1
|
Wang Q, Jiang X, Gao Y, Yin L, Wei X, Guo K, Gao X, Wang L, Zhang C. Studies on Biosynthesis of Chiral Sulfoxides by Using P450 119 Peroxygenase and Its Mutants. ChemistrySelect 2022. [DOI: 10.1002/slct.202204031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Qin Wang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Dazhou Vocational College of Chinese Medicine Luojiang Town, Tongchuan District Dazhou 635000 China
| | - Xin‐Meng Jiang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Yan‐Ping Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li‐Ping Yin
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Xiao‐Yao Wei
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Kai Guo
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Xiao‐Wei Gao
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| | - Li Wang
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
- Department of Nuclear Medicine The Affiliated Hospital of Southwest Medical University No. 25 Taiping road, Jiangyang District Luzhou 646000 China
| | - Chun Zhang
- Department of Medicinal Chemistry School of Pharmacy Southwest Medical University No. 1, Section 1, XiangLin road, Longmatan District Luzhou 646000 China
| |
Collapse
|
2
|
Li Z, Han Q, Wang K, Song S, Xue Y, Ji X, Zhai J, Huang Y, Zhang S. Ionic liquids as a tunable solvent and modifier for biocatalysis. CATALYSIS REVIEWS 2022. [DOI: 10.1080/01614940.2022.2074359] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Zhuang Li
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- School of Chemical Engineering, University of Chinese Academy of Sciences, Beijing, China
| | - Qi Han
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Kun Wang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Shaoyu Song
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Yaju Xue
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Xiuling Ji
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| | - Jiali Zhai
- School of Science, STEM College, RMIT University, Melbourne, Victoria, Australia
| | - Yuhong Huang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
- Innovation Academy for Green Manufacture, CAS, Beijing, China
- Dalian National Laboratory for Clean Energy, CAS, Dalian, Liaoning, China
| | - Suojiang Zhang
- Beijing Key Laboratory of Ionic Liquids Clean Process, CAS Key Laboratory of Green Process and Engineering, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
3
|
Ionic liquids for regulating biocatalytic process: Achievements and perspectives. Biotechnol Adv 2021; 51:107702. [PMID: 33515671 DOI: 10.1016/j.biotechadv.2021.107702] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/26/2020] [Accepted: 01/15/2021] [Indexed: 12/26/2022]
Abstract
Biocatalysis has found enormous applications in sorts of fields as an alternative to chemical catalysis. In the pursue of green and sustainable chemistry, ionic liquids (ILs) have been considered as promising reaction media for biocatalysis, owing to their unique characteristics, such as nonvolatility, inflammability and tunable properties as regards polarity and water miscibility behavior, compared to organic solvents. In recent years, great developments have been achieved in respects to biocatalysis in ILs, especially for preparing various chemicals. This review tends to give illustrative examples with a focus on representative chemicals production by biocatalyst in ILs and elucidate the possible mechanism in such systems. It also discusses how to regulate the catalytic efficiency from several aspects and finally provides an outlook on the opportunities to broaden biocatalysis in ILs.
Collapse
|
4
|
Anselmi S, Aggarwal N, Moody TS, Castagnolo D. Unconventional Biocatalytic Approaches to the Synthesis of Chiral Sulfoxides. Chembiochem 2021; 22:298-307. [PMID: 32735057 PMCID: PMC7891444 DOI: 10.1002/cbic.202000430] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Indexed: 01/25/2023]
Abstract
Sulfoxides are a class of organic compounds that find wide application in medicinal and organic chemistry. Several biocatalytic approaches have been developed to synthesise enantioenriched sulfoxides, mainly by exploiting oxidative enzymes. Recently, the use of reductive enzymes such as Msr and Dms has emerged as a new, alternative method to obtain enantiopure sulfoxides from racemic mixtures. In parallel, novel oxidative approaches, employing nonclassical solvents such as ionic liquids (ILs) and deep eutectic solvents (DESs), have been developed as greener and more sustainable biocatalytic synthetic pathways. This minireview aims highlights the recent advances made in the biocatalytic synthesis of enantioenriched sulfoxides by employing such unconventional approaches.
