1
|
Wagner BR, Adamus AL, Hempfling L, Vahdad R, Haap-Hoff A, Heinrich B, Vázquez O, Jank P, Denkert C, Seitz G. Increasing the efficiency of hyperthermic intraperitoneal chemotherapy (HIPEC) by combination with a photosensitive drug in pediatric rhabdomyosarcoma in an animal model. Pediatr Blood Cancer 2022; 69:e29864. [PMID: 35731577 DOI: 10.1002/pbc.29864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 04/24/2022] [Accepted: 06/09/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND Cytoreductive surgery (CRS) in combination with hyperthermic intraperitoneal chemotherapy (HIPEC) is an option in advanced peritoneal sarcomatosis. Nevertheless, CRS and HIPEC are not successful in all patients. An enhancement of HIPEC using photodynamic therapy (PDT) might be beneficial. Therefore, a combination of the photosensitizer hypericin (HYP) with HIPEC was evaluated in an animal model. PROCEDURE An established HIPEC animal model for rhabdomyosarcoma (NOD/LtSz-scid IL2Rγnullmice, n = 80) was used. All groups received HYP (100 μg/200 μl) intraperitoneally with and without cisplatin-based (30 or 60 mg/m2 ) HIPEC (37°C or 42°C, for 60 minutes) (five groups, each n = 16). Peritoneal cancer index (PCI) was documented visually and by HYP-based photodynamic diagnosis (PDD). HYP-based PDT of the tumor was performed. Tissue samples were evaluated regarding proliferation (Ki-67) and apoptosis (TUNEL). RESULTS HYP uptake was detected even in smallest tumor nodes (<1 mm) with improved tumor detection during PDD (PCI with PDD vs. PCI without PDD: 8.5 vs. 7, p < .001***). Apoptotic effects after PDT without HIPEC were limited to the tumor surface, whereas PDT after HIPEC (60 mg/m2 , 42°C) showed additional reduction of tumor proliferation in the top nine to 11 cell layers (50 μm). CONCLUSION HYP as fluorescent photosensitizer offers an intraoperative diagnostic advantage detecting intraperitoneal tumor dissemination. The combination of HYP and cisplatin-based HIPEC was feasible in vivo, showing enhanced effects on tumor proliferation and apoptosis induction across the tumor surface. Further studies combining HYP and HIPEC will follow to establish a clinical application.
Collapse
Affiliation(s)
- Benedikt R Wagner
- Department of Pediatric Surgery, University Hospital Marburg, Marburg, Germany
| | - Anna L Adamus
- Department of Pediatric Surgery, University Hospital Marburg, Marburg, Germany
| | - Laura Hempfling
- Department of Pediatric Surgery, University Hospital Marburg, Marburg, Germany
| | - Reza Vahdad
- Department of Pediatric Surgery, University Hospital Marburg, Marburg, Germany
| | | | - Benedikt Heinrich
- Department of Chemical Biology, Philipps-University Marburg, Marburg, Germany
| | - Olalla Vázquez
- Department of Chemical Biology, Philipps-University Marburg, Marburg, Germany.,Center for Synthetic Microbiology (SYNMIKRO), Marburg, Germany
| | - Paul Jank
- Department of Pathology, University Hospital Marburg, Marburg, Germany
| | - Carsten Denkert
- Department of Pathology, University Hospital Marburg, Marburg, Germany
| | - Guido Seitz
- Department of Pediatric Surgery, University Hospital Marburg, Marburg, Germany
| |
Collapse
|
2
|
Yang T, Peng S, Zeng R, Xu Q, Zheng X, Wang D, Zhou X, Shao Y. Visible light-driven i-motif-based DNAzymes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 270:120845. [PMID: 35016065 DOI: 10.1016/j.saa.2021.120845] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 12/04/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
DNA foldings provide variant possibilities to develop DNAzymes with remarkable catalytic performance. In spite of fruitful reports on G-quadruplex DNAzymes, four-stranded cytosine-rich i-motifs have not been explored as the potential skeletons of DNAzymes. In this work, we developed a visible light-driven DNAzyme based on human telomeric i-motifs using a natural photosensitizer of hypericin (Hyp) as the cofactor and dissolved oxygen as the oxidant source. The i-motif folding in acidic solution caused the distal thymine overhangs at the 3' and 5' ends to approach each other to provide a favorable binding site for Hyp via an interaction of fully complementary hydrogen bonding. However, the i-motifs without the distal overhangs or with the inappropriate overhang length and the base identity exhibited no binding with Hyp. The binding event converted Hyp from the fully dark state to the emissive state under visible light illumination. Subsequently, the excited Hyp had an opportunity to transfer energy to dissolved oxygen. Resultantly, singlet oxygen (1O2) was generated to initiate the substrate oxidation. The catalytic performance of the DNAzyme can be improved using a long-lived mediator. Our developed i-motif-based DNAzyme can be driven by almost the whole range of visible lights, suggesting broad applications in the photocatalytic fields, for example, as an alternative strategy in developing biodevices.
Collapse
Affiliation(s)
- Tong Yang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Shuzhen Peng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Ruidi Zeng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Qiuda Xu
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiong Zheng
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Dandan Wang
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Xiaoshun Zhou
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China
| | - Yong Shao
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua 321004, Zhejiang, China.
| |
Collapse
|
3
|
Mariewskaya KA, Tyurin AP, Chistov AA, Korshun VA, Alferova VA, Ustinov AV. Photosensitizing Antivirals. Molecules 2021; 26:3971. [PMID: 34209713 PMCID: PMC8271894 DOI: 10.3390/molecules26133971] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/22/2021] [Accepted: 06/27/2021] [Indexed: 12/23/2022] Open
Abstract
Antiviral action of various photosensitizers is already summarized in several comprehensive reviews, and various mechanisms have been proposed for it. However, a critical consideration of the matter of the area is complicated, since the exact mechanisms are very difficult to explore and clarify, and most publications are of an empirical and "phenomenological" nature, reporting a dependence of the antiviral action on illumination, or a correlation of activity with the photophysical properties of the substances. Of particular interest is substance-assisted photogeneration of highly reactive singlet oxygen (1O2). The damaging action of 1O2 on the lipids of the viral envelope can probably lead to a loss of the ability of the lipid bilayer of enveloped viruses to fuse with the lipid membrane of the host cell. Thus, lipid bilayer-affine 1O2 photosensitizers have prospects as broad-spectrum antivirals against enveloped viruses. In this short review, we want to point out the main types of antiviral photosensitizers with potential affinity to the lipid bilayer and summarize the data on new compounds over the past three years. Further understanding of the data in the field will spur a targeted search for substances with antiviral activity against enveloped viruses among photosensitizers able to bind to the lipid membranes.
