1
|
Hagemann MM, Wieduwilt EK, Hedegård ED. Understanding the initial events of the oxidative damage and protection mechanisms of the AA9 lytic polysaccharide monooxygenase family. Chem Sci 2024; 15:2558-2570. [PMID: 38362420 PMCID: PMC10866358 DOI: 10.1039/d3sc05933b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 12/31/2023] [Indexed: 02/17/2024] Open
Abstract
Lytic polysaccharide monooxygenase (LPMO) is a new class of oxidoreductases that boosts polysaccharide degradation employing a copper active site. This boost may facilitate the cost-efficient production of biofuels and high-value chemicals from polysaccharides such as lignocellulose. Unfortunately, self-oxidation of the active site inactivates LPMOs. Other oxidoreductases employ hole-hopping mechanisms as protection against oxidative damage, but little is generally known about the details of these mechanisms. Herein, we employ highly accurate theoretical models based on density functional theory (DFT) molecular mechanics (MM) hybrids to understand the initial steps in LPMOs' protective measures against self-oxidation; we identify several intermediates recently proposed from experiment, and quantify which are important for protective hole-hopping pathways. Investigations on two different LPMOs show consistently that a tyrosine residue close to copper is crucial for protection: this explains recent experiments, showing that LPMOs without this tyrosine are more susceptible to self-oxidation.
Collapse
Affiliation(s)
- Marlisa M Hagemann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erna K Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| | - Erik D Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark Campusvej 55 5230 Odense Denmark
| |
Collapse
|
2
|
Wang L, Jiang Z, Zhang J, Chen K, Zhang M, Wang Z, Wang B, Ye M, Qiao X. Characterization and structure-based protein engineering of a regiospecific saponin acetyltransferase from Astragalus membranaceus. Nat Commun 2023; 14:5969. [PMID: 37749089 PMCID: PMC10519980 DOI: 10.1038/s41467-023-41599-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 09/12/2023] [Indexed: 09/27/2023] Open
Abstract
Acetylation contributes to the bioactivity of numerous medicinally important natural products. However, little is known about the acetylation on sugar moieties. Here we report a saponin acetyltransferase from Astragalus membranaceus. AmAT7-3 is discovered through a stepwise gene mining approach and characterized as the xylose C3'/C4'-O-acetyltransferse of astragaloside IV (1). To elucidate its catalytic mechanism, complex crystal structures of AmAT7-3/1 and AmAT7-3A310G/1 are obtained, which reveal a large active pocket decided by a specific sequence AADAG. Combining with QM/MM computation, the regiospecificity of AmAT7-3 is determined by sugar positioning modulated by surrounding amino acids including #A310 and #L290. Furthermore, a small mutant library is built using semi-rational design, where variants A310G and A310W are found to catalyze specific C3'-O and C4'-O acetylation, respectively. AmAT7-3 and its variants are also employed to acetylate other bioactive saponins. This work expands the understanding of saponin acetyltransferases, and provide efficient catalytic tools for saponin acetylation.
Collapse
Affiliation(s)
- Linlin Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zhihui Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China
| | - Jiahe Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Kuan Chen
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Meng Zhang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Zilong Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, 361005, Xiamen, China.
| | - Min Ye
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| | - Xue Qiao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, 38 Xueyuan Road, Beijing, 100191, China.
- Peking University-Yunnan Baiyao International Medical Research Center, 38 Xueyuan Road, Beijing, 100191, China.
| |
Collapse
|
3
|
Yu J, Fu Y, Cao Z. QM/MM and MM MD Simulations on Enzymatic Degradation of the Nerve Agent VR by Phosphotriesterase. J Phys Chem B 2023; 127:7462-7471. [PMID: 37584503 DOI: 10.1021/acs.jpcb.3c03952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2023]
Abstract
V-type nerve agents are hardly degraded by phosphotriesterase (PTE). Interestingly, the PTE variant of BHR-73MNW can effectively improve the hydrolytic efficiency of VR, especially for its Sp-enantiomer. Here, the whole enzymatic degradation of both Sp and Rp enantiomers of VR by the wild-type PTE and its variant BHR-73MNW was investigated by quantum mechanics/molecular mechanics (QM/MM) calculations and MM molecular dynamics simulations. Present results indicate that the degradation of VR can be initiated by the nucleophilic attack of the bridging OH- and the zinc-bound water molecule. The QM/MM-predicted energy barriers for the hydrolytic process of Sp-VR are 19.8 kcal mol-1 by the variant with water as a nucleophile and 22.0 kcal mol-1 by the wild-type PTE with OH- as a nucleophile, and corresponding degraded products are bound to the dinuclear metal site in monodentate and bidentate coordination modes, respectively. The variant effectively increases the volume of the large pocket, allowing more water molecules to enter the active pocket and resulting in the improvement of the degradation efficiency of Sp-VR. The hydrolysis of Rp-VR is triggered only by the hydroxide with an energy span of 20.6 kcal mol-1 for the wild-type PTE and 20.7 kcal mol-1 for the variant BHR-73-MNW PTE. Such mechanistic insights into the stereoselective degradation of VR by PTE and the role of water may inspire further studies to improve the catalytic efficiency of PTE toward the detoxification of nerve agents.
Collapse
Affiliation(s)
- Jun Yu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Yuzhuang Fu
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Zexing Cao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
4
|
Yang W, Zhuang J, Li C, Bai C, Cheng G. Insights into the Inhibitory Mechanisms of the Covalent Drugs for DNMT3A. Int J Mol Sci 2023; 24:12652. [PMID: 37628829 PMCID: PMC10454219 DOI: 10.3390/ijms241612652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
The perturbations of DNA methyltransferase 3 alpha (DNMT3A) may cause uncontrolled gene expression, resulting in cancers and tumors. The DNMT inhibitors Azacytidine (AZA) and Zebularine (ZEB) inhibit the DNMT family with no specificities, and consequently would bring side effects during the treatment. Therefore, it is vital to understand the inhibitory mechanisms in DNMT3A to inform the new inhibitor design for DNMTs. Herein, we carried out molecular dynamics (MD) and quantum mechanics/molecular mechanics (QM/MM) simulations to investigate the inhibitory mechanisms of the AZA and ZEB. The results were compared to the methyl transfer of cytosine. We showed how the AZA might stop the methyl transfer process, whereas the ZEB might be stuck in a methyl-transferred intermediate (IM3). The IM3 state then fails the elimination due to the unique protein dynamics that result in missing the catalytic water chain. Our results brought atomic-level insights into the mechanisms of the two drugs in DNMT3A, which could benefit the new generation of drug design for the DNMTs.