Collapse
Affiliation(s)
- Silvia Anselmi
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Nandini Aggarwal
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| | - Thomas S. Moody
- Almac Sciences20 Seagoe Industrial EstateCraigavonBT63 5QDUK
- Arran Chemical Company LimitedUnit 1 Monksland Industrial Estate, Athlone, Co.RoscommonN37 DN24Ireland
| | - Daniele Castagnolo
- School of Cancer and Pharmaceutical SciencesKing's College London150 Stamford StreetLondonSE1 9NHUK
| |
Collapse
|
5
|
Xue F, Zhang LH, Xu Q. Significant improvement of the enantioselectivity of a halohydrin dehalogenase for asymmetric epoxide ring opening reactions by protein engineering. Appl Microbiol Biotechnol 2020; 104:2067-2077. [DOI: 10.1007/s00253-020-10356-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 12/15/2019] [Accepted: 01/05/2020] [Indexed: 02/03/2023]
|
6
|
Willrodt C, Gröning JAD, Nerke P, Koch R, Scholtissek A, Heine T, Schmid A, Bühler B, Tischler D. Highly Efficient Access to (
S
)‐Sulfoxides Utilizing a Promiscuous Flavoprotein Monooxygenase in a Whole‐Cell Biocatalyst Format. ChemCatChem 2020. [DOI: 10.1002/cctc.201901894] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Christian Willrodt
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
- Present address: BASF SE Carl-Bosch-Straße 38 Ludwigshafen am Rhein 67063 Germany
| | - Janosch A. D. Gröning
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
- Present address: Institut für Mikrobiologie Universität Stuttgart Allmandring 31 Stuttgart 70569 Germany
| | - Philipp Nerke
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Rainhard Koch
- Engineering and Technology Bayer AG Kaiser-Wilhelm Allee 3 Leverkusen 51373 Germany
| | - Anika Scholtissek
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Thomas Heine
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
| | - Andreas Schmid
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Bruno Bühler
- Department Solar Materials Helmholtz Center for Environmental Research GmbH – UFZ Permoser Str. 15 Leipzig 04138 Germany
| | - Dirk Tischler
- Environmental Microbiology Group Institute of Biosciences TU Bergakademie Freiberg Leipziger Str. 29 Freiberg 09599 Germany
- Microbial Biotechnology Ruhr University Bochum Universitätsstr. 150 Bochum 44801 Germany
| |
Collapse
|
7
|
Lukito BR, Wu S, Saw HJJ, Li Z. One-Pot Production of Natural 2-Phenylethanol fromL-Phenylalanine via Cascade Biotransformations. ChemCatChem 2019. [DOI: 10.1002/cctc.201801613] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Benedict Ryan Lukito
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Shuke Wu
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Heng Jie Jonathan Saw
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| | - Zhi Li
- Department of Chemical and Biomolecular Engineering; National University of Singapore; 4 Engineering Drive 4 Singapore 117585 Singapore
| |
Collapse
|
8
|
Abstract
The production of chiral sulphoxides is an important part of the chemical industry since they have been used not only as pharmaceuticals and pesticides, but also as catalysts or functional materials. The main purpose of this review is to present biotechnological methods for the oxidation of sulfides. The work consists of two parts. In the first part, examples of biosyntransformation of prochiral sulfides using whole cells of bacteria and fungi are discussed. They have more historical significance due to the low predictability of positive results in relation to the workload. In the second part, the main enzymes responsible for sulfoxidation have been characterized such as chloroperoxidase, dioxygenases, cytochrome flavin-dependent monooxygenases, and P450 monooxygenases. Particular emphasis has been placed on the huge variety of cytochrome P450 monooxygenases, and flavin-dependent monooxygenases, which allows for pure sulfoxides enantiomers effectively to be obtained. In the summary, further directions of research on the optimization of enzymatic sulfoxidation are indicated.
