1
|
Zheng F, Hou S, Xue L, Yang W, Zhan CG. Human Butyrylcholinesterase Mutants for (-)-Cocaine Hydrolysis: A Correlation Relationship between Catalytic Efficiency and Total Hydrogen Bonding Energy with an Oxyanion Hole. J Phys Chem B 2023; 127:10723-10729. [PMID: 38063500 DOI: 10.1021/acs.jpcb.3c06392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2023]
Abstract
A combined computational and experimental study has been carried out to explore and test a quantitative correlation relationship between the relative catalytic efficiency (RCE) of human butyrylcholinesrase (BChE) mutant-catalyzed hydrolysis of substrate (-)-cocaine and the total hydrogen bonding energy (tHBE) of the carbonyl oxygen of the substrate with the oxyanion hole of the enzyme in the modeled transition-state structure (TS1), demonstrating a satisfactory linear correlation relationship between ln(RCE) and tHBE. The satisfactory correlation relationship has led us to computationally predict and experimentally confirm new human BChE mutants that have a further improved catalytic activity against (-)-cocaine, including the most active one (the A199S/F227S/S287G/A328W/Y332G mutant) with a 2790-fold improved catalytic efficiency (kcat/KM = 2.5 × 109 min-1 M-1) compared to the wild-type human BChE. Compared to the reference mutant (the A199S/S287G/A328W/Y332G mutant) tested in the reported clinical development of an enzyme therapy for cocaine dependence treatment, this new mutant (with a newly predicted additional F227S mutation) has an improved catalytic efficiency against (-)-cocaine by ∼2.6-fold. The good agreement between the computational and experimental ln(RCE) values suggests that the obtained correlation relationship is robust for computational prediction. A similar correlation relationship could also be explored in studying BChE or other serine hydrolases/esterases with an oxyanion hole stabilizing the carbonyl oxygen in the rate-determining reaction step of the enzymatic hydrolysis of other substrates.
Collapse
Affiliation(s)
- Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Liu Xue
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Wenchao Yang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
2
|
Chen X, Deng X, Zhang Y, Wu Y, Yang K, Li Q, Wang J, Yao W, Tong J, Xie T, Hou S, Yao J. Computational Design and Crystal Structure of a Highly Efficient Benzoylecgonine Hydrolase. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Xiabin Chen
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Xingyu Deng
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yun Zhang
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Yanan Wu
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Kang Yang
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| | - Qiang Li
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College Hangzhou Zhejiang 310053 China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province Zhejiang Police College Hangzhou Zhejiang 310053 China
| | - Junsen Tong
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Tian Xie
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Shurong Hou
- College of Pharmacy School of Medicine Hangzhou Normal University Hangzhou Zhejiang 311121 China
| | - Jianzhuang Yao
- School of Biological Science and Technology University of Jinan Jinan 250022 China
| |
Collapse
|
3
|
Chen X, Deng X, Zhang Y, Wu Y, Yang K, Li Q, Wang J, Yao W, Tong J, Xie T, Hou S, Yao J. Computational Design and Crystal Structure of a Highly Efficient Benzoylecgonine Hydrolase. Angew Chem Int Ed Engl 2021; 60:21959-21965. [PMID: 34351032 DOI: 10.1002/anie.202108559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Revised: 07/26/2021] [Indexed: 11/05/2022]
Abstract
Benzoylecgonine (BZE) is the major toxic metabolite of cocaine and is responsible for the long-term cocaine-induced toxicity owing to its long residence time in humans. BZE is also the main contaminant following cocaine consumption. Here, we identified the bacterial cocaine esterase (CocE) as a BZE-metabolizing enzyme (BZEase), which can degrade BZE into biological inactive metabolites (ecgonine and benzoic acid). CocE was redesigned by a reactant-state-based enzyme design theory. An encouraging mutant denoted as BZEase2, presented a >400-fold improved catalytic efficiency against BZE compared with wild-type (WT) CocE. In vivo, a single dose of BZEase2 (1 mg kg-1 , IV) could eliminate nearly all BZE within only two minutes, suggesting the enzyme has the potential for cocaine overdose treatment and BZE elimination in the environment by accelerating BZE clearance. The crystal structure of a designed BZEase was also determined.
