1
|
Cao H, Chen G, Yan Y, Wang D. Advances in Two-Electron Water Oxidation Reaction for Hydrogen Peroxide Production: Catalyst Design and Interface Engineering. CHEMSUSCHEM 2024:e202401100. [PMID: 39440675 DOI: 10.1002/cssc.202401100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 08/05/2024] [Indexed: 10/25/2024]
Abstract
Hydrogen peroxide (H2O2) is a versatile and zero-emission material that is widely used in the industrial, domestic, and healthcare sectors. It is clear that it plays a critical role in advancing environmental sustainability, acting as a green energy source, and protecting human health. Conventional production techniques focused on anthraquinone oxidation, however, electrocatalytic synthesis has arisen as a means of utilizing renewable energy sources in conjunction with available resources like oxygen and water. These strides represent a substantial change toward more environmentally and energy-friendly H2O2 manufacturing techniques that are in line with current environmental and energy goals. This work reviews recent advances in two-electron water oxidation reaction (2e-WOR) electrocatalysts, including design principles and reaction mechanisms, examines catalyst design alternatives and experimental characterization techniques, proposes standardized assessment criteria, investigates the impact of the interfacial milieu on the reaction, and discusses the value of in situ characterization and molecular dynamics simulations as a supplement to traditional experimental techniques and theoretical simulations, as shown in Figure 1. The review also emphasizes the importance of device design, interface, and surface engineering in improving the production of H2O2. Through adjustments to the chemical microenvironment, catalysts can demonstrate improved performance, opening the door for commercial applications that are scalable through tandem cell development.
Collapse
Affiliation(s)
- Huixuan Cao
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering and Technology, College of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Ge Chen
- Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemical Engineering and Technology, College of Materials and Manufacturing, Beijing University of Technology, Beijing, 100124, P. R. China
| | - Yong Yan
- Center of Excellence for Environmental Safety and Biological Effects, Beijing Key Laboratory for Green Catalysis and Separation, Department of Chemistry, College of Chemistry and Life Sciences, Beijing University of Technology, Beijing, P. R., 100124, China
| | - Dong Wang
- Fachgebiet Werkstoffe der Elektrotechnik, Institute of Materials Science & Engineering and Institute of Micro- and Nanotechnologies MarcoNano®, TU Ilmenau, Gustav-Kirchhoff-Str. 5, 98693, Ilmenau, Germany
| |
Collapse
|
2
|
Kominami H, Kamitani K, Tanaka A. Rapid production of 38 mM H 2O 2 in an alcoholic suspension of a WO 3 photocatalyst under visible light. Chem Commun (Camb) 2024; 60:7017-7020. [PMID: 38855968 DOI: 10.1039/d4cc01402b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Specific approaches to H2O2 production over a WO3 photocatalyst under visible light irradiation, i.e., (1) no use of a cocatalyst, (2) reaction under an O2 atmosphere, (3) reaction in a high concentration of alcohol, and (4) reaction at 60 °C, were found to be effective for rapid production of 38 mM H2O2.
Collapse
Affiliation(s)
- Hiroshi Kominami
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
| | - Kaisei Kamitani
- Department of Molecular and Material Engineering, Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan
| | - Atsuhiro Tanaka
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashiosaka, Osaka 577-8502, Japan.
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi 332-0012, Japan
| |
Collapse
|
3
|
Diab GAA, da Silva MAR, Rocha GFSR, Noleto LFG, Rogolino A, de Mesquita JP, Jiménez‐Calvo P, Teixeira IF. A Solar to Chemical Strategy: Green Hydrogen as a Means, Not an End. GLOBAL CHALLENGES (HOBOKEN, NJ) 2024; 8:2300185. [PMID: 38868607 PMCID: PMC11165522 DOI: 10.1002/gch2.202300185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 10/24/2023] [Indexed: 06/14/2024]
Abstract
Green hydrogen is the key to the chemical industry achieving net zero emissions. The chemical industry is responsible for almost 2% of all CO2 emissions, with half of it coming from the production of simple commodity chemicals, such as NH3, H2O2, methanol, and aniline. Despite electrolysis driven by renewable power sources emerging as the most promising way to supply all the green hydrogen required in the production chain of these chemicals, in this review, it is worth noting that the photocatalytic route may be underestimated and can hold a bright future for this topic. In fact, the production of H2 by photocatalysis still faces important challenges in terms of activity, engineering, and economic feasibility. However, photocatalytic systems can be tailored to directly convert sunlight and water (or other renewable proton sources) directly into chemicals, enabling a solar-to-chemical strategy. Here, a series of recent examples are presented, demonstrating that photocatalysis can be successfully employed to produce the most important commodity chemicals, especially on NH3, H2O2, and chemicals produced by reduction reactions. The replacement of fossil-derived H2 in the synthesis of these chemicals can be disruptive, essentially safeguarding the transition of the chemical industry to a low-carbon economy.
Collapse
Affiliation(s)
- Gabriel A. A. Diab
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Marcos A. R. da Silva
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Guilherme F. S. R. Rocha
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Luis F. G. Noleto
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| | - Andrea Rogolino
- Cavendish LaboratoryUniversity of CambridgeCambridgeCB3 0HEUK
| | - João P. de Mesquita
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
- Departamento de QuímicaUniversidade Federal dos Vales Jequitinhonha e MucuriRodovia MGT 367 – Km 583, n° 5000, Alto da JacubaDiamantinaMG39100Brazil
| | - Pablo Jiménez‐Calvo
- Department for Materials SciencesFriedrich‐Alexander‐Universität Erlangen‐NürnbergMartensstrasse 7D‐91058ErlangenGermany
- Chemistry of Thin Film MaterialsFriedrich‐Alexander‐Universität Erlangen‐NürnbergIZNF, Cauerstraße 3D‐91058ErlangenGermany
| | - Ivo F. Teixeira
- Department of ChemistryFederal University of São CarlosRod. Washington Luís km 235 – SPSão CarlosSP13565‐905Brazil
| |
Collapse
|
4
|
Ren HT, Cai CC, Zhu PY, Wang C, Wu SH, Liu Y, Han X. Photocatalytic Generation of H 2O 2 Via a Hydrogen-Abstraction Pathway by Bi 2.15WO 6 under Visible Light. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:7384-7394. [PMID: 38530344 DOI: 10.1021/acs.langmuir.3c03651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Photocatalytic technology is a popular research area for converting solar energy into environmentally friendly chemicals and is considered the greenest approach for producing H2O2. However, the corresponding reactive oxygen species (ROS) and pathway involved in the photocatalytic generation of H2O2 by the Bi2.15WO6-glucose system are still not clear. Quenching experiments have established that neither •OH nor h+ contribute to the formation of H2O2, and show that the formed surface superoxo (≡Bi-OO•) and peroxo (≡Bi-OOH) species are the predominant ROS in H2O2 generation. In addition, various characterizations indicate the enhanced electron-transfer on the surface of Bi2.15WO6 with increasing contents of glucose via the ligand-to-metal charge transfer pathway, confirming H-transfer from glucose to ≡Bi-OO• or ≡Bi-OOH. The increased production of H2O2 with decreasing bond dissociation energy (BDEO-H) values of various phenolic compounds again supports the H-transfer mechanism from phenolic compounds to ≡Bi-OO• and then to ≡Bi-OOH. DFT calculations further reveal that on the Bi2.15WO6 surface, oxygen is sequentially reduced to ≡Bi-OO• and ≡Bi-OOH, while H-transfer from H2O or glucose to ≡Bi-OO• and ≡Bi-OOH, resulting in the production of H2O2. The lower energy barrier of H-transfer from adsorbed glucose (0.636 eV) than that from H2O (1.157 eV) indicates that H-transfer is more favorable from adsorbed glucose. This work gives new insight into the photocatalytic generation of H2O2 by Bi2.15WO6 in the presence of glucose/phenolic compounds via the H-abstraction pathway.
