1
|
Bowling PE, Broderick DR, Herbert JM. Quick-and-Easy Validation of Protein-Ligand Binding Models Using Fragment-Based Semiempirical Quantum Chemistry. J Chem Inf Model 2025; 65:937-949. [PMID: 39749961 DOI: 10.1021/acs.jcim.4c01987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
Electronic structure calculations in enzymes converge very slowly with respect to the size of the model region that is described using quantum mechanics (QM), requiring hundreds of atoms to obtain converged results and exhibiting substantial sensitivity (at least in smaller models) to which amino acids are included in the QM region. As such, there is considerable interest in developing automated procedures to construct a QM model region based on well-defined criteria. However, testing such procedures is burdensome due to the cost of large-scale electronic structure calculations. Here, we show that semiempirical methods can be used as alternatives to density functional theory (DFT) to assess convergence in sequences of models generated by various automated protocols. The cost of these convergence tests is reduced even further by means of a many-body expansion. We use this approach to examine convergence (with respect to model size) of protein-ligand binding energies. Fragment-based semiempirical calculations afford well-converged interaction energies in a tiny fraction of the cost required for DFT calculations. Two-body interactions between the ligand and single-residue amino acid fragments afford a low-cost way to construct a "QM-informed" enzyme model of reduced size, furnishing an automatable active-site model-building procedure. This provides a streamlined, user-friendly approach for constructing ligand binding-site models that requires neither a priori information nor manual adjustments. Extension to model-building for thermochemical calculations should be straightforward.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Dustin R Broderick
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry & Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
2
|
Hagemann MM, Wieduwilt EK, Ryde U, Hedegård ED. Investigating the Substrate Oxidation Mechanism in Lytic Polysaccharide Monooxygenase: H 2O 2- versus O 2-Activation. Inorg Chem 2024; 63:21929-21940. [PMID: 39513538 DOI: 10.1021/acs.inorgchem.4c03221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) form a copper-dependent family of enzymes classified under the auxiliary activity (AA) superfamily. The LPMOs are known for their boosting of polysaccharide degradation through oxidation of the glycosidic bonds that link the monosaccharide subunits. This oxidation has been proposed to be dependent on either O2 or H2O2 as cosubstrate. Theoretical investigations have previously supported both mechanisms, although this contrasts with recent experiments. A possible explanation is that the theoretical results critically depend on how the Cu active site is modeled. This has also led to different results even when employing only H2O2 as cosubstrate. In this paper, we investigate both the O2- and H2O2-driven pathways, employing LsAA9 as the underlying LPMO and a theoretical model based on a quantum mechanics/molecular mechanics (QM/MM) framework. We ensure to consistently include all residues known to be important by using extensive QM regions of up to over 900 atoms. We also investigate several conformers that can partly explain the differences seen in previous studies. We find that the O2-driven reaction is unfeasible, in contrast with our previous QM/MM calculations with smaller QM regions. Meanwhile, the H2O2-driven pathway is feasible, showing that for LsAA9, only H2O2 is a viable cosubstrate as proposed experimentally.
Collapse
Affiliation(s)
- Marlisa M Hagemann
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Erna K Wieduwilt
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| | - Ulf Ryde
- Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Erik D Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark
| |
Collapse
|
3
|
Cheng Z, Bi H, Liu S, Chen J, Misquitta AJ, Yu K. Developing a Differentiable Long-Range Force Field for Proteins with E(3) Neural Network-Predicted Asymptotic Parameters. J Chem Theory Comput 2024; 20:5598-5608. [PMID: 38888427 DOI: 10.1021/acs.jctc.4c00337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Accurately describing long-range interactions is a significant challenge in molecular dynamics (MD) simulations of proteins. High-quality long-range potential is also an important component of the range-separated machine learning force field. This study introduces a comprehensive asymptotic parameter database encompassing atomic multipole moments, polarizabilities, and dispersion coefficients. Leveraging active learning, our database comprehensively represents protein fragments with up to 8 heavy atoms, capturing their conformational diversity with merely 78,000 data points. Additionally, the E(3) neural network (E3NN) is employed to predict the asymptotic parameters directly from the local geometry. The E3NN models demonstrate exceptional accuracy and transferability across all asymptotic parameters, achieving an R2 of 0.999 for both protein fragments and 20 amino acid dipeptide test sets. The long-range electrostatic and dispersion energies can be obtained using the E3NN-predicted parameters, with an error of 0.07 and 0.02 kcal/mol, respectively, when compared to symmetry-adapted perturbation theory (SAPT). Therefore, our force fields demonstrate the capability to accurately describe long-range interactions in proteins, paving the way for next-generation protein force fields.