Collapse
Affiliation(s)
- Xiabin Chen
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Xingyu Deng
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yun Zhang
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Yanan Wu
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Kang Yang
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiang Li
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jiye Wang
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, 310053, China
| | - Weixuan Yao
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, Zhejiang, 310053, China
| | - Junsen Tong
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Tian Xie
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Shurong Hou
- College of Pharmacy, School of Medicine, Hangzhou Normal University, Hangzhou, Zhejiang, 311121, China
| | - Jianzhuang Yao
- School of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
4
|
Wan X, Yao Y, Fang L, Liu J. Unexpected protonation state of Glu197 discovered from simulations of tacrine in butyrylcholinesterase. Phys Chem Chem Phys 2018; 20:14938-14946. [PMID: 29786716 DOI: 10.1039/c8cp01566j] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Butyrylcholinesterase (BChE) has been actively involved in drug discoveries from many fields for decades. In the crystal structure of the BChE-tacrine complex, there is an unanticipated formyl-proline molecule resolved very close to tacrine, raising an essential question on how reliable it is to apply the binding pose in a crystal structure to analyze related experimental observations, in which no formyl-proline is actually involved. In this study, by performing a series of 100 ns molecular dynamics simulations, we demonstrate that it is safe to employ the structural information from this crystal structure to analyze related experimental observations. Surprisingly, Glu197 needs to be protonated to have the structures simulated appropriately. It should be noted that Glu197 has been commonly considered as deprotonated in diverse analyses due to its low pKa in aqueous solution, for which some interpretations are inconsistent or unclear. Our further investigation shows that the protonated Glu197 plays a very important role in preserving His438 within the catalytic triad through stabilizing a highly conserved water molecule. Interestingly, the catalytic triad and Glu197 have been long recognized for possibly deviating largely from the crystal structure, which might be catalytically deficient and is generally considered to result from the difference between the crystal and aqueous environment. Herein, our results suggest that the large deviations of the catalytic triad and Glu197 from the crystal structure are caused by the inappropriate protonation state of Glu197. This finding shall provide an important clue that has been long missing for a better understanding of BChE-related puzzles or even reconsideration of some BChE-catalyzed reaction mechanisms.
Collapse
Affiliation(s)
- Xiao Wan
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P. R. China.
| | | | | | | |
Collapse
|
5
|
Yao J, Chen X, Zheng F, Zhan CG. Catalytic Reaction Mechanism for Drug Metabolism in Human Carboxylesterase-1: Cocaine Hydrolysis Pathway. Mol Pharm 2018; 15:3871-3880. [PMID: 30095924 DOI: 10.1021/acs.molpharmaceut.8b00354] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Carboxylesterase-1 (CE-1) is a crucial enzyme responsible for metabolism/activation/inactivation of xenobiotics (therapeutic agents, prodrugs, abused drugs, and organophosphorus nerve agents etc.) and also involved in many other biological processes. In this study, we performed extensive computational modeling and simulations to understand the fundamental reaction mechanism of cocaine hydrolysis catalyzed by CE-1, revealing that CE-1-catalyzed cocaine hydrolysis follows a novel reaction pathway with only two reaction steps: a single-step acylation process and a single-step deacylation process. In the transition states of both single-step processes, the cocaine NH group joins the oxyanion hole to form an additional hydrogen bond with the negatively charged carbonyl oxygen atom of the cocaine. Thus, the transition states are stabilized by both intermolecular and intramolecular hydrogen bonds with the methyl ester of cocaine, specifically the carbonyl oxygen atom. The rate-limiting transition state is associated with the acylation process, and the activation free energy barrier was predicted to be 20.1 kcal/mol. Further, in vitro experimental kinetic analysis was performed for human CE-1-catalyzed cocaine hydrolysis. For CE-1-catalyzed cocaine hydrolysis, the computationally predicted free energy barrier (20.1 kcal/mol) is reasonably close to the experimentally derived turnover number ( kcat = 0.058 min-1), indicating the reasonability of the computational results. The obtained novel mechanistic insights are expected to benefit not only CE-1 related rational drug discovery but also future research on the catalytic mechanism of other esterases.
Collapse
Affiliation(s)
- Jianzhuang Yao
- School of Biological Science and Techonology , University of Jinan , Jinan 250022 , China
| | - Xiabin Chen
- School of Medicine , Hangzhou Normal University , Hangzhou 311121 , China
| | | | | |
Collapse
|
6
|
Garcia-Borràs M, Houk KN, Jiménez-Osés G. Computational Design of Protein Function. COMPUTATIONAL TOOLS FOR CHEMICAL BIOLOGY 2017. [DOI: 10.1039/9781788010139-00087] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The computational design of enzymes is a tremendous challenge for both chemistry and biochemistry. The ability to design stable and functional biocatalysts that could operate under different conditions to perform chemical reactions without precedent in nature, allowing the large-scale production of chemicals à la carte, would revolutionise both synthetic, pharmacologic and materials chemistry. Despite the great advances achieved, this highly multidisciplinary area of research is still in its infancy. This chapter describes the ‘inside-out’ protocol for computational enzyme design and both the achievements and limitations of the current technology are highlighted. Furthermore, molecular dynamics simulations have proved to be invaluable in the enzyme design process, constituting an important tool for discovering elusive catalytically relevant conformations of the engineered or designed enzyme. As a complement to the ‘inside-out’ design protocol, different examples where hybrid QM/MM approaches have been directly applied to discover beneficial mutations in rational computational enzyme design are described.