Collapse
Affiliation(s)
- Hai-Tao Ren
- Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Chao-Chen Cai
- Tianjin and Ministry of Education Key Laboratory of Advanced Textile Composite Materials, School of Textile Science and Engineering, Tiangong University, Tianjin 300387, P.R. China
| | - Peng-Yue Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, P.R. China
| | - Cong Wang
- Hebei Key Laboratory of Hazardous Chemicals Safety and Control Technology, School of Chemical Safety, North China Institute of Science and Technology, Langfang Hebei 065201, P.R. China
| | - Song-Hai Wu
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300382, P.R. China
| | - Yong Liu
- School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300382, P.R. China
| | - Xu Han
- School of Chemical Engineering and Technology, Tianjin University, Tianjin 300382, P.R. China
| |
Collapse
|
5
|
Wang Y, Wei P, Shen Z, Wang C, Ding J, Zhang W, Jin X, Vecitis CD, Gao G. O 2-Independent H 2O 2 Production via Water-Polymer Contact Electrification. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:925-934. [PMID: 38117535 DOI: 10.1021/acs.est.3c07674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Hydrogen peroxide (H2O2), as a critical green chemical, has received immense attention in energy and environmental fields. The ability to produce H2O2 in earth-abundant water without relying on low solubility oxygen would be a sustainable and potentially economic process, applicable even to anaerobic microenvironments, such as groundwater treatment. However, the direct water to H2O2 process is currently hindered by low selectivity and low production rates. Herein, we report that poly(tetrafluoroethylene) (PTFE), a commonly used inert polymer, can act as an efficient triboelectric catalyst for H2O2 generation. For example, a high H2O2 production rate of 24.8 mmol gcat-1 h-1 at a dosage of 0.01 g/L PTFE was achieved under the condition of pure water, ambient atmosphere, and no sacrificial agents, which exceeds the performance of state-of-the-art aqueous H2O2 powder catalysts. Electron spin resonance and isotope experiments provide strong evidence that water-PTFE tribocatalysis can directly oxidize water to produce H2O2 under both anaerobic and aerobic conditions, albeit with different synthetic pathways. This study demonstrates a potential strategy for green and effective tribocatalytic H2O2 production that may be particularly useful toward environmental applications.
Collapse
Affiliation(s)
- Yanfeng Wang
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing 312000, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Peiyun Wei
- School of Life and Environmental Sciences, Shaoxing University, Huancheng Road 508, Shaoxing 312000, China
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Zihan Shen
- State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Chao Wang
- School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, China
| | - Jie Ding
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Wenkai Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xin Jin
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chad D Vecitis
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Guandao Gao
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
De Santis P, Wegstein D, Burek BO, Patzsch J, Alcalde M, Kroutil W, Bloh JZ, Kara S. Robust Light Driven Enzymatic Oxyfunctionalization via Immobilization of Unspecific Peroxygenase. CHEMSUSCHEM 2023; 16:e202300613. [PMID: 37357147 DOI: 10.1002/cssc.202300613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 06/27/2023]
Abstract
Unspecific peroxygenases have attracted interest in synthetic chemistry, especially for the oxidative activation of C-H bonds, as they only require hydrogen peroxide (H2 O2 ) instead of a cofactor. Due to their instability in even small amounts of H2 O2 , different strategies like enzyme immobilization or in situ H2 O2 production have been developed to improve the stability of these enzymes. While most strategies have been studied separately, a combination of photocatalysis with immobilized enzymes was only recently reported. To show the advantages and limiting factors of immobilized enzyme in a photobiocatalytic reaction, a comparison is made between free and immobilized enzymes. Adjustment of critical parameters such as (i) enzyme and substrate concentration, (ii) illumination wavelength and (iii) light intensity results in significantly increased enzyme stabilities of the immobilized variant. Moreover, under optimized conditions a turnover number of 334,500 was reached.
Collapse
Affiliation(s)
- Piera De Santis
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
| | - Deborah Wegstein
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am, Main, Germany
| | - Bastien O Burek
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am, Main, Germany
| | - Jacqueline Patzsch
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am, Main, Germany
| | - Miguel Alcalde
- Department of Biocatalysis, Institute of Catalysis ICP CSIC, C/ Marie Curie 2, 28049, Madrid, Spain
| | - Wolfgang Kroutil
- Field of Excellence BioHealt, BioTechMed, Institute of Chemistry, University of Graz, Heinrichstrasse 28, 8010, Graz, Austria
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am, Main, Germany
| | - Selin Kara
- Biocatalysis and Bioprocessing Group, Department of Biological and Chemical Engineering, Aarhus University, Gustav Wieds Vej 10, 8000, Aarhus C, Denmark
- Institute of Technical Chemistry, Leibniz University Hannover, Callinstr. 5, 30167, Hannover, Germany
| |
Collapse
|
7
|
Garcia-Munoz P, Valenzuela L, Wegstein D, Schanz T, Lopez GE, Ruppert AM, Remita H, Bloh JZ, Keller N. Photocatalytic Synthesis of Hydrogen Peroxide from Molecular Oxygen and Water. Top Curr Chem (Cham) 2023; 381:15. [PMID: 37160833 DOI: 10.1007/s41061-023-00423-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 03/28/2023] [Indexed: 05/11/2023]
Abstract
Hydrogen peroxide is a powerful and green oxidant that allows for the oxidation of a wide span of organic and inorganic substrates in liquid media under mild reaction conditions, and forms only molecular water and oxygen as end products. Hydrogen peroxide is therefore used in a wide range of applications, for which the well-documented and established anthraquinone autoxidation process is by far the dominating production method at the industrial scale. As this method is highly energy consuming and environmentally costly, the search for more sustainable synthesis methods is of high interest. To this end, the article reviews the basis and the recent development of the photocatalytic synthesis of hydrogen peroxide. Different oxygen reduction and water oxidation mechanisms are discussed, as well as several kinetic models, and the influence of the main key reaction parameters is itemized. A large range of photocatalytic materials is reviewed, with emphasis on titania-based photocatalysts and on high-prospect graphitic carbon nitride-based systems that take advantage of advanced bulk and surface synthetic approaches. Strategies for enhancing the performances of solar-driven photocatalysts are reported, and the search for new, alternative, photocatalytic materials is detailed. Finally, the promise of in situ photocatalytic synthesis of hydrogen peroxide for water treatment and organic synthesis is described, as well as its coupling with enzymes and the direct in situ synthesis of other technical peroxides.
Collapse
Affiliation(s)
- Patricia Garcia-Munoz
- Department of Chemical and Environmental Engineering, Escuela Técnica Superior de Ingenieros Industriales, Universidad Politécnica de Madrid, 28006, Madrid, Spain
| | - Laura Valenzuela
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France
| | - Deborah Wegstein
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Tobias Schanz
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Girlie Eunice Lopez
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Agnieszka M Ruppert
- Institute of General and Ecological Chemistry, Lodz University of Technology, Żeromskiego 116, 90-924, Łódź, Poland
| | - Hynd Remita
- Institut de Chimie Physique, CNRS UMR 8000, Université Paris-Saclay, 91405, Orsay, France
| | - Jonathan Z Bloh
- DECHEMA-Forschungsinstitut, Theodor-Heuss-Allee 25, 60486, Frankfurt am Main, Germany
| | - Nicolas Keller
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), CNRS/University of Strasbourg, 25 rue Becquerel, Strasbourg, France.
| |
Collapse
|
8
|
Guo Y, Tong X, Yang N. Photocatalytic and Electrocatalytic Generation of Hydrogen Peroxide: Principles, Catalyst Design and Performance. NANO-MICRO LETTERS 2023; 15:77. [PMID: 36976372 PMCID: PMC10050521 DOI: 10.1007/s40820-023-01052-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Hydrogen peroxide (H2O2) is a high-demand organic chemical reagent and has been widely used in various modern industrial applications. Currently, the prominent method for the preparation of H2O2 is the anthraquinone oxidation. Unfortunately, it is not conducive to economic and sustainable development since it is a complex process and involves unfriendly environment and potential hazards. In this context, numerous approaches have been developed to synthesize H2O2. Among them, photo/electro-catalytic ones are considered as two of the most promising manners for on-site synthesis of H2O2. These alternatives are sustainable in that only water or O2 is required. Namely, water oxidation (WOR) or oxygen reduction (ORR) reactions can be further coupled with clean and sustainable energy. For photo/electro-catalytic reactions for H2O2 generation, the design of the catalysts is extremely important and has been extensively conducted with an aim to obtain ultimate catalytic performance. This article overviews the basic principles of WOR and ORR, followed by the summary of recent progresses and achievements on the design and performance of various photo/electro-catalysts for H2O2 generation. The related mechanisms for these approaches are highlighted from theoretical and experimental aspects. Scientific challenges and opportunities of engineering photo/electro-catalysts for H2O2 generation are also outlined and discussed.
Collapse
Affiliation(s)
- Yan Guo
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Xili Tong
- State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, 030001, People's Republic of China.
| | - Nianjun Yang
- Institute of Materials Engineering, University of Siegen, 57076, Siegen, Germany.
- Department of Chemistry, Hasselt University, 3590, Diepenbeek, Belgium.
