1
|
Yehia S, Wang J, Brudvig GW, Gunner MR, Brooks BR, Amin M. An analysis of the structural changes of the oxygen evolving complex of Photosystem II in the S 1 and S 3 states revealed by serial femtosecond crystallography. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2024; 1866:149531. [PMID: 39694218 DOI: 10.1016/j.bbabio.2024.149531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/07/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Photosystem II (PSII) is a unique natural catalyst that converts solar energy into chemical energy using earth abundant elements in water at physiological pH. Understanding the reaction mechanism will aid the design of biomimetic artificial catalysts for efficient solar energy conversion. The Mn4O5Ca cluster cycles through five increasingly oxidized intermediates before oxidizing two water molecules into O2 and releasing protons to the lumen and electrons to drive PSII reactions. The Mn coordination and OEC electronic structure changes through these intermediates. Thus, obtaining a high-resolution structure of each catalytic intermediate would help reveal the reaction mechanism. While valuable structural information was obtained from conventional X-ray crystallography, time-resolution of conventional X-ray crystallography limits the analysis of shorted-lived reaction intermediates. Serial Femtosecond X-ray crystallography (SFX), which overcomes the radiation damage by using ultra short laser pulse for imaging, has been used extensively to study the water splitting intermediates in PSII. Here, we review the state of the art and our understanding of the water splitting reaction before and after the advent of SFX. Furthermore, we analyze the likely Mn coordination in multiple XFEL structures prepared in the dark-adapted S1 state and those following two-flashes which are poised in the penultimate S3 oxidation state based on Mn coordination chemistry. Finally, we summarize the major contributions of the SFX to our understanding of the structures of the S1 and S3 states.
Collapse
Affiliation(s)
- Salma Yehia
- Department of Biotechnology and Biomolecular Chemistry, Faculty of Science, Cairo University, Giza 11221, Egypt
| | - Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | - Gary W Brudvig
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Chemistry, Yale University, New Haven, CT 06520, USA
| | - M R Gunner
- Department of Physics, City College of New York, NY 10031, USA
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
2
|
Sauer PV, Cupellini L, Sutter M, Bondanza M, Domínguez Martin MA, Kirst H, Bína D, Koh AF, Kotecha A, Greber BJ, Nogales E, Polívka7 T, Mennucci B, Kerfeld CA. Structural and quantum chemical basis for OCP-mediated quenching of phycobilisomes. SCIENCE ADVANCES 2024; 10:eadk7535. [PMID: 38578996 PMCID: PMC10997198 DOI: 10.1126/sciadv.adk7535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 03/04/2024] [Indexed: 04/07/2024]
Abstract
Cyanobacteria use large antenna complexes called phycobilisomes (PBSs) for light harvesting. However, intense light triggers non-photochemical quenching, where the orange carotenoid protein (OCP) binds to PBS, dissipating excess energy as heat. The mechanism of efficiently transferring energy from phycocyanobilins in PBS to canthaxanthin in OCP remains insufficiently understood. Using cryo-electron microscopy, we unveiled the OCP-PBS complex structure at 1.6- to 2.1-angstrom resolution, showcasing its inherent flexibility. Using multiscale quantum chemistry, we disclosed the quenching mechanism. Identifying key protein residues, we clarified how canthaxanthin's transition dipole moment in its lowest-energy dark state becomes large enough for efficient energy transfer from phycocyanobilins. Our energy transfer model offers a detailed understanding of the atomic determinants of light harvesting regulation and antenna architecture in cyanobacteria.
Collapse
Affiliation(s)
- Paul V. Sauer
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Lorenzo Cupellini
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Markus Sutter
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Mattia Bondanza
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - María Agustina Domínguez Martin
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Henning Kirst
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - David Bína
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
| | | | | | - Basil J. Greber
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
| | - Eva Nogales
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
| | - Tomáš Polívka7
- California Institute for Quantitative Biosciences (QB3), University of California, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Faculty of Science, University of South Bohemia, Ceske Budejovice, Czech Republic
- Biology Centre of the Czech Academy of Sciences, Ceske Budejovice, Czech Republic
- Thermo Fisher Scientific, Eindhoven, Netherlands
- Division of Structural Biology, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Molecular and Cellular Biology, University of California, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| | - Benedetta Mennucci
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, Via G. Moruzzi 13, I-56124 Pisa, Italy
| | - Cheryl A. Kerfeld
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI 48824, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
3
|
Amin M, Kaur D, Brudvig GW, Brooks BR. Mapping the Oxygens in the Oxygen-Evolving Complex of Photosystem II by Their Nucleophilicity Using Quantum Descriptors. J Chem Theory Comput 2024. [PMID: 38306696 DOI: 10.1021/acs.jctc.3c00926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
The oxygen-evolving complex (OEC) of Photosystem II catalyzes the water-splitting reaction using solar energy. Thus, understanding the reaction mechanism will inspire the design of biomimetic artificial catalysts that convert solar energy to chemical energy. Conceptual Density Functional Theory (CDFT) focuses on understanding the reactivity of molecules and the atomic contribution to the overall nucleophilicity and electrophilicity of the molecule using quantum descriptors. However, this method has not been applied to the OEC before. Here, we use Fukui functions and the dual descriptor to provide quantitative measures of the nucleophilicity and electrophilicity of oxygens in the OEC for different models in different S states. Our results show that the μ-oxo bridges connected to terminal Mn4 are nucleophilic, and those in the cube formed by Mn1, Mn2, and Mn3 are mostly electrophilic. The dual descriptors of the bridging oxygens in the OEC showed a similar reactivity to that of bridging oxygens in Mn model compounds. However, the terminal water W1, which is bound to Mn4, showed very strong reactivity in some of the S3 models. Thus, our calculations support the model that proposes the formation of the O2 molecule through nucleophilic attack by a terminal water.
Collapse
Affiliation(s)
- Muhamed Amin
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
- Department of Sciences, University College Groningen, University of Groningen, 9718 BG Groningen, The Netherlands
| | - Divya Kaur
- Department of Chemistry, Brock University, 500 Glenridge Avenue, St. Catharines, Ontario, Canada L2S 3A1
| | - Gary W Brudvig
- Department of Chemistry, Yale University, New Haven, Connecticut 06520-8107, United States
| | - Bernard R Brooks
- Laboratory of Computational Biology, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Rummel F, Malcomson T, Barchenko M, O’Malley PJ. Insights into PSII's S 3Y Z• State: An Electronic and Magnetic Analysis. J Phys Chem Lett 2024; 15:499-506. [PMID: 38190694 PMCID: PMC10801681 DOI: 10.1021/acs.jpclett.3c03026] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/27/2023] [Accepted: 01/02/2024] [Indexed: 01/10/2024]
Abstract
Using BS-DFT (broken-symmetry density functional theory), the electronic and magnetic properties of the S3YZ• state of photosystem II were investigated and compared to those of the S3 state. While the O5 oxo-O6 hydroxo species presents little difference between the two states, a previously identified [O5O6]3- exhibits reduced stabilization of the O5-O6 shared spin. This species is shown to have some coupling with the YZ• center through Mn1 and O6. Similarly, a peroxo species is found to exhibit significant exchange couplings between the YZ• center and the Mn cluster through Mn1. Mechanistic changes in O-O bond formation in S3YZ• are highlighted by analysis of IBOs (intrinsic bonding orbitals) showing deviation for Mn1 and O6 centered IBOs. This change in coupling interactions throughout the complex as a result of S3YZ• formation presents implications for the determination of the mechanism spanning the end of the S3 and the start of the S4 states, affecting both electron movement and oxygen bond formation.