Collapse
Affiliation(s)
- Zheng Cheng
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- AI for Science Institute, Beijing 100084, P. R. China
| | - Hangrui Bi
- School of Mathematical Sciences, Peking University, Beijing 100871, China
- DP Technology, Beijing 100080, P. R. China
| | - Siyuan Liu
- DP Technology, Beijing 100080, P. R. China
| | - Junmin Chen
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, P. R. China
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, P. R. China
| | - Alston J Misquitta
- School of Physics and Astronomy, Queen Mary, University of London, London E1 4NS, U.K
| | - Kuang Yu
- Tsinghua-Berkeley Shenzhen Institute, Shenzhen 518055, Guangdong, P. R. China
- Tsinghua Shenzhen International Graduate School, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
4
|
Jørgensen FK, Delcey MG, Hedegård ED. Perspective: multi-configurational methods in bio-inorganic chemistry. Phys Chem Chem Phys 2024; 26:17443-17455. [PMID: 38868993 DOI: 10.1039/d4cp01297f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Transition metal ions play crucial roles in the structure and function of numerous proteins, contributing to essential biological processes such as catalysis, electron transfer, and oxygen binding. However, accurately modeling the electronic structure and properties of metalloproteins poses significant challenges due to the complex nature of their electronic configurations and strong correlation effects. Multiconfigurational quantum chemistry methods are, in principle, the most appropriate tools for addressing these challenges, offering the capability to capture the inherent multi-reference character and strong electron correlation present in bio-inorganic systems. Yet their computational cost has long hindered wider adoption, making methods such as density functional theory (DFT) the method of choice. However, advancements over the past decade have substantially alleviated this limitation, rendering multiconfigurational quantum chemistry methods more accessible and applicable to a wider range of bio-inorganic systems. In this perspective, we discuss some of these developments and how they have already been used to answer some of the most important questions in bio-inorganic chemistry. We also comment on ongoing developments in the field and how the future of the field may evolve.
Collapse
Affiliation(s)
- Frederik K Jørgensen
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
| | - Mickaël G Delcey
- Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| | - Erik D Hedegård
- Department of Physics, Chemistry, and Pharmacy, University of Southern Denmark, Campusvej 55, 5230 Odense, Denmark.
- Department of Chemistry, Lund University, Naturvetarvägen 14, 221 00 Lund, Sweden
| |
Collapse
|
5
|
Bowling PE, Dasgupta S, Herbert JM. Eliminating Imaginary Vibrational Frequencies in Quantum-Chemical Cluster Models of Enzymatic Active Sites. J Chem Inf Model 2024; 64:3912-3922. [PMID: 38648614 DOI: 10.1021/acs.jcim.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
In constructing finite models of enzyme active sites for quantum-chemical calculations, atoms at the periphery of the model must be constrained to prevent unphysical rearrangements during geometry relaxation. A simple fixed-atom or "coordinate-lock" approach is commonly employed but leads to undesirable artifacts in the form of small imaginary frequencies. These preclude evaluation of finite-temperature free-energy corrections, limiting thermochemical calculations to enthalpies only. Full-dimensional vibrational frequency calculations are possible by replacing the fixed-atom constraints with harmonic confining potentials. Here, we compare that approach to an alternative strategy in which fixed-atom contributions to the Hessian are simply omitted. While the latter strategy does eliminate imaginary frequencies, it tends to underestimate both the zero-point energy and the vibrational entropy while introducing artificial rigidity. Harmonic confining potentials eliminate imaginary frequencies and provide a flexible means to construct active-site models that can be used in unconstrained geometry relaxations, affording better convergence of reaction energies and barrier heights with respect to the model size, as compared to models with fixed-atom constraints.
Collapse
Affiliation(s)
- Paige E Bowling
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| | - Saswata Dasgupta
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, University of California-San Diego, La Jolla, California 92093, United States
| | - John M Herbert
- Biophysics Graduate Program, The Ohio State University, Columbus, Ohio 43210, United States
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Jafari S, Ryde U, Irani M. QM/MM study of the catalytic reaction of aphid myrosinase. Int J Biol Macromol 2024; 262:130089. [PMID: 38360236 DOI: 10.1016/j.ijbiomac.2024.130089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 01/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Brevicoryne brassicae, an aphid species, exclusively consumes plants from the Brassicaceae family and employs a sophisticated defense mechanism involving a myrosinase enzyme that breaks down glucosinolates obtained from its host plants. In this work, we employed combined quantum mechanical and molecular mechanical (QM/MM) calculations and molecular dynamics (MD) simulations to study the catalytic reaction of aphid myrosinase. A proper QM region to study the myrosinase reaction should contain the whole substrate, models of Gln-19, His-122, Asp-124, Asn-166, Glu-167, Lys-173, Tyr-180, Val-228, Tyr-309, Tyr-346, Ile-347, Glu-374, Glu-423, Trp-424, and a water molecule. The calculations show that Asp-124 and Glu-423 must be charged, His-122 must be protonated on NE2, and Glu-167 must be protonated on OE2. Our model reproduces the anomeric retaining characteristic of myrosinase and indicates that the deglycosylation reaction is the rate-determining step of the reaction. Based on the calculations, we propose a reaction mechanism for aphid myrosinase-mediated hydrolysis of glucosinolates with an overall barrier of 15.2 kcal/mol. According to the results, removing a proton from Arg-312 or altering it to valine or methionine increases glycosylation barriers but decreases the deglycosylation barrier.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran.
