Ethane Dehydrogenation over the Core-Shell Pt-Based Alloy Catalysts: Driven by Engineering the Shell Composition and Thickness. ACS APPLIED MATERIALS & INTERFACES 2023; 15:10679-10695. [PMID: 36795766 DOI: 10.1021/acsami.2c21249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pt-based catalysts as the commercial catalysts in ethane dehydrogenation (EDH) face one of the main challenges of realizing the balance between coke formation and catalytic activity. In this work, a strategy to drive the catalytic performance of EDH on Pt-Sn alloy catalysts is proposed by rationally engineering the shell surface structure and thickness of core-shell Pt@Pt3Sn and Pt3Sn@Pt catalysts from a theoretical perspective. Eight types of Pt@Pt3Sn and Pt3Sn@Pt catalysts with different Pt and Pt3Sn shell thicknesses are considered and compared with the industrially used Pt and Pt3Sn catalysts. Density functional theory (DFT) calculations completely describe the reaction network of EDH, including the side reactions of deep dehydrogenation and C-C bond cracking. Kinetic Monte Carlo (kMC) simulations reveal the influences of the catalyst surface structure, experimentally related temperatures, and reactant partial pressures. The results show that CHCH* is the main precursor for coke formation, and Pt@Pt3Sn catalysts generally have higher C2H4(g) activity and lower selectivity compared to those of Pt3Sn@Pt catalysts, which is attributed to the unique surface geometrical and electronic properties. 1Pt3Sn@4Pt and 1Pt@4Pt3Sn are screened out as catalysts exhibiting excellent performance; especially, the 1Pt3Sn@4Pt catalyst has much higher C2H4(g) activity and 100% C2H4(g) selectivity compared to those of 1Pt@4Pt3Sn and the widely used Pt and Pt3Sn catalysts. The two descriptors C2H5* adsorption energy and reaction energy of its dehydrogenation to C2H4* are proposed to qualitatively evaluate the C2H4(g) selectivity and activity, respectively. This work facilitates a valuable exploration for optimizing the catalytic performance of core-shell Pt-based catalysts in EDH and reveals the great importance of the fine control of the catalyst shell surface structure and thickness.
Collapse
Affiliation(s)
- Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lixia Ling
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan 030024, Shanxi, P. R. China
| |
Collapse
|
17
|
Li K, Li X, Li L, Chang X, Wu S, Yang C, Song X, Zhao ZJ, Gong J. Nature of Catalytic Behavior of Cobalt Oxides for CO 2 Hydrogenation. JACS AU 2023; 3:508-515. [PMID: 36873681 PMCID: PMC9975827 DOI: 10.1021/jacsau.2c00632] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/01/2023] [Accepted: 01/17/2023] [Indexed: 06/18/2023]
Abstract
Cobalt oxide (CoO x ) catalysts are widely applied in CO2 hydrogenation but suffer from structural evolution during the reaction. This paper describes the complicated structure-performance relationship under reaction conditions. An iterative approach was employed to simulate the reduction process with the help of neural network potential-accelerated molecular dynamics. Based on the reduced models of catalysts, a combined theoretical and experimental study has discovered that CoO(111) provides active sites to break C-O bonds for CH4 production. The analysis of the reaction mechanism indicated that the C-O bond scission of *CH2O species plays a key role in producing CH4. The nature of dissociating C-O bonds is attributed to the stabilization of *O atoms after C-O bond cleavage and the weakening of C-O bond strength by surface-transferred electrons. This work may offer a paradigm to explore the origin of performance over metal oxides in heterogeneous catalysis.
Collapse
Affiliation(s)
- Kailang Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xianghong Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Lulu Li
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xin Chang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Shican Wu
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Chengsheng Yang
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Xiwen Song
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Zhi-Jian Zhao
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
| | - Jinlong Gong
- Key
Laboratory for Green Chemical Technology of Ministry of Education,
School of Chemical Engineering and Technology, Tianjin University; Collaborative Innovation Center for Chemical
Science and Engineering, Tianjin 300072, China
- Joint
School of National University of Singapore and Tianjin University,
International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Haihe
Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- National
Industry-Education Platform of Energy Storage, Tianjin University, 135 Yaguan Road, Tianjin 300350, China
| |
Collapse
|
18
|
Savva GD, Benson RL, Christidi IA, Stamatakis M. Large-scale benchmarks of the time-warp/graph-theoretical kinetic Monte Carlo approach for distributed on-lattice simulations of catalytic kinetics. Phys Chem Chem Phys 2023; 25:5468-5478. [PMID: 36748393 DOI: 10.1039/d2cp04424b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Motivated by the need to perform large-scale kinetic Monte Carlo (KMC) simulations, in the context of unravelling complex phenomena such as catalyst reconstruction and pattern formation, we extend the work of Ravipati et al. [S. Ravipati, G. D. Savva, I.-A. Christidi, R. Guichard, J. Nielsen, R. Réocreux and M. Stamatakis, Comput. Phys. Commun., 2022, 270, 108148] in benchmarking the performance of a distributed-computing, on-lattice KMC approach. The latter, implemented in our software package Zacros, combines the graph-theoretical KMC framework with the Time-Warp algorithm for parallel discrete event simulations, and entails dividing the lattice into subdomains, each assigned to a processor. The cornerstone of the Time-Warp algorithm is the state queue, to which snapshots of the simulation state are saved regularly, enabling historical KMC information to be corrected when conflicts occur at subdomain boundaries. Focusing on three model systems, we highlight the key Time-Warp parameters that can be tuned to optimise performance. The frequency of state saving, controlled by the state saving interval, δsnap, is shown to have the largest effect on performance, which favours balancing the overhead of re-simulating KMC history with that of writing state snapshots to memory. Also important is the global virtual time (GVT) computation interval, ΔτGVT, which has little direct effect on the progress of the simulation but controls how often the state queue memory can be freed up. We also find that pre-allocating memory for the state queue data structure favours performance. These findings will guide users in maximising the efficiency of Zacros or other distributed KMC software, which is a vital step towards realising accurate, meso-scale simulations of heterogeneous catalysis.