Collapse
Affiliation(s)
- Felix Rummel
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Thomas Malcomson
- School
of Biosciences, Cardiff University, Museum Avenue, Cardiff CF10 3AX, United Kingdom
| | - Maxim Barchenko
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| | - Patrick J. O’Malley
- Department
of Chemistry, School of Natural Sciences, The University of Manchester, Manchester M13 9PL, United Kingdom
| |
Collapse
|
5
|
Yamaguchi K, Shoji M, Isobe H, Kawakami T, Miyagawa K, Suga M, Akita F, Shen JR. Geometric, electronic and spin structures of the CaMn4O5 catalyst for water oxidation in oxygen-evolving photosystem II. Interplay between experiments and theoretical computations. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214742] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Gorka M, Charles P, Kalendra V, Baldansuren A, Lakshmi KV, Golbeck JH. A dimeric chlorophyll electron acceptor differentiates type I from type II photosynthetic reaction centers. iScience 2021; 24:102719. [PMID: 34278250 PMCID: PMC8267441 DOI: 10.1016/j.isci.2021.102719] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 05/17/2021] [Accepted: 06/09/2021] [Indexed: 01/09/2023] Open
Abstract
This research addresses one of the most compelling issues in the field of photosynthesis, namely, the role of the accessory chlorophyll molecules in primary charge separation. Using a combination of empirical and computational methods, we demonstrate that the primary acceptor of photosystem (PS) I is a dimer of accessory and secondary chlorophyll molecules, Chl2A and Chl3A, with an asymmetric electron charge density distribution. The incorporation of highly coupled donors and acceptors in PS I allows for extensive delocalization that prolongs the lifetime of the charge-separated state, providing for high quantum efficiency. The discovery of this motif has widespread implications ranging from the evolution of naturally occurring reaction centers to the development of a new generation of highly efficient artificial photosynthetic systems. Video abstract
Collapse
Affiliation(s)
- Michael Gorka
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA
| | - Philip Charles
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Vidmantas Kalendra
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - Amgalanbaatar Baldansuren
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - K V Lakshmi
- Department of Chemistry and Chemical Biology and The Baruch '60 Center for Biochemical Solar Energy Research, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| | - John H Golbeck
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA 16802, USA.,Department of Chemistry, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
7
|
Orio M, Pantazis DA. Successes, challenges, and opportunities for quantum chemistry in understanding metalloenzymes for solar fuels research. Chem Commun (Camb) 2021; 57:3952-3974. [DOI: 10.1039/d1cc00705j] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Overview of the rich and diverse contributions of quantum chemistry to understanding the structure and function of the biological archetypes for solar fuel research, photosystem II and hydrogenases.
Collapse
Affiliation(s)
- Maylis Orio
- Aix-Marseille Université
- CNRS
- iSm2
- Marseille
- France
| | - Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung
- Kaiser-Wilhelm-Platz 1
- 45470 Mülheim an der Ruhr
- Germany
| |
Collapse
|
8
|
Water-oxidizing complex in Photosystem II: Its structure and relation to manganese-oxide based catalysts. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2020.213183] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
9
|
Takahashi H, Suzuoka D, Sakuraba S, Morita A. Role of the Photosystem II as an Environment in the Oxidation Free Energy of the Mn Cluster from S 1 to S 2. J Phys Chem B 2019; 123:7081-7091. [PMID: 31282160 DOI: 10.1021/acs.jpcb.9b03831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The manganese cluster (CaMn4O5) in the photosystem II (PSII) is the reaction center of the light-driven oxidation reaction, which generates the molecular oxygen. In this paper, we address the issue of the effect of the environment on the free energy associated with the oxidation of the Mn cluster in S1 state by conducting the large-scale quantum mechanical/molecular mechanical simulations, which involve the whole of the PSII monomer. It was found by the simulations at the level of the B3LYP functional that the environment surrounding the Mn cluster reduces the vertical oxidation free energy Δμvrt by 64.8 kcal/mol. A decomposition analysis of the free energy Δμvrt revealed that the system composed of peptide chains, ligands, lipids, and potassium ions contributes to lowering of Δμvrt by -98.0 kcal/mol, whereas the solvent water makes an opposite contribution of 38.9 kcal/mol. Reduction of the vertical oxidation free energy directly leads to the lowering of the activation free energy ΔGac for the electron transfer reaction from the Mn cluster in S1 state to the neighboring Tyrz+. Consequently, the electron transfer rate was found to be enhanced by a factor of 1012 by virtue of the influence of the environment.
Collapse
Affiliation(s)
- Hideaki Takahashi
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai , Miyagi 980-8578 , Japan
| | - Daiki Suzuoka
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai , Miyagi 980-8578 , Japan
| | - Shun Sakuraba
- National Institutes for Quantum and Radiological Science and Technology , Kizugawa , Kyoto 619-0215 , Japan
| | - Akihiro Morita
- Department of Chemistry, Graduate School of Science , Tohoku University , Sendai , Miyagi 980-8578 , Japan.,Element Strategy Initiative for Catalysts and Batteries (ESICB) , Kyoto University , Kyoto 615-8520 , Japan
| |
Collapse
|
10
|
Assunção R, Zaharieva I, Dau H. Ammonia as a substrate-water analogue in photosynthetic water oxidation: Influence on activation barrier of the O2-formation step. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2019; 1860:533-540. [DOI: 10.1016/j.bbabio.2019.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 12/20/2018] [Accepted: 01/06/2019] [Indexed: 11/15/2022]
|
11
|
Weerawardene KLDM, Aikens CM. Theoretical Investigation of Water Oxidation Mechanism on Pure Manganese and Ca-Doped Bimetal Oxide Complexes. J Phys Chem A 2019; 123:6152-6159. [DOI: 10.1021/acs.jpca.9b02652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
| | - Christine M. Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
12
|
The S3 State of the Oxygen-Evolving Complex: Overview of Spectroscopy and XFEL Crystallography with a Critical Evaluation of Early-Onset Models for O–O Bond Formation. INORGANICS 2019. [DOI: 10.3390/inorganics7040055] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
The catalytic cycle of the oxygen-evolving complex (OEC) of photosystem II (PSII) comprises five intermediate states Si (i = 0–4), from the most reduced S0 state to the most oxidized S4, which spontaneously evolves dioxygen. The precise geometric and electronic structure of the Si states, and hence the mechanism of O–O bond formation in the OEC, remain under investigation, particularly for the final steps of the catalytic cycle. Recent advances in protein crystallography based on X-ray free-electron lasers (XFELs) have produced new structural models for the S3 state, which indicate that two of the oxygen atoms of the inorganic Mn4CaO6 core of the OEC are in very close proximity. This has been interpreted as possible evidence for “early-onset” O–O bond formation in the S3 state, as opposed to the more widely accepted view that the O–O bond is formed in the final state of the cycle, S4. Peroxo or superoxo formation in S3 has received partial support from computational studies. Here, a brief overview is provided of spectroscopic information, recent crystallographic results, and computational models for the S3 state. Emphasis is placed on computational S3 models that involve O–O formation, which are discussed with respect to their agreement with structural information, experimental evidence from various spectroscopic studies, and substrate exchange kinetics. Despite seemingly better agreement with some of the available crystallographic interpretations for the S3 state, models that implicate early-onset O–O bond formation are hard to reconcile with the complete line of experimental evidence, especially with X-ray absorption, X-ray emission, and magnetic resonance spectroscopic observations. Specifically with respect to quantum chemical studies, the inconclusive energetics for the possible isoforms of S3 is an acute problem that is probably beyond the capabilities of standard density functional theory.