| |
Collapse
|
7
|
Almeida NMS, Bali SK, James D, Wang C, Wilson AK. Binding of Per- and Polyfluoroalkyl Substances (PFAS) to the PPARγ/RXRα-DNA Complex. J Chem Inf Model 2023; 63:7423-7443. [PMID: 37990410 DOI: 10.1021/acs.jcim.3c01384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
Nuclear receptors are the fundamental building blocks of gene expression regulation and the focus of many drug targets. While binding to DNA, nuclear receptors act as transcription factors, governing a multitude of functions in the human body. Peroxisome proliferator-activator receptor γ (PPARγ) and the retinoid X receptor α (RXRα) form heterodimers with unique properties and have a primordial role in insulin sensitization. This PPARγ/RXRα heterodimer has been shown to be impacted by per- and polyfluoroalkyl substances (PFAS) and linked to a variety of significant health conditions in humans. Herein, a selection of the most common PFAS (legacy and emerging) was studied utilizing molecular dynamics simulations for PPARγ/RXRα. The local and global structural effects of PFAS binding on the known ligand binding pockets of PPARγ and RXRα as well as the DNA binding domain (DBD) of RXRα were inspected. The binding free energies were predicted computationally and were compared between the different binding pockets. In addition, two electronic structure approaches were utilized to model the interaction of PFAS within the DNA binding domain, density functional theory (DFT) and domain-based pair natural orbital coupled cluster with perturbative triples (DLPNO-CCSD(T)) approaches, with implicit solvation. Residue decomposition and hydrogen-bonding analysis were also performed, detailing the role of prominent residues in molecular recognition. The role of l-carnitine is explored as a potential in vivo remediation strategy for PFAS interaction with the PPARγ/RXRα heterodimer. In this work, it was found that PFAS can bind and act as agonists for all of the investigated pockets. For the first time in the literature, PFAS are postulated to bind to the DNA binding domain in a nonspecific manner. In addition, for the PPARγ ligand binding domain, l-carnitine shows promise in replacing smaller PFAS from the pocket.
Collapse
Affiliation(s)
- Nuno M S Almeida
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Semiha Kevser Bali
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Deepak James
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Cong Wang
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| | - Angela K Wilson
- Department of Chemistry, Michigan State University, East Lansing, Michigan 48864, United States
| |
Collapse
|
8
|
Zheng M, Li Y, Zhang Q, Wang W. Impacts of QM region sizes and conformation numbers on modelling enzyme reactions: a case study of polyethylene terephthalate hydrolase. Phys Chem Chem Phys 2023; 25:31596-31603. [PMID: 37917137 DOI: 10.1039/d3cp04519f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A quantum mechanics/molecular mechanics (QM/MM) approach is a broadly used tool in computational enzymology. Treating the QM region with a high-level DFT method is one of the important branches. Here, taking leaf-branch compost cutinase-catalyzed polyethylene terephthalate depolymerization as an example, the convergence behavior of energy barriers as well as key structural and charge features with respect to the size of the QM region (up to 1000 atoms) is systematically investigated. BP86/6-31G(d)//CHARMM and M06-2X/6-311G(d,p)//CHARMM level of theories were applied for geometry optimizations and single-point energy calculations, respectively. Six independent enzyme conformations for all the four catalytic steps (steps (i)-(iv)) were considered. Most of the twenty-four cases show that at least 500 QM atoms are needed while only two rare cases show that ∼100 QM atoms are sufficient for convergence when only a single conformation was considered. This explains why most previous studies showed that 500 or more QM atoms are required while a few others showed that ∼100 QM atoms are sufficient for DFT/MM calculations. More importantly, average energy barriers and key structural/charge features from six conformations show an accelerated convergence than that in a single conformation. For instance, to reach energy barrier convergence (within 2.0 kcal mol-1) for step (ii), only ∼100 QM atoms are required if six conformations are considered while 500 or more QM atoms are needed with a single conformation. The convergence is accelerated to be more rapid if hundreds and thousands of conformations were considered, which aligns with previous findings that only several dozens of QM atoms are required for convergence with semi-empirical QM/MM MD simulations.
Collapse
Affiliation(s)
- Mingna Zheng
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Yanwei Li
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Qingzhu Zhang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| | - Wenxing Wang
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China.