Collapse
Affiliation(s)
- Kseniya A. Mariewskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Higher Chemical College of the Russian Academy of Sciences, Mendeleev University of Chemical Technology, Miusskaya sq. 9, 125047 Moscow, Russia
| | - Anton P. Tyurin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey A. Chistov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vladimir A. Korshun
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| | - Vera A. Alferova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
- Gause Institute of New Antibiotics, B. Pirogovskaya 11, 119021 Moscow, Russia
| | - Alexey V. Ustinov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (K.A.M.); (A.P.T.); (A.A.C.); (V.A.K.)
| |
Collapse
|
4
|
Wadhwa R, Yadav NS, Katiyar SP, Yaguchi T, Lee C, Ahn H, Yun CO, Kaul SC, Sundar D. Molecular dynamics simulations and experimental studies reveal differential permeability of withaferin-A and withanone across the model cell membrane. Sci Rep 2021; 11:2352. [PMID: 33504873 PMCID: PMC7840742 DOI: 10.1038/s41598-021-81729-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 12/30/2020] [Indexed: 12/23/2022] Open
Abstract
Poor bioavailability due to the inability to cross the cell membrane is one of the major reasons for the failure of a drug in clinical trials. We have used molecular dynamics simulations to predict the membrane permeability of natural drugs-withanolides (withaferin-A and withanone) that have similar structures but remarkably differ in their cytotoxicity. We found that whereas withaferin-A, could proficiently transverse through the model membrane, withanone showed weak permeability. The free energy profiles for the interaction of withanolides with the model bilayer membrane revealed that whereas the polar head group of the membrane caused high resistance for the passage of withanone, the interior of the membrane behaves similarly for both withanolides. The solvation analysis further revealed that the high solvation of terminal O5 oxygen of withaferin-A was the major driving force for its high permeability; it interacted with the phosphate group of the membrane that led to its smooth passage across the bilayer. The computational predictions were tested by raising and recruiting unique antibodies that react to withaferin-A and withanone. The time-lapsed analyses of control and treated cells demonstrated higher permeation of withaferin-A as compared to withanone. The concurrence between the computation and experimental results thus re-emphasised the use of computational methods for predicting permeability and hence bioavailability of natural drug compounds in the drug development process.
Collapse
Affiliation(s)
- Renu Wadhwa
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Neetu Singh Yadav
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Shashank P Katiyar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India
| | - Tomoko Yaguchi
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan
| | - Chohee Lee
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Hyomin Ahn
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.,Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Chae-Ok Yun
- Department of Bioengineering, College of Engineering, Hanyang University, 222 Wangsinmi-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,GeneMedicine Co., Ltd, 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea.,Institute of Nano Science and Technology (INST), 222 Wangsimni-ro, Seongdong-gu, Seoul, 04763, Republic of Korea
| | - Sunil C Kaul
- AIST-INDIA DAILAB, DBT-AIST International Center for Translational and Environmental Research (DAICENTER), National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, 305 8565, Japan.
| | - Durai Sundar
- DAILAB, Department of Biochemical Engineering and Biotechnology, Indian Institute of Technology (IIT) Delhi, Hauz Khas, New Delhi, 110 016, India.
| |
Collapse
|
5
|
Chan C, Du S, Dong Y, Cheng X. Computational and Experimental Approaches to Investigate Lipid Nanoparticles as Drug and Gene Delivery Systems. Curr Top Med Chem 2021; 21:92-114. [PMID: 33243123 PMCID: PMC8191596 DOI: 10.2174/1568026620666201126162945] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Lipid nanoparticles (LNPs) have been widely applied in drug and gene delivery. More than twenty years ago, DoxilTM was the first LNPs-based drug approved by the US Food and Drug Administration (FDA). Since then, with decades of research and development, more and more LNP-based therapeutics have been used to treat diverse diseases, which often offer the benefits of reduced toxicity and/or enhanced efficacy compared to the active ingredients alone. Here, we provide a review of recent advances in the development of efficient and robust LNPs for drug/gene delivery. We emphasize the importance of rationally combining experimental and computational approaches, especially those providing multiscale structural and functional information of LNPs, to the design of novel and powerful LNP-based delivery systems.
Collapse
Affiliation(s)
- Chun Chan
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Shi Du
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
| | - Yizhou Dong
- Division of Pharmaceutics and Pharmacology, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Department of Biomedical Engineering; The Center for Clinical and Translational Science; The Comprehensive Cancer Center; Dorothy M. Davis Heart & Lung Research Institute; Department of Radiation Oncology, The Ohio State University, Columbus, OH 43210, USA
| | - Xiaolin Cheng
- Division of Medicinal Chemistry and Pharmacognosy, College of Pharmacy, The Ohio State University, Columbus, OH 43210, USA
- Biophysics Graduate Program, Translational Data Analytics Institute, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
6
|
Liu Y, Zhang D, Zhang Y, Tang Y, Xu L, He H, Wu J, Zheng J. Molecular Dynamics Simulations of Cholesterol Effects on the Interaction of hIAPP with Lipid Bilayer. J Phys Chem B 2020; 124:7830-7841. [DOI: 10.1021/acs.jpcb.0c05742] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Yonglan Liu
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Dong Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yanxian Zhang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Yijing Tang
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Lijian Xu
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices College of Life Science and Chemistry, Hunan University of Technology, Zhuzhou 412007, P. R. China
| | - Huacheng He
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, Zhejiang 325027, P. R. China
| | - Jiang Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325035, P. R. China
| | - Jie Zheng
- Department of Chemical, Biomolecular, and Corrosion Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
7
|
Hypericin and its radio iodinated derivatives – A novel combined approach for the treatment of pediatric alveolar rhabdomyosarcoma cells in vitro. Photodiagnosis Photodyn Ther 2020; 29:101588. [DOI: 10.1016/j.pdpdt.2019.101588] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 10/17/2019] [Accepted: 10/24/2019] [Indexed: 02/06/2023]
|
8
|
de Araújo PR, Calixto GMF, da Silva IC, de Paula Zago LH, Oshiro Junior JA, Pavan FR, Ribeiro AO, Fontana CR, Chorilli M. Mucoadhesive In Situ Gelling Liquid Crystalline Precursor System to Improve the Vaginal Administration of Drugs. AAPS PharmSciTech 2019; 20:225. [PMID: 31214798 DOI: 10.1208/s12249-019-1439-3] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Accepted: 05/29/2019] [Indexed: 12/28/2022] Open
Abstract
The vaginal mucosa is a very promising route for drug administration due to its high permeability and the possibility to bypass first pass metabolism; however, current vaginal dosage forms present low retention times due to their dilution in vaginal fluids, which hampers the efficacy of many pharmacological treatments. In order to overcome these problems, this study proposes to develop a mucoadhesive in situ gelling liquid crystalline precursor system composed of 30% of oleic acid and cholesterol (7:1), 40% of ethoxylated and propoxylated cetyl alcohol, and 30% of a dispersion of 16% Poloxamer 407. The effect of the dilution with simulated vaginal fluid (SVF) on this system was evaluated by polarized light microscopy (PLM), small-angle X-ray scattering (SAXS), rheological studies, texture profile analysis (TPA), mucoadhesion study, in vitro drug release test using hypericin (HYP) as drug model, and cytotoxicity assay. PLM and SAXS confirmed the formation of an isotropic system. After the addition of three different concentrations of SVF (30, 50, and 100%), the resultant formulations presented anisotropy and characteristics of viscous lamellar phases. Rheology shows that formulations with SVF behaved as a non-Newtonian fluid with suitable shear thinning for vaginal application. TPA and mucoadhesion assays indicated the formation of long-range ordered systems as the amount of SVF increases which may assist in the fixation of the formulation on the vaginal mucosa. The formulations were able to control about 75% of the released HYP demonstrating a sustained release profile. Finally, all formulations acted as safe vaginal drug delivery systems.