Collapse
|
9
|
Wu K, Tang L, Cui H, Wan N, Liu Z, Wang Z, Zhang S, Cui B, Han W, Chen Y. Biocatalytical Asymmetric Sulfoxidation by Identifying Cytochrome P450 fromParvibaculum LavamentivoransDS‐1. ChemCatChem 2018. [DOI: 10.1002/cctc.201801139] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Kailin Wu
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Linchao Tang
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Haibo Cui
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Nanwei Wan
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Ziyan Liu
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Zhongqiang Wang
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Shimin Zhang
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Baodong Cui
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Wenyong Han
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| | - Yongzheng Chen
- Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of PharmacyZunyi Medical University Zunyi 563000 P.R. China
| |
Collapse
|
10
|
Zhou J, Zhang R, Yang T, Liu Q, Zheng J, Wang F, Liu F, Xu M, Zhang X, Rao Z. Relieving Allosteric Inhibition by Designing Active Inclusion Bodies and Coating of the Inclusion Bodies with Fe3O4 Nanomaterials for Sustainable 2-Oxobutyric Acid Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b03181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Junping Zhou
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Rongzhen Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Taowei Yang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Qiaoli Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Junxian Zheng
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Fang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Fei Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Meijuan Xu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Xian Zhang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| | - Zhiming Rao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu Province 214122, China
| |
Collapse
|
11
|
Egorova KS, Ananikov VP. Ionic liquids in whole-cell biocatalysis: a compromise between toxicity and efficiency. Biophys Rev 2018; 10:881-900. [PMID: 29313188 PMCID: PMC5988618 DOI: 10.1007/s12551-017-0389-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/13/2017] [Indexed: 12/11/2022] Open
Abstract
Comparison of chemical catalysis by metal complexes, enzymatic catalysis and whole-cell biocatalysis shows well-addressed advantages of the latter approach. However, a critical limitation in the practical applications originates from the high sensitivity of microorganisms to the toxic effects of organic solvents. In the present review, we consider toxic solvent properties of ionic liquid/water systems towards the development of efficient applications in practical organic transformations.
Collapse
Affiliation(s)
- Ksenia S Egorova
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia
| | - Valentine P Ananikov
- Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow, 119991, Russia.
| |
Collapse
|
12
|
Affiliation(s)
- Yujie Liang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Jialiang Wei
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Xu Qiu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
| | - Ning Jiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Xue Yuan Road 38, Beijing 100191, China
- State Key Laboratory of Organometallic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
13
|
Mai NL, Koo YM. Whole-Cell Biocatalysis in Ionic Liquids. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2018; 168:105-132. [PMID: 30488166 DOI: 10.1007/10_2018_77] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The use of whole-cell biocatalysis in ionic liquid (IL)-containing systems has attracted increasing attention in recent years. Compared to bioreactions catalyzed by isolated enzymes, the major advantage of using whole cells in biocatalytic processes is that the cells provide a natural intracellular environment for the enzymes to function with in situ cofactor regeneration. To date, the applications of whole-cell biocatalysis in IL-containing systems have focused on the production of valuable compounds, mainly through reduction, oxidation, hydrolysis, and transesterification reactions. The interaction mechanisms between the ILs and biocatalysts in whole-cell biocatalysis offer the possibility to effectively integrate ILs with biotransformation. This chapter discusses these interaction mechanisms between ILs and whole-cell catalysts. In addition, examples of whole-cell catalyzed reactions with ILs will also be discussed. Graphical Abstract.
Collapse
Affiliation(s)
- Ngoc Lan Mai
- Department of Biological Engineering, Inha University, Incheon, South Korea
| | - Yoon-Mo Koo
- Department of Biological Engineering, Inha University, Incheon, South Korea.
| |
Collapse
|
14
|
Han J, Soloshonok VA, Klika KD, Drabowicz J, Wzorek A. Chiral sulfoxides: advances in asymmetric synthesis and problems with the accurate determination of the stereochemical outcome. Chem Soc Rev 2017; 47:1307-1350. [PMID: 29271432 DOI: 10.1039/c6cs00703a] [Citation(s) in RCA: 177] [Impact Index Per Article: 22.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chiral sulfoxides are in extremely high demand in nearly every sector of the chemical industry concerned with the design and development of new synthetic reagents, drugs, and functional materials. The primary objective of this review is to update readers on the latest developments from the past five years (2011-2016) in the preparation of optically active sulfoxides. Methodologies covered include catalytic asymmetric sulfoxidation using either chemical, enzymatic, or hybrid biocatalytic means; kinetic resolution involving oxidation to sulfones, reduction to sulfides, modification of side chains, and imidation to sulfoximines; as well as various other methods including nucleophilic displacement at the sulfur atom for the desymmetrization of achiral sulfoxides, enantioselective recognition and separation based on either metal-organic frameworks (MOF's) or host-guest chemistry, and the Horner-Wadsworth-Emmons reaction. A second goal of this work concerns a critical discussion of the problem of the accurate determination of the stereochemical outcome of a reaction due to the self-disproportionation of enantiomers (SDE) phenomenon, particularly as it relates to chiral sulfoxides. The SDE is a little-appreciated phenomenon that can readily and spontaneously occur for scalemic samples when subjected to practically any physicochemical process. It has now been unequivocally demonstrated that ignorance in the SDE phenomenon inevitably leads to erroneous interpretation of the stereochemical outcome of catalytic enantioselective reactions, in particular, for the synthesis of chiral sulfoxides. It is hoped that this two-pronged approach to covering the chemistry of chiral sulfoxides will be appealing, engaging, and motivating for current research-active authors to respond to in their future publications in this exciting area of current research.