Collapse
|
13
|
Abstract
AbstractCyanobacteria and plants carry out oxygenic photosynthesis. They use water to generate the atmospheric oxygen we breathe and carbon dioxide to produce the biomass serving as food, feed, fibre and fuel. This paper scans the emergence of structural and mechanistic understanding of oxygen evolution over the past 50 years. It reviews speculative concepts and the stepped insight provided by novel experimental and theoretical techniques. Driven by sunlight photosystem II oxidizes the catalyst of water oxidation, a hetero-metallic Mn4CaO5(H2O)4 cluster. Mn3Ca are arranged in cubanoid and one Mn dangles out. By accumulation of four oxidizing equivalents before initiating dioxygen formation it matches the four-electron chemistry from water to dioxygen to the one-electron chemistry of the photo-sensitizer. Potentially harmful intermediates are thereby occluded in space and time. Kinetic signatures of the catalytic cluster and its partners in the photo-reaction centre have been resolved, in the frequency domain ranging from acoustic waves via infra-red to X-ray radiation, and in the time domain from nano- to milli-seconds. X-ray structures to a resolution of 1.9 Å are available. Even time resolved X-ray structures have been obtained by clocking the reaction cycle by flashes of light and diffraction with femtosecond X-ray pulses. The terminal reaction cascade from two molecules of water to dioxygen involves the transfer of four electrons, two protons, one dioxygen and one water. A rigorous mechanistic analysis is challenging because of the kinetic enslaving at millisecond duration of six partial reactions (4e−, 1H+, 1O2). For the time being a peroxide-intermediate in the reaction cascade to dioxygen has been in focus, both experimentally and by quantum chemistry. Homo sapiens has relied on burning the products of oxygenic photosynthesis, recent and fossil. Mankind's total energy consumption amounts to almost one-fourth of the global photosynthetic productivity. If the average power consumption equalled one of those nations with the highest consumption per capita it was four times greater and matched the total productivity. It is obvious that biomass should be harvested for food, feed, fibre and platform chemicals rather than for fuel.
Collapse
|
14
|
Affiliation(s)
- Dimitrios A. Pantazis
- Max-Planck-Institut für Kohlenforschung, Kaiser-Wilhelm-Platz 1, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
15
|
Guo Y, Li H, He LL, Zhao DX, Gong LD, Yang ZZ. The open-cubane oxo–oxyl coupling mechanism dominates photosynthetic oxygen evolution: a comprehensive DFT investigation on O–O bond formation in the S4state. Phys Chem Chem Phys 2017; 19:13909-13923. [DOI: 10.1039/c7cp01617d] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
How is O2created in nature? Comprehensive DFT investigations determine the dominance of the open-cubane oxo–oxyl coupling mechanism over alternative possibilities.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Hui Li
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
16
|
Sproviero EM. Geometrical properties of the manganese(iv)/iron(iii) cofactor of Chlamydia trachomatis ribonucleotide reductase unveiled by simulations of XAS spectra. Dalton Trans 2017; 46:4724-4736. [DOI: 10.1039/c6dt03893j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
A combination of EXAFS simulations and DFT calculations, including a novel protocol to evaluate Debye–Waller factors, provide insights into the structure of the Mn(iv)/Fe(iii) cofactor ofCtR2.
Collapse
Affiliation(s)
- Eduardo M. Sproviero
- Department of Chemistry and Biochemistry
- University of the Sciences in Philadelphia
- Philadelphia
- USA
| |
Collapse
|
17
|
Amin M, Badawi A, Obayya SS. Radiation Damage in XFEL: Case study from the oxygen-evolving complex of Photosystem II. Sci Rep 2016; 6:36492. [PMID: 27827423 PMCID: PMC5101503 DOI: 10.1038/srep36492] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Accepted: 10/17/2016] [Indexed: 01/21/2023] Open
Abstract
Structural changes induced by radiation damage in X-ray crystallography hinder the ability to understand the structure/function relationship in chemical reactions. Serial femtosecond crystallography overcomes this problem by exposing the sample to very short and intense laser pulse leading to measurement before destruction. Here we use molecular modeling to map the radiation damage during the 10-50 fs to the intensity, the energy and the time duration of the laser pulse on the oxygen-evolving complex (OEC) of photosystem II. In the model, the nuclei move classically in a fully quantum potential created by electron density under the effect of strong laser pulse in the Ehrenfest dynamics regime. The results show that the Mn-Mn and Mn-Ca distances are less affected by radiation damage due to the their heavy masses, while one μ-oxo bridge (O5) moves significantly. The radiation damage may induce conformational changes of the water ligands but only bond elongation for the amino acids ligands. These effects are relatively intensity independent from 1016 to 1017 W/cm2, but changes increase dramatically if the beam intensity is increased to 1018 W/cm2. In addition, the self amplified spontaneous emission (SASE) nature of the laser beam does not affect the dynamics of the ions.
Collapse
Affiliation(s)
- Muhamed Amin
- Department of Physics, City College of New York, New York, New York 10031, United States
- Center for Photonics and Smart Materials, Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, 12588 Giza, Egypt
| | - Ashraf Badawi
- Center for Photonics and Smart Materials, Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, 12588 Giza, Egypt
| | - S. S. Obayya
- Center for Photonics and Smart Materials, Zewail City of Science and Technology, Sheikh Zayed District, 6th of October City, 12588 Giza, Egypt
| |
Collapse
|
18
|
Chernev P, Zaharieva I, Rossini E, Galstyan A, Dau H, Knapp EW. Merging Structural Information from X-ray Crystallography, Quantum Chemistry, and EXAFS Spectra: The Oxygen-Evolving Complex in PSII. J Phys Chem B 2016; 120:10899-10922. [DOI: 10.1021/acs.jpcb.6b05800] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Petko Chernev
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ivelina Zaharieva
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Emanuele Rossini
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Artur Galstyan
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Holger Dau
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| | - Ernst-Walter Knapp
- Institute of Chemistry and Biochemistry and ‡Department of Physics, Freie Universität Berlin, D-14195 Berlin, Germany
| |
Collapse
|
19
|
'Photosystem II: the water splitting enzyme of photosynthesis and the origin of oxygen in our atmosphere'. Q Rev Biophys 2016; 49:e14. [PMID: 27659174 DOI: 10.1017/s0033583516000093] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
About 3 billion years ago an enzyme emerged which would dramatically change the chemical composition of our planet and set in motion an unprecedented explosion in biological activity. This enzyme used solar energy to power the thermodynamically and chemically demanding reaction of water splitting. In so doing it provided biology with an unlimited supply of reducing equivalents needed to convert carbon dioxide into the organic molecules of life while at the same time produced oxygen to transform our planetary atmosphere from an anaerobic to an aerobic state. The enzyme which facilitates this reaction and therefore underpins virtually all life on our planet is known as Photosystem II (PSII). It is a pigment-binding, multisubunit protein complex embedded in the lipid environment of the thylakoid membranes of plants, algae and cyanobacteria. Today we have detailed understanding of the structure and functioning of this key and unique enzyme. The journey to this level of knowledge can be traced back to the discovery of oxygen itself in the 18th-century. Since then there has been a sequence of mile stone discoveries which makes a fascinating story, stretching over 200 years. But it is the last few years that have provided the level of detail necessary to reveal the chemistry of water oxidation and O-O bond formation. In particular, the crystal structure of the isolated PSII enzyme has been reported with ever increasing improvement in resolution. Thus the organisational and structural details of its many subunits and cofactors are now well understood. The water splitting site was revealed as a cluster of four Mn ions and a Ca ion surrounded by amino-acid side chains, of which seven provide direct ligands to the metals. The metal cluster is organised as a cubane structure composed of three Mn ions and a Ca2+ linked by oxo-bonds with the fourth Mn ion attached to the cubane. This structure has now been synthesised in a non-protein environment suggesting that it is a totally inorganic precursor for the evolution of the photosynthetic oxygen-evolving complex. In summary, the overall structure of the catalytic site has given a framework on which to build a mechanistic scheme for photosynthetic dioxygen generation and at the same time provide a blue-print and incentive to develop catalysts for artificial photo-electrochemical systems to split water and generate renewable solar fuels.