Collapse
|
9
|
Issack BB, Peslherbe GH. Accuracy and precision of simulated free energies: water permeation of hydrated DPPC bilayers as a paradigm. MOLECULAR SIMULATION 2019. [DOI: 10.1080/08927022.2019.1572141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Bilkiss B. Issack
- Centre for Research in Molecular Modeling, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
- Département des sciences expérimentales, Université de Saint-Boniface, Winnipeg, Canada
| | - Gilles H. Peslherbe
- Centre for Research in Molecular Modeling, and Department of Chemistry and Biochemistry, Concordia University, Montreal, Canada
| |
Collapse
|
10
|
da Trindade Granato J, dos Santos JA, Calixto SL, Prado da Silva N, da Silva Martins J, da Silva AD, Coimbra ES. Novel steroid derivatives: synthesis, antileishmanial activity, mechanism of action, and in silico physicochemical and pharmacokinetics studies. Biomed Pharmacother 2018; 106:1082-1090. [DOI: 10.1016/j.biopha.2018.07.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2018] [Revised: 07/09/2018] [Accepted: 07/10/2018] [Indexed: 12/19/2022] Open
|
11
|
Huang Y, Liu Y, Chen Y, Song M, Huang M, Xue J, Liu L, Li J. Probing the interactions of phthalocyanine-based photosensitizers with model phospholipid bilayer by molecular dynamics simulations. J PORPHYR PHTHALOCYA 2018. [DOI: 10.1142/s1088424618500566] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Phthalocyanines (Pc) have received considerable attention in the design of photosensitizers for photodynamic therapy (PDT). It is of great interest to design novel Pc-based photosensitizer with improved biological efficiency, which largely relies on the understanding of the interactions of Pc with cell membranes at a molecular level. Here, via all-atom molecular dynamics simulations, we explored the interaction mechanism between a model phospholipid bilayer and three zinc Pc (ZnPc) molecules with different hydrophobicity in nature. We find that the adsorption and insertion behaviors of ZnPc molecules in the model bilayer are different due to the differing hydrophobicity and interaction patterns with phospholipids. Moreover, our simulations demonstrate that the conjunction of a ZnPc skeleton with a cholesterol moiety may reduce the intrinsic molecular rotation of ZnPc in membranes, presumably leading to an increase of the generation efficiency of reactive oxygen species for PDT. The molecular insights obtained here are likely to help improve the rational design of novel photosensitizers with enhanced cellular uptake and photocytotoxic activity.
Collapse
Affiliation(s)
- Yuchao Huang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yichang Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Yayu Chen
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Meiru Song
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Mingdong Huang
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinping Xue
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Lin Liu
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| | - Jinyu Li
- National & Local Joint Biomedical Engineering Research Center on Photodynamic Technologies, College of Chemistry, Fuzhou University, Fuzhou, Fujian 350116, China
| |
Collapse
|
12
|
Barlow NE, Bolognesi G, Haylock S, Flemming AJ, Brooks NJ, Barter LMC, Ces O. Rheological Droplet Interface Bilayers (rheo-DIBs): Probing the Unstirred Water Layer Effect on Membrane Permeability via Spinning Disk Induced Shear Stress. Sci Rep 2017; 7:17551. [PMID: 29242597 PMCID: PMC5730560 DOI: 10.1038/s41598-017-17883-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Accepted: 12/01/2017] [Indexed: 12/27/2022] Open
Abstract
A new rheological droplet interface bilayer (rheo-DIB) device is presented as a tool to apply shear stress on biological lipid membranes. Despite their exciting potential for affecting high-throughput membrane translocation studies, permeability assays conducted using DIBs have neglected the effect of the unstirred water layer (UWL). However as demonstrated in this study, neglecting this phenomenon can cause significant underestimates in membrane permeability measurements which in turn limits their ability to predict key processes such as drug translocation rates across lipid membranes. With the use of the rheo-DIB chip, the effective bilayer permeability can be modulated by applying shear stress to the droplet interfaces, inducing flow parallel to the DIB membranes. By analysing the relation between the effective membrane permeability and the applied stress, both the intrinsic membrane permeability and UWL thickness can be determined for the first time using this model membrane approach, thereby unlocking the potential of DIBs for undertaking diffusion assays. The results are also validated with numerical simulations.
Collapse
Affiliation(s)
- Nathan E Barlow
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Guido Bolognesi
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Department of Chemical Engineering, Loughborough University, Loughborough, Leicestershire, LE11 3TU, UK
| | - Stuart Haylock
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Anthony J Flemming
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Syngenta, Jealott's Hill International Research Centre, Bracknell, Berkshire, RG42 6EY, UK
| | - Nicholas J Brooks
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Laura M C Barter
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK
| | - Oscar Ces
- Department of Chemistry, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK.
- Institute of Chemical Biology, Imperial College London, Exhibition Road South Kensington, London, SW7 2AZ, UK.
| |
Collapse
|
13
|
Joniova J, Rebič M, Strejčková A, Huntosova V, Staničová J, Jancura D, Miskovsky P, Bánó G. Formation of Large Hypericin Aggregates in Giant Unilamellar Vesicles-Experiments and Modeling. Biophys J 2017; 112:966-975. [PMID: 28297655 DOI: 10.1016/j.bpj.2017.01.019] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Revised: 12/16/2016] [Accepted: 01/24/2017] [Indexed: 11/25/2022] Open
Abstract
The incorporation of hypericin (Hyp) from aqueous solutions into giant unilamellar vesicle (GUV) membranes has been studied experimentally and by means of kinetic Monte Carlo modeling. The time evolution of Hyp fluorescence originating from Hyp monomers dissolved in the GUV membrane has been recorded by confocal microscopy and while trapping individual GUVs in optical tweezers. It was shown that after reaching a maximum, the fluorescence intensity gradually decreased toward longer times. Formation of oversized Hyp clusters has been observed on the GUV surface at prolonged time. A simplified kinetic Monte Carlo model is presented to follow the aggregation/dissociation processes of Hyp molecules in the membrane. The simulation results reproduced the basic experimental observations: the scaling of the characteristic fluorescence decay time with the vesicle diameter and the buildup of large Hyp clusters in the GUV membrane.