Collapse
Affiliation(s)
- Jianlin Han
- School of Chemistry and Chemical Engineering, State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Nanjing University, 210093 Nanjing, China.
| | - Vadim A Soloshonok
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and IKERBASQUE, Basque Foundation for Science, Alameda Urquijo 36-5, Plaza Bizkaia, 48011 Bilbao, Spain
| | - Karel D Klika
- Molecular Structure Analysis, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, D-69009 Heidelberg, Germany.
| | - Józef Drabowicz
- Department of Heterooganic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland and Institute of Chemistry, Environmental Protection and Biotechnology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-201 Częstochowa, Poland
| | - Alicja Wzorek
- Department of Organic Chemistry I, Faculty of Chemistry, University of the Basque Country UPV/EHU, Paseo Manuel Lardizábal 3, 20018 San Sebastián, Spain. and Institute of Chemistry, Jan Kochanowski University in Kielce, Swiętokrzyska 15G, 25-406 Kielce, Poland.
| |
Collapse
|
15
|
Li C, Hu D, Zong XC, Deng C, Feng L, Wu MC, Li JF. Asymmetric hydrolysis of styrene oxide by PvEH2, a novel Phaseolus vulgaris epoxide hydrolase with extremely high enantioselectivity and regioselectivity. CATAL COMMUN 2017. [DOI: 10.1016/j.catcom.2017.08.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|
16
|
Guo C, Wu ZL. Construction and functional analysis of a whole-cell biocatalyst based on CYP108N7. Enzyme Microb Technol 2017; 106:28-34. [DOI: 10.1016/j.enzmictec.2017.06.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Revised: 06/23/2017] [Accepted: 06/28/2017] [Indexed: 12/31/2022]
|
17
|
Affiliation(s)
- Toshiyuki Itoh
- Department
of Chemistry and Biotechnology, Graduate School of Engineering and ‡Center for Research
on Green Sustainable Chemistry, Tottori University, 4-101 Koyama-minami, Tottori 680-8552, Japan
| |
Collapse
|
18
|
Zheng D, Zhou X, Cui B, Han W, Wan N, Chen Y. Biocatalytic α-Oxidation of Cyclic Amines andN-Methylanilines for the Synthesis of Lactams and Formamides. ChemCatChem 2017. [DOI: 10.1002/cctc.201601703] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Daijun Zheng
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Xiaojian Zhou
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Baodong Cui
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Wenyong Han
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Nanwei Wan
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| | - Yongzheng Chen
- School of Pharmacy; Zunyi Medical University; Zunyi 563000 P.R. China
| |
Collapse
|
19
|
Enhancing productivity for cascade biotransformation of styrene to (S)-vicinal diol with biphasic system in hollow fiber membrane bioreactor. Appl Microbiol Biotechnol 2016; 101:1857-1868. [DOI: 10.1007/s00253-016-7954-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2016] [Revised: 10/17/2016] [Accepted: 10/21/2016] [Indexed: 11/27/2022]
|
20
|
Chuo TH, Boobalan R, Chen C. Camphor-Based Schiff Base Of 3-Endo
-Aminoborneol (SBAB): Novel Ligand for Vanadium-Catalyzed Asymmetric Sulfoxidation and Subsequent Kinetic Resolution. ChemistrySelect 2016. [DOI: 10.1002/slct.201600379] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ting Hung Chuo
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
| | - Ramalingam Boobalan
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
| | - Chinpiao Chen
- Department of chemistry; National Dong Hwa University; Shoufeng Hualien 97401 Taiwan
- Department of Nursing; Tzu Chi University of Science and Technology; Hualien 970 Taiwan
| |
Collapse
|
21
|