- IMO-IMOMEC, Hasselt University, 3590, Diepenbeek, Belgium.
| |
Collapse
|
9
|
Hu H, Tao Y, Wang D, Li C, Jiang Q, Shi Y, Wang J, Qin J, Zhou S, Kong Y. Rational modification of hydroxy-functionalized covalent organic frameworks for enhanced photocatalytic hydrogen peroxide evolution. J Colloid Interface Sci 2023; 629:750-762. [PMID: 36193619 DOI: 10.1016/j.jcis.2022.09.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 09/12/2022] [Accepted: 09/20/2022] [Indexed: 11/16/2022]
Abstract
Covalent organic frameworks (COFs), a class of flexibly tunable crystalline materials, have fascinating potential in photocatalytic hydrogen peroxide (H2O2) evolution under visible light irradiation. However, achieving efficient catalytic activity by tuning the composition of COFs and the linkages of building blocks is still a challenge. Herein, four imine-linked COFs with different numbers of hydroxy-functionalized are constructed to unveil the latent structure-activity relationship between the reversibility of bonding in supramolecular chemistry and the photocatalytic H2O2 performance. As the optimized material, TAPT-HTA-COF (1H-COF) containing single hydroxy group in aldehyde node exhibits a highest ordered structure and conjugation degree along and across the plane in the extended frameworks originating from the flexibly reversible iminol-to-ketoenamine tautomerism than others, which broadens the visible light absorption and accelerates the dissociation of photogenerated carriers in 1H-COF. These merits ensure that 1H-COF has the highest H2O2 yield (44.5 μmol L-1) and O2 two-electron reduction pathway among the four COFs under visible light irradiation (λ > 420 nm, 10 vol% isopropanol aqueous solution). At the same time, the long-range ordered framework of 1H-COF is well preserved during the photocatalytic H2O2 evolution process assisted by the proton-induced tautomerization. This work facilitates the design and development of COF-based photocatalysts in the evolution of H2O2.
Collapse
Affiliation(s)
- Hao Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yinglong Tao
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Di Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Changlai Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Qichao Jiang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Yuexin Shi
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jian Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Jinping Qin
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China
| | - Shijian Zhou
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China.
| | - Yan Kong
- State Key Laboratory of Materials-Oriented Chemical Engineering, College of Chemical ·Engineering, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
10
|
Wen H, Huang S, Meng X, Xian X, Zhao J, Roy VAL. Recent progress in the design of photocatalytic H 2O 2 synthesis system. Front Chem 2022; 10:1098209. [PMID: 36618869 PMCID: PMC9815808 DOI: 10.3389/fchem.2022.1098209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/12/2022] [Indexed: 12/24/2022] Open
Abstract
Photocatalytic synthesis of hydrogen peroxide under mild reaction conditions is a promising technology. This article will review the recent research progress in the design of photocatalytic H2O2 synthesis systems. A comprehensive discussion of the strategies that could solve two essential issues related to H2O2 synthesis. That is, how to improve the reaction kinetics of H2O2 formation via 2e- oxygen reduction reaction and inhibit the H2O2 decomposition through a variety of surface functionalization methods. The photocatalyst design and the reaction mechanism will be especially stressed in this work which will be concluded with an outlook to show the possible ways for synthesizing high-concentration H2O2 solution in the future.
Collapse
Affiliation(s)
- Haobing Wen
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China
| | - Sen Huang
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China
| | - Xianguang Meng
- Hebei Provincial Laboratory of Inorganic Nonmetallic Materials, College of Materials Science and Engineering, North China University of Science and Technology, Tangshan, China
| | - Xiaole Xian
- Traditional Chinese Medical College, North China University of Science and Technology, Tangshan, China
| | - Jingjing Zhao
- School of Pharmacy, North China University of Science and Technology, Tangshan, China
| | - Vellaisamy A. L. Roy
- James Watt School of Engineering, University of Glasgow, Glasgow, United Kingdom
| |
Collapse
|
11
|
Kondo Y, Kuwahara Y, Mori K, Yamashita H. Design of metal-organic framework catalysts for photocatalytic hydrogen peroxide production. Chem 2022. [DOI: 10.1016/j.chempr.2022.10.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
12
|
Gao J, Tian W, Zhang H, Wang S. Engineered inverse opal structured semiconductors for solar light-driven environmental catalysis. NANOSCALE 2022; 14:14341-14367. [PMID: 36148646 DOI: 10.1039/d2nr03924a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Inverse opal (IO) macroporous semiconductor materials with unique physicochemical advantages have been widely used in solar-related environmental areas. In this minireview, we first summarize the synthetic methods of IO materials, emphasizing the two-step and three-step approaches, with the typical physicochemical properties being compared where applicable. We subsequently discuss the application of IO semiconductors (e.g., TiO2, ZnO, g-C3N4) in various photo-related environmental techniques, including photo- and photoelectro-catalytic organic pollutant degradation in water, optical sensors for environmental monitoring, and water disinfection. The engineering strategies of these hierarchical structures for optimizing the activities for different catalytic reactions are discussed, ranging from heterojunction construction, cocatalyst loading, and heteroatom doping, to surface defect construction. Structure-activity relationships are established correspondingly. With a systematic understanding of the unique properties and catalytic activities, this review is expected to orient the design and structure optimization of IO semiconductor materials for photo-related performance improvement in various environmental techniques. Finally, the challenges of emerging IO structured semiconductors and future development directions are proposed.
Collapse
Affiliation(s)
- Junxian Gao
- School of Environment and Civil Engineering, Jiangnan University, Wuxi, Jiangsu, 214122, China
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Wenjie Tian
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Huayang Zhang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Shaobin Wang
- School of Chemical Engineering and Advanced Materials, The University of Adelaide, Adelaide, SA 5005, Australia.
| |
Collapse
|
13
|
Luo J, Feng C, Fan C, Tang L, Liu Y, Gong Z, Wu T, Zhen X, Feng H, Yan M, Wang L, Xu L. Enhanced indirect attack behavior of 1O2 for photocatalytic H2O2 production: Possible synergistic regulation of spin polarization and water bridge on photocatalytic reaction. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
14
|
He B, Wang Z, Xiao P, Chen T, Yu J, Zhang L. Cooperative Coupling of H 2 O 2 Production and Organic Synthesis over a Floatable Polystyrene-Sphere-Supported TiO 2 /Bi 2 O 3 S-Scheme Photocatalyst. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2203225. [PMID: 35944441 DOI: 10.1002/adma.202203225] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Cooperative coupling of photocatalytic H2 O2 production with organic synthesis has an expansive perspective in converting solar energy into storable chemical energy. However, traditional powder photocatalysts suffer from severe agglomeration, limited light absorption, poor gas reactant accessibility, and reusable difficulty, which greatly hinders their large-scale application. Herein, floatable composite photocatalysts are synthesized by immobilizing hydrophobic TiO2 and Bi2 O3 on lightweight polystyrene (PS) spheres via hydrothermal and photodeposition methods. The floatable photocatalysts are not only solar transparent, but also upgrade the contact between reactants and photocatalysts. Thus, the floatable step-scheme (S-scheme) TiO2 /Bi2 O3 photocatalyst exhibits a drastically enhanced H2 O2 yield of 1.15 mm h-1 and decent furfuryl alcohol conversion to furoic acid synchronously. Furthermore, the S-scheme mechanism and dynamics are systematically investigated by in situ irradiated X-ray photoelectron spectroscopy and femtosecond transient absorption spectrum analyses. In situ Fourier transform infrared spectroscopy and density functional theory calculations reveal the mechanism of furoic acid evolution. The ingenious design of floatable photocatalysts not only furnishes insight into maximizing photocatalytic reaction kinetics but also provides a new route for highly efficient heterogeneous catalysis.
Collapse
Affiliation(s)
- Bowen He
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhongliao Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Peng Xiao
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Tao Chen
- Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Materials for Energy Conversion, Department of Materials Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Jiaguo Yu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Material Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Liuyang Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| |
Collapse
|
15
|
Li M, Zheng Q, Durkin DP, Chen H, Shuai D. Environmental application of chlorine-doped graphitic carbon nitride: Continuous solar-driven photocatalytic production of hydrogen peroxide. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129251. [PMID: 35739770 DOI: 10.1016/j.jhazmat.2022.129251] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Solar-driven photocatalytic generation of H2O2 over metal-free catalysts is a sustainable approach for value-added chemical production. Here, we synthesized chlorine-doped graphitic carbon nitride (Cl-doped g-C3N4) through a solvothermal method to effectively produce H2O2 with a rate of 1.19 ± 0.06 µM min-1 under visible light irradiation, which was improved by 104 times compared to pristine g-C3N4. Continuous net production of H2O2 was realized at a rate of 2.78 ± 0.10 µM min-1 up to 54 h with isopropanol as the hole scavenger, whereas H2O2 production was only sustained for ~ 6 h without scavengers. Both molecular simulations and advanced spectroscopic characterizations elucidated that the Cl dopant increased the charge transfer rate, decreased the bandgap, and reduced the activation energy of the rate-limiting step of O2 reduction, all of which favored H2O2 production. This work implemented a novel metal-free photocatalyst for sustainable H2O2 production and elucidated the mechanism for promoting H2O2 production that can guide future photoreactive nanomaterial design.