Collapse
Affiliation(s)
- Giannis D Savva
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK. .,Theory and Simulation of Materials (THEOS), École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Raz L Benson
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| | - Ilektra A Christidi
- Research Software Development Group, Advanced Research Computing Centre, University College London, Gower Street, London, WC1E 6BT, UK
| | - Michail Stamatakis
- Department of Chemical Engineering, University College London, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
19
|
Ping L, Zhang Y, Wang B, Fan M, Ling L, Zhang R. Unraveling the Surface State Evolution of IrO 2 in Ethane Chemical Looping Oxidative Dehydrogenation. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Lulu Ping
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Yuan Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Maohong Fan
- Department of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming 82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming 82071, United States
| | - Lixia Ling
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan, Shanxi 030024, P. R. China
| |
Collapse
|
20
|
Wu Y, Zhao W, Wang Y, Wang B, Fan M, Zhang R. Enhancing Catalytic Performance through Subsurface Chemistry: The Case of C 2H 2 Semihydrogenation over Pd Catalysts. ACS APPLIED MATERIALS & INTERFACES 2022; 14:56743-56757. [PMID: 36515505 DOI: 10.1021/acsami.2c16317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Subsurface chemistry in heterogeneous catalysis plays an important role in tuning catalytic performance. Aiming to unravel the role of subsurface heteroatoms, C2H2 semihydrogenation on a series of Pd catalysts doped with subsurface heteroatom H, B, C, N, P, or S was fully investigated by density functional theory (DFT) calculations together with microkinetic modeling. The obtained results showed that catalytic performance toward C2H2 semihydrogenation was affected significantly by the type and coverage of subsurface heteroatoms. The Pd-B0.5 and Pd-C0.5 catalysts with 1/2 monolayer (ML) heteroatom coverage, as well as Pd-N, Pd-P, and Pd-S catalysts with 1/16 ML heteroatom coverage, were screened to not only obviously improve C2H4 selectivity and activity but also effectively suppress green oil. The essential reason for subsurface heteroatoms in tuning catalytic performance is attributed to the distinctive surface Pd electronic and geometric structures caused by subsurface heteroatoms. In the Pd-B0.5 and Pd-C0.5 catalysts, the Pd surface electronic and geometric effects play the dominant role, while the geometric effect plays a key role in the Pd-N, Pd-P, and Pd-S catalysts. The findings provide theoretically valuable information for designing high-performance metal catalysts in alkyne semihydrogenation through subsurface chemistry.
Collapse
Affiliation(s)
- Yueyue Wu
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Wantong Zhao
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Yuan Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Baojun Wang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| | - Maohong Fan
- Departments of Chemical and Petroleum Engineering, University of Wyoming, Laramie, Wyoming82071, United States
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia30332, United States
- School of Energy Resources, University of Wyoming, Laramie, Wyoming82071, United States
| | - Riguang Zhang
- State Key Laboratory of Clean and Efficient Coal Utilization, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
- College of Chemical Engineering and Technology, Taiyuan University of Technology, Taiyuan030024, Shanxi, P. R. China
| |
Collapse
|
21
|
Lee CH, Pahari S, Sitapure N, Barteau MA, Kwon JSI. DFT–kMC Analysis for Identifying Novel Bimetallic Electrocatalysts for Enhanced NRR Performance by Suppressing HER at Ambient Conditions Via Active-Site Separation. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Chi Ho Lee
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
- Texas A&M Energy Institute, College Station, Texas77843, United States
| | - Silabrata Pahari
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
- Texas A&M Energy Institute, College Station, Texas77843, United States
| | - Niranjan Sitapure
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
- Texas A&M Energy Institute, College Station, Texas77843, United States
| | - Mark A. Barteau
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
- Texas A&M Energy Institute, College Station, Texas77843, United States
| | - Joseph Sang-Il Kwon
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, Texas77843, United States
- Texas A&M Energy Institute, College Station, Texas77843, United States
| |
Collapse
|
22
|