Collapse
|
20
|
Askerka M, Ho J, Batista ER, Gascón JA, Batista VS. The MOD-QM/MM Method: Applications to Studies of Photosystem II and DNA G-Quadruplexes. Methods Enzymol 2016; 577:443-81. [PMID: 27498648 PMCID: PMC5304415 DOI: 10.1016/bs.mie.2016.05.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2024]
Abstract
Quantum mechanics/molecular mechanics (QM/MM) hybrid methods are currently the most powerful computational tools for studies of structure/function relations and catalytic sites embedded in macrobiomolecules (eg, proteins and nucleic acids). QM/MM methodologies are highly efficient since they implement quantum chemistry methods for modeling only the portion of the system involving bond-breaking/forming processes (QM layer), as influenced by the surrounding molecular environment described in terms of molecular mechanics force fields (MM layer). Some of the limitations of QM/MM methods when polarization effects are not explicitly considered include the approximate treatment of electrostatic interactions between QM and MM layers. Here, we review recent advances in the development of computational protocols that allow for rigorous modeling of electrostatic interactions in biomacromolecules and structural refinement, beyond the common limitations of QM/MM hybrid methods. We focus on photosystem II (PSII) with emphasis on the description of the oxygen-evolving complex (OEC) and its high-resolution extended X-ray absorption fine structure spectra (EXAFS) in conjunction with Monte Carlo structural refinement. Furthermore, we review QM/MM structural refinement studies of DNA G4 quadruplexes with embedded monovalent cations and direct comparisons to NMR data.
Collapse
Affiliation(s)
- M Askerka
- Yale University, New Haven, CT, United States
| | - J Ho
- Yale University, New Haven, CT, United States
| | - E R Batista
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - J A Gascón
- University of Connecticut, Storrs, CT, United States
| | - V S Batista
- Yale University, New Haven, CT, United States.
| |
Collapse
|
21
|
Terrett R, Petrie S, Stranger R, Pace RJ. What computational chemistry and magnetic resonance reveal concerning the oxygen evolving centre in Photosystem II. J Inorg Biochem 2016; 162:178-189. [PMID: 27157978 DOI: 10.1016/j.jinorgbio.2016.04.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Revised: 03/01/2016] [Accepted: 04/04/2016] [Indexed: 11/18/2022]
Abstract
Density Functional Theory (DFT) computational studies of the Mn4/Ca Oxygen Evolving Complex (OEC) region of Photosystem II in the paramagnetic S2 and S3 states of the water oxdizing catalytic cycle are described. These build upon recent advances in computationally understanding the detailed S1 state OEC geometries, revealed by the recent high resolution Photosystem II crystal structures of Shen et al., at 1.90Å and 1.95Å (Petrie et al., 2015, Angew. Chem. Int. Ed., 54, 7120). The models feature a 'Low Oxidation Paradigm' assumption for the mean Mn oxidation states in the functional enzyme, with the mean oxidation levels being 3.0, 3.25 and 3.5 in S1, S2 and S3, respectively. These calculations are used to infer magnetic exchange interactions within the coupled OEC cluster, particularly in the Electron Paramagnetic Resonance (EPR)-visible S2 and S3 states. Detailed computational estimates of the intrinsic magnitudes and molecular orientations of the 55Mn hyperfine tensors in the S2 state are presented. These parameters, together with the resultant spin projected hyperfine values are compared with recent appropriate experimental EPR data (Continuous Wave (CW), Electron-Nuclear Double Resonance (ENDOR) and ELDOR (Electron-Electron Double Resonance)-Detected Nuclear Magnetic Resonance (EDNMR)) from the OEC. It is found that an effective Coupled Dimer magnetic organization of the four Mn in the OEC cluster in the S2 and S3 states is able to quantitatively rationalize the observed 55Mn hyperfine data. This is consistent with structures we propose to represent the likely state of the OEC in the catalytically active form of the enzyme.
Collapse
Affiliation(s)
- Richard Terrett
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Simon Petrie
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Rob Stranger
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia
| | - Ron J Pace
- Research School of Chemistry, College of Physical and Mathematical Sciences, Australian National University, Canberra, ACT 0200, Australia.
| |
Collapse
|
22
|
Redox-coupled substrate water reorganization in the active site of Photosystem II-The role of calcium in substrate water delivery. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:740-8. [PMID: 26826591 DOI: 10.1016/j.bbabio.2016.01.015] [Citation(s) in RCA: 86] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2015] [Revised: 12/10/2015] [Accepted: 01/26/2016] [Indexed: 01/08/2023]
Abstract
Photosystem II (PSII) catalyzes light-driven water splitting in nature and is the key enzyme for energy input into the biosphere. Important details of its mechanism are not well understood. In order to understand the mechanism of water splitting, we perform here large-scale density functional theory (DFT) calculations on the active site of PSII in different oxidation, spin and ligand states. Prior to formation of the O-O bond, we find that all manganese atoms are oxidized to Mn(IV) in the S3 state, consistent with earlier studies. We find here, however, that the formation of the S3 state is coupled to the movement of a calcium-bound hydroxide (W3) from the Ca to a Mn (Mn1 or Mn4) in a process that is triggered by the formation of a tyrosyl radical (Tyr-161) and its protonated base, His-190. We find that subsequent oxidation and deprotonation of this hydroxide on Mn1 result in formation of an oxyl-radical that can exergonically couple with one of the oxo-bridges (O5), forming an O-O bond. When O(2) leaves the active site, a second Ca-bound water molecule reorients to bridge the gap between the manganese ions Mn1 and Mn4, forming a new oxo-bridge for the next reaction cycle. Our findings are consistent with experimental data, and suggest that the calcium ion may control substrate water access to the water oxidation sites.
Collapse
|
23
|
Najafpour MM, Renger G, Hołyńska M, Moghaddam AN, Aro EM, Carpentier R, Nishihara H, Eaton-Rye JJ, Shen JR, Allakhverdiev SI. Manganese Compounds as Water-Oxidizing Catalysts: From the Natural Water-Oxidizing Complex to Nanosized Manganese Oxide Structures. Chem Rev 2016; 116:2886-936. [PMID: 26812090 DOI: 10.1021/acs.chemrev.5b00340] [Citation(s) in RCA: 342] [Impact Index Per Article: 42.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All cyanobacteria, algae, and plants use a similar water-oxidizing catalyst for water oxidation. This catalyst is housed in Photosystem II, a membrane-protein complex that functions as a light-driven water oxidase in oxygenic photosynthesis. Water oxidation is also an important reaction in artificial photosynthesis because it has the potential to provide cheap electrons from water for hydrogen production or for the reduction of carbon dioxide on an industrial scale. The water-oxidizing complex of Photosystem II is a Mn-Ca cluster that oxidizes water with a low overpotential and high turnover frequency number of up to 25-90 molecules of O2 released per second. In this Review, we discuss the atomic structure of the Mn-Ca cluster of the Photosystem II water-oxidizing complex from the viewpoint that the underlying mechanism can be informative when designing artificial water-oxidizing catalysts. This is followed by consideration of functional Mn-based model complexes for water oxidation and the issue of Mn complexes decomposing to Mn oxide. We then provide a detailed assessment of the chemistry of Mn oxides by considering how their bulk and nanoscale properties contribute to their effectiveness as water-oxidizing catalysts.