Collapse
Affiliation(s)
- Marc Garcia-Borràs
- Department of Chemistry and Biochemistry, University of California Los Angeles California CA 90095-1569 USA
| | - Kendall N. Houk
- Department of Chemistry and Biochemistry, University of California Los Angeles California CA 90095-1569 USA
| | - Gonzalo Jiménez-Osés
- Departamento de Química, Centro de Investigación en Síntesis Química Universidad de La Rioja 26006 Logroño La Rioja Spain
| |
Collapse
|
7
|
Wei D, Huang X, Qiao Y, Rao J, Wang L, Liao F, Zhan CG. Catalytic Mechanisms for Cofactor-Free Oxidase-Catalyzed Reactions: Reaction Pathways of Uricase-Catalyzed Oxidation and Hydration of Uric Acid. ACS Catal 2017; 7:4623-4636. [PMID: 28890842 DOI: 10.1021/acscatal.7b00901] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
First-principles quantum mechanical/molecular mechanical (QM/MM)-free energy calculations have been performed to uncover how uricase catalyzes metabolic reactions of uric acid (UA), demonstrating that the entire reaction process of UA in uricase consists of two stages-oxidation followed by hydration. The oxidation consists of four steps: (1) chemical transformation from 8-hydroxyxythine to an anionic radical via a proton transfer along with an electron transfer, which is different from the previously proposed electron-transfer mechanism that involves a dianion intermediate (UA2-) during the catalytic reaction process; (2) proton transfer to the O2- anion (radical); (3) diradical recombination to form a peroxo intermediate; (4) dissociation of H2O2 to generate the dehydrourate. Hydration, for the most favorable pathway, is initiated by the nucleophilic attack of a water molecule on dehydrourate, along with a concerted proton transfer through residue Thr69 in the catalytic site. According to the calculated free energy profile, the hydration is the rate-determining step, and the corresponding free energy barrier of 16.2 kcal/mol is consistent with that derived from experimental kinetic data, suggesting that the computational insights into the catalytic mechanisms are reasonable. The mechanistic insights not only provide a mechanistic base for future rational design of uricase mutants with improved catalytic activity against uric acid as an improved enzyme therapy, but also are valuable for understanding a variety of other cofactor-free oxidase-catalyzed reactions involving an oxygen molecule.
Collapse
Affiliation(s)
- Donghui Wei
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
| | - Xiaoqin Huang
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
- Center
for Theoretical Biological Physics, and Center for Research Computing, Rice University, Houston, Texas 77030, United States,
| | - Yan Qiao
- College
of Chemistry and Molecular Engineering, Zhengzhou University, 100 Science Avenue, Zhengzhou, Henan 450001, P. R. China
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
| | - Jingjing Rao
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Lu Wang
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Fei Liao
- Key
Laboratory of Medical Laboratory Diagnostics of the Education Ministry,
College of Laboratory Medicine, Chongqing Medical University, No.1, Yixueyuan Road, Chongqing 400016, China
| | - Chang-Guo Zhan
- Department
of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States,
- Molecular
Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, Kentucky 40536, United States
| |
Collapse
|
8
|
Masson P, Lushchekina SV. Emergence of catalytic bioscavengers against organophosphorus agents. Chem Biol Interact 2016; 259:319-326. [DOI: 10.1016/j.cbi.2016.02.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2015] [Revised: 12/16/2015] [Accepted: 02/10/2016] [Indexed: 02/05/2023]
|
9
|
Zhang Y, Huang X, Han K, Zheng F, Zhan CG. Free energy profiles of cocaine esterase-cocaine binding process by molecular dynamics and potential of mean force simulations. Chem Biol Interact 2016; 259:142-147. [PMID: 27163853 DOI: 10.1016/j.cbi.2016.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2016] [Revised: 04/29/2016] [Accepted: 05/05/2016] [Indexed: 11/29/2022]
Abstract
The combined molecular dynamics (MD) and potential of mean force (PMF) simulations have been performed to determine the free energy profile of the CocE)-(+)-cocaine binding process in comparison with that of the corresponding CocE-(-)-cocaine binding process. According to the MD simulations, the equilibrium CocE-(+)-cocaine binding mode is similar to the CocE-(-)-cocaine binding mode. However, based on the simulated free energy profiles, a significant free energy barrier (∼5 kcal/mol) exists in the CocE-(+)-cocaine binding process whereas no obvious free energy barrier exists in the CocE-(-)-cocaine binding process, although the free energy barrier of ∼5 kcal/mol is not high enough to really slow down the CocE-(+)-cocaine binding process. In addition, the obtained free energy profiles also demonstrate that (+)-cocaine and (-)-cocaine have very close binding free energies with CocE, with a negligible difference (∼0.2 kcal/mol), which is qualitatively consistent with the nearly same experimental KM values of the CocE enzyme for (+)-cocaine and (-)-cocaine. The consistency between the computational results and available experimental data suggests that the mechanistic insights obtained from this study are reasonable.