Collapse
Affiliation(s)
- Jaroslava Joniova
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Laboratory of Organometallic and Medicinal Chemistry, ISIC, Swiss Federal Institute of Technology (EPFL), Lausanne, Switzerland
| | - Matúš Rebič
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Alena Strejčková
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Veronika Huntosova
- Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Jana Staničová
- Department of Chemistry, Biochemistry and Biophysics, Institute of Biophysics, University of Veterinary Medicine and Pharmacy, Košice, Slovakia
| | - Daniel Jancura
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Pavol Miskovsky
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia
| | - Gregor Bánó
- Department of Biophysics, Institute of Physics, Faculty of Science, P.J. Šafárik University, Košice, Slovakia; Center for Interdisciplinary Biosciences, Faculty of Science, P.J. Šafárik University, Košice, Slovakia.
| |
Collapse
|
14
|
Theodorakis PE, Müller EA, Craster RV, Matar OK. Physical insights into the blood-brain barrier translocation mechanisms. Phys Biol 2017; 14:041001. [PMID: 28586313 DOI: 10.1088/1478-3975/aa708a] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The number of individuals suffering from diseases of the central nervous system (CNS) is growing with an aging population. While candidate drugs for many of these diseases are available, most of these pharmaceutical agents cannot reach the brain rendering most of the drug therapies that target the CNS inefficient. The reason is the blood-brain barrier (BBB), a complex and dynamic interface that controls the influx and efflux of substances through a number of different translocation mechanisms. Here, we present these mechanisms providing, also, the necessary background related to the morphology and various characteristics of the BBB. Moreover, we discuss various numerical and simulation approaches used to study the BBB, and possible future directions based on multi-scale methods. We anticipate that this review will motivate multi-disciplinary research on the BBB aiming at the design of effective drug therapies.
Collapse
|
15
|
Miranda Cona M, Liu YW, Hubert A, Yin T, Feng YB, de Witte P, Waelkens E, Jiang YS, Zhang J, Mulier S, Xia Q, Huang G, Oyen R, Ni YC. Differential diagnosis of gallstones by using hypericin as a fluorescent optical imaging agent. World J Gastroenterol 2016; 22:6690-6705. [PMID: 27547012 PMCID: PMC4970481 DOI: 10.3748/wjg.v22.i29.6690] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/04/2016] [Indexed: 02/06/2023] Open
Abstract
AIM: To explore the feasibility of using hypericin as an optical imaging probe with affinity for cholesterol for differential fluorescent detection of human gallstones.
METHODS: Cholesterol, mixed and pigment stones from cholecystectomy patients were incubated with hypericin or solvent. After 72 h, the stones were analysed for fluorescence (365 nm) and treated with 2-propanol/dimethyl sulfoxide for high performance liquid chromatography (HPLC) analysis. Rats with virtual gallbladder containing human cholesterol, mixed or pigment gallstones (VGHG) received 5 mg/kg hypericin or solvent and VGHG rats with cholesterol stones were given different hypericin doses (5-15 mg/kg). Twelve hours later, the stones were analysed at 365 nm. Biliary excretion and metabolites of hypericin were assessed in common bile duct (CBD) cannulated rats for 9 h using fluorospectrometry, HPLC and matrix-assisted laser desorption/ionization-time-of-flight mass spectrometry (MALDI-TOF MS).
RESULTS: Homogeneous high fluorescence was seen on cholesterol stones either pre-incubated with hypericin or extracted from VGHG rats receiving hypericin. Mixed stones showed a dotted fluorescent pattern, whereas pigment and solvent-treated ones lacked fluorescence. HPLC showed 7.68, 6.65 and 0.08 × 10-3 M of cholesterol in extracts from cholesterol, mixed, and pigment gallstones, respectively. Hypericin accounted for 2.0, 0.5 and 0.2 × 10-6 M in that order. On cholesterol stones from VGHG rats receiving different hypericin doses, a positive correlation was observed between dose and fluorescence. In the bile from CBD-cannulated rats, fluorescence represented 20% of the injected dose with two peaks in 9 h. HPLC analysis revealed that hypericin conjugates reached 60% of the peak area. By MALDI-TOF MS, hypericin-glucuronide was detected.
CONCLUSION: This study proves the potential use of hypericin for differential fluorescent detection of human gallstones regarding their chemical composition.
Collapse
|
16
|
Di Meo F, Fabre G, Berka K, Ossman T, Chantemargue B, Paloncýová M, Marquet P, Otyepka M, Trouillas P. In silico pharmacology: Drug membrane partitioning and crossing. Pharmacol Res 2016; 111:471-486. [PMID: 27378566 DOI: 10.1016/j.phrs.2016.06.030] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/30/2016] [Accepted: 06/30/2016] [Indexed: 01/09/2023]
Abstract
Over the past decade, molecular dynamics (MD) simulations have become particularly powerful to rationalize drug insertion and partitioning in lipid bilayers. MD simulations efficiently support experimental evidences, with a comprehensive understanding of molecular interactions driving insertion and crossing. Prediction of drug partitioning is discussed with respect to drug families (anesthetics; β-blockers; non-steroidal anti-inflammatory drugs; antioxidants; antiviral drugs; antimicrobial peptides). To accurately evaluate passive permeation coefficients turned out to be a complex theoretical challenge; however the recent methodological developments based on biased MD simulations are particularly promising. Particular attention is paid to membrane composition (e.g., presence of cholesterol), which influences drug partitioning and permeation. Recent studies concerning in silico models of membrane proteins involved in drug transport (influx and efflux) are also reported here. These studies have allowed gaining insight in drug efflux by, e.g., ABC transporters at an atomic resolution, explicitly accounting for the mandatory forces induced by the surrounded lipid bilayer. Large-scale conformational changes were thoroughly analyzed.
Collapse
Affiliation(s)
- Florent Di Meo
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Gabin Fabre
- LCSN, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Karel Berka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Tahani Ossman
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Benjamin Chantemargue
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Markéta Paloncýová
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Pierre Marquet
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France
| | - Michal Otyepka
- Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic
| | - Patrick Trouillas
- INSERM UMR 850, Univ. Limoges, Faculty of Pharmacy, 2 rue du Dr Marcland, F-87025, Limoges, France; Regional Centre for Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky̿ University, Olomouc, Czech Republic.
| |
Collapse
|
17
|
Permeability of 5-aminolevulinic acid oxime derivatives in lipid membranes. Theor Chem Acc 2016. [DOI: 10.1007/s00214-015-1798-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
18
|
Jämbeck JPM, Eriksson ESE, Laaksonen A, Lyubartsev AP, Eriksson LA. Molecular Dynamics Studies of Liposomes as Carriers for Photosensitizing Drugs: Development, Validation, and Simulations with a Coarse-Grained Model. J Chem Theory Comput 2015; 10:5-13. [PMID: 26579887 DOI: 10.1021/ct400466m] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Liposomes are proposed as drug delivery systems and can in principle be designed so as to cohere with specific tissue types or local environments. However, little detail is known about the exact mechanisms for drug delivery and the distributions of drug molecules inside the lipid carrier. In the current work, a coarse-grained (CG) liposome model is developed, consisting of over 2500 lipids, with varying degrees of drug loading. For the drug molecule, we chose hypericin, a natural compound proposed for use in photodynamic therapy, for which a CG model was derived and benchmarked against corresponding atomistic membrane bilayer model simulations. Liposomes with 21-84 hypericin molecules were generated and subjected to 10 microsecond simulations. Distribution of the hypericins, their orientations within the lipid bilayer, and the potential of mean force for transferring a hypericin molecule from the interior aqueous "droplet" through the liposome bilayer are reported herein.