Ghosh K, Vernuccio S, Dowling AW. Nonlinear Reactor Design Optimization With Embedded Microkinetic Model Information. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.898685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Despite the success of multiscale modeling in science and engineering, embedding molecular-level information into nonlinear reactor design and control optimization problems remains challenging. In this work, we propose a computationally tractable scale-bridging approach that incorporates information from multi-product microkinetic (MK) models with thousands of rates and chemical species into nonlinear reactor design optimization problems. We demonstrate reduced-order kinetic (ROK) modeling approaches for catalytic oligomerization in shale gas processing. We assemble a library of six candidate ROK models based on literature and MK model structure. We find that three metrics—quality of fit (e.g., mean squared logarithmic error), thermodynamic consistency (e.g., low conversion of exothermic reactions at high temperatures), and model identifiability—are all necessary to train and select ROK models. The ROK models that closely mimic the structure of the MK model offer the best compromise to emulate the product distribution. Using the four best ROK models, we optimize the temperature profiles in staged reactors to maximize conversions to heavier oligomerization products. The optimal temperature starts at 630–900K and monotonically decreases to approximately 560 K in the final stage, depending on the choice of ROK model. For all models, staging increases heavier olefin production by 2.5% and there is minimal benefit to more than four stages. The choice of ROK model, i.e., model-form uncertainty, results in a 22% difference in the objective function, which is twice the impact of parametric uncertainty; we demonstrate sequential eigendecomposition of the Fisher information matrix to identify and fix sloppy model parameters, which allows for more reliable estimation of the covariance of the identifiable calibrated model parameters. First-order uncertainty propagation determines this parametric uncertainty induces less than a 10% variability in the reactor optimization objective function. This result highlights the importance of quantifying model-form uncertainty, in addition to parametric uncertainty, in multi-scale reactor and process design and optimization. Moreover, the fast dynamic optimization solution times suggest the ROK strategy is suitable for incorporating molecular information in sequential modular or equation-oriented process simulation and optimization frameworks.
Collapse
|
23
|
Peters B. Simple Model and Spectral Analysis for a Fluxional Catalyst: Intermediate Abundances, Pathway Fluxes, Rates, and Transients. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Baron Peters
- Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, United States
| |
Collapse
|
24
|
Unveiling the catalyst deactivation mechanism in the non-oxidative dehydrogenation of light alkanes on Rh(111): Density functional theory and kinetic Monte Carlo study. Catal Today 2022. [DOI: 10.1016/j.cattod.2022.06.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
25
|
Samanta B, Morales-García Á, Illas F, Goga N, Anta JA, Calero S, Bieberle-Hütter A, Libisch F, Muñoz-García AB, Pavone M, Caspary Toroker M. Challenges of modeling nanostructured materials for photocatalytic water splitting. Chem Soc Rev 2022; 51:3794-3818. [PMID: 35439803 DOI: 10.1039/d1cs00648g] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Understanding the water splitting mechanism in photocatalysis is a rewarding goal as it will allow producing clean fuel for a sustainable life in the future. However, identifying the photocatalytic mechanisms by modeling photoactive nanoparticles requires sophisticated computational techniques based on multiscale modeling. In this review, we will survey the strengths and drawbacks of currently available theoretical methods at different length and accuracy scales. Understanding the surface-active site through Density Functional Theory (DFT) using new, more accurate exchange-correlation functionals plays a key role for surface engineering. Larger scale dynamics of the catalyst/electrolyte interface can be treated with Molecular Dynamics albeit there is a need for more generalizations of force fields. Monte Carlo and Continuum Modeling techniques are so far not the prominent path for modeling water splitting but interest is growing due to the lower computational cost and the feasibility to compare the modeling outcome directly to experimental data. The future challenges in modeling complex nano-photocatalysts involve combining different methods in a hierarchical way so that resources are spent wisely at each length scale, as well as accounting for excited states chemistry that is important for photocatalysis, a path that will bring devices closer to the theoretical limit of photocatalytic efficiency.
Collapse
Affiliation(s)
- Bipasa Samanta
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel
| | - Ángel Morales-García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, c/Martí i Franquès 1-11, 08028 Barcelona, Spain.
| | - Nicolae Goga
- Faculty of Engineering in Foreign Languages, Universitatea Politehnica din Bucuresti, Bucuresti, Romania.
| | - Juan Antonio Anta
- Department of Physical, Chemical and Natural Systems, Universidad Pablo de Olavide, Crta. De Utrera km. 1, 41089 Sevilla, Spain.
| | - Sofia Calero
- Materials Simulation & Modeling, Department of Applied Physics, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Anja Bieberle-Hütter
- Electrochemical Materials and Interfaces, Dutch Institute for Fundamental Energy Research (DIFFER), 5600 HH Eindhoven, The Netherlands.
| | - Florian Libisch
- Institute for Theoretical Physics, TU Wien, 1040 Vienna, Austria.
| | - Ana B Muñoz-García
- Dipartimento di Fisica "Ettore Pancini", Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy.
| | - Michele Pavone
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Via Cintia 21, Napoli 80126, Italy.