Collapse
Affiliation(s)
- Wei Yang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- National Clinical Research Center for Infectious Diseases, Shenzhen Third People’s Hospital, Shenzhen 518112, China
| | - Jingyuan Zhuang
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Chen Li
- Biomedicine Discovery Institute, Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC 3800, Australia;
| | - Chen Bai
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Guijuan Cheng
- Warshel Institute for Computational Biology, School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Life and Health Sciences, The Chinese University of Hong Kong, Shenzhen 518172, China
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
- Shenzhen Futian Biomedical Innovation R&D Center, The Chinese University of Hong Kong, Shenzhen 518017, China
| |
Collapse
|
5
|
Zhang X, Wang Z, Li Z, Shaik S, Wang B. [4Fe–4S]-Mediated Proton-Coupled Electron Transfer Enables the Efficient Degradation of Chloroalkenes by Reductive Dehalogenases. ACS Catal 2023. [DOI: 10.1021/acscatal.2c06306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xuan Zhang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Zikuan Wang
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, Mülheim an der Ruhr 45470, Germany
| | - Zhen Li
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Binju Wang
- State Key Laboratory Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China
| |
Collapse
|
6
|
Peng W, Yan S, Zhang X, Liao L, Zhang J, Shaik S, Wang B. How Do Preorganized Electric Fields Function in Catalytic Cycles? The Case of the Enzyme Tyrosine Hydroxylase. J Am Chem Soc 2022; 144:20484-20494. [DOI: 10.1021/jacs.2c09263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Wei Peng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Shengheng Yan
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Xuan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Langxing Liao
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Jinyan Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, 9190407 Jerusalem, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering and Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, People Republic of China
| |
Collapse
|
7
|
Dulak K, Sordon S, Matera A, Kozak B, Huszcza E, Popłoński J. Novel flavonoid C-8 hydroxylase from Rhodotorula glutinis: identification, characterization and substrate scope. Microb Cell Fact 2022; 21:175. [PMID: 36038906 PMCID: PMC9422121 DOI: 10.1186/s12934-022-01899-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 08/17/2022] [Indexed: 11/22/2022] Open
Abstract
Background The regioselective hydroxylation of phenolic compounds, especially flavonoids, is still a bottleneck of classical organic chemistry that could be solved using enzymes with high activity and specificity. Yeast Rhodotorula glutinis KCh735 in known to catalyze the C-8 hydroxylation of flavones and flavanones. The enzyme F8H (flavonoid C8-hydroxylase) is involved in the reaction, but the specific gene has not yet been identified. In this work, we present identification, heterologous expression and characterization of the first F8H ortho-hydroxylase from yeast. Results Differential transcriptome analysis and homology to bacterial monooxygenases, including also a FAD-dependent motif and a GD motif characteristic for flavin-dependent monooxygenases, provided a set of coding sequences among which RgF8H was identified. Phylogenetic analysis suggests that RgF8H is a member of the flavin monooxygenase group active on flavonoid substrates. Analysis of recombinant protein showed that the enzyme catalyzes the C8-hydroxylation of naringenin, hesperetin, eriodyctiol, pinocembrin, apigenin, luteolin, chrysin, diosmetin and 7,4ʹ-dihydroxyflavone. The presence of the C7-OH group is necessary for enzymatic activity indicating ortho-hydroxylation mechanism. The enzyme requires the NADPH coenzyme for regeneration prosthetic group, displays very low hydroxyperoxyflavin decupling rate, and addition of FAD significantly increases its activity. Conclusions This study presents identification of the first yeast hydroxylase responsible for regioselective C8-hydroxylation of flavonoids (F8H). The enzyme was biochemically characterized and applied in in vitro cascade with Bacillus megaterium glucose dehydrogenase reactions. High in vivo activity in Escherichia coli enable further synthetic biology application towards production of rare highly antioxidant compounds. Supplementary Information The online version contains supplementary material available at 10.1186/s12934-022-01899-x.
Collapse
Affiliation(s)
- Kinga Dulak
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| | - Sandra Sordon
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Agata Matera
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Bartosz Kozak
- Department of Genetics, Plant Breeding and Seed Production, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Ewa Huszcza
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland
| | - Jarosław Popłoński
- Department of Food Chemistry and Biocatalysis, Wroclaw University of Environmental and Life Sciences, Wrocław, Poland.
| |
Collapse
|
8
|
Wang Y, Li X, Wei J, Zhang X, Liu Y. Mechanism of Sugar Ring Contraction and Closure Catalyzed by UDP-d-apiose/UDP-d-xylose Synthase (UAXS). J Chem Inf Model 2022; 62:632-646. [PMID: 35043627 DOI: 10.1021/acs.jcim.1c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Uridine diphosphate (UDP)-apiose/UDP-xylose synthase (UAXS) is a member of the short-chain dehydrogenase/reductase superfamily (SDR), which catalyzes the ring contraction and closure of UDP-d-glucuronic acid (UDP-GlcA), affording UDP-apiose and UDP-xylose. UAXS is a special enzyme that integrates ring-opening, decarboxylation, rearrangement, and ring closure/contraction in a single active site. Recently, the ternary complex structure of UAXS was crystallized from Arabidopsis thaliana. In this work, to gain insights into the detailed formation mechanism of UDP-apiose and UDP-xylose, an enzyme-substrate reactant model has been constructed and quantum mechanical/molecular mechanical (QM/MM) calculations have been performed. Our calculation results reveal that the reaction starts from the C4-OH oxidation, which is accompanied by the conformational transformation of the sugar ring from chair type to boat type. The sugar ring-opening is prior to decarboxylation, and the deprotonation of the C2-OH group is the prerequisite for sugar ring-opening. Moreover, the keto-enol tautomerization of the decarboxylated intermediate is a necessary step for ring closure/contraction. Based on our calculation results, more UDP-apiose product was expected, which is in line with the experimental observation. Three titratable residues, Tyr185, Cys100, and Cys140, steer the reaction by proton transfer from or to UDP-GlcA, and Arg182, Glu141, and D337 constitute a proton conduit for sugar C2-OH deprotonation. Although Thr139 and Tyr105 are not directly involved in the enzymatic reaction, they are responsible for promoting the catalysis by forming hydrogen-bonding interactions with GlcA. Our calculations may provide useful information for understanding the catalysis of the SDR family.