| |
Collapse
|
9
|
Shirazi J, Jafari S, Ryde U, Irani M. Catalytic Reaction Mechanism of Glyoxalase II: A Quantum Mechanics/Molecular Mechanics Study. J Phys Chem B 2023; 127:4480-4495. [PMID: 37191640 DOI: 10.1021/acs.jpcb.3c01495] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Methylglyoxal (MG) is a reactive and toxic compound produced in carbohydrate, lipid, and amino acid metabolism. The glyoxalase system is the main detoxifying route for MG and consists of two enzymes, glyoxalase I (GlxI) and glyoxalase II (GlxII). GlxI catalyzes the formation of S-d-lactoylglutathione from hemithioacetal, and GlxII converts this intermediate to d-lactate. A relationship between the glyoxalase system and some diseases like diabetes has been shown, and inhibiting enzymes of this system may be an effective means of controlling certain diseases. A detailed understanding of the reaction mechanism of an enzyme is essential to the rational design of competitive inhibitors. In this work, we use quantum mechanics/molecular mechanics (QM/MM) calculations and energy refinement utilizing the big-QM and QM/MM thermodynamic cycle perturbation methods to propose a mechanism for the GlxII reaction that starts with a nucleophilic attack of the bridging OH- group on the substrate. The coordination of the substrate to the Zn ions places its electrophilic center close to the hydroxide group, enabling the reaction to proceed. Our estimated reaction energies are in excellent agreement with experimental data, thus demonstrating the reliability of our approach and the proposed mechanism. Additionally, we examined alternative protonation states of Asp-29, Asp-58, Asp-134, and the bridging hydroxide ion in the catalytic process. However, these give less favorable reactions, a poorer reproduction of the crystal structure geometry of the active site, and higher root-mean-squared deviations of the active site residues in molecular dynamics simulations.
Collapse
Affiliation(s)
- Javad Shirazi
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| | - Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, 66177-15177 Sanandaj, Iran
| |
Collapse
|
10
|
Hagemann MM, Hedegård ED. Molecular Mechanism of Substrate Oxidation in Lytic Polysaccharide Monooxygenases: Insight from Theoretical Investigations. Chemistry 2023; 29:e202202379. [PMID: 36207279 PMCID: PMC10107554 DOI: 10.1002/chem.202202379] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Indexed: 12/12/2022]
Abstract
Lytic polysaccharide monooxygenases (LPMOs) are copper enzymes that today comprise a large enzyme superfamily, grouped into the distinct members AA9-AA17 (with AA12 exempted). The LPMOs have the potential to facilitate the upcycling of biomass waste products by boosting the breakdown of cellulose and other recalcitrant polysaccharides. The cellulose biopolymer is the main component of biomass waste and thus comprises a large, unexploited resource. The LPMOs work through a catalytic, oxidative reaction whose mechanism is still controversial. For instance, the nature of the intermediate performing the oxidative reaction is an open question, and the same holds for the employed co-substrate. Here we review theoretical investigations addressing these questions. The applied theoretical methods are usually based on quantum mechanics (QM), often combined with molecular mechanics (QM/MM). We discuss advantages and disadvantages of the employed theoretical methods and comment on the interplay between theoretical and experimental results.
Collapse
Affiliation(s)
- Marlisa M. Hagemann
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| | - Erik D. Hedegård
- Department of PhysicsChemistry and PharmacyUniversity of Southern DenmarkCampusvej 555230OdenseDenmark
| |
Collapse
|
11
|
QM/MM study of the [4Fe-4S]-dependent (R)-2-hydroxyisocaproyl-CoA dehydratase: Dehydration via a redox pathway with an α-carbonyl radical intermediate. J Catal 2023. [DOI: 10.1016/j.jcat.2023.01.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
12
|
Jiang H, Svensson OKG, Ryde U. Quantum Mechanical Calculations of Redox Potentials of the Metal Clusters in Nitrogenase. Molecules 2022; 28:65. [PMID: 36615260 PMCID: PMC9822455 DOI: 10.3390/molecules28010065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/14/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
We have calculated redox potentials of the two metal clusters in Mo-nitrogenase with quantum mechanical (QM) calculations. We employ an approach calibrated for iron-sulfur clusters with 1-4 Fe ions, involving QM-cluster calculations in continuum solvent and large QM systems (400-500 atoms), based on structures from combined QM and molecular mechanics (QM/MM) geometry optimisations. Calculations on the P-cluster show that we can reproduce the experimental redox potentials within 0.33 V. This is similar to the accuracy obtained for the smaller clusters, although two of the redox reactions involve also proton transfer. The calculated P1+/PN redox potential is nearly the same independently of whether P1+ is protonated or deprotonated, explaining why redox titrations do not show any pH dependence. For the FeMo cluster, the calculations clearly show that the formal oxidation state of the cluster in the resting E0 state is MoIIIFe3IIFe4III , in agreement with previous experimental studies and QM calculations. Moreover, the redox potentials of the first five E0-E4 states are nearly constant, as is expected if the electrons are delivered by the same site (the P-cluster). However, the redox potentials are insensitive to the formal oxidation states of the Fe ion (i.e., whether the added protons bind to sulfide or Fe ions). Finally, we show that the later (E4-E8) states of the reaction mechanism have redox potential that are more positive (i.e., more exothermic) than that of the E0/E1 couple.