| | - Maytal Caspary Toroker
- Department of Materials Science and Engineering, Technion - Israel Institute of Technology, Haifa 3600003, Israel.,The Nancy and Stephen Grand Technion Energy Program, Technion - Israel Institute of Technology, Haifa 3600003, Israel.
| |
Collapse
|
26
|
Cohen M, Vlachos DG. Modified Energy Span Analysis Reveals Heterogeneous Catalytic Kinetics. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00390] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Maximilian Cohen
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
| | - Dionisios G. Vlachos
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, Delaware 19716, United States
- Catalysis Center for Energy Innovation, University of Delaware, 221 Academy St., Newark, Delaware 19711, United States
| |
Collapse
|
27
|
Pineda M, Stamatakis M. Kinetic Monte Carlo simulations for heterogeneous catalysis: Fundamentals, current status, and challenges. J Chem Phys 2022; 156:120902. [DOI: 10.1063/5.0083251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Kinetic Monte Carlo (KMC) simulations in combination with first-principles (1p)-based calculations are rapidly becoming the gold-standard computational framework for bridging the gap between the wide range of length scales and time scales over which heterogeneous catalysis unfolds. 1p-KMC simulations provide accurate insights into reactions over surfaces, a vital step toward the rational design of novel catalysts. In this Perspective, we briefly outline basic principles, computational challenges, successful applications, as well as future directions and opportunities of this promising and ever more popular kinetic modeling approach.
Collapse
Affiliation(s)
- M. Pineda
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| | - M. Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London WC1E 7JE, United Kingdom
| |
Collapse
|
28
|
X. Zhu FX, Xu L. Integrating Multiscale Modeling and Optimization for Sustainable Process Development. Chem Eng Sci 2022. [DOI: 10.1016/j.ces.2022.117619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
29
|
Inagaki T, Saito S. Hybrid Monte Carlo Method with Potential Scaling for Sampling from the Canonical Multimodal Distribution and Imitating the Relaxation Process. J Chem Phys 2022; 156:104111. [DOI: 10.1063/5.0082378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Affiliation(s)
| | - Shinji Saito
- Department of Theoretical and Computational Molecular Science, Institute for Molecular Science, Japan
| |
Collapse
|
30
|
Trigilio A, Marien Y, Edeleva M, Van Steenberge P, D'hooge D. Optimal search methods for selecting distributed species in Gillespie-based kinetic Monte Carlo. Comput Chem Eng 2022. [DOI: 10.1016/j.compchemeng.2021.107580] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
31
|
Steiner M, Reiher M. Autonomous Reaction Network Exploration in Homogeneous and Heterogeneous Catalysis. Top Catal 2022; 65:6-39. [PMID: 35185305 PMCID: PMC8816766 DOI: 10.1007/s11244-021-01543-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2021] [Indexed: 12/11/2022]
Abstract
Autonomous computations that rely on automated reaction network elucidation algorithms may pave the way to make computational catalysis on a par with experimental research in the field. Several advantages of this approach are key to catalysis: (i) automation allows one to consider orders of magnitude more structures in a systematic and open-ended fashion than what would be accessible by manual inspection. Eventually, full resolution in terms of structural varieties and conformations as well as with respect to the type and number of potentially important elementary reaction steps (including decomposition reactions that determine turnover numbers) may be achieved. (ii) Fast electronic structure methods with uncertainty quantification warrant high efficiency and reliability in order to not only deliver results quickly, but also to allow for predictive work. (iii) A high degree of autonomy reduces the amount of manual human work, processing errors, and human bias. Although being inherently unbiased, it is still steerable with respect to specific regions of an emerging network and with respect to the addition of new reactant species. This allows for a high fidelity of the formalization of some catalytic process and for surprising in silico discoveries. In this work, we first review the state of the art in computational catalysis to embed autonomous explorations into the general field from which it draws its ingredients. We then elaborate on the specific conceptual issues that arise in the context of autonomous computational procedures, some of which we discuss at an example catalytic system. GRAPHICAL ABSTRACT SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s11244-021-01543-9.
Collapse
Affiliation(s)
- Miguel Steiner
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| | - Markus Reiher
- Laboratory of Physical Chemistry, ETH Zurich, Vladimir-Prelog-Weg 2, 8093 Zurich, Switzerland
| |
Collapse
|
32
|
Piccini G, Lee MS, Yuk SF, Zhang D, Collinge G, Kollias L, Nguyen MT, Glezakou VA, Rousseau R. Ab initio molecular dynamics with enhanced sampling in heterogeneous catalysis. Catal Sci Technol 2022. [DOI: 10.1039/d1cy01329g] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Enhanced sampling ab initio simulations enable to study chemical phenomena in catalytic systems including thermal effects & anharmonicity, & collective dynamics describing enthalpic & entropic contributions, which can significantly impact on reaction free energy landscapes.