Collapse
Affiliation(s)
- Yijing Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xinyi Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Jingjing Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Xue Zhang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| | - Yongjun Liu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong 250100, China
| |
Collapse
|
9
|
Deng WH, Lu Y, Liao RZ. Revealing the Mechanism of Isethionate Sulfite-Lyase by QM/MM Calculations. J Chem Inf Model 2021; 61:5871-5882. [PMID: 34806370 DOI: 10.1021/acs.jcim.1c00978] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Isethionate sulfite-lyase (IseG) is a recently characterized glycyl radical enzyme (GRE) that catalyzes radical-mediated C-S bond cleavage of isethionate to produce acetaldehyde and sulfite. Herein, we use quantum mechanical/molecular mechanical (QM/MM) calculations to investigate the detailed catalytic reaction mechanism of IseG. Our calculations indicate that a previously proposed direct 1,2-elimination mechanism is disfavored. Instead, we suggest a new 1,2-migration mechanism for this enzymatic reaction: a key stepwise 1,2-SO3- radical migration occurs after the catalytically active cysteinyl radical grabs a hydrogen atom from isethionate, followed by hydrogen atom transfer from cysteine to a 1-hydroxylethane-1-sulfonate radical intermediate. Finally, the elimination of sulfite from 1-hydroxylethane-1-sulfonate to result in the final product is likely to occur outside the enzyme. Glu468 in the active site is found to help orient the substrate rather than grabbing a proton from the hydroxyl group of the substrate. Our findings help reveal the mechanisms of radical-mediated C-S bond cleavage of organosulfonates catalyzed by GREs and expand the understanding of radical-based enzymatic catalysis.
Collapse
Affiliation(s)
- Wen-Hao Deng
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - You Lu
- Scientific Computing Department, UKRI STFC Daresbury Laboratory, Sci-Tech Daresbury, Warrington WA4 4AD, United Kingdom
| | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| |
Collapse
|
10
|
Sheng X, Himo F. Mechanisms of metal-dependent non-redox decarboxylases from quantum chemical calculations. Comput Struct Biotechnol J 2021; 19:3176-3186. [PMID: 34141138 PMCID: PMC8187880 DOI: 10.1016/j.csbj.2021.05.044] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 05/24/2021] [Accepted: 05/24/2021] [Indexed: 11/18/2022] Open
Abstract
Quantum chemical calculations are today an extremely valuable tool for studying enzymatic reaction mechanisms. In this mini-review, we summarize our recent work on several metal-dependent decarboxylases, where we used the so-called cluster approach to decipher the details of the reaction mechanisms, including elucidation of the identity of the metal cofactors and the origins of substrate specificity. Decarboxylases are of growing potential for biocatalytic applications, as they can be used in the synthesis of novel compounds of, e.g., pharmaceutical interest. They can also be employed in the reverse direction, providing a strategy to synthesize value‐added chemicals by CO2 fixation. A number of non-redox metal-dependent decarboxylases from the amidohydrolase superfamily have been demonstrated to have promiscuous carboxylation activities and have attracted great attention in the recent years. The computational mechanistic studies provide insights that are important for the further modification and utilization of these enzymes in industrial processes. The discussed enzymes are: 5‐carboxyvanillate decarboxylase, γ‐resorcylate decarboxylase, 2,3‐dihydroxybenzoic acid decarboxylase, and iso-orotate decarboxylase.
Collapse
Key Words
- 2,3-DHBD, 2,3‐dihydroxybenzoic acid decarboxylase
- 2,6-DHBD, 2,6‐dihydroxybenzoic acid decarboxylase
- 2-NR, 2-nitroresorcinol
- 5-CV, 5-carboxyvanillate
- 5-NV, 5-nitrovanillate
- 5caU, 5-carboxyuracil
- AHS, amidohydrolase superfamily
- Biocatalysis
- Decarboxylase
- Density functional theory
- IDCase, iso-orotate decarboxylase
- LigW, 5‐carboxyvanillate decarboxylase
- MIMS, membrane inlet mass spectrometry
- QM/MM, quantum mechanics/molecular mechanics
- Reaction mechanism
- Transition state
- γ-RS, γ-resorcylate
- γ-RSD, γ‐resorcylate decarboxylase
Collapse
Affiliation(s)
- Xiang Sheng
- National Engineering Laboratory for Industrial Enzymes and Tianjin Engineering Research Center of Biocatalytic Technology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, and National Technology Innovation Center for Synthetic Biology, Tianjin 300308, PR China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
11
|
Reis RAG, Li H, Johnson M, Sobrado P. New frontiers in flavin-dependent monooxygenases. Arch Biochem Biophys 2021; 699:108765. [PMID: 33460580 DOI: 10.1016/j.abb.2021.108765] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 12/15/2022]
Abstract
Flavin-dependent monooxygenases catalyze a wide variety of redox reactions in important biological processes and are responsible for the synthesis of highly complex natural products. Although much has been learned about FMO chemistry in the last ~80 years of research, several aspects of the reactions catalyzed by these enzymes remain unknown. In this review, we summarize recent advancements in the flavin-dependent monooxygenase field including aspects of flavin dynamics, formation and stabilization of reactive species, and the hydroxylation mechanism. Novel catalysis of flavin-dependent N-oxidases involving consecutive oxidations of amines to generate oximes or nitrones is presented and the biological relevance of the products is discussed. In addition, the activity of some FMOs have been shown to be essential for the virulence of several human pathogens. We also discuss the biomedical relevance of FMOs in antibiotic resistance and the efforts to identify inhibitors against some members of this important and growing family enzymes.
Collapse
Affiliation(s)
| | - Hao Li
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Maxim Johnson
- Department of Biochemistry, Blacksburg, VA, 24061, USA
| | - Pablo Sobrado
- Department of Biochemistry, Blacksburg, VA, 24061, USA; Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
12
|
Sobrado P. Role of reduced flavin in dehalogenation reactions. Arch Biochem Biophys 2020; 697:108696. [PMID: 33245912 DOI: 10.1016/j.abb.2020.108696] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 11/12/2020] [Accepted: 11/18/2020] [Indexed: 12/14/2022]
Abstract
Halogenated organic compounds are extensively used in the cosmetic, pharmaceutical, and chemical industries. Several naturally occurring halogen-containing natural products are also produced, mainly by marine organisms. These compounds accumulate in the environment due to their chemical stability and lack of biological pathways for their degradation. However, a few enzymes have been identified that perform dehalogenation reactions in specific biological pathways and others have been identified to have secondary activities toward halogenated compounds. Various mechanisms for dehalogenation of I, Cl, Br, and F containing compounds have been elucidated. These have been grouped into reductive, oxidative, and hydrolytic mechanisms. Flavin-dependent enzymes have been shown to catalyze oxidative dehalogenation reactions utilizing the C4a-hydroperoxyflavin intermediate. In addition, flavoenzymes perform reductive dehalogenation, forming transient flavin semiquinones. Recently, flavin-dependent enzymes have also been shown to perform dehalogenation reactions where the reduced form of the flavin produces a covalent intermediate. Here, recent studies on the reactions of flavoenzymes in dehalogenation reactions, with a focus on covalent catalytic dehalogenation mechanisms, are described.