Wei P, Liang J, Cheng J, Zong MH, Lou WY. Markedly improving asymmetric oxidation of 1-(4-methoxyphenyl) ethanol with Acetobacter sp. CCTCC M209061 cells by adding deep eutectic solvent in a two-phase system. Microb Cell Fact 2016; 15:5. [PMID: 26758368 PMCID: PMC4711044 DOI: 10.1186/s12934-015-0407-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 12/30/2015] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Enantiopure (S)-1-(4-methoxyphenyl) ethanol {(S)-MOPE} can be employed as an important synthon for the synthesis of cycloalkyl [b] indoles with the treatment function for general allergic response. To date, the biocatalytic resolution of racemic MOPE through asymmetric oxidation in the biphasic system has remained largely unexplored. Additionally, deep eutectic solvents (DESs), as a new class of promising green solvents, have recently gained increasing attention in biocatalysis for their excellent properties and many successful examples in biocatalytic processes. In this study, the biocatalytic asymmetric oxidation of MOPE to get (S)-MOPE using Acetobacter sp. CCTCC M209061 cells was investigated in different two-phase systems, and adding DES in a biphasic system was also explored to further improve the reaction efficiency of the biocatalytic oxidation. RESULTS Of all the examined water-immiscible organic solvents and ionic liquids (ILs), 1-butyl-3-methylimidazolium hexafluorophoshpate ([C4MIM][PF6]) afforded the best results, and consequently was selected as the second phase of a two-phase system for the asymmetric oxidation of MOPE with immobilized Acetobacter sp. CCTCC M209061 cells. For the reaction performed in the [C4MIM][PF6]/buffer biphasic system, under the optimized conditions, the initial reaction rate, the maximum conversion and the residual substrate e.e. recorded 97.8 μmol/min, 50.5 and >99.9 % after 10 h reaction. Furthermore, adding the DES [ChCl][Gly] (10 %, v/v) to the aqueous phase, the efficiency of the biocatalytic oxidation was rose markedly. The optimal substrate concentration and the initial reaction rate were significantly increased to 80 mmol/L and 124.0 μmol/min, respectively, and the reaction time was shortened to 7 h with 51.3 % conversion. The immobilized cell still retained over 72 % of its initial activity after 9 batches of successive reuse in the [C4MIM][PF6]/[ChCl][Gly]-containing buffer system. Additionally, the efficient biocatalytic process was feasible up to a 500-mL preparative scale. CONCLUSION The biocatalytic asymmetric oxidation of MOPE with Acetobacter sp. CCTCC M209061 cells was successfully conducted in the [C4MIM][PF6]-containing biphasic system with high conversion and enantioselectivity, and the reaction efficiency was further enhanced by adding [ChCl][Gly] to the reaction system. The efficient biocatalytic process was promising for the preparation of enantiopure (S)-MOPE.
Collapse
Affiliation(s)
- Ping Wei
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Jing Liang
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Jing Cheng
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Min-Hua Zong
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| | - Wen-Yong Lou
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
- Lab of Applied Biocatalysis, College of Food Science and Engineering, South China University of Technology, Guangzhou, 510640, Guangdong, People's Republic of China.
| |
Collapse
|
22
|
Zhao X, Liu X, Zhu Y, Lu M. Palladium nanoparticles embedded in improved mesoporous silica: a pH-triggered phase transfer catalyst for Sonogashira reaction. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3349] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Xiaohua Zhao
- School of Materials Science and Engineering; Jiangsu University; Zhenjiang 212013 China
| | - Xiang Liu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Yaoqin Zhu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| | - Ming Lu
- School of Chemical Engineering; Nanjing University of Science and Technology; Nanjing 210094 China
| |
Collapse
|
23
|
Design and application of a biphasic system that enhances productivity of Daucus carota-catalyzed asymmetric reduction. Biotechnol Lett 2015; 37:1703-9. [DOI: 10.1007/s10529-015-1838-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2015] [Accepted: 04/11/2015] [Indexed: 10/23/2022]
|