Collapse
Affiliation(s)
- Joakim P M Jämbeck
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Emma S E Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
| | - Aatto Laaksonen
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Alexander P Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University , SE-10691, Stockholm, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg , SE-41296 Göteborg, Sweden
| |
Collapse
|
19
|
Awoonor-Williams E, Rowley CN. Molecular simulation of nonfacilitated membrane permeation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2015; 1858:1672-87. [PMID: 26706099 DOI: 10.1016/j.bbamem.2015.12.014] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 12/05/2015] [Accepted: 12/09/2015] [Indexed: 12/29/2022]
Abstract
This is a review. Non-electrolytic compounds typically cross cell membranes by passive diffusion. The rate of permeation is dependent on the chemical properties of the solute and the composition of the lipid bilayer membrane. Predicting the permeability coefficient of a solute is important in pharmaceutical chemistry and toxicology. Molecular simulation has proven to be a valuable tool for modeling permeation of solutes through a lipid bilayer. In particular, the solubility-diffusion model has allowed for the quantitative calculation of permeability coefficients. The underlying theory and computational methods used to calculate membrane permeability are reviewed. We also discuss applications of these methods to examine the permeability of solutes and the effect of membrane composition on permeability. The application of coarse grain and polarizable models is discussed. This article is part of a Special Issue entitled: Membrane Proteins edited by J.C. Gumbart and Sergei Noskov.
Collapse
Affiliation(s)
- Ernest Awoonor-Williams
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada
| | - Christopher N Rowley
- Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, A1B 3X7 Canada.
| |
Collapse
|
20
|
Lindahl L, Genheden S, Eriksson LA, Olsson L, Bettiga M. Sphingolipids contribute to acetic acid resistance in Zygosaccharomyces bailii. Biotechnol Bioeng 2015; 113:744-53. [PMID: 26416641 PMCID: PMC5064642 DOI: 10.1002/bit.25845] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 08/21/2015] [Accepted: 09/21/2015] [Indexed: 12/13/2022]
Abstract
Lignocellulosic raw material plays a crucial role in the development of sustainable processes for the production of fuels and chemicals. Weak acids such as acetic acid and formic acid are troublesome inhibitors restricting efficient microbial conversion of the biomass to desired products. To improve our understanding of weak acid inhibition and to identify engineering strategies to reduce acetic acid toxicity, the highly acetic‐acid‐tolerant yeast Zygosaccharomyces bailii was studied. The impact of acetic acid membrane permeability on acetic acid tolerance in Z. bailii was investigated with particular focus on how the previously demonstrated high sphingolipid content in the plasma membrane influences acetic acid tolerance and membrane permeability. Through molecular dynamics simulations, we concluded that membranes with a high content of sphingolipids are thicker and more dense, increasing the free energy barrier for the permeation of acetic acid through the membrane. Z. bailii cultured with the drug myriocin, known to decrease cellular sphingolipid levels, exhibited significant growth inhibition in the presence of acetic acid, while growth in medium without acetic acid was unaffected by the myriocin addition. Furthermore, following an acetic acid pulse, the intracellular pH decreased more in myriocin‐treated cells than in control cells. This indicates a higher inflow rate of acetic acid and confirms that the reduction in growth of cells cultured with myriocin in the medium with acetic acid was due to an increase in membrane permeability, thereby demonstrating the importance of a high fraction of sphingolipids in the membrane of Z. bailii to facilitate acetic acid resistance; a property potentially transferable to desired production organisms suffering from weak acid stress. Biotechnol. Bioeng. 2016;113: 744–753. © 2015 The Authors. Biotechnology and Bioengineering Published by Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lina Lindahl
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Samuel Genheden
- School of Chemistry, University of Southampton, Highfield, Southampton, United Kingdom.,Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Leif A Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, Gothenburg, Sweden
| | - Lisbeth Olsson
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden
| | - Maurizio Bettiga
- Department of Biology and Biological Engineering, Division of Industrial Biotechnology, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
21
|
Genheden S, Essex JW. A simple and transferable all-atom/coarse-grained hybrid model to study membrane processes. J Chem Theory Comput 2015; 11:4749-59. [PMID: 26574264 DOI: 10.1021/acs.jctc.5b00469] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We present an efficient all-atom/coarse-grained hybrid model and apply it to membrane processes. This model is an extension of the all-atom/ELBA model applied previously to processes in water. Here, we improve the efficiency of the model by implementing a multiple-time step integrator that allows the atoms and the coarse-grained beads to be propagated at different timesteps. Furthermore, we fine-tune the interaction between the atoms and the coarse-grained beads by computing the potential of mean force of amino acid side chain analogs along the membrane normal and comparing to atomistic simulations. The model was independently validated on the calculation of small-molecule partition coefficients. Finally, we apply the model to membrane peptides. We studied the tilt angle of the Walp23 and Kalp23 helices in two different model membranes and the stability of the glycophorin A dimer. The model is efficient, accurate, and straightforward to use, as it does not require any extra interaction particles, layers of atomistic solvent molecules or tabulated potentials, thus offering a novel, simple approach to study membrane processes.
Collapse
Affiliation(s)
- Samuel Genheden
- School of Chemistry, University of Southampton, Highfield , SO17 1BJ, Southampton, United Kingdom
| | - Jonathan W Essex
- School of Chemistry, University of Southampton, Highfield , SO17 1BJ, Southampton, United Kingdom
| |
Collapse
|
22
|
Issack BB, Peslherbe GH. Effects of Cholesterol on the Thermodynamics and Kinetics of Passive Transport of Water through Lipid Membranes. J Phys Chem B 2015; 119:9391-400. [DOI: 10.1021/jp510497r] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Bilkiss B. Issack
- Centre for Research in Molecular
Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Québec H4B 1R6, Canada
| | - Gilles H. Peslherbe
- Centre for Research in Molecular
Modeling and Department of Chemistry and Biochemistry, Concordia University, 7141 Sherbrooke Street West, Montreal, Québec H4B 1R6, Canada
| |
Collapse
|
23
|
Joniova J, Buriankova L, Buzova D, Miskovsky P, Jancura D. Kinetics of incorporation/redistribution of photosensitizer hypericin to/from high-density lipoproteins. Int J Pharm 2014; 475:578-84. [DOI: 10.1016/j.ijpharm.2014.09.025] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2014] [Revised: 09/12/2014] [Accepted: 09/13/2014] [Indexed: 01/11/2023]
|
24
|
Róg T, Vattulainen I. Cholesterol, sphingolipids, and glycolipids: what do we know about their role in raft-like membranes? Chem Phys Lipids 2014; 184:82-104. [PMID: 25444976 DOI: 10.1016/j.chemphyslip.2014.10.004] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 10/24/2014] [Accepted: 10/25/2014] [Indexed: 12/14/2022]
Abstract
Lipids rafts are considered to be functional nanoscale membrane domains enriched in cholesterol and sphingolipids, characteristic in particular of the external leaflet of cell membranes. Lipids, together with membrane-associated proteins, are therefore considered to form nanoscale units with potential specific functions. Although the understanding of the structure of rafts in living cells is quite limited, the possible functions of rafts are widely discussed in the literature, highlighting their importance in cellular functions. In this review, we discuss the understanding of rafts that has emerged based on recent atomistic and coarse-grained molecular dynamics simulation studies on the key lipid raft components, which include cholesterol, sphingolipids, glycolipids, and the proteins interacting with these classes of lipids. The simulation results are compared to experiments when possible.