Collapse
Affiliation(s)
- Yuxin Zhang
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, PR China; Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science, Zhongshan Road 457, Dalian 116023, PR China
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA; Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.
| |
Collapse
|
10
|
Wei D, Tang M, Zhan CG. Fundamental reaction pathway and free energy profile of proteasome inhibition by syringolin A (SylA). Org Biomol Chem 2016; 13:6857-65. [PMID: 26018983 DOI: 10.1039/c5ob00737b] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this study, molecular dynamics (MD) simulations and first-principles quantum mechanical/molecular mechanical free energy (QM/MM-FE) calculations have been performed to uncover the fundamental reaction pathway of proteasome with a representative inhibitor syringolin A (SylA). The calculated results reveal that the reaction process consists of three steps. The first step is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is a nucleophilic attack on the olefin carbon of SylA by the negatively charged Thr1-O(γ) atom. The last step is a proton transfer from Thr1-N(z) to another olefin carbon of SylA to complete the inhibition reaction process. The calculated free energy profile demonstrates that the second step should be the rate-determining step and has the highest free energy barrier of 24.6 kcal mol(-1), which is reasonably close to the activation free energy (∼22.4-23.0 kcal mol(-1)) derived from the available experimental kinetic data. In addition, our computational results indicate that no water molecule can assist the rate-determining step, since the second step is not involved in a proton transfer process. The obtained mechanistic insights should be valuable for understanding the inhibition process of proteasome by SylA and structurally related inhibitors at a molecular level, and thus provide a solid mechanistic base and valuable clues for future rational design of novel, more potent inhibitors of proteasome.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou, Henan 450052, China
| | | | | |
Collapse
|
11
|
Yao J, Yuan Y, Zheng F, Zhan CG. Unexpected Reaction Pathway for butyrylcholinesterase-catalyzed inactivation of "hunger hormone" ghrelin. Sci Rep 2016; 6:22322. [PMID: 26922910 PMCID: PMC4770301 DOI: 10.1038/srep22322] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Accepted: 02/12/2016] [Indexed: 11/16/2022] Open
Abstract
Extensive computational modeling and simulations have been carried out, in the present study, to uncover the fundamental reaction pathway for butyrylcholinesterase (BChE)-catalyzed hydrolysis of ghrelin, demonstrating that the acylation process of BChE-catalyzed hydrolysis of ghrelin follows an unprecedented single-step reaction pathway and the single-step acylation process is rate-determining. The free energy barrier (18.8 kcal/mol) calculated for the rate-determining step is reasonably close to the experimentally-derived free energy barrier (~19.4 kcal/mol), suggesting that the obtained mechanistic insights are reasonable. The single-step reaction pathway for the acylation is remarkably different from the well-known two-step acylation reaction pathway for numerous ester hydrolysis reactions catalyzed by a serine esterase. This is the first time demonstrating that a single-step reaction pathway is possible for an ester hydrolysis reaction catalyzed by a serine esterase and, therefore, one no longer can simply assume that the acylation process must follow the well-known two-step reaction pathway.