Collapse
Affiliation(s)
| | - Gernot Renger
- Institute of Chemistry, Max-Volmer-Laboratory of Biophysical Chemistry, Technical University Berlin , Straße des 17. Juni 135, D-10623 Berlin, Germany
| | - Małgorzata Hołyńska
- Fachbereich Chemie und Wissenschaftliches Zentrum für Materialwissenschaften (WZMW), Philipps-Universität Marburg , Hans-Meerwein-Straße, D-35032 Marburg, Germany
| | | | - Eva-Mari Aro
- Department of Biochemistry and Food Chemistry, University of Turku , 20014 Turku, Finland
| | - Robert Carpentier
- Groupe de Recherche en Biologie Végétale (GRBV), Université du Québec à Trois-Rivières , C.P. 500, Trois-Rivières, Québec G9A 5H7, Canada
| | - Hiroshi Nishihara
- Department of Chemistry, School of Science, The University of Tokyo , 7-3-1, Hongo, Bunkyo-Ku, Tokyo 113-0033, Japan
| | - Julian J Eaton-Rye
- Department of Biochemistry, University of Otago , P.O. Box 56, Dunedin 9054, New Zealand
| | - Jian-Ren Shen
- Photosynthesis Research Center, Graduate School of Natural Science and Technology, Faculty of Science, Okayama University , Okayama 700-8530, Japan.,Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences , Beijing 100093, China
| | - Suleyman I Allakhverdiev
- Controlled Photobiosynthesis Laboratory, Institute of Plant Physiology, Russian Academy of Sciences , Botanicheskaya Street 35, Moscow 127276, Russia.,Institute of Basic Biological Problems, Russian Academy of Sciences , Pushchino, Moscow Region 142290, Russia.,Department of Plant Physiology, Faculty of Biology, M.V. Lomonosov Moscow State University , Leninskie Gory 1-12, Moscow 119991, Russia
| |
Collapse
|
24
|
Guo Y, He LL, Zhao DX, Gong LD, Liu C, Yang ZZ. How does ammonia bind to the oxygen-evolving complex in the S2state of photosynthetic water oxidation? Theoretical support and implications for the W1 substitution mechanism. Phys Chem Chem Phys 2016; 18:31551-31565. [DOI: 10.1039/c6cp05725j] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The mechanistic study shows that NH3substitutes W1 rather than O5 of the OEC in the S2state and leaves in the S4′ state.
Collapse
Affiliation(s)
- Yu Guo
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Lan-Lan He
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Dong-Xia Zhao
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Li-Dong Gong
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Cui Liu
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| | - Zhong-Zhi Yang
- School of Chemistry and Chemical Engineering
- Liaoning Normal University
- Dalian 116029
- People's Republic of China
| |
Collapse
|
25
|
Krewald V, Neese F, Pantazis DA. Resolving the Manganese Oxidation States in the Oxygen-evolving Catalyst of Natural Photosynthesis. Isr J Chem 2015. [DOI: 10.1002/ijch.201500051] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
26
|
Lee C, Aikens CM. Water Splitting Processes on Mn4O4 and CaMn3O4 Model Cubane Systems. J Phys Chem A 2015; 119:9325-37. [DOI: 10.1021/acs.jpca.5b03170] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Choongkeun Lee
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M. Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
27
|
Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. Quantum Mechanical Studies of Large Metal, Metal Oxide, and Metal Chalcogenide Nanoparticles and Clusters. Chem Rev 2015; 115:6112-216. [PMID: 25898274 DOI: 10.1021/cr500506r] [Citation(s) in RCA: 217] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Amendra Fernando
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | | | - Natalia V Karimova
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| | - Christine M Aikens
- Department of Chemistry, Kansas State University, Manhattan, Kansas 66506, United States
| |
Collapse
|
28
|
Krewald V, Retegan M, Cox N, Messinger J, Lubitz W, DeBeer S, Neese F, Pantazis DA. Metal oxidation states in biological water splitting. Chem Sci 2015; 6:1676-1695. [PMID: 29308133 PMCID: PMC5639794 DOI: 10.1039/c4sc03720k] [Citation(s) in RCA: 234] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 12/31/2014] [Indexed: 12/20/2022] Open
Abstract
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II.
A central question in biological water splitting concerns the oxidation states of the manganese ions that comprise the oxygen-evolving complex of photosystem II. Understanding the nature and order of oxidation events that occur during the catalytic cycle of five Si states (i = 0–4) is of fundamental importance both for the natural system and for artificial water oxidation catalysts. Despite the widespread adoption of the so-called “high-valent scheme”—where, for example, the Mn oxidation states in the S2 state are assigned as III, IV, IV, IV—the competing “low-valent scheme” that differs by a total of two metal unpaired electrons (i.e. III, III, III, IV in the S2 state) is favored by several recent studies for the biological catalyst. The question of the correct oxidation state assignment is addressed here by a detailed computational comparison of the two schemes using a common structural platform and theoretical approach. Models based on crystallographic constraints were constructed for all conceivable oxidation state assignments in the four (semi)stable S states of the oxygen evolving complex, sampling various protonation levels and patterns to ensure comprehensive coverage. The models are evaluated with respect to their geometric, energetic, electronic, and spectroscopic properties against available experimental EXAFS, XFEL-XRD, EPR, ENDOR and Mn K pre-edge XANES data. New 2.5 K 55Mn ENDOR data of the S2 state are also reported. Our results conclusively show that the entire S state phenomenology can only be accommodated within the high-valent scheme by adopting a single motif and protonation pattern that progresses smoothly from S0 (III, III, III, IV) to S3 (IV, IV, IV, IV), satisfying all experimental constraints and reproducing all observables. By contrast, it was impossible to construct a consistent cycle based on the low-valent scheme for all S states. Instead, the low-valent models developed here may provide new insight into the over-reduced S states and the states involved in the assembly of the catalytically active water oxidizing cluster.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Marius Retegan
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Nicholas Cox
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Johannes Messinger
- Department of Chemistry , Chemical Biological Center (KBC) , Umeå University , 90187 Umeå , Sweden
| | - Wolfgang Lubitz
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion , Stiftstr. 34-38 , 45470 Mülheim an der Ruhr , Germany .
| |
Collapse
|
29
|
Ho J, Newcomer MB, Ragain CM, Gascon JA, Batista ER, Loria JP, Batista VS. MoD-QM/MM Structural Refinement Method: Characterization of Hydrogen Bonding in the Oxytricha nova G-Quadruplex. J Chem Theory Comput 2014; 10:5125-35. [PMID: 26584390 PMCID: PMC5304451 DOI: 10.1021/ct500571k] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A generalization of the Moving-Domain Quantum Mechanics/Molecular Mechanics (MoD-QM/MM) hybrid method [Gascon, J. A.; Leung, S. S. F.; Batista, E. R.; Batista, V. S. J. Chem. Theory Comput. 2006, 2, 175-186] is introduced to provide a self-consistent computational protocol for structural refinement of extended systems. The method partitions the system into molecular domains that are iteratively optimized as quantum mechanical (QM) layers embedded in their surrounding molecular environment to obtain an ab initio quality description of the geometry and the molecular electrostatic potential of the extended system composed of those constituent fragments. The resulting methodology is benchmarked as applied to model systems that allow for full QM optimization as well as through refinement of the hydrogen bonding geometry in Oxytricha nova guanine quadruplex for which several studies have been reported, including the X-ray structure and NMR data. Calculations of (1)H NMR chemical shifts based on the gauge independent atomic orbital (GIAO) method and direct comparisons with experiments show that solvated MoD-QM/MM structures, sampled from explicit solvent molecular dynamics simulations, allow for NMR simulations in much improved agreement with experimental data than models based on the X-ray structure or those optimized using classical molecular mechanics force fields.