Collapse
Affiliation(s)
- Pablo Sobrado
- Department of Biochemistry and Center for Drug Discovery, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
13
|
McEvoy A, Creutzberg J, Singh RK, Bjerrum MJ, Hedegård ED. The role of the active site tyrosine in the mechanism of lytic polysaccharide monooxygenase. Chem Sci 2020; 12:352-362. [PMID: 34163601 PMCID: PMC8178957 DOI: 10.1039/d0sc05262k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Catalytic breakdown of polysaccharides can be achieved more efficiently by means of the enzymes lytic polysaccharide monooxygenases (LPMOs). However, the LPMO mechanism has remained controversial, preventing full exploitation of their potential. One of the controversies has centered around an active site tyrosine, present in most LPMO classes. Recent investigations have for the first time obtained direct (spectroscopic) evidence for the possibility of chemical modification of this tyrosine. However, the spectroscopic features obtained in the different investigations are remarkably different, with absorption maximum at 420 and 490 nm, respectively. In this paper we use density functional theory (DFT) in a QM/MM formulation to reconcile these (apparently) conflicting results. By modeling the spectroscopy as well as the underlying reaction mechanism we can show how formation of two isomers (both involving deprotonation of tyrosine) explains the difference in the observed spectroscopic features. Both isomers have a [TyrO–Cu–OH]+ moiety with the OH in either the cis- or trans-position to a deprotonated tyrosine. Although the cis-[TyrO–Cu–OH]+ moiety is well positioned for oxidation of the substrate, preliminary calculations with the substrate reveal that the reactivity is at best moderate, making a protective role of tyrosine more likely. With QM/MM, we investigate the mechanism of tyrosine deprotonation in lytic polysaccharide monooxygenases. Our results support deprotonation and our calculated UV-vis spectra show that two isomers must be formed to match recent experiments.![]()
Collapse
Affiliation(s)
- Aina McEvoy
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| | - Joel Creutzberg
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| | - Raushan K Singh
- Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Morten J Bjerrum
- Department of Chemistry, University of Copenhagen Copenhagen Denmark
| | - Erik D Hedegård
- Division of Theoretical Chemistry, Lund University Box 124 SE-221 00 Lund Sweden
| |
Collapse
|
14
|
Sheng X, Kazemi M, Planas F, Himo F. Modeling Enzymatic Enantioselectivity using Quantum Chemical Methodology. ACS Catal 2020. [DOI: 10.1021/acscatal.0c00983] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Xiang Sheng
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Masoud Kazemi
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Ferran Planas
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm SE-106 91, Sweden
| |
Collapse
|
15
|
Dasgupta S, Herbert JM. Using Atomic Confining Potentials for Geometry Optimization and Vibrational Frequency Calculations in Quantum-Chemical Models of Enzyme Active Sites. J Phys Chem B 2020; 124:1137-1147. [PMID: 31986049 DOI: 10.1021/acs.jpcb.9b11060] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Quantum-chemical studies of enzymatic reaction mechanisms sometimes use truncated active-site models as simplified alternatives to mixed quantum mechanics molecular mechanics (QM/MM) procedures. Eliminating the MM degrees of freedom reduces the complexity of the sampling problem, but the trade-off is the need to introduce geometric constraints in order to prevent structural collapse of the model system during geometry optimizations that do not contain a full protein backbone. These constraints may impair the efficiency of the optimization, and care must be taken to avoid artifacts such as imaginary vibrational frequencies. We introduce a simple alternative in which terminal atoms of the model system are placed in soft harmonic confining potentials rather than being rigidly constrained. This modification is simple to implement and straightforward to use in vibrational frequency calculations, unlike iterative constraint-satisfaction algorithms, and allows the optimization to proceed without constraint even though the practical result is to fix the anchor atoms in space. The new approach is more efficient for optimizing minima and transition states, as compared to the use of fixed-atom constraints, and also more robust against unwanted imaginary frequencies. We illustrate the method by application to several enzymatic reaction pathways where entropy makes a significant contribution to the relevant reaction barriers. The use of confining potentials correctly describes reaction paths and facilitates calculation of both vibrational zero-point and finite-temperature entropic corrections to barrier heights.
Collapse
Affiliation(s)
- Saswata Dasgupta
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| | - John M Herbert
- Department of Chemistry and Biochemistry , The Ohio State University , Columbus , Ohio 43210 , United States
| |
Collapse
|
16
|
Bondanza M, Nottoli M, Cupellini L, Lipparini F, Mennucci B. Polarizable embedding QM/MM: the future gold standard for complex (bio)systems? Phys Chem Chem Phys 2020; 22:14433-14448. [DOI: 10.1039/d0cp02119a] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
We provide a perspective of the induced dipole formulation of polarizable QM/MM, showing how efficient implementations will enable their application to the modeling of dynamics, spectroscopy, and reactivity in complex biosystems.