Collapse
Affiliation(s)
- Jianzhuang Yao
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Yaxia Yuan
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA.,Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
12
|
Yao Y, Liu J, Zheng F, Zhan CG. Reaction Pathway for Cocaine Hydrolase-Catalyzed Hydrolysis of (+)-Cocaine. Theor Chem Acc 2016; 135. [PMID: 28250715 DOI: 10.1007/s00214-015-1788-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A recently designed and discovered cocaine hydrolase (CocH), engineered from human butyrylcholinesterase (BChE), has been proven promising as a novel enzyme therapy for treatment of cocaine overdose and addiction because it is highly efficient in catalyzing hydrolysis of naturally occurring (-)-cocaine. It has been known that the CocH also has a high catalytic efficiency against (+)-cocaine, a synthetic enantiomer of cocaine. Reaction pathway and the corresponding free energy profile for the CocH-catalyzed hydrolysis of (+)-cocaine have been determined, in the present study, by performing first-principles pseudobond quantum mechanical/molecular mechanical (QM/MM)-free energy (FE) calculations. Acordingt to the QM/MM-FE results, the catalytic hydrolysis process is initiated by the nucleophilic attack on carbonyl carbon of (-)-cocaine benzoyl ester via hydroxyl oxygen of S198 side chain, and the second reaction step (i.e. dissociation of benzoyl ester) is rate-determining. This finding for CocH-catalyzed hydrolysis of (+)-cocaine is remarkably different from that for the (+)-cocaine hydrolysis catalyzed by bacterial cocaine esterase in which the first reaction step of the deacylation is associated with the highest free energy barrier (~17.9 kcal/mol). The overall free energy barrier (~16.0 kcal/mol) calculated for the acylation stage of CocH-catalyzed hydrolysis of (+)-cocaine is in good agreement with the experimental free energy barrier of ~14.5 kcal/mol derivated from the experimental kinetic data.
Collapse
Affiliation(s)
- Yuan Yao
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; The Academy of Fundamental and Interdisciplinary Sciences, Harbin Institute of Technology, Harbin 150080, P.R. China
| | - Junjun Liu
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536; Tongji School of Pharmacy, Huazhong University of Science and Technology, 13 Hangkong Road, Wuhan, Hubei 430030, P.R. China
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone, Lexington, KY 40536
| |
Collapse
|
13
|
Reilly PJ, Rovira C. Computational Studies of Glycoside, Carboxylic Ester, and Thioester Hydrolase Mechanisms: A Review. Ind Eng Chem Res 2015. [DOI: 10.1021/acs.iecr.5b01312] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Peter J. Reilly
- Department
of Chemical and Biological Engineering, Iowa State University, Ames, Iowa 50011-2230, United States
| | - Carme Rovira
- Departament de Química Orgànica
and Institut de Química Teòrica i Computacional (IQTCUB), Universitat de Barcelona, 08028 Barcelona, Spain
- Institució
Catalana de Recerca i Estudis Avançats (ICREA), 08010 Barcelona, Spain
| |
Collapse
|
14
|
Chen X, Huang X, Geng L, Xue L, Hou S, Zheng X, Brimijoin S, Zheng F, Zhan CG. Kinetic characterization of a cocaine hydrolase engineered from mouse butyrylcholinesterase. Biochem J 2015; 466:243-51. [PMID: 25486543 PMCID: PMC4367957 DOI: 10.1042/bj20141266] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Mouse butyrylcholinesterase (mBChE) and an mBChE-based cocaine hydrolase (mCocH, i.e. the A¹⁹⁹S/S²²⁷A/S²⁸⁷G/A³²⁸W/Y³³²G mutant) have been characterized for their catalytic activities against cocaine, i.e. naturally occurring (-)-cocaine, in comparison with the corresponding human BChE (hBChE) and an hBChE-based cocaine hydrolase (hCocH, i.e. the A¹⁹⁹S/F²²⁷A/S²⁸⁷G/A³²⁸W/Y³³²G mutant). It has been demonstrated that mCocH and hCocH have improved the catalytic efficiency of mBChE and hBChE against (-)-cocaine by ~8- and ~2000-fold respectively, although the catalytic efficiencies of mCocH and hCocH against other substrates, including acetylcholine (ACh) and butyrylthiocholine (BTC), are close to those of the corresponding wild-type enzymes mBChE and hBChE. According to the kinetic data, the catalytic efficiency (k(cat)/K(M)) of mBChE against (-)-cocaine is comparable with that of hBChE, but the catalytic efficiency of mCocH against (-)-cocaine is remarkably lower than that of hCocH by ~250-fold. The remarkable difference in the catalytic activity between mCocH and hCocH is consistent with the difference between the enzyme-(-)-cocaine binding modes obtained from molecular modelling. Further, both mBChE and hBChE demonstrated substrate activation for all of the examined substrates [(-)-cocaine, ACh and BTC] at high concentrations, whereas both mCocH and hCocH showed substrate inhibition for all three substrates at high concentrations. The amino-acid mutations have remarkably converted substrate activation of the enzymes into substrate inhibition, implying that the rate-determining step of the reaction in mCocH and hCocH might be different from that in mBChE and hBChE.