Collapse
Affiliation(s)
- GiovanniMaria Piccini
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Istituto Eulero, Università della Svizzera italiana, Via Giuseppe Buffi 13, Lugano, Ticino, Switzerland
| | - Mal-Soon Lee
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Simuck F. Yuk
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
- Department of Chemistry and Life Science, United States Military Academy, West Point, NY 10996, USA
| | - Difan Zhang
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Greg Collinge
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Loukas Kollias
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Manh-Thuong Nguyen
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Vassiliki-Alexandra Glezakou
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| | - Roger Rousseau
- Basic & Applied Molecular Foundations, Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, WA 99352, USA
| |
Collapse
|
33
|
Díaz López E, Comas-Vives A. Kinetic Monte Carlo simulations of the dry reforming of methane catalyzed by the Ru (0001) surface based on density functional theory calculations. Catal Sci Technol 2022. [DOI: 10.1039/d1cy02366g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study shows the main pathways for the DRM reaction and the competitive RWGS reaction upon changing reaction conditions, displaying the importance of including lateral–lateral interactions to describe the reaction in agreement with the experiment.
Collapse
Affiliation(s)
- Estefanía Díaz López
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
| | - Aleix Comas-Vives
- Department of Chemistry, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Catalonia, Spain
- Institute of Materials Chemistry, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
34
|
Shen T, Yang Y, Xu X. Structure–Reactivity Relationship for Nano‐Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Tonghao Shen
- Department of Chemistry Fudan University 200438 Shanghai China
| | - Yuqi Yang
- Department of Chemistry Fudan University 200438 Shanghai China
| | - Xin Xu
- Department of Chemistry Fudan University 200438 Shanghai China
| |
Collapse
|
35
|
Shen T, Yang Y, Xu X. Structure-Reactivity Relationship for Nano-Catalysts in the Hydrogenation/Dehydrogenation Controlled Reaction Systems. Angew Chem Int Ed Engl 2021; 60:26342-26345. [PMID: 34626058 DOI: 10.1002/anie.202109942] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/04/2021] [Indexed: 11/06/2022]
Abstract
For the activity of a nano-catalyst, a general and quantitative solution to building direct structure-reactivity relationship has not yet been established. On top of the first-principle-based kinetic Monte Carlo (KMC) simulations, we developed a model to build the adsorption site dependence of the activity. We applied this model to study the nano effects of Cu catalysts in the water-gas shift reaction. By accumulating the activities of different adsorption sites, our model satisfactorily reproduced the experimental apparent activation energies for catalysts with sizes over hundreds of nanometers, which were out of reach for conventional KMC simulations. Our results disclose that, even for a cubic catalyst with size of 877 nm, its activity can still be closely related to the activity of edge sites, instead of only the exposed Cu(100) facets as might be expected. The present model is expected to be useful for systems that are controlled by the hydrogenation/dehydrogenation processes.
Collapse
Affiliation(s)
- Tonghao Shen
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Yuqi Yang
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| | - Xin Xu
- Department of Chemistry, Fudan University, 200438, Shanghai, China
| |
Collapse
|
36
|
Temperature dependence of Cu(I) oxidation and Cu(II) reduction kinetics in the selective catalytic reduction of NOx with NH3 on Cu-chabazite zeolites. J Catal 2021. [DOI: 10.1016/j.jcat.2021.08.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Li J, Maresi I, Lum Y, Ager JW. Effects of surface diffusion in electrocatalytic CO 2 reduction on Cu revealed by kinetic Monte Carlo simulations. J Chem Phys 2021; 155:164701. [PMID: 34717370 DOI: 10.1063/5.0068517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Kinetic Monte Carlo (KMC) methods are frequently used for mechanistic studies of thermally driven heterogeneous catalysis systems but are underused for electrocatalysis. Here, we develop a lattice KMC approach for electrocatalytic CO2 reduction. The work is motivated by a prior experimental report that performed electroreduction of a mixed feed of 12CO2 and 13CO on Cu; differences in the 13C content of C2 products ethylene and ethanol (Δ13C) were interpreted as evidence of site selectivity. The lattice KMC model considers the effect of surface diffusion on this system. In the limit of infinitely fast diffusion (mean-field approximation), the key intermediates 12CO* and 13CO* would be well mixed on the surface and no evidence of site selectivity could have been observed. Using a simple two-site model and adapting a previously reported microkinetic model, we assess the effects of diffusion on the relative isotope fractions in the products using the estimated surface diffusion rate of CO* from literature reports. We find that the size of the active sites and the total surface adsorbate coverage can have a large influence on the values of Δ13C that can be observed. Δ13C is less sensitive to the CO* diffusion rate as long as it is within the estimated range. We further offer possible methods to estimate surface distribution of intermediates and to predict intrinsic selectivity of active sites based on experimental observations. This work illustrates the importance of considering surface diffusion in the study of electrochemical CO2 reduction to multi-carbon products. Our approach is entirely based on a freely available open-source code, so will be readily adaptable to other electrocatalytic systems.