Collapse
Affiliation(s)
- Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Michele Nottoli
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Filippo Lipparini
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale
- Università di Pisa
- I-56124 Pisa
- Italy
| |
Collapse
|
17
|
Moriwaki Y, Yato M, Terada T, Saito S, Nukui N, Iwasaki T, Nishi T, Kawaguchi Y, Okamoto K, Arakawa T, Yamada C, Fushinobu S, Shimizu K. Understanding the Molecular Mechanism Underlying the High Catalytic Activity of p-Hydroxybenzoate Hydroxylase Mutants for Producing Gallic Acid. Biochemistry 2019; 58:4543-4558. [DOI: 10.1021/acs.biochem.9b00443] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Yoshitaka Moriwaki
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | | | - Tohru Terada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Seiji Saito
- Department of Medical Management and Informatics, Hokkaido Information University, 59-2, Nishi Nopporo, Ebetsu, Hokkaido 069-8585, Japan
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Noriyuki Nukui
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Takumi Iwasaki
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Tatsunari Nishi
- Genaris, Inc., 75-1 Ono-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0046, Japan
| | - Yuko Kawaguchi
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Ken Okamoto
- Department of Biochemistry and Molecular Biology, Nippon Medical School, 1-1-5 Sendagi, Bunkyo-Ku, Tokyo 113-8602, Japan
| | - Takatoshi Arakawa
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Chihaya Yamada
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Shinya Fushinobu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Kentaro Shimizu
- The Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| |
Collapse
|
18
|
Tweedy SE, Rodríguez Benítez A, Narayan ARH, Zimmerman PM, Brooks CL, Wymore T. Hydroxyl Radical-Coupled Electron-Transfer Mechanism of Flavin-Dependent Hydroxylases. J Phys Chem B 2019; 123:8065-8073. [PMID: 31532200 DOI: 10.1021/acs.jpcb.9b08178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Class A flavin-dependent hydroxylases (FdHs) catalyze the hydroxylation of organic compounds in a site- and stereoselective manner. In stark contrast, conventional synthetic routes require environmentally hazardous reagents and give modest yields. Thus, understanding the detailed mechanism of this class of enzymes is essential to their rational manipulation for applications in green chemistry and pharmaceutical production. Both electrophilic substitution and radical intermediate mechanisms have been proposed as interpretations of FdH hydroxylation rates and optical spectra. While radical mechanistic steps are often difficult to examine directly, modern quantum chemistry calculations combined with statistical mechanical approaches can yield detailed mechanistic models providing insights that can be used to differentiate reaction pathways. In the current work, we report quantum mechanical/molecular mechanical (QM/MM) calculations on the fungal TropB enzyme that shows an alternative reaction pathway in which hydroxylation through a hydroxyl radical-coupled electron-transfer mechanism is significantly favored over electrophilic substitution. Furthermore, QM/MM calculations on several modified flavins provide a more consistent interpretation of the experimental trends in the reaction rates seen experimentally for a related enzyme, para-hydroxybenzoate hydroxylase. These calculations should guide future enzyme and substrate design strategies and broaden the scope of biological spin chemistry.
Collapse
|
19
|
Holroyd LF, Bühl M, Gaigeot MP, van Mourik T. Thermodynamics of 5-Bromouracil Tautomerization From First-Principles Molecular Dynamics Simulations. ADVANCES IN QUANTUM CHEMISTRY 2019. [DOI: 10.1016/bs.aiq.2018.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
20
|
Planas F, Sheng X, McLeish MJ, Himo F. A Theoretical Study of the Benzoylformate Decarboxylase Reaction Mechanism. Front Chem 2018; 6:205. [PMID: 29998094 PMCID: PMC6028569 DOI: 10.3389/fchem.2018.00205] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Density functional theory calculations are used to investigate the detailed reaction mechanism of benzoylformate decarboxylase, a thiamin diphosphate (ThDP)-dependent enzyme that catalyzes the nonoxidative decarboxylation of benzoylformate yielding benzaldehyde and carbon dioxide. A large model of the active site is constructed on the basis of the X-ray structure, and it is used to characterize the involved intermediates and transition states and evaluate their energies. There is generally good agreement between the calculations and available experimental data. The roles of the various active site residues are discussed and the results are compared to mutagenesis experiments. Importantly, the calculations identify off-cycle intermediate species of the ThDP cofactor that can have implications on the kinetics of the reaction.
Collapse
Affiliation(s)
- Ferran Planas
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| | - Michael J McLeish
- Department of Chemistry and Chemical Biology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, United States
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Stockholm, Sweden
| |
Collapse
|
21
|
Insights into the decarboxylative hydroxylation of salicylate catalyzed by the Flavin-dependent monooxygenase salicylate hydroxylase. Theor Chem Acc 2018. [DOI: 10.1007/s00214-018-2278-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
|
22
|
Bistoni G, Polyak I, Sparta M, Thiel W, Neese F. Toward Accurate QM/MM Reaction Barriers with Large QM Regions Using Domain Based Pair Natural Orbital Coupled Cluster Theory. J Chem Theory Comput 2018; 14:3524-3531. [DOI: 10.1021/acs.jctc.8b00348] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Giovanni Bistoni
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, D-45470 Mülheim an der Ruhr, Germany
| | - Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, D-45470 Mülheim an der Ruhr, Germany
| | - Manuel Sparta
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, D-45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
23
|
Abstract
The quantum chemical cluster approach is a powerful method for investigating enzymatic reactions. Over the past two decades, a large number of highly diverse systems have been studied and a great wealth of mechanistic insight has been developed using this technique. This Perspective reviews the current status of the methodology. The latest technical developments are highlighted, and challenges are discussed. Some recent applications are presented to illustrate the capabilities and progress of this approach, and likely future directions are outlined.
Collapse
Affiliation(s)
- Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University , SE-106 91 Stockholm, Sweden
| |
Collapse
|
24
|
Ganguly A, Boulanger E, Thiel W. Importance of MM Polarization in QM/MM Studies of Enzymatic Reactions: Assessment of the QM/MM Drude Oscillator Model. J Chem Theory Comput 2017; 13:2954-2961. [DOI: 10.1021/acs.jctc.7b00016] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Abir Ganguly
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Eliot Boulanger
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
25
|
Lind MES, Himo F. Quantum Chemical Modeling of Enantioconvergency in Soluble Epoxide Hydrolase. ACS Catal 2016. [DOI: 10.1021/acscatal.6b01562] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Maria E. S. Lind
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
26
|
Energy Landscape Topography Reveals the Underlying Link Between Binding Specificity and Activity of Enzymes. Sci Rep 2016; 6:27808. [PMID: 27298067 PMCID: PMC4906287 DOI: 10.1038/srep27808] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/19/2016] [Indexed: 11/10/2022] Open
Abstract
Enzyme activity (often quantified by kcat/Km) is the main function of enzyme when it is active against the specific substrate. Higher or lower activities are highly desired for the design of novel enzyme and drug resistance. However, it is difficult to measure the activities of all possible variants and find the “hot-spot” within the limit of experimental time. In this study, we explore the underlying energy landscape of enzyme-substrate interactions and introduce the intrinsic specificity ratio (ISR), which reflects the landscape topography. By studying two concrete systems, we uncover the statistical correlation between the intrinsic specificity and the enzyme activity kcat/Km. This physics-based concept and method show that the energy landscape topography is valuable for understanding the relationship between enzyme specificity and activity. In addition, it can reveal the underlying mechanism of enzyme-substrate actions and has potential applications on enzyme design.