Collapse
Affiliation(s)
| | | | - Ulf Ryde
- Division of Theoretical Chemistry, Department of Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
13
|
Blunt NS, Camps J, Crawford O, Izsák R, Leontica S, Mirani A, Moylett AE, Scivier SA, Sünderhauf C, Schopf P, Taylor JM, Holzmann N. Perspective on the Current State-of-the-Art of Quantum Computing for Drug Discovery Applications. J Chem Theory Comput 2022; 18:7001-7023. [PMID: 36355616 DOI: 10.1021/acs.jctc.2c00574] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Computational chemistry is an essential tool in the pharmaceutical industry. Quantum computing is a fast evolving technology that promises to completely shift the computational capabilities in many areas of chemical research by bringing into reach currently impossible calculations. This perspective illustrates the near-future applicability of quantum computation of molecules to pharmaceutical problems. We briefly summarize and compare the scaling properties of state-of-the-art quantum algorithms and provide novel estimates of the quantum computational cost of simulating progressively larger embedding regions of a pharmaceutically relevant covalent protein-drug complex involving the drug Ibrutinib. Carrying out these calculations requires an error-corrected quantum architecture that we describe. Our estimates showcase that recent developments on quantum phase estimation algorithms have dramatically reduced the quantum resources needed to run fully quantum calculations in active spaces of around 50 orbitals and electrons, from estimated over 1000 years using the Trotterization approach to just a few days with sparse qubitization, painting a picture of fast and exciting progress in this nascent field.
Collapse
Affiliation(s)
- Nick S Blunt
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Joan Camps
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Ophelia Crawford
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Róbert Izsák
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Sebastian Leontica
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Arjun Mirani
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Alexandra E Moylett
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Sam A Scivier
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Christoph Sünderhauf
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Patrick Schopf
- Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, United Kingdom
| | - Jacob M Taylor
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom
| | - Nicole Holzmann
- Riverlane, St. Andrews House, 59 St. Andrews Street, Cambridge CB2 3BZ, United Kingdom.,Astex Pharmaceuticals, 436 Cambridge Science Park, Cambridge CB4 0QA, United Kingdom
| |
Collapse
|
14
|
Nazemi A, Steeves AH, Kastner DW, Kulik HJ. Influence of the Greater Protein Environment on the Electrostatic Potential in Metalloenzyme Active Sites: The Case of Formate Dehydrogenase. J Phys Chem B 2022; 126:4069-4079. [PMID: 35609244 DOI: 10.1021/acs.jpcb.2c02260] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The Mo/W-containing metalloenzyme formate dehydrogenase (FDH) is an efficient and selective natural catalyst that reversibly converts CO2 to formate under ambient conditions. In this study, we investigate the impact of the greater protein environment on the electrostatic potential (ESP) of the active site. To model the enzyme environment, we used a combination of classical molecular dynamics and multiscale quantum-mechanical (QM)/molecular-mechanical (MM) simulations. We leverage charge shift analysis to systematically construct QM regions and analyze the electronic environment of the active site by evaluating the degree of charge transfer between the core active site and the protein environment. The contribution of the terminal chalcogen ligand to the ESP of the metal center is substantial and dependent on the chalcogen identity, with similar, less negative ESPs for Se and S terminal chalcogens in comparison to O regardless of whether the metal is Mo or W. The orientation of the side chains and conformations of the cofactor also affect the ESP, highlighting the importance of sampling dynamic fluctuations in the protein. Overall, our observations suggest that the terminal chalcogen ligand identity plays an important role in the enzymatic activity of FDH, suggesting opportunities for a rational bioinspired catalyst design.
Collapse
Affiliation(s)
- Azadeh Nazemi
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Adam H Steeves
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - David W Kastner
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
15
|
Ritacca AG, Rovaletti A, Moro G, Cosentino U, Ryde U, Sicilia E, Greco C. Unraveling the Reaction Mechanism of Mo/Cu CO Dehydrogenase Using QM/MM Calculations. ACS Catal 2022. [DOI: 10.1021/acscatal.2c01408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Alessandra G. Ritacca
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Anna Rovaletti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Giorgio Moro
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | - Ugo Cosentino
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, Lund SE-221 00, Sweden
| | - Emilia Sicilia
- Department of Chemistry and Chemical Technologies, University of Calabria, Via P. Bucci, Rende 87036, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, Milan 20126, Italy
| |
Collapse
|
16
|
Jafari S, Tavares Santos YA, Bergmann J, Irani M, Ryde U. Benchmark Study of Redox Potential Calculations for Iron-Sulfur Clusters in Proteins. Inorg Chem 2022; 61:5991-6007. [PMID: 35403427 PMCID: PMC9044450 DOI: 10.1021/acs.inorgchem.1c03422] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Redox potentials
have been calculated for 12 different iron–sulfur
sites of 6 different types with 1–4 iron ions. Structures were
optimized with combined quantum mechanical and molecular mechanical
(QM/MM) methods, and the redox potentials were calculated using the
QM/MM energies, single-point QM methods in a continuum solvent or
by QM/MM thermodynamic cycle perturbations. We show that the best
results are obtained with a large QM system (∼300 atoms, but
a smaller QM system, ∼150 atoms, can be used for the QM/MM
geometry optimization) and a large value of the dielectric constant
(80). For absolute redox potentials, the B3LYP density functional
method gives better results than TPSS, and the results are improved
with a larger basis set. However, for relative redox potentials, the
opposite is true. The results are insensitive to the force field (charges
of the surroundings) used for the QM/MM calculations or whether the
protein and solvent outside the QM system are relaxed or kept fixed
at the crystal structure. With the best approach for relative potentials,
mean absolute and maximum deviations of 0.17 and 0.44 V, respectively,
are obtained after removing a systematic error of −0.55 V.