Collapse
Affiliation(s)
- Mengqiao Li
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052 USA
| | - Qinmin Zheng
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052 USA
| | - David P Durkin
- Department of Chemistry, United States Naval Academy, Annapolis, MD 21402 USA
| | - Hanning Chen
- Department of Chemistry, American University, Washington, DC 20016 USA.
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, Washington, DC 20052 USA.
| |
Collapse
|
16
|
Behera A, Kar AK, Srivastava R. Oxygen Vacancy-Mediated Z-Scheme Charge Transfer in a 2D/1D B-Doped g-C 3N 4/rGO/TiO 2 Heterojunction Visible Light-Driven Photocatalyst for Simultaneous/Efficient Oxygen Reduction Reaction and Alcohol Oxidation. Inorg Chem 2022; 61:12781-12796. [PMID: 35913785 DOI: 10.1021/acs.inorgchem.2c01899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydrogen peroxide (H2O2) is a powerful oxidant that directly or indirectly oxidizes many organic and inorganic contaminants. The photocatalytic generation of H2O2 is achieved by using a semiconductor photocatalyst in the presence of alcohol as a proton source. Herein, we have synthesized oxygen vacancy (Ov)-mediated TiO2/B-doped g-C3N4/rGO (TBCN@rGO) ternary heterostructures by a simple hydrothermal technique. Several characterization techniques were employed to explore the existence of oxygen vacancies in the crystal structure and investigate their impact on the optoelectronic properties of the catalyst. Oxygen vacancies offered additional sites for adsorbing molecular oxygen, activating alcohols, and facilitating electron migration from TBCN@rGO to the surface-adsorbed O2. The defect creation (oxygen vacancy) and Z-scheme mechanistic pathways create a suitable platform for generating H2O2 by two-electron reduction processes. The optimized catalyst showed the highest photocatalytic H2O2 evolution rate of 172 μmol/h, which is 1.9 and 2.5 times greater than that of TBCN and BCN, respectively. The photocatalytic oxidation of various lignocellulose-derived alcohols (such as furfural alcohol and vanillyl alcohol) and benzyl alcohol was also achieved. Photocatalytic activity data, physicochemical and optoelectronic features, and trapping experiments were conducted to elucidate the structure-activity relationships. The TBCN@rGO acts as a multifunctional Z-scheme photocatalyst having an oxygen vacancy, modulates surface acidity-basicity required for the adsorption and activation of the reactant molecules, and displays excellent photocatalytic performance due to the formation of a large number of active surface sites, increased electrical conductivity, improved charge transfer properties, outstanding photostability, and reusability. The present study establishes a unique strategy for improving H2O2 generation and alcohol oxidation activity and also provides insights into the significance of a surface vacancy in the semiconductor photocatalyst.
Collapse
Affiliation(s)
- Arjun Behera
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Ashish Kumar Kar
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| | - Rajendra Srivastava
- Catalysis Research Laboratory, Department of Chemistry, Indian Institute of Technology Ropar, Rupnagar 140001, India
| |
Collapse
|
17
|
Protonated g-C 3N 4 coated Co 9S 8 heterojunction for photocatalytic H 2O 2 production. J Colloid Interface Sci 2022; 627:541-553. [PMID: 35870406 DOI: 10.1016/j.jcis.2022.07.077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 07/08/2022] [Accepted: 07/12/2022] [Indexed: 11/24/2022]
Abstract
Photocatalytic H2O2 production is an eco-friendly technique because only H2O, molecular O2 and light are involved. However, it still confronts the challenges of the unsatisfactory productivity of H2O2 and the dependence on organic electron donors or high purity O2, which restrict the practical application. Herein, we construct a type-II heterojunction of the protonated g-C3N4 coated Co9S8 semiconductor for photocatalytic H2O2 production. The ultrathin g-C3N4 uniformly spreads on the surface of the dispersed Co9S8 nanosheets by a two-step method of protonation and dip-coating, and exhibits improved photogenerated electrons transportability and e--h+ pairs separation ability. The photocatalytic system can achieve a considerable productivity of H2O2 to 2.17 mM for 5 h in alkaline medium in the absence of the organic electron donors and pure O2. The optimal photocatalyst also obtains the highest apparent quantum yield (AQY) of 18.10% under 450 nm of light irradiation, as well as a good reusability. The contribution of the type-II heterojunction is that the migrations of electrons and holes within the interface between g-C3N4 and Co9S8 matrix promote the separation of photocarriers, and another channel is also opened for H2O2 generation. The accumulated electrons in conduction band (CB) of Co9S8 contribute to the major channel of two-electron reduction of O2 for H2O2 production. Meanwhile, the electrons in CB of g-C3N4 participate in the single electron reduction of O2 as an auxiliary channel to enhance the H2O2 production.
Collapse
|
18
|
Hsu JW, Wei LW, Chen WR, Liu SH, Wang HP. Visible-Light Driven H 2O-to-H 2O 2 Reaction by Nitrogen-Enriched Resins for Photocatalytic Oxidation of an Organic Pollutant in Wastewater. ACS OMEGA 2022; 7:23727-23735. [PMID: 35847308 PMCID: PMC9281328 DOI: 10.1021/acsomega.2c02371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A photocatalytic H2O-to-H2O2 reaction for sustainable organic wastewater treatment is environmentally attractive. Phenolic resins, inexpensive metal-free photocatalysts, are capable of harvesting visible light. Herein, novel nitrogen-enriched resin photocatalysts with a desired band-gap energy (1.83-1.98 eV) for harvesting visible light were prepared by copolymerization of resorcinol and melem for simultaneous photocatalytic H2O-to-H2O2 and oxidation of methylene blue. Under visible light irradiation for 5 h, very high yields of H2O2 (870-975 μM of H2O2/g/h) by RFM resin photocatalysts could be achieved. The photocatalytic H2O2 for reactive oxygen species (•OH) and photogenerated h+ could account for high conversion (40% conversion under visible light irradiation within 3 h) in oxidation of methylene blue. Such unique low-cost metal-free resins demonstrate the visible light photocatalytic H2O-to-H2O2 reaction which can synergize with the oxidation of organic pollutants in wastewater.
Collapse
|
19
|
Sharma P, Slater TJA, Sharma M, Bowker M, Catlow CRA. Enhanced H 2O 2 Production via Photocatalytic O 2 Reduction over Structurally-Modified Poly(heptazine imide). CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2022; 34:5511-5521. [PMID: 35782205 PMCID: PMC9245186 DOI: 10.1021/acs.chemmater.2c00528] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/07/2022] [Indexed: 06/15/2023]
Abstract
Solar H2O2 produced by O2 reduction provides a green, efficient, and ecological alternative to the industrial anthraquinone process and H2/O2 direct-synthesis. We report efficient photocatalytic H2O2 production at a rate of 73.4 mM h-1 in the presence of a sacrificial donor on a structurally engineered catalyst, alkali metal-halide modulated poly(heptazine imide) (MX → PHI). The reported H2O2 production is nearly 150 and >4250 times higher than triazine structured pristine carbon nitride under UV-visible and visible light (≥400 nm) irradiation, respectively. Furthermore, the solar H2O2 production rate on MX → PHI is higher than most of the previously reported carbon nitride (triazine, tri-s-triazine), metal oxides, metal sulfides, and other metal-organic photocatalysts. A record high AQY of 96% at 365 nm and 21% at 450 nm was observed. We find that structural modulation by alkali metal-halides results in a highly photoactive MX → PHI catalyst which has a broader light absorption range, enhanced light absorption ability, tailored bandgap, and a tunable band edge position. Moreover, this material has a different polymeric structure, high O2 trapping ability, interlayer intercalation, as well as surface decoration of alkali metals. The specific C≡N groups and surface defects, generated by intercalated MX, were also considered as potential contributors to the separation of photoinduced electron-hole pairs, leading to enhanced photocatalytic activity. A synergy of all these factors contributes to a higher H2O2 production rate. Spectroscopic data help us to rationalize the exceptional photochemical performance and structural characteristics of MX → PHI.