Collapse
|
27
|
What roles do the residue Asp229 and the coordination variation of calcium play of the reaction mechanism of the diisopropyl-fluorophosphatase? A DFT investigation. Theor Chem Acc 2016. [DOI: 10.1007/s00214-016-1896-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
28
|
Huang J, Li C, Wang B, Sharon DA, Wu W, Shaik S. Selective Chlorination of Substrates by the Halogenase SyrB2 Is Controlled by the Protein According to a Combined Quantum Mechanics/Molecular Mechanics and Molecular Dynamics Study. ACS Catal 2016. [DOI: 10.1021/acscatal.5b02825] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jing Huang
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM,
Fujian Provincial Key Laboratory of Theoretical and Computational
Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Chunsen Li
- State
Key Laboratory of Structural Chemistry, Fujian Institute of Research
on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| | - Binju Wang
- Institute
of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Israel
| | - Dina A. Sharon
- Institute
of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Israel
| | - Wei Wu
- The
State Key Laboratory of Physical Chemistry of Solid Surfaces, iChEM,
Fujian Provincial Key Laboratory of Theoretical and Computational
Chemistry and College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Sason Shaik
- Institute
of Chemistry and the Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904, Israel
| |
Collapse
|
29
|
|
30
|
Benighaus T, Thiel W. A General Boundary Potential for Hybrid QM/MM Simulations of Solvated Biomolecular Systems. J Chem Theory Comput 2015; 5:3114-28. [PMID: 26609991 DOI: 10.1021/ct900437b] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We present a general boundary potential for the efficient and accurate evaluation of electrostatic interactions in hybrid quantum mechanical/molecular mechanical (QM/MM) approaches called solvated macromolecule boundary potential (SMBP), which is designed for QM/MM calculations with any kind of QM method. The SMBP targets QM/MM single-point energy calculations and geometry optimizations. In the SMBP scheme, the outer solvent and macromolecule region is described by a boundary potential obtained with the use of Poisson-Boltzmann calculations (treating the bulk solvent as a dielectric continuum). In the QM calculations, the SMBP is represented by virtual point charges on a surface enclosing the explicitly treated inner region. These charges and their interactions with the QM density are determined through a self-consistent reaction field procedure. The accuracy of the SMBP is evaluated on three diverse test systems: the intramolecular proton transfer of glycine in water, the hydroxylation reaction in p-hydroxybenzoate hydroxylase, and the spin state energy splittings in the pentacoordinated ferric complex of cytochrome P450cam. In the case of solvated glycine, application of the SMBP turns out to be problematic since analogous QM/MM/SMBP and full QM/MM geometry optimizations lead to different close-lying local minima. In both enzymes, the SMBP performs very well and closely reproduces the results from full QM/MM optimizations of these more rigid test systems. Starting from optimized QM/MM/SMBP structures along a reaction path, one can apply the previously implemented generalized solvent boundary potential (GSBP) to sample over MM phase space in QM/MM free energy calculations within the framework of free energy perturbation theory. This reduces the overall computational costs of sampling by 1 order of magnitude while maintaining good accuracy. The combined use of SMBP and GSBP thus allows for efficient QM/MM free energy studies of enzymes.
Collapse
Affiliation(s)
- Tobias Benighaus
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 45470, Mülheim an der Ruhr, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1 45470, Mülheim an der Ruhr, Germany
| |
Collapse
|
31
|
Wang B, Cao Z, Sharon DA, Shaik S. Computations Reveal a Rich Mechanistic Variation of Demethylation of N-Methylated DNA/RNA Nucleotides by FTO. ACS Catal 2015. [DOI: 10.1021/acscatal.5b01867] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Binju Wang
- Institute
of Chemistry and The Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Zexing Cao
- State
Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian
Provincial Key Laboratory of Theoretical and Computational Chemistry,
College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 360015, People’s Republic of China
| | - Dina A. Sharon
- Institute
of Chemistry and The Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| | - Sason Shaik
- Institute
of Chemistry and The Lise Meitner-Minerva Center for Computational
Quantum Chemistry, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
32
|
Sheng X, Lind MES, Himo F. Theoretical study of the reaction mechanism of phenolic acid decarboxylase. FEBS J 2015; 282:4703-13. [PMID: 26408050 DOI: 10.1111/febs.13525] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/01/2015] [Accepted: 09/22/2015] [Indexed: 12/13/2022]
Abstract
The cofactor-free phenolic acid decarboxylases (PADs) catalyze the non-oxidative decarboxylation of phenolic acids to their corresponding p-vinyl derivatives. Phenolic acids are toxic to some organisms, and a number of them have evolved the ability to transform these compounds, including PAD-catalyzed reactions. Since the vinyl derivative products can be used as polymer precursors and are also of interest in the food-processing industry, PADs might have potential applications as biocatalysts. We have investigated the detailed reaction mechanism of PAD from Bacillus subtilis using quantum chemical methodology. A number of different mechanistic scenarios have been considered and evaluated on the basis of their energy profiles. The calculations support a mechanism in which a quinone methide intermediate is formed by protonation of the substrate double bond, followed by C-C bond cleavage. A different substrate orientation in the active site is suggested compared to the literature proposal. This suggestion is analogous to other enzymes with p-hydroxylated aromatic compounds as substrates, such as hydroxycinnamoyl-CoA hydratase-lyase and vanillyl alcohol oxidase. Furthermore, on the basis of the calculations, a different active site residue compared to previous proposals is suggested to act as the general acid in the reaction. The mechanism put forward here is consistent with the available mutagenesis experiments and the calculated energy barrier is in agreement with measured rate constants. The detailed mechanistic understanding developed here might be extended to other members of the family of PAD-type enzymes. It could also be useful to rationalize the recently developed alternative promiscuous reactivities of these enzymes.
Collapse
Affiliation(s)
- Xiang Sheng
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Maria E S Lind
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| | - Fahmi Himo
- Arrhenius Laboratory, Department of Organic Chemistry, Stockholm University, Sweden
| |
Collapse
|
33
|
Cassimjee KE, Manta B, Himo F. A quantum chemical study of the ω-transaminase reaction mechanism. Org Biomol Chem 2015; 13:8453-64. [DOI: 10.1039/c5ob00690b] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The detailed half-transamination mechanism of Chromobacterium violaceum ω-transaminase is investigated by means of density functional theory calculations.