Such an approach can be used to identify the correct oxidation states
involved in a certain redox reaction. We
have studied redox potentials of 12 iron−sulfur
sites of 6 types with 1−4 iron ions. Structures were optimized
with combined quantum mechanical and molecular mechanical (QM/MM)
methods, and the redox potentials were calculated with QM/MM, QM calculations
in a continuum solvent or by QM/MM thermodynamic cycle perturbations.
The best results are obtained with the second approach using ∼300
atoms in the QM model and a large dielectric constant.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran.,Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Yakini A Tavares Santos
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Justin Bergmann
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
17
|
Rovaletti A, Moro G, Cosentino U, Ryde U, Greco C. Can water act as a nucleophile in CO oxidation catalysed by Mo/Cu CO-dehydrogenase? Answers from theory. Chemphyschem 2022; 23:e202200053. [PMID: 35170169 PMCID: PMC9310835 DOI: 10.1002/cphc.202200053] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/14/2022] [Indexed: 11/14/2022]
Abstract
The aerobic CO dehydrogenase from Oligotropha carboxidovorans is an environmentally crucial bacterial enzyme for maintenance of subtoxic concentration of CO in the lower atmosphere, as it allows for the oxidation of CO to CO2 which takes place at its Mo−Cu heterobimetallic active site. Despite extensive experimental and theoretical efforts, significant uncertainties still concern the reaction mechanism for the CO oxidation. In this work, we used the hybrid quantum mechanical/molecular mechanical approach to evaluate whether a water molecule present in the active site might act as a nucleophile upon formation of the new C−O bond, a hypothesis recently suggested in the literature. Our study shows that activation of H2O can be favoured by the presence of the Mo=Oeq group. However, overall our results suggest that mechanisms other than the nucleophilic attack by Mo=Oeq to the activated carbon of the CO substrate are not likely to constitute reactive channels for the oxidation of CO by the enzyme.
Collapse
Affiliation(s)
- Anna Rovaletti
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences, ITALY
| | - Giorgio Moro
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Biotechnology and Biosciences, ITALY
| | - Ugo Cosentino
- University of Milano-Bicocca: Universita degli Studi di Milano-Bicocca, Department of Earth and Environmental Sciences, ITALY
| | - Ulf Ryde
- Lund University: Lunds Universitet, Department of Theoretical Chemistry, ITALY
| | - Claudio Greco
- Università degli Studi di Milano-Bicocca: Universita degli Studi di Milano-Bicocca, earth and environmental sciences, Piazza della Scienza 1, 20126, Milan, ITALY
| |
Collapse
|
18
|
Modeling Catalysis in Allosteric Enzymes: Capturing Conformational Consequences. Top Catal 2021; 65:165-186. [DOI: 10.1007/s11244-021-01521-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Feng JQ, Wang BJ. Super-exchange and exchange-enhanced reactivity in Fe4S4-mediated activation of SAM by radical SAM enzymes. CHINESE J CHEM PHYS 2021. [DOI: 10.1063/1674-0068/cjcp2108134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-qiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| | - Bin-ju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
20
|
Kang H, Zheng M. Influence of the quantum mechanical region size in QM/MM modelling: A case study of fluoroacetate dehalogenase catalyzed C F bond cleavage. COMPUT THEOR CHEM 2021. [DOI: 10.1016/j.comptc.2021.113399] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
21
|
Shaker B, Ahmad S, Lee J, Jung C, Na D. In silico methods and tools for drug discovery. Comput Biol Med 2021; 137:104851. [PMID: 34520990 DOI: 10.1016/j.compbiomed.2021.104851] [Citation(s) in RCA: 189] [Impact Index Per Article: 47.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/05/2021] [Accepted: 09/05/2021] [Indexed: 12/28/2022]
Abstract
In the past, conventional drug discovery strategies have been successfully employed to develop new drugs, but the process from lead identification to clinical trials takes more than 12 years and costs approximately $1.8 billion USD on average. Recently, in silico approaches have been attracting considerable interest because of their potential to accelerate drug discovery in terms of time, labor, and costs. Many new drug compounds have been successfully developed using computational methods. In this review, we briefly introduce computational drug discovery strategies and outline up-to-date tools to perform the strategies as well as available knowledge bases for those who develop their own computational models. Finally, we introduce successful examples of anti-bacterial, anti-viral, and anti-cancer drug discoveries that were made using computational methods.