Collapse
Affiliation(s)
- Tomasz Róg
- Department of Physics, Tampere University of Technology, Tampere, Finland
| | - Ilpo Vattulainen
- Department of Physics, Tampere University of Technology, Tampere, Finland; MEMPHYS-Center for Biomembrane Physics, University of Southern Denmark, Odense, Denmark.
| |
Collapse
|
25
|
Khajeh A, Modarress H. The influence of cholesterol on interactions and dynamics of ibuprofen in a lipid bilayer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2014; 1838:2431-8. [DOI: 10.1016/j.bbamem.2014.05.029] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Revised: 05/28/2014] [Accepted: 05/30/2014] [Indexed: 11/25/2022]
|
26
|
Effect of cholesterol on behavior of 5-fluorouracil (5-FU) in a DMPC lipid bilayer, a molecular dynamics study. Biophys Chem 2014; 187-188:43-50. [DOI: 10.1016/j.bpc.2014.01.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/18/2014] [Accepted: 01/25/2014] [Indexed: 11/19/2022]
|
27
|
An overview of translational (radio)pharmaceutical research related to certain oncological and non-oncological applications. World J Methodol 2013; 3:45-64. [PMID: 25237623 PMCID: PMC4145570 DOI: 10.5662/wjm.v3.i4.45] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/03/2013] [Accepted: 10/18/2013] [Indexed: 02/06/2023] Open
Abstract
Translational medicine pursues the conversion of scientific discovery into human health improvement. It aims to establish strategies for diagnosis and treatment of diseases. Cancer treatment is difficult. Radio-pharmaceutical research has played an important role in multiple disciplines, particularly in translational oncology. Based on the natural phenomenon of necrosis avidity, OncoCiDia has emerged as a novel generic approach for treating solid malignancies. Under this systemic dual targeting strategy, a vascular disrupting agent first selectively causes massive tumor necrosis that is followed by iodine-131 labeled-hypericin (123I-Hyp), a necrosis-avid compound that kills the residual cancer cells by crossfire effect of beta radiation. In this review, by emphasizing the potential clinical applicability of OncoCiDia, we summarize our research activities including optimization of radioiodinated hypericin Hyp preparations and recent studies on the biodistribution, dosimetry, pharmacokinetic and, chemical and radiochemical toxicities of the preparations. Myocardial infarction is a global health problem. Although cardiac scintigraphy using radioactive perfusion tracers is used in the assessment of myocardial viability, searching for diagnostic imaging agents with authentic necrosis avidity is pursued. Therefore, a comparative study on the biological profiles of the necrosis avid 123I-Hyp and the commercially available 99mTc-Sestamibi was conducted and the results are demonstrated. Cholelithiasis or gallstone disease may cause gallbladder inflammation, infection and other severe complications. While studying the mechanisms underlying the necrosis avidity of Hyp and derivatives, their naturally occurring fluorophore property was exploited for targeting cholesterol as a main component of gallstones. The usefulness of Hyp as an optical imaging agent for cholelithiasis was studied and the results are presented. Multiple uses of automatic contrast injectors may reduce costs and save resources. However, cross-contaminations with blood-borne pathogens of infectious diseases may occur. We developed a radioactive method for safety evaluation of a new replaceable patient-delivery system. By mimicking pathogens with a radiotracer, we assessed the feasibility of using the system repeatedly without septic risks. This overview is deemed to be interesting to those involved in the related fields for translational research.
Collapse
|
28
|
Bonhenry D, Tarek M, Dehez F. Effects of Phospholipid Composition on the Transfer of a Small Cationic Peptide Across a Model Biological Membrane. J Chem Theory Comput 2013; 9:5675-84. [PMID: 26592298 DOI: 10.1021/ct400576e] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The transfer of a lysine amino acid analogue across phospholipid membrane models was investigated using molecular-dynamics simulations. The evolution of the protonation state of this small peptide as a function of its position inside the membrane was studied by determining the local pKa by means of free-energy calculations. Permeability and mean-first-passage time were evaluated and showed that the transfer occurs on the submillisecond time scale. Comparative studies were conducted to evaluate changes in the pKa arising from differences in the phospholipid chemical structure. We compared, hence, the effect of an ether vs an ester linkage of the lipid headgroup as well as linear vs branched lipid tails. The study reveals that protonated lysine residues can be buried further inside an ether lipid membrane than an ester lipid membrane, while branched lipids are found to stabilize less the charged form compared to their unbranched lipid chain counterparts.
Collapse
Affiliation(s)
- Daniel Bonhenry
- Université de Lorraine, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France.,CNRS, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France
| | - Mounir Tarek
- Université de Lorraine, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France.,CNRS, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France
| | - François Dehez
- Université de Lorraine, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France.,CNRS, SRSMC, UMR 7565 , Vandoeuvre-lès-Nancy, F-54500, France
| |
Collapse
|
29
|
Cona MM, Feng Y, Verbruggen A, Oyen R, Ni Y. Improved clearance of radioiodinated hypericin as a targeted anticancer agent by using a duodenal drainage catheter in rats. Exp Biol Med (Maywood) 2013; 238:1437-49. [PMID: 24146264 DOI: 10.1177/1535370213508235] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
We sought to reduce the radioactive intestinal waste after intravenous injection of necrosis avid iodine-131-labeled hypericin in dual-targeting anticancer radiotherapy and to study its pharmacokinetics in rats using a newly designed catheter. Iodine-123-labeled hypericin was prepared with iodogen as oxidant and characterized by high-performance liquid chromatography and mass spectrometry. After iodine-123-labeled hypericin administration, duodenal juice was collected via a catheter from groups of rats (n = 5) at intervals of 0-4, 4-8 or 20-24 h. The content was assessed by gamma-counting. The biodistribution and pharmacokinetics of iodine-123-labeled hypericin were investigated in rats without (n = 5) and with continuous catheterization (n = 5) for 9 h. After labeling, a high radiochemical yield was obtained with iodine-123-labeled hypericin (>95%), as confirmed by high-performance liquid chromatography and mass spectrometry. In the duodenal aspirate from animals with intermittent catheterization during 24 h, radioactivity accounted for 46% of the total with two peaks at 3 h and 8 h, suggesting enterohepatic circulation. Rats with 9 h of catheterization exhibited one peak representing 20% of the radioactivity. Major metabolites appeared to be conjugated iodine-123-labeled hypericin forms. In rats without and with catheter, iodine-123-labeled hypericin showed exponential elimination from plasma with no significant dehalogenation. Delayed iodine-123-labeled hypericin excretion, a higher maximum concentration (Cmax), larger area under concentration-time curve [AUC(0-∞)] and a longer mean residence time were observed in non-catheterized animals (P < 0.05). The catheterized group exhibited lower urinary excretion than non-catheterized group (P < 0.05). Rats with a catheter showed lower radioactivity (P = 0.01) in the small intestines than those without a catheter (1.82 ± 0.41 versus 18.95 ± 4.32 percentage of the injected dose). After iodine-123-labeled hypericin administration, the radioactivity excreted into bile was efficiently removed from the body via a duodenal catheter. Radiation overexposure due to the prolonged elimination of iodine-131-labeled hypericin can be prevented using this approach.