Collapse
Affiliation(s)
| | - Bianca Manta
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| | - Fahmi Himo
- Department of Organic Chemistry
- Arrhenius Laboratory
- Stockholm University
- SE-106 91 Stockholm
- Sweden
| |
Collapse
|
34
|
Lind MES, Himo F. Theoretical Study of Reaction Mechanism and Stereoselectivity of Arylmalonate Decarboxylase. ACS Catal 2014. [DOI: 10.1021/cs5009738] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Maria E. S. Lind
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| | - Fahmi Himo
- Department
of Organic Chemistry
Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|
35
|
Polyak I, Benighaus T, Boulanger E, Thiel W. Quantum mechanics/molecular mechanics dual Hamiltonian free energy perturbation. J Chem Phys 2014; 139:064105. [PMID: 23947841 DOI: 10.1063/1.4817402] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The dual Hamiltonian free energy perturbation (DH-FEP) method is designed for accurate and efficient evaluation of the free energy profile of chemical reactions in quantum mechanical/molecular mechanical (QM/MM) calculations. In contrast to existing QM/MM FEP variants, the QM region is not kept frozen during sampling, but all degrees of freedom except for the reaction coordinate are sampled. In the DH-FEP scheme, the sampling is done by semiempirical QM/MM molecular dynamics (MD), while the perturbation energy differences are evaluated from high-level QM/MM single-point calculations at regular intervals, skipping a pre-defined number of MD sampling steps. After validating our method using an analytic model potential with an exactly known solution, we report a QM/MM DH-FEP study of the enzymatic reaction catalyzed by chorismate mutase. We suggest guidelines for QM/MM DH-FEP calculations and default values for the required computational parameters. In the case of chorismate mutase, we apply the DH-FEP approach in combination with a single one-dimensional reaction coordinate and with a two-dimensional collective coordinate (two individual distances), with superior results for the latter choice.
Collapse
Affiliation(s)
- Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | |
Collapse
|
36
|
Cooper AM, Kästner J. Averaging Techniques for Reaction Barriers in QM/MM Simulations. Chemphyschem 2014; 15:3264-9. [DOI: 10.1002/cphc.201402382] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2014] [Revised: 07/29/2014] [Indexed: 12/28/2022]
|
37
|
Schmidt TC, Paasche A, Grebner C, Ansorg K, Becker J, Lee W, Engels B. QM/MM investigations of organic chemistry oriented questions. Top Curr Chem (Cham) 2014; 351:25-101. [PMID: 22392477 DOI: 10.1007/128_2011_309] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
About 35 years after its first suggestion, QM/MM became the standard theoretical approach to investigate enzymatic structures and processes. The success is due to the ability of QM/MM to provide an accurate atomistic picture of enzymes and related processes. This picture can even be turned into a movie if nuclei-dynamics is taken into account to describe enzymatic processes. In the field of organic chemistry, QM/MM methods are used to a much lesser extent although almost all relevant processes happen in condensed matter or are influenced by complicated interactions between substrate and catalyst. There is less importance for theoretical organic chemistry since the influence of nonpolar solvents is rather weak and the effect of polar solvents can often be accurately described by continuum approaches. Catalytic processes (homogeneous and heterogeneous) can often be reduced to truncated model systems, which are so small that pure quantum-mechanical approaches can be employed. However, since QM/MM becomes more and more efficient due to the success in software and hardware developments, it is more and more used in theoretical organic chemistry to study effects which result from the molecular nature of the environment. It is shown by many examples discussed in this review that the influence can be tremendous, even for nonpolar reactions. The importance of environmental effects in theoretical spectroscopy was already known. Due to its benefits, QM/MM can be expected to experience ongoing growth for the next decade.In the present chapter we give an overview of QM/MM developments and their importance in theoretical organic chemistry, and review applications which give impressions of the possibilities and the importance of the relevant effects. Since there is already a bunch of excellent reviews dealing with QM/MM, we will discuss fundamental ingredients and developments of QM/MM very briefly with a focus on very recent progress. For the applications we follow a similar strategy.
Collapse
Affiliation(s)
- Thomas C Schmidt
- Institut für Phys. und Theor. Chemie, Emil-Fischer-Strasse 42, Campus Hubland Nord, 97074, Würzburg, Germany
| | | | | | | | | | | | | |
Collapse
|
38
|
Metz S, Kästner J, Sokol AA, Keal TW, Sherwood P. C
hem
S
hell—a modular software package for
QM
/
MM
simulations. WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL MOLECULAR SCIENCE 2013. [DOI: 10.1002/wcms.1163] [Citation(s) in RCA: 252] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sebastian Metz
- Scientific Computing DepartmentSTFC Daresbury LaboratoryDaresburyWarringtonUK
| | - Johannes Kästner
- Institute of Theoretical ChemistryUniversity of StuttgartStuttgartGermany
| | | | - Thomas W. Keal
- Scientific Computing DepartmentSTFC Daresbury LaboratoryDaresburyWarringtonUK
| | - Paul Sherwood
- Scientific Computing DepartmentSTFC Daresbury LaboratoryDaresburyWarringtonUK
| |
Collapse
|
39
|
MD and QM/MM study on catalytic mechanism of a FAD-dependent enzyme ORF36: for nitro sugar biosynthesis. J Mol Graph Model 2013; 44:9-16. [PMID: 23735899 DOI: 10.1016/j.jmgm.2013.04.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2012] [Revised: 04/23/2013] [Accepted: 04/24/2013] [Indexed: 11/22/2022]
Abstract
The catalytic mechanism of a FAD-dependent nitrososynthase (ORF36) was studied with molecular dynamics (MD) and quantum mechanical/molecular mechanical (QM/MM) methods. Residues Leu160 and Phe374 play an important role during the FAD binding with ORF36. Similar phenylalanine/leucine pair was found in the other two enzymes of this family. For the second oxidation step of ORF36 toward thymidine diphosphate-l-epi-vancosamine, three elementary catalytic steps were found: a hydroxylation step, a hydrogen back-transfer step and a hydroxyl group elimination step. The hydroxylation step is found to be the rate-determining step with an energy barrier of 26.3kcal/mol under the B3LYP/cc-pVTZ//CHARMM22 level. Two possible pathways for the second oxidation step are carefully investigated. Our simulations indicate that an oxygen atom from the coenzyme FADHOOH is inserted into the product. In addition, the electrostatic influence of 17 individual residues and five neighboring water molecules on the rate-determining step was estimated. The results indicate that groups Gly132/Ala133/Leu134, Met375/Gln376 and a water fence play a key role in facilitating the rate-determining step. On the other hand, residues Leu160, Val161 and Ser162 are found to be critical to suppress the rate-determining step. Our results lead to further understanding of the detailed catalytic pathways for nitro sugar biosynthesis.