Collapse
Affiliation(s)
- Junming Ho
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Michael B. Newcomer
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Christina M. Ragain
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Jose A. Gascon
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| | - Enrique R. Batista
- Theoretical Division, Los Alamos National Laboratory, MS-B214, Los Alamos, New Mexico 87545, United States
| | - J. Patrick Loria
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, United States
| | - Victor S. Batista
- Department of Chemistry, Yale University, P.O. Box 208107, New Haven, Connecticut 06520-8107, United States
| |
Collapse
|
30
|
Debus RJ. FTIR studies of metal ligands, networks of hydrogen bonds, and water molecules near the active site Mn₄CaO₅ cluster in Photosystem II. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1847:19-34. [PMID: 25038513 DOI: 10.1016/j.bbabio.2014.07.007] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 07/09/2014] [Accepted: 07/10/2014] [Indexed: 11/26/2022]
Abstract
The photosynthetic conversion of water to molecular oxygen is catalyzed by the Mn₄CaO₅ cluster in Photosystem II and provides nearly our entire supply of atmospheric oxygen. The Mn₄CaO₅ cluster accumulates oxidizing equivalents in response to light-driven photochemical events within Photosystem II and then oxidizes two molecules of water to oxygen. The Mn₄CaO₅ cluster converts water to oxygen much more efficiently than any synthetic catalyst because its protein environment carefully controls the cluster's reactivity at each step in its catalytic cycle. This control is achieved by precise choreography of the proton and electron transfer reactions associated with water oxidation and by careful management of substrate (water) access and proton egress. This review describes the FTIR studies undertaken over the past two decades to identify the amino acid residues that are responsible for this control and to determine the role of each. In particular, this review describes the FTIR studies undertaken to characterize the influence of the cluster's metal ligands on its activity, to delineate the proton egress pathways that link the Mn₄CaO₅ cluster with the thylakoid lumen, and to characterize the influence of specific residues on the water molecules that serve as substrate or as participants in the networks of hydrogen bonds that make up the water access and proton egress pathways. This information will improve our understanding of water oxidation by the Mn₄CaO₅ catalyst in Photosystem II and will provide insight into the design of new generations of synthetic catalysts that convert sunlight into useful forms of storable energy. This article is part of a Special Issue entitled: Vibrational spectroscopies and bioenergetic systems.
Collapse
Affiliation(s)
- Richard J Debus
- Department of Biochemistry, University of California, Riverside, Riverside, CA 92521-0129, USA.
| |
Collapse
|
31
|
Barber J. Photosystem II: Its function, structure, and implications for artificial photosynthesis. BIOCHEMISTRY (MOSCOW) 2014; 79:185-96. [DOI: 10.1134/s0006297914030031] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
32
|
Nitsche MA, Ferreria M, Mocskos EE, González Lebrero MC. GPU Accelerated Implementation of Density Functional Theory for Hybrid QM/MM Simulations. J Chem Theory Comput 2014; 10:959-67. [DOI: 10.1021/ct400308n] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Affiliation(s)
- Matías A. Nitsche
- Departamento
de Computación, FCEN, UBA, Buenos Aires C1428EGA, Argentina
| | - Manuel Ferreria
- Centro de Simulación
Computacional para Aplicaciones Tecnológicas, CSC, CONICET, Buenos Aires C1425FQD, Argentina
| | - Esteban E. Mocskos
- Departamento
de Computación, FCEN, UBA, Buenos Aires C1428EGA, Argentina
- Centro de Simulación
Computacional para Aplicaciones Tecnológicas, CSC, CONICET, Buenos Aires C1425FQD, Argentina
| | | |
Collapse
|
33
|
Kanan DK, Keith JA, Carter EA. First-Principles Modeling of Electrochemical Water Oxidation on MnO:ZnO(001). ChemElectroChem 2014. [DOI: 10.1002/celc.201300089] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
34
|
Pal R, Negre CFA, Vogt L, Pokhrel R, Ertem MZ, Brudvig GW, Batista VS. S0-State Model of the Oxygen-Evolving Complex of Photosystem II. Biochemistry 2013; 52:7703-6. [DOI: 10.1021/bi401214v] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Rhitankar Pal
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Christian F. A. Negre
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Leslie Vogt
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Ravi Pokhrel
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Mehmed Z. Ertem
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
- Department
of Chemistry, Brookhaven National Laboratory, Building 555A, Upton, New York 11973, United States
| | - Gary W. Brudvig
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| | - Victor S. Batista
- Department
of Chemistry, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
35
|
Gunner MR, Amin M, Zhu X, Lu J. Molecular mechanisms for generating transmembrane proton gradients. BIOCHIMICA ET BIOPHYSICA ACTA 2013; 1827:892-913. [PMID: 23507617 PMCID: PMC3714358 DOI: 10.1016/j.bbabio.2013.03.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Revised: 01/28/2013] [Accepted: 03/01/2013] [Indexed: 01/02/2023]
Abstract
Membrane proteins use the energy of light or high energy substrates to build a transmembrane proton gradient through a series of reactions leading to proton release into the lower pH compartment (P-side) and proton uptake from the higher pH compartment (N-side). This review considers how the proton affinity of the substrates, cofactors and amino acids are modified in four proteins to drive proton transfers. Bacterial reaction centers (RCs) and photosystem II (PSII) carry out redox chemistry with the species to be oxidized on the P-side while reduction occurs on the N-side of the membrane. Terminal redox cofactors are used which have pKas that are strongly dependent on their redox state, so that protons are lost on oxidation and gained on reduction. Bacteriorhodopsin is a true proton pump. Light activation triggers trans to cis isomerization of a bound retinal. Strong electrostatic interactions within clusters of amino acids are modified by the conformational changes initiated by retinal motion leading to changes in proton affinity, driving transmembrane proton transfer. Cytochrome c oxidase (CcO) catalyzes the reduction of O2 to water. The protons needed for chemistry are bound from the N-side. The reduction chemistry also drives proton pumping from N- to P-side. Overall, in CcO the uptake of 4 electrons to reduce O2 transports 8 charges across the membrane, with each reduction fully coupled to removal of two protons from the N-side, the delivery of one for chemistry and transport of the other to the P-side.
Collapse
Affiliation(s)
- M R Gunner
- Department of Physics, City College of New York, New York, NY 10031, USA.
| | | | | | | |
Collapse
|
36
|
Retegan M, Neese F, Pantazis DA. Convergence of QM/MM and Cluster Models for the Spectroscopic Properties of the Oxygen-Evolving Complex in Photosystem II. J Chem Theory Comput 2013; 9:3832-42. [PMID: 26584129 DOI: 10.1021/ct400477j] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The latest crystal structure of photosystem II at 1.9 Å resolution, which resolves the topology of the Mn4CaO5 oxygen evolving complex (OEC) at atomistic detail, enables a better correlation between structural features and spectroscopic properties than ever before. Building on the refined crystallographic model of the OEC and the protein, we present combined quantum mechanical/molecular mechanical (QM/MM) studies of the spectroscopic properties of the natural catalyst embedded in the protein matrix. Focusing on the S2 state of the catalytic cycle, we examine the convergence of not only structural parameters but also of the intracluster magnetic interactions in terms of exchange coupling constants and of experimentally relevant (55)Mn, (17)O, and (14)N hyperfine coupling constants with respect to QM/MM partitioning using five QM regions of increasing size. This enables us to assess the performance of the method and to probe second sphere effects by identifying amino acid residues that principally affect the spectroscopic properties of the OEC. Comparison between QM-only and QM/MM treatments reveals that whereas QM/MM models converge quickly to stable values, the QM cluster models need to incorporate significantly larger parts of the second coordination sphere and surrounding water molecules to achieve convergence for certain properties. This is mainly due to the sensitivity of the QM-only models to fluctuations in the hydrogen bonding network and ligand acidity. Additionally, a hydrogen bond that is typically omitted in QM-only treatments is shown to determine the hyperfine coupling tensor of the unique Mn(III) ion by regulating the rotation plane of the ligated D1-His332 imidazole ring, the only N-donor ligand of the OEC.