Collapse
Affiliation(s)
- Marlein Miranda Cona
- Department of Imaging & Pathology, Faculty of Medicine, Biomedical Sciences Group, KU Leuven, Herestraat 49, Leuven, Belgium
| | | | | | | | | |
Collapse
|
30
|
Kopeć W, Telenius J, Khandelia H. Molecular dynamics simulations of the interactions of medicinal plant extracts and drugs with lipid bilayer membranes. FEBS J 2013; 280:2785-805. [DOI: 10.1111/febs.12286] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2013] [Accepted: 04/10/2013] [Indexed: 12/12/2022]
Affiliation(s)
- Wojciech Kopeć
- MEMPHYS - Center for Biomembrane Physics; University of Southern Denmark; Odense; Denmark
| | - Jelena Telenius
- MEMPHYS - Center for Biomembrane Physics; University of Southern Denmark; Odense; Denmark
| | - Himanshu Khandelia
- MEMPHYS - Center for Biomembrane Physics; University of Southern Denmark; Odense; Denmark
| |
Collapse
|
31
|
Strejčková A, Staničová J, Jancura D, Miškovský P, Bánó G. Spatial Orientation and Electric-Field-Driven Transport of Hypericin Inside of Bilayer Lipid Membranes. J Phys Chem B 2013; 117:1280-6. [DOI: 10.1021/jp3114539] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Alena Strejčková
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Jana Staničová
- Institute of Biophysics and
Biomathematics, University of Veterinary Medicine, Komenského 73, Košice 041 81, Slovak Republic
| | - Daniel Jancura
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Pavol Miškovský
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| | - Gregor Bánó
- Department of Biophysics, Pavol Jozef Šafárik University, Jesenná
5, Košice 041 54, Slovak Republic
| |
Collapse
|
32
|
Jämbeck JPM, Lyubartsev AP. Implicit inclusion of atomic polarization in modeling of partitioning between water and lipid bilayers. Phys Chem Chem Phys 2013; 15:4677-86. [DOI: 10.1039/c3cp44472d] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
33
|
Cordeiro RM, Miotto R, Baptista MS. Photodynamic Efficiency of Cationic meso-Porphyrins at Lipid Bilayers: Insights from Molecular Dynamics Simulations. J Phys Chem B 2012; 116:14618-27. [DOI: 10.1021/jp308179h] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Rodrigo M. Cordeiro
- Centro de
Ciências Naturais
e Humanas, Universidade Federal do ABC,
Rua Santa Adélia 166, CEP 09210-170, Santo André (SP),
Brazil
| | - Ronei Miotto
- Centro de
Ciências Naturais
e Humanas, Universidade Federal do ABC,
Rua Santa Adélia 166, CEP 09210-170, Santo André (SP),
Brazil
| | - Maurício S. Baptista
- Departamento
de
Bioquímica, Instituto de Química, Universidade de São Paulo, Av. Prof. Lineu Prestes
748, CEP 05508-900, São Paulo (SP), Brazil
| |
Collapse
|
34
|
Cheng CY, Goor OJ, Han S. Quantitative analysis of molecular transport across liposomal bilayer by J-mediated 13C Overhauser dynamic nuclear polarization. Anal Chem 2012; 84:8936-40. [PMID: 23072518 PMCID: PMC4656247 DOI: 10.1021/ac301932h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
We introduce a new NMR technique to dramatically enhance the solution-state (13)C NMR sensitivity and contrast at 0.35 T and at room temperature by actively transferring the spin polarization from Overhauser dynamic nuclear polarization (ODNP)-enhanced (1)H to (13)C nuclei through scalar (J) coupling, a method that we term J-mediated (13)C ODNP. We demonstrate the capability of this technique by quantifying the permeability of glycine across negatively charged liposomal bilayers composed of dipalmitoylphosphatidylcholine (DPPC) and dipalmitoylphosphatidylglycerol (DPPG). The permeability coefficient of glycine across this DPPC/DPPG bilayer is measured to be (1.8 ± 0.1) × 10(-11)m/s, in agreement with the literature value. We further observed that the presence of 20 mol % cholesterol within the DPPC/DPPG lipid membrane significantly retards the permeability of glycine by a factor of 4. These findings demonstrate that the high sensitivity and contrast of J-mediated (13)C ODNP affords the measurement of the permeation kinetics of small hydrophilic molecules across lipid bilayers, a quantity that is difficult to accurately measure with existing techniques.
Collapse
Affiliation(s)
- Chi-Yuan Cheng
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Olga J.G.M. Goor
- Department of Biomedical Engineering, Laboratory of Chemical Biology, and Institute for Complex Molecular Systems, Eindhoven University of Technology, PO Box 513, 5600 MB, the Netherlands
| | - Songi Han
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, 93106, USA
| |
Collapse
|
35
|
Jämbeck JPM, Lyubartsev AP. Another Piece of the Membrane Puzzle: Extending Slipids Further. J Chem Theory Comput 2012; 9:774-84. [PMID: 26589070 DOI: 10.1021/ct300777p] [Citation(s) in RCA: 210] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
To be able to model complex biological membranes in a more realistic manner, the force field Slipids (Stockholm lipids) has been extended to include parameters for sphingomyelin (SM), phosphatidylglycerol (PG), phosphatidylserine (PS) lipids, and cholesterol. Since the parametrization scheme was faithful to the scheme used in previous editions of Slipids, all parameters are consistent and fully compatible. The results of careful validation of a number of key structural properties for one and two component lipid bilayers are in excellent agreement with experiments. Potentials of mean force for transferring water across binary mixtures of lipids and cholesterol were also computed in order to compare water permeability rates to experiments. In agreement with experimental and simulation studies, it was found that the permeability and partitioning of water is affected by cholesterol in lipid bilayers made of saturated lipids to the largest extent. With the extensions of Slipids presented here, it is now possible to study complex systems containing many different lipids and proteins in a fully atomistic resolution in the isothermic-isobaric (NPT) ensemble, which is the proper ensemble for membrane simulations.