Collapse
Affiliation(s)
- Pankaj Sharma
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, United
Kingdom
| | - Thomas J. A. Slater
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
| | - Monika Sharma
- Department
of Chemistry, Kurukshetra University, Kurukshetra 136 119, Haryana, India
| | - Michael Bowker
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, United
Kingdom
| | - C. Richard A. Catlow
- Cardiff
Catalysis Institute, School of Chemistry, Cardiff University, Cardiff CF10 3AT, United Kingdom
- UK
Catalysis Hub, Research Complex at Harwell, Rutherford Appleton Laboratory, Harwell OX11 0FA, United
Kingdom
- Department
of Chemistry, University College London, 20 Gordon Street, London WC1 HOAJ, United Kingdom
| |
Collapse
|
20
|
Water Splitting on Multifaceted SrTiO 3 Nanocrystals: Calculations of Raman Vibrational Spectrum. MATERIALS 2022; 15:ma15124233. [PMID: 35744292 PMCID: PMC9227064 DOI: 10.3390/ma15124233] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/06/2022] [Accepted: 06/07/2022] [Indexed: 02/04/2023]
Abstract
Various photocatalysts are being currently studied with the aim of increasing the photocatalytic efficiency of water splitting for production of hydrogen as a fuel and oxygen as a medical gas. A noticeable increase of hydrogen production was found recently experimentally on the anisotropic faces (facets) of strontium titanate (SrTiO3, STO) nanoparticles. In order to identify optimal sites for water splitting, the first principles calculations of the Raman vibrational spectrum of the bulk and stepped (facet) surface of a thin STO film with adsorbed water derivatives were performed. According to our calculations, the Raman spectrum of a stepped STO surface differs from the bulk spectrum, which agrees with the experimental data. The characteristic vibrational frequencies for the chemisorption of water derivatives on the surface were identified. Moreover, it is also possible to distinguish between differently adsorbed hydrogen atoms of a split water molecule. Our approach helps to select the most efficient (size and shape) perovskite nanoparticles for efficient hydrogen/oxygen photocatalytic production.
Collapse
|
21
|
Alley KR, Gavenda-Eaton TR, Prieto-Centurion D. Photo-thermal catalytic degradation of organophosphate simulant over Cu, Co, and Fe on titania. CATAL COMMUN 2022. [DOI: 10.1016/j.catcom.2021.106369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
|
22
|
Wang L, Zhang J, Zhang Y, Yu H, Qu Y, Yu J. Inorganic Metal-Oxide Photocatalyst for H 2 O 2 Production. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2104561. [PMID: 34716646 DOI: 10.1002/smll.202104561] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/18/2021] [Indexed: 06/13/2023]
Abstract
Hydrogen peroxide (H2 O2 ) is a mild but versatile oxidizing agent with extensive applications in bleaching, wastewater purification, medical treatment, and chemical synthesis. The state-of-art H2 O2 production via anthraquinone oxidation is hardly considered a cost-efficient and environment-friendly process because it requires high energy input and generates hazardous organic wastes. Photocatalytic H2 O2 production is a green, sustainable, and inexpensive process which only needs water and gaseous dioxygen as the raw materials and sunlight as the power source. Inorganic metal oxide semiconductors are good candidates for photocatalytic H2 O2 production due to their abundance in nature, biocompatibility, exceptional stability, and low cost. Progress has been made to enhance the photocatalytic activity toward H2 O2 production, however, H2 O2 photosynthesis is still in the laboratory research phase since the productivity is far from satisfaction. To inspire innovative ideas for boosting the H2 O2 yield in photocatalysis, the most well-studied metal oxide photocatalysts are selected and the modification strategies to improve their activity are listed. The mechanisms for H2 O2 production over modified photocatalysts are discussed to highlight the facilitating role of the modification methods. Besides, methods for the quantification of H2 O2 and associated radical intermediates are provided to guide future studies in this field.
Collapse
Affiliation(s)
- Linxi Wang
- School of Materials Science & Engineering, Xi'an Polytechnic University, Jinhua South Road 19, Xi'an, Shaanxi, 710048, P. R. China
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Jianjun Zhang
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Yong Zhang
- College of Chemistry and Chemical Engineering, Hubei Polytechnic University, Huangshi, 435003, P. R. China
| | - Huogen Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| | - Yinhu Qu
- School of Materials Science & Engineering, Xi'an Polytechnic University, Jinhua South Road 19, Xi'an, Shaanxi, 710048, P. R. China
| | - Jiaguo Yu
- Laboratory of Solar Fuel, Faculty of Materials Science and Chemistry, China University of Geosciences, 388 Lumo Road, Wuhan, 430074, P. R. China
| |
Collapse
|
23
|
Ji W, Xu Z, Zhang S, Li Y, Bao Z, Zhao Z, Xie L, Zhong X, Wei Z, Wang J. High-efficiency visible-light photocatalytic H 2O 2 production using CdSe-based core/shell quantum dots. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00269h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Quantum dots are demonstrated as photocatalysts for high-efficiency photocatalytic production of H2O2 in a designed oil/water two-phase system.
Collapse
Affiliation(s)
- Wenkai Ji
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zaixiang Xu
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Shijie Zhang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Yang Li
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
- School of Physics and Optoelectronic Engineering, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Research Institute of Intelligent Sensing, Zhejiang Lab, Hangzhou, 311100, China
| | - Zhikang Bao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zijiang Zhao
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Liang Xie
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Xing Zhong
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Zhongzhe Wei
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| | - Jianguo Wang
- Institute of Industrial Catalysis, College of Chemical Engineering, State Key Laboratory Breeding Base of Green-Chemical Synthesis Technology, Zhejiang University of Technology, Hangzhou, 310032, China
| |
Collapse
|
24
|
Du C, Feng W, Nie S, Zhang J, Liang Y, Han X, Wu Y, Feng J, Dong S, Liu H, Sun J. Harnessing efficient in-situ H2O2 production via a KPF6/BiOBr photocatalyst for the degradation of polyethylene. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119734] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Park H, Bentria ET, Rtimi S, Arredouani A, Bensmail H, El-Mellouhi F. Accelerating the Design of Photocatalytic Surfaces for Antimicrobial Application: Machine Learning Based on a Sparse Dataset. Catalysts 2021. [DOI: https://doi.org/10.3390/catal11081001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Nowadays, most experiments to synthesize and test photocatalytic antimicrobial materials are based on trial and error. More often than not, the mechanism of action of the antimicrobial activity is unknown for a large spectrum of microorganisms. Here, we propose a scheme to speed up the design and optimization of photocatalytic antimicrobial surfaces tailored to give a balanced production of reactive oxygen species (ROS) upon illumination. Using an experiment-to-machine-learning scheme applied to a limited experimental dataset, we built a model that can predict the photocatalytic activity of materials for antimicrobial applications over a wide range of material compositions. This machine-learning-assisted strategy offers the opportunity to reduce the cost, labor, time, and precursors consumed during experiments that are based on trial and error. Our strategy may significantly accelerate the large-scale deployment of photocatalysts as a promising route to mitigate fomite transmission of pathogens (bacteria, viruses, fungi) in hospital settings and public places.
Collapse
|
26
|
Accelerating the Design of Photocatalytic Surfaces for Antimicrobial Application: Machine Learning Based on a Sparse Dataset. Catalysts 2021. [DOI: 10.3390/catal11081001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Nowadays, most experiments to synthesize and test photocatalytic antimicrobial materials are based on trial and error. More often than not, the mechanism of action of the antimicrobial activity is unknown for a large spectrum of microorganisms. Here, we propose a scheme to speed up the design and optimization of photocatalytic antimicrobial surfaces tailored to give a balanced production of reactive oxygen species (ROS) upon illumination. Using an experiment-to-machine-learning scheme applied to a limited experimental dataset, we built a model that can predict the photocatalytic activity of materials for antimicrobial applications over a wide range of material compositions. This machine-learning-assisted strategy offers the opportunity to reduce the cost, labor, time, and precursors consumed during experiments that are based on trial and error. Our strategy may significantly accelerate the large-scale deployment of photocatalysts as a promising route to mitigate fomite transmission of pathogens (bacteria, viruses, fungi) in hospital settings and public places.