Collapse
Affiliation(s)
- Xiabin Chen
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xiaoqin Huang
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Liyi Geng
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Liu Xue
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Shurong Hou
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xirong Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Stephen Brimijoin
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905
| | - Fang Zheng
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Chang-Guo Zhan
- Molecular Modeling and Biopharmaceutical Center and Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
15
|
Wei D, Fang L, Tang M, Zhan CG. Fundamental reaction pathway for peptide metabolism by proteasome: insights from first-principles quantum mechanical/molecular mechanical free energy calculations. J Phys Chem B 2013; 117:13418-34. [PMID: 24111489 DOI: 10.1021/jp405337v] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Proteasome is the major component of the crucial non-lysosomal protein degradation pathway in the cells, but the detailed reaction pathway is unclear. In this study, first-principles quantum mechanical/molecular mechanical free energy calculations have been performed to explore, for the first time, possible reaction pathways for proteasomal proteolysis/hydrolysis of a representative peptide, succinyl-leucyl-leucyl-valyl-tyrosyl-7-amino-4-methylcoumarin (Suc-LLVY-AMC). The computational results reveal that the most favorable reaction pathway consists of six steps. The first is a water-assisted proton transfer within proteasome, activating Thr1-O(γ). The second is a nucleophilic attack on the carbonyl carbon of a Tyr residue of substrate by the negatively charged Thr1-O(γ), followed by the dissociation of the amine AMC (third step). The fourth step is a nucleophilic attack on the carbonyl carbon of the Tyr residue of substrate by a water molecule, accompanied by a proton transfer from the water molecule to Thr1-N(z). Then, Suc-LLVY is dissociated (fifth step), and Thr1 is regenerated via a direct proton transfer from Thr1-N(z) to Thr1-O(γ). According to the calculated energetic results, the overall reaction energy barrier of the proteasomal hydrolysis is associated with the transition state (TS3(b)) for the third step involving a water-assisted proton transfer. The determined most favorable reaction pathway and the rate-determining step have provided a reasonable interpretation of the reported experimental observations concerning the substituent and isotopic effects on the kinetics. The calculated overall free energy barrier of 18.2 kcal/mol is close to the experimentally derived activation free energy of ∼18.3-19.4 kcal/mol, suggesting that the computational results are reasonable.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University , 75 Daxue Road, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|
16
|
Qiao Y, Han K, Zhan CG. Fundamental reaction pathway and free energy profile for butyrylcholinesterase-catalyzed hydrolysis of heroin. Biochemistry 2013; 52:6467-79. [PMID: 23992153 DOI: 10.1021/bi400709v] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The pharmacological function of heroin requires an activation process that transforms heroin into 6-monoacetylmorphine (6-MAM), which is the most active form. The primary enzyme responsible for this activation process in human plasma is butyrylcholinesterase (BChE). The detailed reaction pathway of the activation process via BChE-catalyzed hydrolysis has been explored computationally, for the first time, in this study via molecular dynamics simulation and first-principles quantum mechanical/molecular mechanical free energy calculations. It has been demonstrated that the whole reaction process includes acylation and deacylation stages. The acylation consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the 3-acetyl group of heroin by the hydroxyl oxygen of the Ser198 side chain and the dissociation of 6-MAM. The deacylation also consists of two reaction steps, i.e., the nucleophilic attack on the carbonyl carbon of the acyl-enzyme intermediate by a water molecule and the dissociation of the acetic acid from Ser198. The calculated free energy profile reveals that the second transition state (TS2) should be rate-determining. The structural analysis reveals that the oxyanion hole of BChE plays an important role in the stabilization of rate-determining TS2. The free energy barrier (15.9 ± 0.2 or 16.1 ± 0.2 kcal/mol) calculated for the rate-determining step is in good agreement with the experimentally derived activation free energy (~16.2 kcal/mol), suggesting that the mechanistic insights obtained from this computational study are reliable. The obtained structural and mechanistic insights could be valuable for use in the future rational design of a novel therapeutic treatment of heroin abuse.