Collapse
Affiliation(s)
- Joakim P M Jämbeck
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| | - Alexander P Lyubartsev
- Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, Stockholm, SE-10691, Sweden
| |
Collapse
|
36
|
Eriksson ESE, Eriksson LA. Identifying the sarco(endo)plasmic reticulum Ca2+ ATPase (SERCA) as a potential target for hypericin--a theoretical study. Phys Chem Chem Phys 2012; 14:12637-46. [PMID: 22892582 DOI: 10.1039/c2cp42237a] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The exact cellular target for the potent anti-cancer agent hypericin has not yet been determined; this thus encourages the application of computational chemistry tools to be employed in order to provide insights that can be employed in further drug development studies. In the present study computational docking and molecular dynamics simulations are applied to investigate possible interactions between hypericin and the Ca(2+) pump SERCA as proposed in the literature. Hypericin was found to bind strongly both in pockets within the transmembrane region and in the cytosolic region of the protein, although the two studied isoforms of SERCA differ slightly in their preferred binding sites. The calculated binding energies for hypericin in the four investigated sites were of the same magnitude as for thapsigargin (TG), the most potent SERCA inhibitor, or in the range between TG and di-tert-butylhydroquinone (BHQ), which is also known to possess inhibitory activity. The hydrophobic character of hypericin indicates that the molecule initially binds in the ER membrane from which it diffuses into the transmembrane region of the protein and to binding pockets therein. The transmembrane TG and BHQ binding pockets provide suitable locations for hypericin as they allow for favourable interactions with the lipid tails that surround these. High binding energies were noted for hypericin in these pockets and are expected to constitute highly possible binding sites due to their accessibility from the ER membrane. Hypericin most likely binds to both isoforms of SERCA and acts as an inhibitor or, under light irradiation, as a singlet oxygen generator that in turn degrades the protein or induces lipid peroxidation.
Collapse
Affiliation(s)
- Emma S E Eriksson
- Department of Chemistry and Molecular Biology, University of Gothenburg, 412 96 Göteborg, Sweden.
| | | |
Collapse
|
37
|
Leung SSF, Mijalkovic J, Borrelli K, Jacobson MP. Testing physical models of passive membrane permeation. J Chem Inf Model 2012; 52:1621-36. [PMID: 22621168 PMCID: PMC3383340 DOI: 10.1021/ci200583t] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The biophysical basis of passive membrane permeability is well-understood, but most methods for predicting membrane permeability in the context of drug design are based on statistical relationships that indirectly capture the key physical aspects. Here, we investigate molecular mechanics-based models of passive membrane permeability and evaluate their performance against different types of experimental data, including parallel artificial membrane permeability assays (PAMPA), cell-based assays, in vivo measurements, and other in silico predictions. The experimental data sets we use in these tests are diverse, including peptidomimetics, congeneric series, and diverse FDA approved drugs. The physical models are not specifically trained for any of these data sets; rather, input parameters are based on standard molecular mechanics force fields, such as partial charges, and an implicit solvent model. A systematic approach is taken to analyze the contribution from each component in the physics-based permeability model. A primary factor in determining rates of passive membrane permeation is the conformation-dependent free energy of desolvating the molecule, and this measure alone provides good agreement with experimental permeability measurements in many cases. Other factors that improve agreement with experimental data include deionization and estimates of entropy losses of the ligand and the membrane, which lead to size-dependence of the permeation rate.
Collapse
Affiliation(s)
- Siegfried S. F. Leung
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158
| | - Jona Mijalkovic
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158
| | - Kenneth Borrelli
- Schrödinger, Inc. 120 West 4 Street, 32 Floor, New York, New York, 10036
| | - Matthew P. Jacobson
- Department of Pharmaceutical Chemistry, University of California, San Francisco, California, 94158
| |
Collapse
|
38
|
Wennberg CL, van der Spoel D, Hub JS. Large influence of cholesterol on solute partitioning into lipid membranes. J Am Chem Soc 2012; 134:5351-61. [PMID: 22372465 DOI: 10.1021/ja211929h] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Cholesterol plays an important role in maintaining the correct fluidity and rigidity of the plasma membrane of all animal cells, and hence, it is present in concentrations ranging from 20 to 50 mol %. Whereas the effect of cholesterol on such mechanical properties has been studied exhaustively over the last decades, the structural basis for cholesterol effects on membrane permeability is still unclear. Here we apply systematic molecular dynamics simulations to study the partitioning of solutes between water and membranes. We derive potentials of mean force for six different solutes permeating across 20 different lipid membranes containing one out of four types of phospholipids plus a cholesterol content varying from 0 to 50 mol %. Surprisingly, cholesterol decreases solute partitioning into the lipid tail region of the membranes much more strongly than expected from experiments on macroscopic membranes, suggesting that a laterally inhomogeneous cholesterol concentration and permeability may be required to explain experimental findings. The simulations indicate that the cost of breaking van der Waals interactions between the lipid tails of cholesterol-containing membranes account for the reduced partitioning rather than the surface area per phospholipid, which has been frequently suggested as a determinant for solute partitioning. The simulations further show that the partitioning is more sensitive to cholesterol (i) for larger solutes, (ii) in membranes with saturated as compared to membranes with unsaturated lipid tails, and (iii) in membranes with smaller lipid head groups.
Collapse
Affiliation(s)
- Christian L Wennberg
- Department of Cell and Molecular Biology, Uppsala University, Husargatan 3, Box 596, SE-75124 Uppsala, Sweden
| | | | | |
Collapse
|
39
|
Paloncýová M, Berka K, Otyepka M. Convergence of Free Energy Profile of Coumarin in Lipid Bilayer. J Chem Theory Comput 2012; 8:1200-1211. [PMID: 22545027 PMCID: PMC3336936 DOI: 10.1021/ct2009208] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2011] [Indexed: 02/08/2023]
Abstract
Atomistic molecular dynamics (MD) simulations of druglike molecules embedded in lipid bilayers are of considerable interest as models for drug penetration and positioning in biological membranes. Here we analyze partitioning of coumarin in dioleoylphosphatidylcholine (DOPC) bilayer, based on both multiple, unbiased 3 μs MD simulations (total length) and free energy profiles along the bilayer normal calculated by biased MD simulations (∼7 μs in total). The convergences in time of free energy profiles calculated by both umbrella sampling and z-constraint techniques are thoroughly analyzed. Two sets of starting structures are also considered, one from unbiased MD simulation and the other from "pulling" coumarin along the bilayer normal. The structures obtained by pulling simulation contain water defects on the lipid bilayer surface, while those acquired from unbiased simulation have no membrane defects. The free energy profiles converge more rapidly when starting frames from unbiased simulations are used. In addition, z-constraint simulation leads to more rapid convergence than umbrella sampling, due to quicker relaxation of membrane defects. Furthermore, we show that the choice of RESP, PRODRG, or Mulliken charges considerably affects the resulting free energy profile of our model drug along the bilayer normal. We recommend using z-constraint biased MD simulations based on starting geometries acquired from unbiased MD simulations for efficient calculation of convergent free energy profiles of druglike molecules along bilayer normals. The calculation of free energy profile should start with an unbiased simulation, though the polar molecules might need a slow pulling afterward. Results obtained with the recommended simulation protocol agree well with available experimental data for two coumarin derivatives.
Collapse
Affiliation(s)
- Markéta Paloncýová
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University , tr. 17 listopadu 12, 771 46, Olomouc, Czech Republic
| | | | | |
Collapse
|