Collapse
|
40
|
Yang L, Liao RZ, Ding WJ, Liu K, Yu JG, Liu RZ. Why calcium inhibits magnesium-dependent enzyme phosphoserine phosphatase? A theoretical study. Theor Chem Acc 2012. [DOI: 10.1007/s00214-012-1275-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Merchant BA, Madura JD. Insights from molecular dynamics: the binding site of cocaine in the dopamine transporter and permeation pathways of substrates in the leucine and dopamine transporters. J Mol Graph Model 2012; 38:1-12. [PMID: 23079638 DOI: 10.1016/j.jmgm.2012.05.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2012] [Revised: 04/30/2012] [Accepted: 05/04/2012] [Indexed: 11/18/2022]
Abstract
The dopamine transporter (DAT) facilitates the regulation of synaptic neurotransmitter levels. As a target for therapeutic and illicit psycho-stimulant drugs like antidepressants and cocaine, DAT has been studied intensively. Despite a wealth of mutational and physiological data regarding DAT, the structure remains unsolved and details of the transport mechanism, binding sites and conformational changes remain debated. A bacterial homolog of DAT, the leucine transporter (LeuT(Aa)) has been used as a template and framework for modeling and understanding DAT. Free energy profiles obtained from Multi-Configuration Thermodynamic Integration simulations allowed us to correctly identify the primary and secondary binding pockets of LeuT(Aa). A comparison of free energy profiles for dopamine and cocaine in DAT suggests that the binding site of cocaine is located in a secondary pocket, not the primary substrate site. Two recurring primary pathways for intracellular substrate release from the primary pocket are identified in both transporters using the Random Acceleration Molecular Dynamics method. One pathway appears to follow transmembranes (TMs) 1a and 6b while the other pathway follows along TMs 6b and 8. Interestingly, we observe that a single sodium ion is co-transported with leucine during both simulation types.
Collapse
Affiliation(s)
- Bonnie A Merchant
- Department of Chemistry and Biochemistry and Center for Computational Sciences, Duquesne University, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | | |
Collapse
|
42
|
Sander W, Roy S, Polyak I, Ramirez-Anguita JM, Sanchez-Garcia E. The Phenoxyl Radical–Water Complex—A Matrix Isolation and Computational Study. J Am Chem Soc 2012; 134:8222-30. [DOI: 10.1021/ja301528w] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Wolfram Sander
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Saonli Roy
- Lehrstuhl für Organische
Chemie II, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| | | | - Elsa Sanchez-Garcia
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
43
|
Ertem MZ, Cramer CJ, Himo F, Siegbahn PEM. N–O bond cleavage mechanism(s) in nitrous oxide reductase. J Biol Inorg Chem 2012; 17:687-98. [DOI: 10.1007/s00775-012-0888-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/29/2012] [Indexed: 11/24/2022]
|
44
|
Polyak I, Reetz MT, Thiel W. Quantum Mechanical/Molecular Mechanical Study on the Mechanism of the Enzymatic Baeyer–Villiger Reaction. J Am Chem Soc 2012; 134:2732-41. [DOI: 10.1021/ja2103839] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Iakov Polyak
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| | - Manfred T. Reetz
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
- Fachbereich Chemie, Philipps-Universität Marburg, Hans-Meerwein-Strasse,
D-35032 Marburg, Germany
| | - Walter Thiel
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1,
D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
45
|
In Silico Strategies Toward Enzyme Function and Dynamics. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012. [DOI: 10.1016/b978-0-12-398312-1.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|
46
|
Meier K, Thiel W, van Gunsteren WF. On the effect of a variation of the force field, spatial boundary condition and size of the QM region in QM/MM MD simulations. J Comput Chem 2011; 33:363-78. [DOI: 10.1002/jcc.21962] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2011] [Revised: 09/10/2011] [Accepted: 09/11/2011] [Indexed: 12/12/2022]
|
47
|
Bach RD. Role of the Somersault Rearrangement in the Oxidation Step for Flavin Monooxygenases (FMO). A Comparison between FMO and Conventional Xenobiotic Oxidation with Hydroperoxides. J Phys Chem A 2011; 115:11087-100. [DOI: 10.1021/jp208087u] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Robert D. Bach
- Department of Chemistry and Biochemistry, University of Delaware, Delaware, United States
| |
Collapse
|
48
|
Hratchian HP, Frisch MJ. Integrating steepest-descent reaction pathways for large molecules. J Chem Phys 2011; 134:204103. [DOI: 10.1063/1.3593456] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
49
|
Metzelthin A, Sánchez-García E, Birer Ö, Schwaab G, Thiel W, Sander W, Havenith M. Acetylene⋅⋅⋅Furan Trimer Formation at 0.37 K as a Model for Ultracold Aggregation of Non- and Weakly Polar Molecules. Chemphyschem 2011; 12:2009-17. [DOI: 10.1002/cphc.201001040] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 03/11/2011] [Indexed: 11/06/2022]
|
50
|
Liao RZ, Yu JG, Himo F. Quantum Chemical Modeling of Enzymatic Reactions: The Case of Decarboxylation. J Chem Theory Comput 2011; 7:1494-501. [PMID: 26610140 DOI: 10.1021/ct200031t] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
We present a systematic study of the decarboxylation step of the enzyme aspartate decarboxylase with the purpose of assessing the quantum chemical cluster approach for modeling this important class of decarboxylase enzymes. Active site models ranging in size from 27 to 220 atoms are designed, and the barrier and reaction energy of this step are evaluated. To model the enzyme surrounding, homogeneous polarizable medium techniques are used with several dielectric constants. The main conclusion is that when the active site model reaches a certain size, the solvation effects from the surroundings saturate. Similar results have previously been obtained from systematic studies of other classes of enzymes, suggesting that they are of a quite general nature.
Collapse
Affiliation(s)
- Rong-Zhen Liao
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden.,College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Jian-Guo Yu
- College of Chemistry, Beijing Normal University, Beijing, 100875, People's Republic of China
| | - Fahmi Himo
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, SE-10691 Stockholm, Sweden
| |
Collapse
|