Collapse
Affiliation(s)
- Yan Qiao
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Science , Zhongshan Road 457, Dalian 116023, P. R. China
| | | | | |
Collapse
|
17
|
Wei D, Huang X, Tang M, Zhan CG. Reaction pathway and free energy profile for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide. Biochemistry 2013; 52:5145-54. [PMID: 23862626 PMCID: PMC3770148 DOI: 10.1021/bi400629r] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Possible reaction pathways for papain-catalyzed hydrolysis of N-acetyl-Phe-Gly 4-nitroanilide (APGNA) have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical-free energy (QM/MM-FE) calculations. The whole hydrolysis process includes two stages: acylation and deacylation. For the acylation stage of the catalytic reaction, we have explored three possible paths (A, B, and C) and the corresponding free energy profiles along the reaction coordinates. It has been demonstrated that the most favorable reaction path in this stage is path B consisting of two reaction steps: the first step is a proton transfer to form a zwitterionic form (i.e., Cys-S⁻/His-H⁺ ion-pair), and the second step is the nucleophilic attack on the carboxyl carbon of the substrate accompanied by the dissociation of 4-nitroanilide. The deacylation stage includes the nucleophilic attack of a water molecule on the carboxyl carbon of the substrate and dissociation between the carboxyl carbon of the substrate and the sulfhydryl sulfur of Cys25 side chain. The free energy barriers calculated for the acylation and deacylation stages are 20.0 and 10.7 kcal/mol, respectively. Thus, the acylation is rate-limiting. The overall free energy barrier calculated for papain-catalyzed hydrolysis of APGNA is 20.0 kcal/mol, which is reasonably close to the experimentally derived activation free energy of 17.9 kcal/mol.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Xiaoqin Huang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| | - Mingsheng Tang
- Department of Chemistry, Zhengzhou University, 75 Daxue Road, Zhengzhou, Henan, 450052, P. R. China
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536
| |
Collapse
|
18
|
van der Kamp MW, Mulholland AJ. Combined quantum mechanics/molecular mechanics (QM/MM) methods in computational enzymology. Biochemistry 2013; 52:2708-28. [PMID: 23557014 DOI: 10.1021/bi400215w] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Computational enzymology is a rapidly maturing field that is increasingly integral to understanding mechanisms of enzyme-catalyzed reactions and their practical applications. Combined quantum mechanics/molecular mechanics (QM/MM) methods are important in this field. By treating the reacting species with a quantum mechanical method (i.e., a method that calculates the electronic structure of the active site) and including the enzyme environment with simpler molecular mechanical methods, enzyme reactions can be modeled. Here, we review QM/MM methods and their application to enzyme-catalyzed reactions to investigate fundamental and practical problems in enzymology. A range of QM/MM methods is available, from cheaper and more approximate methods, which can be used for molecular dynamics simulations, to highly accurate electronic structure methods. We discuss how modeling of reactions using such methods can provide detailed insight into enzyme mechanisms and illustrate this by reviewing some recent applications. We outline some practical considerations for such simulations. Further, we highlight applications that show how QM/MM methods can contribute to the practical development and application of enzymology, e.g., in the interpretation and prediction of the effects of mutagenesis and in drug and catalyst design.
Collapse
Affiliation(s)
- Marc W van der Kamp
- Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, UK.
| | | |
Collapse
|
19
|
Xue L, Hou S, Yang W, Fang L, Zheng F, Zhan CG. Catalytic activities of a cocaine hydrolase engineered from human butyrylcholinesterase against (+)- and (-)-cocaine. Chem Biol Interact 2013; 203:57-62. [PMID: 22917637 PMCID: PMC3527670 DOI: 10.1016/j.cbi.2012.08.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Revised: 07/31/2012] [Accepted: 08/02/2012] [Indexed: 11/27/2022]
Abstract
It can be argued that an ideal anti-cocaine medication would be one that accelerates cocaine metabolism producing biologically inactive metabolites via a route similar to the primary cocaine-metabolizing pathway, i.e., hydrolysis catalyzed by butyrylcholinesterase (BChE) in plasma. However, wild-type BChE has a low catalytic efficiency against naturally occurring (-)-cocaine. Interestingly, wild-type BChE has a much higher catalytic activity against unnatural (+)-cocaine. According to available positron emission tomography (PET) imaging analysis using [(11)C](-)-cocaine and [(11)C](+)-cocaine tracers in human subjects, only [(11)C](-)-cocaine was observed in the brain, whereas no significant [(11)C](+)-cocaine signal was observed in the brain. The available PET data imply that an effective therapeutic enzyme for treatment of cocaine abuse could be an exogenous cocaine-metabolizing enzyme with a catalytic activity against (-)-cocaine comparable to that of wild-type BChE against (+)-cocaine. Our recently designed A199S/F227A/S287G/A328 W/Y332G mutant of human BChE has a considerably improved catalytic efficiency against (-)-cocaine and has been proven active in vivo. In the present study, we have characterized the catalytic activities of wild-type BChE and the A199S/F227A/S287G/A328 W/Y332G mutant against both (+)- and (-)-cocaine at the same time under the same experimental conditions. Based on the obtained kinetic data, the A199S/F227A/S287G/A328 W/Y332G mutant has a similarly high catalytic efficiency (kcat/KM) against (+)- and (-)-cocaine, and indeed has a catalytic efficiency (k(cat/)K(M) = 1.84 × 10(9) M(-1) min(-1)) against (-)-cocaine comparable to that (k(cat)/K(M) = 1.37 × 10(9) M(-1) min(-1)) of wild-type BChE against (+)-cocaine. Thus, the mutant may be used to effectively prevent (-)-cocaine from entering brain and producing physiological effects in the enzyme-based treatment of cocaine abuse.