Collapse
Affiliation(s)
- Jinghan Li
- State Key Laboratory of Metal Matrix Composites, School of Materials Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ilaria Maresi
- Fung Institute, University of California Berkeley, Berkeley, California 94720, USA
| | - Yanwei Lum
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), 138632, Singapore
| | - Joel W Ager
- Joint Center for Artificial Photosynthesis, Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, USA
| |
Collapse
|
38
|
Wang Y, Kalscheur J, Su YQ, Hensen EJM, Vlachos DG. Real-time dynamics and structures of supported subnanometer catalysts via multiscale simulations. Nat Commun 2021; 12:5430. [PMID: 34521852 PMCID: PMC8440615 DOI: 10.1038/s41467-021-25752-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023] Open
Abstract
Understanding the performance of subnanometer catalysts and how catalyst treatment and exposure to spectroscopic probe molecules change the structure requires accurate structure determination under working conditions. Experiments lack simultaneous temporal and spatial resolution and could alter the structure, and similar challenges hinder first-principles calculations from answering these questions. Here, we introduce a multiscale modeling framework to follow the evolution of subnanometer clusters at experimentally relevant time scales. We demonstrate its feasibility on Pd adsorbed on CeO2(111) at various catalyst loadings, temperatures, and exposures to CO. We show that sintering occurs in seconds even at room temperature and is mainly driven by free energy reduction. It leads to a kinetically (far from equilibrium) frozen ensemble of quasi-two-dimensional structures that CO chemisorption and infrared experiments probe. CO adsorption makes structures flatter and smaller. High temperatures drive very rapid sintering toward larger, stable/metastable equilibrium structures, where CO induces secondary structure changes only.
Collapse
Affiliation(s)
- Yifan Wang
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
| | - Jake Kalscheur
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States
| | - Ya-Qiong Su
- School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an, 710049, China
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands
| | - Emiel J M Hensen
- Laboratory of Inorganic Materials and Catalysis, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600 MB, Eindhoven, The Netherlands.
| | - Dionisios G Vlachos
- Department of Chemical and Biomolecular Engineering, 150 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States.
- Catalysis Center for Energy Innovation (CCEI), RAPID Manufacturing Institute, and Delaware Energy Institute (DEI), 221 Academy St., University of Delaware, Newark, Delaware, DE, 19716, United States.
| |
Collapse
|
39
|
Achievements and Expectations in the Field of Computational Heterogeneous Catalysis in an Innovation Context. Top Catal 2021. [DOI: 10.1007/s11244-021-01489-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
40
|
Na J, Bak JH, Sahinidis NV. Efficient Bayesian inference using adversarial machine learning and low-complexity surrogate models. Comput Chem Eng 2021. [DOI: 10.1016/j.compchemeng.2021.107322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
41
|
Chen Z, Liu Z, Xu X. Coverage-Dependent Microkinetics in Heterogeneous Catalysis Powered by the Maximum Rate Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01997] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
42
|
Pablo‐García S, García‐Muelas R, Sabadell‐Rendón A, López N. Dimensionality reduction of complex reaction networks in heterogeneous catalysis: From l
inear‐scaling
relationships to statistical learning techniques. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1540] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sergio Pablo‐García
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Rodrigo García‐Muelas
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Albert Sabadell‐Rendón
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| | - Núria López
- Institute of Chemical Research of Catalonia The Barcelona Institute of Science and Technology Tarragona Spain
| |
Collapse
|
43
|
Réocreux R, Fampiou I, Stamatakis M. The role of oxygenated species in the catalytic self-coupling of MeOH on O pre-covered Au(111). Faraday Discuss 2021; 229:251-266. [PMID: 33646205 DOI: 10.1039/c9fd00134d] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The oxidation of alcohols plays a central role in the valorisation of biomass, in particular when performed with a non-toxic oxidant such as O2. Aerobic oxidation of methanol on gold has attracted attention lately and the main steps of its mechanism have been described experimentally. However, the exact role of O and OH on each elementary step and the effect of the interactions between adsorbates are still not completely understood. Here we investigate the mechanism of methanol oxidation to HCOOCH3 and CO2. We use Density Functional Theory (DFT) to assess the energetics of the underlying pathways, and subsequently build lattice kinetic Monte Carlo (kMC) models of increasing complexity, to elucidate the role of different oxygenates. Detailed comparisons of our simulation results with experimental temperature programmed desorption (TPD) spectra enable us to validate the mechanism and identify rate determining steps. Crucially, taking into account dispersion (van der Waals forces) and adsorbate-adsorbate lateral interactions are both important for reproducing the experimental data.
Collapse
Affiliation(s)
- R Réocreux
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| | - I Fampiou
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | - M Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, Roberts Building, Torrington Place, London, WC1E 7JE, UK.