Collapse
Affiliation(s)
- Marius Retegan
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| | - Dimitrios A Pantazis
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34-38, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
37
|
Computational Studies of the Oxygen-Evolving Complex of Photosystem II and Biomimetic Oxomanganese Complexes for Renewable Energy Applications. ACTA ACUST UNITED AC 2013. [DOI: 10.1021/bk-2013-1133.ch011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
|
38
|
Amin M, Vogt L, Vassiliev S, Rivalta I, Sultan MM, Bruce D, Brudvig GW, Batista VS, Gunner MR. Electrostatic effects on proton coupled electron transfer in oxomanganese complexes inspired by the oxygen-evolving complex of photosystem II. J Phys Chem B 2013; 117:6217-26. [PMID: 23570540 DOI: 10.1021/jp403321b] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The influence of electrostatic interactions on the free energy of proton coupled electron transfer in biomimetic oxomanganese complexes inspired by the oxygen-evolving complex (OEC) of photosystem II (PSII) are investigated. The reported study introduces an enhanced multiconformer continuum electrostatics (MCCE) model, parametrized at the density functional theory (DFT) level with a classical valence model for the oxomanganese core. The calculated pKa's and oxidation midpoint potentials (E(m)'s) match experimental values for eight complexes, indicating that purely electrostatic contributions account for most of the observed couplings between deprotonation and oxidation state transitions. We focus on pKa's of terminal water ligands in [Mn(II/III)(H2O)6](2+/3+) (1), [Mn(III)(P)(H2O)2](3-) (2, P = 5,10,15,20-tetrakis(2,6-dichloro-3-sulfonatophenyl)porphyrinato), [Mn2(IV,IV)(μ-O)2(terpy)2(H2O)2](4+) (3, terpy = 2,2':6',2″-terpyridine), and [Mn3(IV,IV,IV)(μ-O)4(phen)4(H2O)2](4+) (4, phen = 1,10-phenanthroline) and the pKa's of μ-oxo bridges and Mn E(m)'s in [Mn2(μ-O)2(bpy)4] (5, bpy = 2,2'-bipyridyl), [Mn2(μ-O)2(salpn)2] (6, salpn = N,N'-bis(salicylidene)-1,3-propanediamine), [Mn2(μ-O)2(3,5-di(Cl)-salpn)2] (7), and [Mn2(μ-O)2(3,5-di(NO2)-salpn)2] (8). The analysis of complexes 6-8 highlights the strong coupling between electron and proton transfers, with any Mn oxidation lowering the pKa of an oxo bridge by 10.5 ± 0.9 pH units. The model also accounts for changes in the E(m)'s by ligand substituents, such as found in complexes 6-8, due to the electron withdrawing Cl (7) and NO2 (8). The reported study provides the foundation for analysis of electrostatic effects in other oxomanganese complexes and metalloenzymes, where proton coupled electron transfer plays a fundamental role in redox-leveling mechanisms.
Collapse
Affiliation(s)
- Muhamed Amin
- Department of Physics, City College of New York, New York, New York 10031, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Ichino T, Yoshioka Y. Theoretical Study on the Mechanism of Dioxygen Evolution in Photosystem II. I. Molecular and Electronic Structures at the S0, S1, and S2States of Oxygen-Evolving Complex. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2013. [DOI: 10.1246/bcsj.20120223] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Tomoya Ichino
- Chemistry Department for Materials, Graduate School of Engineering, Mie University
| | - Yasunori Yoshioka
- Chemistry Department for Materials, Graduate School of Engineering, Mie University
| |
Collapse
|
40
|
Krewald V, Neese F, Pantazis DA. On the magnetic and spectroscopic properties of high-valent Mn3CaO4 cubanes as structural units of natural and artificial water-oxidizing catalysts. J Am Chem Soc 2013; 135:5726-39. [PMID: 23527603 DOI: 10.1021/ja312552f] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The Mn(IV)3CaO4 cubane is a structural motif present in the oxygen-evolving complex (OEC) of photosystem II and in water-oxidizing Mn/Ca layered oxides. This work investigates the magnetic and spectroscopic properties of two recently synthesized complexes and a series of idealized models that incorporate this structural unit. Magnetic interactions, accessible spin states, and (55)Mn isotropic hyperfine couplings are computed with quantum chemical methods and form the basis for structure-property correlations. Additionally, the effects of oxo-bridge protonation and one-electron reduction are examined. The calculated properties are found to be in excellent agreement with available experimental data. It is established that all synthetic and model Mn(IV)3CaO4 cubane complexes have the same high-spin S = (9)/2 ground state. The magnetic coupling conditions under which different ground spin states can be accessed are determined. Substitution of Mn(IV) magnetic centers by diamagnetic ions [e.g., Ge(IV)] allows one to "switch off" specific spin sites in order to examine the magnetic orbitals along individual Mn-Mn exchange pathways, which confirms the predominance of ferromagnetic interactions within the cubane framework. The span of the Heisenberg spin ladder is found to correlate inversely with the number of protonated oxo bridges. Energetic comparisons for protonated models show that the tris-μ-oxo bridge connecting only Mn ions in the cubane has the lowest proton affinity and that the average relaxation energy per additional proton is on the order of 18 kcal·mol(-1), thus making access to ground states other than the high-spin S = (9)/2 state in these cubanes unlikely. The relevance of these cubanes for the OEC and synthetic oxides is discussed.
Collapse
Affiliation(s)
- Vera Krewald
- Max Planck Institute for Chemical Energy Conversion, Stiftstrasse 34-38, 45470 Mülheim an der Ruhr, Germany
| | | | | |
Collapse
|
41
|
Chakraborty M, Mandal PC, Mukhopadhyay S. Kinetic studies on oxidation of l-cysteine and 2-mercaptoethanol by a trinuclear Mn(IV) species in aqueous acidic media. Inorganica Chim Acta 2013. [DOI: 10.1016/j.ica.2012.12.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
42
|
Abstract
Demand for energy is projected to increase at least twofold by mid-century relative to the present global consumption because of predicted population and economic growth. This demand could be met, in principle, from fossil energy resources, particularly coal. However, the cumulative nature of carbon dioxide (CO(2)) emissions demands that stabilizing the atmospheric CO(2) levels to just twice their pre-anthropogenic values by mid-century will be extremely challenging, requiring invention, development and deployment of schemes for carbon-neutral energy production on a scale commensurate with, or larger than, the entire present-day energy supply from all sources combined. Among renewable and exploitable energy resources, nuclear fusion energy or solar energy are by far the largest. However, in both cases, technological breakthroughs are required with nuclear fusion being very difficult, if not impossible on the scale required. On the other hand, 1 h of sunlight falling on our planet is equivalent to all the energy consumed by humans in an entire year. If solar energy is to be a major primary energy source, then it must be stored and despatched on demand to the end user. An especially attractive approach is to store solar energy in the form of chemical bonds as occurs in natural photosynthesis. However, a technology is needed which has a year-round average conversion efficiency significantly higher than currently available by natural photosynthesis so as to reduce land-area requirements and to be independent of food production. Therefore, the scientific challenge is to construct an 'artificial leaf' able to efficiently capture and convert solar energy and then store it in the form of chemical bonds of a high-energy density fuel such as hydrogen while at the same time producing oxygen from water. Realistically, the efficiency target for such a technology must be 10 per cent or better. Here, we review the molecular details of the energy capturing reactions of natural photosynthesis, particularly the water-splitting reaction of photosystem II and the hydrogen-generating reaction of hydrogenases. We then follow on to describe how these two reactions are being mimicked in physico-chemical-based catalytic or electrocatalytic systems with the challenge of creating a large-scale robust and efficient artificial leaf technology.