Collapse
|
27
|
Enhanced photocatalytic production of hydrogen peroxide via two-channel pathway using modified graphitic carbon nitride photocatalyst: Doping K+ and combining WO3. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126758] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
28
|
Chen C, Qiu G, Wang T, Zheng Z, Huang M, Li B. Modulating oxygen vacancies on bismuth-molybdate hierarchical hollow microspheres for photocatalytic selective alcohol oxidation with hydrogen peroxide production. J Colloid Interface Sci 2021; 592:1-12. [PMID: 33639533 DOI: 10.1016/j.jcis.2021.02.036] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/30/2021] [Accepted: 02/08/2021] [Indexed: 12/23/2022]
Abstract
Photocatalytic selective oxidation of alcohols into high value-added carbonyl compounds accompanied by producing hydrogen peroxide (H2O2) is undoubtedly a more efficient solar energy conversion strategy with high atom economy. Herein, we have developed an efficient photocatalyst of bismuth-molybdate (Bi2MoO6) hierarchical hollow microspheres with tunable surface oxygen vacancies (OVs) for promoting the photocatalytic selective alcohol oxidation with H2O2 production. The effect of surface OVs on the photocatalytic efficiency is studied systematically by comparing the performance of different photocatalysts. The benzaldehyde and H2O2 production rates over the OV-rich Bi2MoO6 photocatalyst reach up to 1310 and 67.2 μmol g-1 h-1, respectively, which are 2.3 and 4.0 times those generated from the OV-poor Bi2MoO6 hollow microspheres. The roles of various active radicals in the photocatalytic reaction are probed by a series of controlled experiments and in situ ESR measurements, revealing that both superoxide radical (•O2-) and carbon-centered radical are the key active intermediates. The introduction of surface OVs on Bi2MoO6 hollow microspheres accelerates the separation and transfer of photo-generated charge carriers as well as enhances the adsorption and activation of reactant molecules, thereby greatly promoting the photocatalytic selective oxidation of alcohols along with H2O2 production. This work not only demonstrates a facile strategy for the preparation of high-efficiency photocatalysts by simultaneous modulations of morphology and surface defects, but also offers insight into developing the dual-functional photocatalytic reactions for the full utilizations of photoinduced electrons and holes.
Collapse
Affiliation(s)
- Cong Chen
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Ganhua Qiu
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Ting Wang
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Ziqiang Zheng
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Mengtian Huang
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China
| | - Benxia Li
- Department of Chemistry, School of Science, Zhejiang Sci-Tech University, No. 928 Second Avenue, Xiasha Higher Education Zone, Hangzhou 310018, China.
| |
Collapse
|
29
|
Tian Z, Han C, Zhao Y, Dai W, Lian X, Wang Y, Zheng Y, Shi Y, Pan X, Huang Z, Li H, Chen W. Efficient photocatalytic hydrogen peroxide generation coupled with selective benzylamine oxidation over defective ZrS 3 nanobelts. Nat Commun 2021; 12:2039. [PMID: 33795681 PMCID: PMC8016833 DOI: 10.1038/s41467-021-22394-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 03/03/2021] [Indexed: 02/01/2023] Open
Abstract
Photocatalytic hydrogen peroxide (H2O2) generation represents a promising approach for artificial photosynthesis. However, the sluggish half-reaction of water oxidation significantly limits the efficiency of H2O2 generation. Here, a benzylamine oxidation with more favorable thermodynamics is employed as the half-reaction to couple with H2O2 generation in water by using defective zirconium trisulfide (ZrS3) nanobelts as a photocatalyst. The ZrS3 nanobelts with disulfide (S22-) and sulfide anion (S2-) vacancies exhibit an excellent photocatalytic performance for H2O2 generation and simultaneous oxidation of benzylamine to benzonitrile with a high selectivity of >99%. More importantly, the S22- and S2- vacancies can be separately introduced into ZrS3 nanobelts in a controlled manner. The S22- vacancies are further revealed to facilitate the separation of photogenerated charge carriers. The S2- vacancies can significantly improve the electron conduction, hole extraction, and kinetics of benzylamine oxidation. As a result, the use of defective ZrS3 nanobelts yields a high production rate of 78.1 ± 1.5 and 32.0 ± 1.2 μmol h-1 for H2O2 and benzonitrile, respectively, under a simulated sunlight irradiation.
Collapse
Affiliation(s)
- Zhangliu Tian
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Cheng Han
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China
| | - Yao Zhao
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China
| | - Wenrui Dai
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xu Lian
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Yanan Wang
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yue Zheng
- grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Yi Shi
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore
| | - Xuan Pan
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Zhichao Huang
- grid.263488.30000 0001 0472 9649SZU-NUS Collaborative Innovation Center for Optoelectronic Science & Technology, International Collaborative Laboratory of 2D Materials for Optoelectronics Science and Technology of Ministry of Education, Institute of Microscale Optoelectronics, Shenzhen University, Shenzhen, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| | - Hexing Li
- grid.412531.00000 0001 0701 1077International Joint Lab on Resource Chemistry, College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, China
| | - Wei Chen
- grid.4280.e0000 0001 2180 6431Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore, Singapore ,grid.4280.e0000 0001 2180 6431Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, China ,grid.4280.e0000 0001 2180 6431Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore
| |
Collapse
|
30
|
Wang L, Chen Y, Chen B, Yang J. Generation of hydroxyl radicals during photodegradation of chloroacetic acids by 254 nm ultraviolet: A special degradation process revealed by a holistic radical determination methodology. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124040. [PMID: 33157519 DOI: 10.1016/j.jhazmat.2020.124040] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 08/21/2020] [Accepted: 09/16/2020] [Indexed: 06/11/2023]
Abstract
Upon ultraviolet (UV) irradiation, aqueous contaminants may undergo direct and/or indirect photolysis. Direct photolysis refers to transformation of contaminants by UV photon, and indirect photolysis refers to degradation of contaminants by UV-induced reactive species in the presence of photosensitizers. Because hydroxyl radical (•OH) was unexpectedly observed during chloroacetic acids photolysis without using photosensitizer, a question arises regarding whether direct photolysis-induced indirect photolysis (DPIP) was present and how it originated and evolved along the process. To answer these questions, this study employed multiple different yet complementary •OH detection approaches (i.e., probe, scavenger, electron paramagnetic resonance, and hydroxylation products) to prove the presence and role of •OH. Given that hydrogen peroxide (H2O2) was produced only in oxygenated water but not in deoxygenated water, we revealed that •OH was mainly generated by reduced oxygen. Meanwhile, several photolysis products like formate, glycolic acid, and glyoxylic acid were able to yield H2O2 too, suggesting that they can all trigger formation of •OH under 254 nm UV. In addition to evidences of DPIP phenomenon, this study is also novel in demonstrating a holistic methodology to prove and identify the presence and sources of radicals, which might help enhance understandings of UV processes.
Collapse
Affiliation(s)
- Lei Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Yi Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| | - Baiyang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China.
| | - Jie Yang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Shenzhen 518055, China
| |
Collapse
|
31
|
|
32
|
Velo-Gala I, Torres-Pinto A, Silva CG, Ohtani B, Silva AMT, Faria JL. Graphitic carbon nitride photocatalysis: the hydroperoxyl radical role revealed by kinetic modelling. Catal Sci Technol 2021. [DOI: 10.1039/d1cy01657a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The behaviour of graphitic carbon nitride photocatalysis for phenol removal and H2O2 evolution was fully analysed by kinetic modelling, rediscovering the contribution of oxygen, reactive oxygen species, photogenerated holes and intermediate products.
Collapse
Affiliation(s)
- Inmaculada Velo-Gala
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Porto 4200-465, Portugal
| | - André Torres-Pinto
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Porto 4200-465, Portugal
| | - Cláudia G. Silva
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Porto 4200-465, Portugal
| | - Bunsho Ohtani
- Institute for Catalysis, Hokkaido University, Sapporo 001-0021, Japan
| | - Adrián M. T. Silva
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Porto 4200-465, Portugal
| | - Joaquim L. Faria
- Laboratory of Separation and Reaction Engineering – Laboratory of Catalysis and Materials (LSRE-LCM), Faculdade de Engenharia, Universidade do Porto, Porto 4200-465, Portugal
| |
Collapse
|
33
|
Naniwa S, Yamamoto A, Yoshida H. Visible light-induced Minisci reaction through photoexcitation of surface Ti-peroxo species. Catal Sci Technol 2021. [DOI: 10.1039/d1cy00248a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Visible-light induced Minisci-type functionalization of pyridine with tetrahydrofuran proceeds through photoexcitation of surface Ti-peroxo species on TiO2.