Collapse
Affiliation(s)
- Bilal Shaker
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Sajjad Ahmad
- Department of Health and Biological Sciences, Abasyn University, Peshawar, 25000, Pakistan
| | - Jingyu Lee
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Chanjin Jung
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea
| | - Dokyun Na
- Department of Biomedical Engineering, Chung-Ang University, 84 Heukseok-ro, Dongjak-gu, Seoul, 06974, Republic of Korea.
| |
Collapse
|
22
|
Feng J, Shaik S, Wang B. Spin‐Regulated Electron Transfer and Exchange‐Enhanced Reactivity in Fe
4
S
4
‐Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| | - Sason Shaik
- Institute of Chemistry The Hebrew University of Jerusalem Jerusalem 9190401 Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry College of Chemistry and Chemical Engineering Xiamen University Xiamen 361005 China
| |
Collapse
|
23
|
Feng J, Shaik S, Wang B. Spin-Regulated Electron Transfer and Exchange-Enhanced Reactivity in Fe 4 S 4 -Mediated Redox Reaction of the Dph2 Enzyme During the Biosynthesis of Diphthamide. Angew Chem Int Ed Engl 2021; 60:20430-20436. [PMID: 34302311 DOI: 10.1002/anie.202107008] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Indexed: 11/06/2022]
Abstract
The [4Fe-4S]-dependent radical S-adenosylmethionine (SAM) proteins is one of large families of redox enzymes that are able to carry a panoply of challenging transformations. Despite the extensive studies of structure-function relationships of radical SAM (RS) enzymes, the electronic state-dependent reactivity of the [4Fe-4S] cluster in these enzymes remains elusive. Using combined MD simulations and QM/MM calculations, we deciphered the electronic state-dependent reactivity of the [4Fe-4S] cluster in Dph2, a key enzyme involved in the biosynthesis of diphthamide. Our calculations show that the reductive cleavage of the S-C(γ) bond is highly dependent on the electronic structure of [4Fe-4S]. Interestingly, the six electronic states can be classified into a low-energy and a high-energy groups, which are correlated with the net spin of Fe4 atom ligated to SAM. Due to the driving force of Fe4-C(γ) bonding, the net spin on the Fe4 moiety dictate the shift of the opposite spin electron from the Fe1-Fe2-Fe3 block to SAM. Such spin-regulated electron transfer results in the exchange-enhanced reactivity in the lower-energy group compared with those in the higher-energy group. This reactivity principle provides fundamental mechanistic insights into reactivities of [4Fe-4S] cluster in RS enzymes.
Collapse
Affiliation(s)
- Jianqiang Feng
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| | - Sason Shaik
- Institute of Chemistry, The Hebrew University of Jerusalem, Jerusalem, 9190401, Israel
| | - Binju Wang
- State Key Laboratory of Physical Chemistry of Solid Surfaces and Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, China
| |
Collapse
|
24
|
Summers TJ, Cheng Q, Palma MA, Pham DT, Kelso DK, Webster CE, DeYonker NJ. Cheminformatic quantum mechanical enzyme model design: A catechol-O-methyltransferase case study. Biophys J 2021; 120:3577-3587. [PMID: 34358526 DOI: 10.1016/j.bpj.2021.07.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 10/20/2022] Open
Abstract
To accurately simulate the inner workings of an enzyme active site with quantum mechanics (QM), not only must the reactive species be included in the model but also important surrounding residues, solvent, or coenzymes involved in crafting the microenvironment. Our lab has been developing the Residue Interaction Network Residue Selector (RINRUS) toolkit to utilize interatomic contact network information for automated, rational residue selection and QM-cluster model generation. Starting from an x-ray crystal structure of catechol-O-methyltransferase, RINRUS was used to construct a series of QM-cluster models. The reactant, product, and transition state of the methyl transfer reaction were computed for a total of 550 models, and the resulting free energies of activation and reaction were used to evaluate model convergence. RINRUS-designed models with only 200-300 atoms are shown to converge. RINRUS will serve as a cornerstone for improved and automated cheminformatics-based enzyme model design.
Collapse
Affiliation(s)
- Thomas J Summers
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Qianyi Cheng
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Manuel A Palma
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Diem-Trang Pham
- Department of Chemistry, The University of Memphis, Memphis, Tennessee; Department of Computer Science, The University of Memphis, Memphis, Tennessee
| | - Dudley K Kelso
- Department of Chemistry, The University of Memphis, Memphis, Tennessee
| | - Charles Edwin Webster
- Department of Chemistry, Mississippi State University, Mississippi State, Mississippi
| | - Nathan J DeYonker
- Department of Chemistry, The University of Memphis, Memphis, Tennessee.