| |
Collapse
|
44
|
Vicente R, Neckel IT, Sankaranarayanan SKS, Solla-Gullon J, Fernández PS. Bragg Coherent Diffraction Imaging for In Situ Studies in Electrocatalysis. ACS NANO 2021; 15:6129-6146. [PMID: 33793205 PMCID: PMC8155327 DOI: 10.1021/acsnano.1c01080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/18/2021] [Indexed: 05/05/2023]
Abstract
Electrocatalysis is at the heart of a broad range of physicochemical applications that play an important role in the present and future of a sustainable economy. Among the myriad of different electrocatalysts used in this field, nanomaterials are of ubiquitous importance. An increased surface area/volume ratio compared to bulk makes nanoscale catalysts the preferred choice to perform electrocatalytic reactions. Bragg coherent diffraction imaging (BCDI) was introduced in 2006 and since has been applied to obtain 3D images of crystalline nanomaterials. BCDI provides information about the displacement field, which is directly related to strain. Lattice strain in the catalysts impacts their electronic configuration and, consequently, their binding energy with reaction intermediates. Even though there have been significant improvements since its birth, the fact that the experiments can only be performed at synchrotron facilities and its relatively low resolution to date (∼10 nm spatial resolution) have prevented the popularization of this technique. Herein, we will briefly describe the fundamentals of the technique, including the electrocatalysis relevant information that we can extract from it. Subsequently, we review some of the computational experiments that complement the BCDI data for enhanced information extraction and improved understanding of the underlying nanoscale electrocatalytic processes. We next highlight success stories of BCDI applied to different electrochemical systems and in heterogeneous catalysis to show how the technique can contribute to future studies in electrocatalysis. Finally, we outline current challenges in spatiotemporal resolution limits of BCDI and provide our perspectives on recent developments in synchrotron facilities as well as the role of machine learning and artificial intelligence in addressing them.
Collapse
Affiliation(s)
- Rafael
A. Vicente
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| | - Itamar T. Neckel
- Brazilian
Synchrotron Light Laboratory, Brazilian
Center for Research in Energy and Materials, 13083-970, Campinas, São Paulo, Brazil
| | - Subramanian K.
R. S. Sankaranarayanan
- Department
of Mechanical and Industrial Engineering, University of Illinois, Chicago, Illinois 60607, United States
- Center
for Nanoscale Materials, Argonne National
Laboratory, Argonne, Illinois 60439, United
States
| | - José Solla-Gullon
- Institute
of Electrochemistry, University of Alicante, Apartado 99, E-03080 Alicante, Spain
| | - Pablo S. Fernández
- Chemistry
Institute, State University of Campinas, 13083-970 Campinas, São Paulo, Brazil
- Center
for Innovation on New Energies, University
of Campinas, 13083-841 Campinas, São Paulo, Brazil
| |
Collapse
|
45
|
Krishna SH, Jones CB, Gounder R. Dynamic Interconversion of Metal Active Site Ensembles in Zeolite Catalysis. Annu Rev Chem Biomol Eng 2021; 12:115-136. [PMID: 33826852 DOI: 10.1146/annurev-chembioeng-092120-010920] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Catalysis science is founded on understanding the structure, number, and reactivity of active sites. Kinetic models that consider active sites to be static and noninteracting entities are routinely successful in describing the behavior of heterogeneous catalysts. Yet, active site ensembles often restructure in response to their external environment and even during steady-state catalytic turnover, sometimes requiring non-mean-field kinetic treatments to describe distance-dependent interactions among sites. Such behavior is being recognized more frequently in modern catalysis research, with the advent of experimental methods to quantify turnover rates with increasing precision, an expanding arsenal of operando characterization tools, and computational descriptions of atomic structure and motion at chemical potentials and timescales increasingly relevant to reaction conditions. This review focuses on dynamic changes to metal active site ensembles on zeolite supports, which are silica-based crystalline materials substituted with Al that generate binding sites for isolated and low-nuclearity metal site ensembles. Metal sites can become solvated and mobilized during reaction, facilitating interactions among sites that change their nuclearity and function. Such intersite communication can be regulated by the zeolite support, resulting in non-single-site and potentially non-mean-field kinetic behavior arising from mechanisms of catalytic action that combine elements of those canonically associated with homogeneous and heterogeneous catalysis.We discuss recent literature examples that document dynamic active site behavior in metal-zeolites and outline methodologies to identify and interpret such behavior. We conclude with our outlook on future research directions to develop this evolving branch of catalysis science and harness it for practical applications.