Collapse
Affiliation(s)
| | | | - Wenchao Yang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Lei Fang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Fang Zheng
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| | - Chang-Guo Zhan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Kentucky, 789 South Limestone Street, Lexington, KY 40536, USA
| |
Collapse
|
20
|
Li D, Huang X, Lin J, Zhan CG. Catalytic mechanism of cytochrome P450 for N-methylhydroxylation of nicotine: reaction pathways and regioselectivity of the enzymatic nicotine oxidation. Dalton Trans 2013; 42:3812-20. [PMID: 23303461 DOI: 10.1039/c2dt32106h] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The fundamental reaction mechanism of cytochrome P450 2A6 (CYP2A6)-catalyzed N-methylhydroxylation of (S)-(-)-nicotine and the free energy profile have been studied by performing pseudobond first-principles quantum mechanical/molecular mechanical (QM/MM) reaction-coordinate calculations. In the CYP2A6-(S)-(-)-nicotine binding structures that allow for 5'-hydroxylation, the N-methyl group is also sufficiently close to the oxygen of Cpd I for the N-methylhydroxylation reaction to occur. It has been demonstrated that the CYP2A6-catalyzed N-methylhydroxylation reaction is a concerted process involving a hydrogen-transfer transition state on both the quartet and the doublet states. The N-methylhydroxylation reaction proceeds mainly in the doublet state, since the free energy barriers on the doublet state are lower than the corresponding ones on the quartet state. The calculated free energy barriers indicate that (S)-(-)-nicotine oxidation catalyzed by CYP2A6 proceeds with a high regioselective abstraction of the hydrogen at the 5'-position, rather than the hydrogen at the N-methyl group. The predicted regioselectivity of 93% is in agreement with the most recent experimentally reported regioselectivity of 95%. The binding mode of (S)-(-)-nicotine in the active site of CYP2A6 is an important determinant for the stereoselectivity of nicotine (S)-(-)-oxidation, whereas the regioselectivity of (S)-(-)-nicotine oxidation is determined mainly by the free energy barrier difference between the 5'-hydroxylation and N-methylhydroxylation reactions.
Collapse
Affiliation(s)
- Dongmei Li
- College of Pharmacy, State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin 300071, China.
| | | | | | | |
Collapse
|
21
|
Wei D, Lei B, Tang M, Zhan CG. Fundamental reaction pathway and free energy profile for inhibition of proteasome by Epoxomicin. J Am Chem Soc 2012; 134:10436-50. [PMID: 22697787 DOI: 10.1021/ja3006463] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
First-principles quantum mechanical/molecular mechanical free energy calculations have been performed to provide the first detailed computational study on the possible mechanisms for reaction of proteasome with a representative peptide inhibitor, Epoxomicin (EPX). The calculated results reveal that the most favorable reaction pathway consists of five steps. The first is a proton transfer process, activating Thr1-O(γ) directly by Thr1-N(z) to form a zwitterionic intermediate. The next step is nucleophilic attack on the carbonyl carbon of EPX by the negatively charged Thr1-O(γ) atom, followed by a proton transfer from Thr1-N(z) to the carbonyl oxygen of EPX (third step). Then, Thr1-N(z) attacks on the carbon of the epoxide group of EPX, accompanied by the epoxide ring-opening (S(N)2 nucleophilic substitution) such that a zwitterionic morpholino ring is formed between residue Thr1 and EPX. Finally, the product of morpholino ring is generated via another proton transfer. Noteworthy, Thr1-O(γ) can be activated directly by Thr1-N(z) to form the zwitterionic intermediate (with a free energy barrier of only 9.9 kcal/mol), and water cannot assist the rate-determining step, which is remarkably different from the previous perception that a water molecule should mediate the activation process. The fourth reaction step has the highest free energy barrier (23.6 kcal/mol) which is reasonably close to the activation free energy (∼21-22 kcal/mol) derived from experimental kinetic data. The obtained novel mechanistic insights should be valuable for not only future rational design of more efficient proteasome inhibitors but also understanding the general reaction mechanism of proteasome with a peptide or protein.
Collapse
Affiliation(s)
- Donghui Wei
- Department of Chemistry, Zhengzhou University, Daxue Road, Zhengzhou, Henan 450052, China
| | | | | | | |
Collapse
|