Collapse
Affiliation(s)
- James Barber
- Division of Molecular Biosciences, Department of Life Sciences, Imperial College London, London, UK.
| | | |
Collapse
|
43
|
Shevela D, Eaton-Rye JJ, Shen JR, Govindjee. Photosystem II and the unique role of bicarbonate: a historical perspective. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2012; 1817:1134-51. [PMID: 22521596 DOI: 10.1016/j.bbabio.2012.04.003] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2012] [Revised: 04/05/2012] [Accepted: 04/06/2012] [Indexed: 12/11/2022]
Abstract
In photosynthesis, cyanobacteria, algae and plants fix carbon dioxide (CO(2)) into carbohydrates; this is necessary to support life on Earth. Over 50 years ago, Otto Heinrich Warburg discovered a unique stimulatory role of CO(2) in the Hill reaction (i.e., O(2) evolution accompanied by reduction of an artificial electron acceptor), which, obviously, does not include any carbon fixation pathway; Warburg used this discovery to support his idea that O(2) in photosynthesis originates in CO(2). During the 1960s, a large number of researchers attempted to decipher this unique phenomenon, with limited success. In the 1970s, Alan Stemler, in Govindjee's lab, perfected methods to get highly reproducible results, and observed, among other things, that the turnover of Photosystem II (PSII) was stimulated by bicarbonate ions (hydrogen carbonate): the effect would be on the donor or the acceptor, or both sides of PSII. In 1975, Thomas Wydrzynski, also in Govindjee's lab, discovered that there was a definite bicarbonate effect on the electron acceptor (the plastoquinone) side of PSII. The most recent 1.9Å crystal structure of PSII, unequivocally shows HCO(3)(-) bound to the non-heme iron that sits in-between the bound primary quinone electron acceptor, Q(A), and the secondary quinone electron acceptor Q(B). In this review, we focus on the historical development of our understanding of this unique bicarbonate effect on the electron acceptor side of PSII, and its mechanism as obtained by biochemical, biophysical and molecular biological approaches in many laboratories around the World. We suggest an atomic level model in which HCO(3)(-)/CO(3)(2-) plays a key role in the protonation of the reduced Q(B). In addition, we make comments on the role of bicarbonate on the donor side of PSII, as has been extensively studied in the labs of Alan Stemler (USA) and Vyacheslav Klimov (Russia). We end this review by discussing the uniqueness of bicarbonate's role in oxygenic photosynthesis and its role in the evolutionary development of O(2)-evolving PSII. This article is part of a Special Issue entitled: Photosynthesis Research for Sustainability: from Natural to Artificial.
Collapse
Affiliation(s)
- Dmitriy Shevela
- Centre for Organelle Research, University of Stavanger, Stavanger, Norway.
| | | | | | | |
Collapse
|
44
|
Rivalta I, Brudvig GW, Batista VS. Oxomanganese complexes for natural and artificial photosynthesis. Curr Opin Chem Biol 2012; 16:11-8. [PMID: 22481113 DOI: 10.1016/j.cbpa.2012.03.003] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 03/06/2012] [Accepted: 03/07/2012] [Indexed: 11/18/2022]
Abstract
The oxygen-evolving complex (OEC) of Photosystem II (PSII) is an oxomanganese complex that catalyzes water-splitting into O2, protons and electrons. Recent breakthroughs in X-ray crystallography have resolved the cuboidal OEC structure at 1.9 Å resolution, stimulating significant interest in studies of structure/function relations. This article summarizes recent advances on studies of the OEC along with studies of synthetic oxomanganese complexes for artificial photosynthesis. Quantum mechanics/molecular mechanics hybrid methods have enabled modeling the S1 state of the OEC, including the ligation proposed by the most recent X-ray data where D170 is bridging Ca and the Mn center outside the CaMn3 core. Molecular dynamics and Monte Carlo simulations have explored the structural/functional roles of chloride, suggesting that it regulates the electrostatic interactions between D61 and K317 that might be critical for proton abstraction. Furthermore, structural studies of synthetic oxomanganese complexes, including the [H2O(terpy)MnIII(μ-O)2MnIV(terpy)OH2]3+ (1, terpy=2,2':6',2″-terpyridine) complex, provided valuable insights on the mechanistic influence of carboxylate moieties in close contact with the Mn catalyst during oxygen evolution. Covalent attachment of 1 to TiO2 has been achieved via direct deposition and by using organic chromophoric linkers. The (III,IV) oxidation state of 1 attached to TiO2 can be advanced to (IV,IV) by visible-light photoexcitation, leading to photoinduced interfacial electron transfer. These studies are particularly relevant to the development of artificial photosynthetic devices based on inexpensive materials.
Collapse
Affiliation(s)
- Ivan Rivalta
- Department of Chemistry, Yale University, New Haven, CT 06520-8107, USA
| | | | | |
Collapse
|
45
|
|
46
|
Does B3LYP correctly describe magnetism of manganese complexes with various oxidation numbers and various structural motifs? Chem Phys Lett 2012. [DOI: 10.1016/j.cplett.2011.11.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
47
|
Najafpour MM, Hillier W, Shamkhali AN, Amini M, Beckmann K, Jagličić Z, Jagodič M, Strauch P, Moghaddam AN, Beretta G, Bagherzadeh M. Synthesis, characterization, DFT studies and catalytic activities of manganese(ii) complex with 1,4-bis(2,2′:6,2′′-terpyridin-4′-yl) benzene. Dalton Trans 2012; 41:12282-8. [DOI: 10.1039/c2dt31544k] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
48
|
Petrie S, Gatt P, Stranger R, Pace RJ. Modelling the metal atom positions of the Photosystem II water oxidising complex: a density functional theory appraisal of the 1.9 Å resolution crystal structure. Phys Chem Chem Phys 2012; 14:11333-43. [DOI: 10.1039/c2cp41020f] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
49
|
Petrie S, Gatt P, Stranger R, Pace RJ. The interaction of His337 with the Mn4Ca cluster of photosystem II. Phys Chem Chem Phys 2012; 14:4651-7. [DOI: 10.1039/c2cp23935c] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
50
|
Ames W, Pantazis DA, Krewald V, Cox N, Messinger J, Lubitz W, Neese F. Theoretical evaluation of structural models of the S2 state in the oxygen evolving complex of Photosystem II: protonation states and magnetic interactions. J Am Chem Soc 2011; 133:19743-57. [PMID: 22092013 DOI: 10.1021/ja2041805] [Citation(s) in RCA: 232] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonation states of water ligands and oxo bridges are intimately involved in tuning the electronic structures and oxidation potentials of the oxygen evolving complex (OEC) in Photosystem II, steering the mechanistic pathway, which involves at least five redox state intermediates S(n) (n = 0-4) resulting in the oxidation of water to molecular oxygen. Although protons are practically invisible in protein crystallography, their effects on the electronic structure and magnetic properties of metal active sites can be probed using spectroscopy. With the twin purpose of aiding the interpretation of the complex electron paramagnetic resonance (EPR) spectroscopic data of the OEC and of improving the view of the cluster at the atomic level, a complete set of protonation configurations for the S(2) state of the OEC were investigated, and their distinctive effects on magnetic properties of the cluster were evaluated. The most recent X-ray structure of Photosystem II at 1.9 Å resolution was used and refined to obtain the optimum structure for the Mn(4)O(5)Ca core within the protein pocket. Employing this model, a set of 26 structures was constructed that tested various protonation scenarios of the water ligands and oxo bridges. Our results suggest that one of the two water molecules that are proposed to coordinate the outer Mn ion (Mn(A)) of the cluster is deprotonated in the S(2) state, as this leads to optimal experimental agreement, reproducing the correct ground state spin multiplicity (S = 1/2), spin expectation values, and EXAFS-derived metal-metal distances. Deprotonation of Ca(2+)-bound water molecules is strongly disfavored in the S(2) state, but dissociation of one of the two water ligands appears to be facile. The computed isotropic hyperfine couplings presented here allow distinctions between models to be made and call into question the assumption that the largest coupling is always attributable to Mn(III). The present results impose limits for the total charge and the proton configuration of the OEC in the S(2) state, with implications for the cascade of events in the Kok cycle and for the water splitting mechanism.
Collapse
Affiliation(s)
- William Ames
- Max-Planck-Institut für Bioanorganische Chemie, Stiftstr. 34-36, D-45470 Mülheim an der Ruhr, Germany
| | | | | | | | | | | | | |
Collapse
|