Collapse
Affiliation(s)
- Shimpei Naniwa
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
| | - Akira Yamamoto
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB)
| | - Hisao Yoshida
- Graduate School of Human and Environmental Studies
- Kyoto University
- Kyoto 606-8501
- Japan
- Elements Strategy Initiative for Catalysts & Batteries (ESICB)
| |
Collapse
|
34
|
Shiraishi Y, Hagi T, Matsumoto M, Tanaka S, Ichikawa S, Hirai T. Solar-to-hydrogen peroxide energy conversion on resorcinol-formaldehyde resin photocatalysts prepared by acid-catalysed polycondensation. Commun Chem 2020; 3:169. [PMID: 36703421 PMCID: PMC9814707 DOI: 10.1038/s42004-020-00421-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 10/21/2020] [Indexed: 01/29/2023] Open
Abstract
The photocatalytic generation of hydrogen peroxide from water and dioxygen (H2O + 1/2O2 → H2O2, ΔG° = +117 kJ mol-1) under sunlight is a promising strategy for the artificial photosynthesis of a liquid fuel. We had previously found that resorcinol-formaldehyde (RF) resin powders prepared by the base-catalysed high-temperature hydrothermal method act as semiconductor photocatalysts for H2O2 generation. Herein, we report that RF resins prepared by the acid-catalysed high-temperature hydrothermal method (~523 K) using common acids at pH < 4 exhibit enhanced photocatalytic activity. The base- and acid-catalysed methods both produce methylene- and methine-bridged resins consisting of π-conjugated and π-stacked benzenoid-quinoid donor-acceptor resorcinol units. The acidic conditions result in the resins with a lower bandgap (1.7 eV) and higher conductivity because the lower-degree of crosslinking creates a strongly π-stacked architecture. The irradiation of the RF-acid resins with simulated sunlight in water with atmospheric-pressure O2 generates H2O2 at a solar-to-chemical conversion efficiency of 0.7%, which is the highest efficiency ever reported for powder catalysts used in artificial photosynthesis.
Collapse
Affiliation(s)
- Yasuhiro Shiraishi
- grid.136593.b0000 0004 0373 3971Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan
| | - Takumi Hagi
- grid.136593.b0000 0004 0373 3971Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan
| | - Masako Matsumoto
- grid.136593.b0000 0004 0373 3971Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan
| | - Shunsuke Tanaka
- grid.412013.50000 0001 2185 3035Department of Chemical, Energy and Environmental Engineering, Kansai University, Suita, Japan
| | - Satoshi Ichikawa
- grid.136593.b0000 0004 0373 3971Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Ibaraki, 567-0047 Japan
| | - Takayuki Hirai
- grid.136593.b0000 0004 0373 3971Research Center for Solar Energy Chemistry, and Division of Chemical Engineering, Graduate School of Engineering Science, Osaka University, Toyonaka, 560-8531 Japan
| |
Collapse
|
35
|
Song H, Wei L, Chen L, Zhang H, Su J. Photocatalytic Production of Hydrogen Peroxide over Modified Semiconductor Materials: A Minireview. Top Catal 2020. [DOI: 10.1007/s11244-020-01317-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
36
|
Zhang P, Tong Y, Liu Y, Vequizo JJM, Sun H, Yang C, Yamakata A, Fan F, Lin W, Wang X, Choi W. Heteroatom Dopants Promote Two‐Electron O
2
Reduction for Photocatalytic Production of H
2
O
2
on Polymeric Carbon Nitride. Angew Chem Int Ed Engl 2020; 59:16209-16217. [DOI: 10.1002/anie.202006747] [Citation(s) in RCA: 122] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Indexed: 12/14/2022]
Affiliation(s)
- Peng Zhang
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Yawen Tong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Junie Jhon M. Vequizo
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Hongwei Sun
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Akira Yamakata
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Wonyong Choi
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
37
|
Zhang P, Tong Y, Liu Y, Vequizo JJM, Sun H, Yang C, Yamakata A, Fan F, Lin W, Wang X, Choi W. Heteroatom Dopants Promote Two‐Electron O
2
Reduction for Photocatalytic Production of H
2
O
2
on Polymeric Carbon Nitride. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202006747] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Peng Zhang
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Yawen Tong
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Yong Liu
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Junie Jhon M. Vequizo
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Hongwei Sun
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| | - Can Yang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Akira Yamakata
- Graduate School of Engineering Toyota Technological Institute 2-12-1 Hisakata, Tempaku Nagoya 468-8511 Japan
| | - Fengtao Fan
- State Key Laboratory of Catalysis Dalian Institute of Chemical Physics Chinese Academy of Sciences Dalian National Laboratory for Clean Energy Dalian 116023 P. R. China
| | - Wei Lin
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Xinchen Wang
- State Key Laboratory of Photocatalysis on Energy and Environment College of Chemistry Fuzhou University Fuzhou 350002 P. R. China
| | - Wonyong Choi
- Division of Environmental Science and Engineering Pohang University of Science and Technology (POSTECH) Pohang 37673 South Korea
| |
Collapse
|
38
|
Hou H, Zeng X, Zhang X. Production of Hydrogen Peroxide by Photocatalytic Processes. Angew Chem Int Ed Engl 2020; 59:17356-17376. [DOI: 10.1002/anie.201911609] [Citation(s) in RCA: 266] [Impact Index Per Article: 66.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Indexed: 02/04/2023]
Affiliation(s)
- Huilin Hou
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
- Institute of Materials Ningbo University of Technology Ningbo 315016 P. R. China
| | - Xiangkang Zeng
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| | - Xiwang Zhang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australia
| |
Collapse
|
39
|
Hou H, Zeng X, Zhang X. Produktion von Wasserstoffperoxid durch photokatalytische Prozesse. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201911609] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Huilin Hou
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australien
- Institute of Materials Ningbo University of Technology Ningbo 315016 P. R. China
| | - Xiangkang Zeng
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australien
| | - Xiwang Zhang
- Department of Chemical Engineering Monash University Clayton VIC 3800 Australien
| |
Collapse
|
40
|
Kitamura N, Soejima T. Low-temperature One-pot Aqueous Synthesis and Application of Anatase/Rutile TiO 2 Composite Nanoparticles. CHEM LETT 2020. [DOI: 10.1246/cl.200137] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Naoki Kitamura
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| | - Tetsuro Soejima
- Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1 Kowakae, Higashi-osaka, Osaka 577-8502, Japan
| |
Collapse
|
41
|
Yayci A, Baraibar ÁG, Krewing M, Fueyo EF, Hollmann F, Alcalde M, Kourist R, Bandow JE. Plasma-Driven in Situ Production of Hydrogen Peroxide for Biocatalysis. CHEMSUSCHEM 2020; 13:2072-2079. [PMID: 32026604 PMCID: PMC7216967 DOI: 10.1002/cssc.201903438] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/04/2020] [Indexed: 06/10/2023]
Abstract
Peroxidases and peroxygenases are promising classes of enzymes for biocatalysis because of their ability to carry out one-electron oxidation reactions and stereoselective oxyfunctionalizations. However, industrial application is limited, as the major drawback is the sensitivity toward the required peroxide substrates. Herein, we report a novel biocatalysis approach to circumvent this shortcoming: in situ production of H2 O2 by dielectric barrier discharge plasma. The discharge plasma can be controlled to produce hydrogen peroxide at desired rates, yielding desired concentrations. Using horseradish peroxidase, it is demonstrated that hydrogen peroxide produced by plasma treatment can drive the enzymatic oxidation of model substrates. Fungal peroxygenase is then employed to convert ethylbenzene to (R)-1-phenylethanol with an ee of >96 % using plasma-generated hydrogen peroxide. As direct treatment of the reaction solution with plasma results in reduced enzyme activity, the use of plasma-treated liquid and protection strategies are investigated to increase total turnover. Technical plasmas present a noninvasive means to drive peroxide-based biotransformations.
Collapse
Affiliation(s)
- Abdulkadir Yayci
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Álvaro Gómez Baraibar
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Marco Krewing
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| | - Elena Fernandez Fueyo
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Frank Hollmann
- Department of BiotechnologyDelft University of TechnologyVan der Maasweg 92629HZDelftThe Netherlands
| | - Miguel Alcalde
- Department of BiocatalysisInstitute of Catalysis and Petrochemistry (CSIC)Campus Cantoblanco28049MadridSpain
| | - Robert Kourist
- Microbial BiotechnologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
- current address: Institute for Molecular BiotechnologyGraz University of TechnologyPetersgasse 14GrazAustria
| | - Julia E. Bandow
- Applied MicrobiologyFaculty of Biology and BiotechnologyRuhr University BochumUniversitätsstraße 15044780BochumGermany
| |
Collapse
|
42
|
Lu N, Liu N, Hui Y, Shang K, Jiang N, Li J, Wu Y. Characterization of highly effective plasma-treated g-C 3N 4 and application to the photocatalytic H 2O 2 production. CHEMOSPHERE 2020; 241:124927. [PMID: 31590029 DOI: 10.1016/j.chemosphere.2019.124927] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Revised: 09/12/2019] [Accepted: 09/20/2019] [Indexed: 05/21/2023]
Abstract
Plasma treated g-C3N4 (PT-g-C3N4) was obtained by a simple and rapid DBD plasma modification process on the pristine g-C3N4. Compared with the pristine g-C3N4, the grain size of the PT-g-C3N4 decreased from 99.2 nm to 57.2 nm, the specific surface area and the pore volume increased by 15% and 33.8%, respectively. Oxygen-containing groups such as -NO2 and -COOH were observed to form on the surface of PT-g-C3N4 so the hydrophilic property of PT-g-C3N4 was much higher than that of pristine g-C3N4. More importantly, the photocatalytic H2O2 production activity of PT-g-C3N4 was significantly improved on account of the treatment in plasma atmosphere for only 5 min, the H2O2 yield of which was about 13 times that of the pristine g-C3N4. Our finding is not only of great significance for effectively promoting the production of H2O2 under mild conditions, but also proposes an innovative DBD plasma method to modify the g-C3N4 photocatalyst, which effectively promotes the improvement of photocatalytic activity and provides valuable insights for catalyst modification studies.