Collapse
Affiliation(s)
- Siddarth H Krishna
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Casey B Jones
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| | - Rajamani Gounder
- Charles D. Davidson School of Chemical Engineering, Purdue University, West Lafayette, Indiana 47907, USA;
| |
Collapse
|
46
|
Morales‐García Á, Viñes F, Gomes JRB, Illas F. Concepts, models, and methods in computational heterogeneous catalysis illustrated through
CO
2
conversion. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2021. [DOI: 10.1002/wcms.1530] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Ángel Morales‐García
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - Francesc Viñes
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| | - José R. B. Gomes
- CICECO—Aveiro Institute of Materials, Department of Chemistry University of Aveiro Aveiro Portugal
| | - Francesc Illas
- Departament de Ciència de Materials i Química Física & Institut de Química Teòrica i Computacional (IQTCUB) Universitat de Barcelona Barcelona Spain
| |
Collapse
|
47
|
Mohan O, Shambhawi S, Xu R, Lapkin AA, Mushrif SH. Investigating CO
2
Methanation on Ni and Ru: DFT Assisted Microkinetic Analysis. ChemCatChem 2021. [DOI: 10.1002/cctc.202100073] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Ojus Mohan
- Energy Research Institute @NTU Interdisciplinary Graduate School Nanyang Technological University 637335 Singapore Singapore
- School of Chemical & Biomedical Engineering Nanyang Technology University Singapore 637459 Singapore
- Department of Chemical and Materials Engineering University of Alberta 9211-116 Street Northwest Edmonton Alberta T6G 1H9 Canada
| | - Shambhawi Shambhawi
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS U. K
| | - Rong Xu
- School of Chemical & Biomedical Engineering Nanyang Technology University Singapore 637459 Singapore
| | - Alexei A. Lapkin
- Department of Chemical Engineering and Biotechnology University of Cambridge Cambridge CB3 0AS U. K
- Cambridge Centre for Advanced Research and Education in Singapore Ltd. 1 Create Way CREATE Tower #05-05 138602 Singapore Singapore
| | - Samir H. Mushrif
- Department of Chemical and Materials Engineering University of Alberta 9211-116 Street Northwest Edmonton Alberta T6G 1H9 Canada
| |
Collapse
|
48
|
Chen Z, Wang H, Liu Z, Xu X. Dynamic and Intermediate-Specific Local Coverage Controls the Syngas Conversion on Rh(111) Surfaces: An Operando Theoretical Analysis. ACS Catal 2021. [DOI: 10.1021/acscatal.0c05070] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Zheng Chen
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - He Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Zhangyun Liu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| | - Xin Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, MOE Key Laboratory of Computational Physical Sciences, Department of Chemistry, Fudan University, Shanghai 200433, People’s Republic of China
| |
Collapse
|
49
|
Ouyang M, Papanikolaou KG, Boubnov A, Hoffman AS, Giannakakis G, Bare SR, Stamatakis M, Flytzani-Stephanopoulos M, Sykes ECH. Directing reaction pathways via in situ control of active site geometries in PdAu single-atom alloy catalysts. Nat Commun 2021; 12:1549. [PMID: 33750788 PMCID: PMC7943817 DOI: 10.1038/s41467-021-21555-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The atomic scale structure of the active sites in heterogeneous catalysts is central to their reactivity and selectivity. Therefore, understanding active site stability and evolution under different reaction conditions is key to the design of efficient and robust catalysts. Herein we describe theoretical calculations which predict that carbon monoxide can be used to stabilize different active site geometries in bimetallic alloys and then demonstrate experimentally that the same PdAu bimetallic catalyst can be transitioned between a single-atom alloy and a Pd cluster phase. Each state of the catalyst exhibits distinct selectivity for the dehydrogenation of ethanol reaction with the single-atom alloy phase exhibiting high selectivity to acetaldehyde and hydrogen versus a range of products from Pd clusters. First-principles based Monte Carlo calculations explain the origin of this active site ensemble size tuning effect, and this work serves as a demonstration of what should be a general phenomenon that enables in situ control over catalyst selectivity.
Collapse
Affiliation(s)
- Mengyao Ouyang
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | | | - Alexey Boubnov
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Adam S Hoffman
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Georgios Giannakakis
- Department of Chemical and Biological Engineering, Tufts University, Medford, MA, USA
| | - Simon R Bare
- Stanford Synchrotron Radiation Light Source, SLAC National Accelerator Laboratory, Menlo Park, CA, USA
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical Engineering, University College London, London, UK
| | | | | |
Collapse
|
50
|
Darby MT, Stamatakis M. Single-Atom Alloys for the Electrochemical Oxygen Reduction Reaction. Chemphyschem 2021; 22:499-508. [PMID: 33387446 PMCID: PMC7986805 DOI: 10.1002/cphc.202000869] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 12/11/2020] [Indexed: 11/09/2022]
Abstract
Single-atom alloys (SAAs) consisting of isolated transition-metal atoms doped in the surface of coinage metal hosts exhibit unique catalytic properties, harnessing the high activity of the dopant metals with the selectivity of the coinage metal hosts. Here we use density functional theory (DFT) to study SAAs comprised of Ni, Pd, Pt, Co and Rh doped into Ag and Au hosts, as candidate electrocatalysts for the oxygen reduction reaction (ORR) in proton-exchange membrane (PEM) fuel-cells. Our calculations reveal that the PdAu SAA exhibits a slightly lower theoretical overpotential, enhanced selectivity for 4-e- ORR, and tolerance to CO-poisoning compared to Pt(111). While the number of active sites of PdAu SAA is lower than that of Pt(111), the aforementioned desirable properties could bring the overall catalytic performance thereof close to that of Pt/C, indicating that the PdAu SAA could be a viable material for electrocatalytic ORR in PEM fuel-cells.
Collapse
Affiliation(s)
- Matthew T. Darby
- Thomas Young Centre and Department of Chemical EngineeringUniversity College London, Roberts BuildingTorrington PlaceLondonWC1E 7JEUK
| | - Michail Stamatakis
- Thomas Young Centre and Department of Chemical EngineeringUniversity College London, Roberts BuildingTorrington PlaceLondonWC1E 7JEUK
| |
Collapse
|