Collapse
Affiliation(s)
- Na Lu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China.
| | - Ning Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China
| | - Yan Hui
- School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Kefeng Shang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Nan Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Jie Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| | - Yan Wu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, PR China; School of Electrical Engineering, Dalian University of Technology, Dalian, 116024, PR China
| |
Collapse
|
43
|
Chen X, Kondo Y, Kuwahara Y, Mori K, Louis C, Yamashita H. Metal–organic framework-based nanomaterials for photocatalytic hydrogen peroxide production. Phys Chem Chem Phys 2020; 22:14404-14414. [DOI: 10.1039/d0cp01759k] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Metal–organic frameworks act as efficient photocatalysts for visible-light driven hydrogen peroxide production in a single-phase system and two-phase system.
Collapse
Affiliation(s)
- Xiaolang Chen
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
| | | | - Yasutaka Kuwahara
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Kohsuke Mori
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| | - Catherine Louis
- Sorbonne Universités
- UPMC Univ Paris 06
- UMR CNRS 7197
- Laboratoire de Réactivité de Surface
- F-75252 Paris
| | - Hiromi Yamashita
- Graduate School of Engineering
- Osaka University
- Suita
- Japan
- Elements Strategy Initiative for Catalysts and Batteries (ESICB)
| |
Collapse
|
44
|
Sun Y, Han L, Strasser P. A comparative perspective of electrochemical and photochemical approaches for catalytic H2O2 production. Chem Soc Rev 2020; 49:6605-6631. [DOI: 10.1039/d0cs00458h] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent advances in the design, preparation, and applications of different catalysts for electrochemical and photochemical H2O2 production are summarized, and some invigorating perspectives for future developments are also provided.
Collapse
Affiliation(s)
- Yanyan Sun
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| | - Lei Han
- College of Materials Science and Engineering
- Hunan University
- Changsha
- China
| | - Peter Strasser
- Department of Chemistry
- Technical University of Berlin
- 10623 Berlin
- Germany
| |
Collapse
|
45
|
Lim J, Hoffmann MR. Substrate oxidation enhances the electrochemical production of hydrogen peroxide. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2019; 374:958-964. [PMID: 31624468 PMCID: PMC6686209 DOI: 10.1016/j.cej.2019.05.165] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/22/2019] [Accepted: 05/24/2019] [Indexed: 05/20/2023]
Abstract
Hydrogen peroxide (H2O2) is electrochemically produced via oxygen (O2) reduction on a carbon cathode surface. In order to enhance the production of H2O2, anodic loss pathways, which significantly reduce the overall H2O2 production rate, should be inhibited. In this study, we investigate the effects of organic electron donors (i.e., typical chemical contaminants) on the anodic loss pathways of H2O2 in a single-cell electrochemical reactor that employs an anode composed of TiO2 over-coated on a mixed-metal oxide ohmic contact catalyst, Ir0.7Ta0.3O2, deposited on a Ti-metal that is coupled with a graphite rod cathode in a sodium sulfate (Na2SO4) electrolyte that is saturated with oxygen (O2). Organic electron donors are shown to enhance the electrochemical production of H2O2, while simultaneously undergoing oxidative degradation. The observed positive effect of organic electron donors on the electrochemical production of H2O2 is due in part to a preferential adsorption of organic substrates on the TiO2 outer layer of the anode. The sorption of the organic electron donors inhibits the formation of surficial titanium hydroperoxo species ([bond, triple bond]Ti-OOH) on the anode surface. The organic sorbates also act as scavengers of surface-bound hydroxyl radical [bond, triple bond]Ti-OH. As a result, the decomposition of H2O2 on the anode surface is significantly reduced. The cathodic production rate of H2O2 at low pH is enhanced due to proton coupled electron transfer (PCET) to O2, while the anodic decomposition of H2O2 is inhibited due to electrostatic interactions between negatively-charged organic substrates and a positively-charged outer surface of the anode (TiO2 pHzpc = 5.8) at low pH.
Collapse
|
46
|
Burek BO, Timm J, Bahnemann DW, Bloh JZ. Kinetic effects and oxidation pathways of sacrificial electron donors on the example of the photocatalytic reduction of molecular oxygen to hydrogen peroxide over illuminated titanium dioxide. Catal Today 2019. [DOI: 10.1016/j.cattod.2018.12.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Photocatalytic production of H2O2 and its in situ utilization over atomic-scale Au modified MoS2 nanosheets. J Catal 2019. [DOI: 10.1016/j.jcat.2019.06.015] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
48
|
Zhang P, Sun D, Cho A, Weon S, Lee S, Lee J, Han JW, Kim DP, Choi W. Modified carbon nitride nanozyme as bifunctional glucose oxidase-peroxidase for metal-free bioinspired cascade photocatalysis. Nat Commun 2019; 10:940. [PMID: 30808912 PMCID: PMC6391499 DOI: 10.1038/s41467-019-08731-y] [Citation(s) in RCA: 228] [Impact Index Per Article: 45.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/21/2019] [Indexed: 12/29/2022] Open
Abstract
Nanomaterials-based biomimetic catalysts with multiple functions are necessary to address challenges in artificial enzymes mimicking physiological processes. Here we report a metal-free nanozyme of modified graphitic carbon nitride and demonstrate its bifunctional enzyme-mimicking roles. With oxidase mimicking, hydrogen peroxide is generated from the coupled photocatalysis of glucose oxidation and dioxygen reduction under visible-light irradiation with a near 100% apparent quantum efficiency. Then, the in situ generated hydrogen peroxide serves for the subsequent peroxidase-mimicking reaction that oxidises a chromogenic substrate on the same catalysts in dark to complete the bifunctional oxidase-peroxidase for biomimetic detection of glucose. The bifunctional cascade catalysis is successfully demonstrated in microfluidics for the real-time colorimetric detection of glucose with a low detection limit of 0.8 μM within 30 s. The artificial nanozymes with physiological functions provide the feasible strategies for mimicking the natural enzymes and realizing the biomedical diagnostics with a smart and miniature device.
Collapse
Affiliation(s)
- Peng Zhang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dengrong Sun
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Ara Cho
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Seunghyun Weon
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Seonggyu Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jinwoo Lee
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Jeong Woo Han
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Dong-Pyo Kim
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea
| | - Wonyong Choi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea. .,Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Korea.
| |
Collapse
|
49
|
Kawase Y, Isaka Y, Kuwahara Y, Mori K, Yamashita H. Ti cluster-alkylated hydrophobic MOFs for photocatalytic production of hydrogen peroxide in two-phase systems. Chem Commun (Camb) 2019; 55:6743-6746. [PMID: 31119233 DOI: 10.1039/c9cc02380a] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hydrophobic MOF, OPA/MIL-125-NH2, whose Ti cluster was alkylated with octadecylphosphonic acid (OPA), was found to enhance photocatalytic H2O2 production in a two-phase system. Its activity exceeded that of linker-alkylated MIL-125-NH2. OPA/MIL-125-NH2 was modified on its outermost surface, which resulted in the activity enhancement while preserving the inner pores of the inherent MOF.
Collapse
Affiliation(s)
- Yudai Kawase
- Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan.
| | | | | | | | | |
Collapse
|
50
|
Oh H, Choi S, Kim JY, Ahn HS, Hong S. Stoichiometric and electrocatalytic production of hydrogen peroxide driven by a water-soluble copper(ii) complex. Chem Commun (Camb) 2019; 55:12659-12662. [DOI: 10.1039/c9cc06956a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Herein, a water-soluble molecular copper complex was investigated as a catalyst for O2 reduction in both water and an organic solvent.
Collapse
Affiliation(s)
- Hana Oh
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| | - Suhyuk Choi
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Joo Yeon Kim
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Hyun S. Ahn
- Department of Chemistry
- Yonsei University
- Seoul
- Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry
- Sookmyung Women's University
- Seoul 04310
- Korea
| |
Collapse
|