| |
Collapse
|
25
|
Jafari S, Ryde U, Irani M. QM/MM Study of the Catalytic Reaction of Myrosinase; Importance of Assigning Proper Protonation States of Active-Site Residues. J Chem Theory Comput 2021; 17:1822-1841. [PMID: 33543623 PMCID: PMC8023669 DOI: 10.1021/acs.jctc.0c01121] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
![]()
Myrosinase from Sinapis alba hydrolyzes glycosidic
bonds of β-d-S-glucosides. The enzyme
shows an enhanced activity in the presence of l-ascorbic
acid. In this work, we employed combined quantum mechanical and molecular
mechanical (QM/MM) calculations and molecular dynamics simulations
to study the catalytic reaction of wild-type myrosinase and its E464A,
Q187A, and Q187E mutants. Test calculations show that a proper QM
region to study the myrosinase reaction must contain the whole substrate,
models of Gln-187, Glu-409, Gln-39, His-141, Asn-186, Tyr-330, Glu-464,
Arg-259, and a water molecule. Furthermore, to make the deglycosylation
step possible, Arg-259 must be charged, Glu-464 must be protonated
on OE2, and His-141 must be protonated on the NE2 atom. The results
indicate that assigning proper protonation states of the residues
is more important than the size of the model QM system. Our model
reproduces the anomeric retaining characteristic of myrosinase and
also reproduces the experimental fact that ascorbate increases the
rate of the reaction. A water molecule in the active site, positioned
by Gln-187, helps the aglycon moiety of the substrate to stabilize
the buildup of negative charge during the glycosylation reaction and
this in turn makes the moiety a better leaving group. The water molecule
also lowers the glycosylation barrier by ∼9 kcal/mol. The results
indicate that the Q187E and E464A mutants but not the Q187A mutant
can perform the glycosylation step. However, the energy profiles for
the deglycosylation step of the mutants are not similar to that of
the wild-type enzyme. The Glu-464 residue lowers the barriers of the
glycosylation and deglycosylation steps. The ascorbate ion can act
as a general base in the reaction of the wild-type enzyme only if
the Glu-464 and His-141 residues are properly protonated.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, 66175-416 Sanandaj, Iran
| |
Collapse
|
26
|
Rovaletti A, Greco C, Ryde U. QM/MM study of the binding of H 2 to MoCu CO dehydrogenase: development and applications of improved H 2 van der Waals parameters. J Mol Model 2021; 27:68. [PMID: 33538901 PMCID: PMC7862525 DOI: 10.1007/s00894-020-04655-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/20/2020] [Indexed: 11/28/2022]
Abstract
The MoCu CO dehydrogenase enzyme not only transforms CO into CO2 but it can also oxidise H2. Even if its hydrogenase activity has been known for decades, a debate is ongoing on the most plausible mode for the binding of H2 to the enzyme active site and the hydrogen oxidation mechanism. In the present work, we provide a new perspective on the MoCu-CODH hydrogenase activity by improving the in silico description of the enzyme. Energy refinement—by means of the BigQM approach—was performed on the intermediates involved in the dihydrogen oxidation catalysis reported in our previously published work (Rovaletti, et al. “Theoretical Insights into the Aerobic Hydrogenase Activity of Molybdenum–Copper CO Dehydrogenase.” Inorganics 7 (2019) 135). A suboptimal description of the H2–HN(backbone) interaction was observed when the van der Waals parameters described in previous literature for H2 were employed. Therefore, a new set of van der Waals parameters is developed here in order to better describe the hydrogen–backbone interaction. They give rise to improved binding modes of H2 in the active site of MoCu CO dehydrogenase. Implications of the resulting outcomes for a better understanding of hydrogen oxidation catalysis mechanisms are proposed and discussed.
Collapse
Affiliation(s)
- Anna Rovaletti
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy
| | - Claudio Greco
- Department of Earth and Environmental Sciences, Milano-Bicocca University, Piazza della Scienza 1, 20126, Milan, Italy.
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
27
|
Jafari S, Ryde U, Irani M. Two-Substrate Glyoxalase I Mechanism: A Quantum Mechanics/Molecular Mechanics Study. Inorg Chem 2021; 60:303-314. [PMID: 33315368 DOI: 10.1021/acs.inorgchem.0c02957] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glyoxalase I (GlxI) is an important enzyme that catalyzes the detoxification of methylglyoxal (MG) with the help of glutathione (H-SG). It is currently unclear whether MG and H-SG are substrates of GlxI or whether the enzyme processes hemithioacetal (HTA), which is nonenzymatically formed from MG and H-SG. Most previous studies have concentrated on the latter mechanism. Here, we study the two-substrate reaction mechanism of GlxI from humans (HuGlxI) and corn (ZmGlxI), which are Zn(II)-active and -inactive, respectively. Hybrid quantum mechanics/molecular mechanics calculations were used to obtain geometrical structures of the stationary points along reaction paths, and big quantum mechanical systems with more than 1000 atoms and free-energy perturbations were used to improve the quality of the calculated energies. We studied, on an equal footing, all reasonable reaction paths to the S- and R-enantiomers of HTA from MG and H-SG (the latter was considered in two different binding modes). The results indicate that the MG and H-SG reaction in both enzymes can follow the same path to reach S-HTA. However, the respective overall barriers and reaction energies are different for the two enzymes (6.1 and -9.8 kcal/mol for HuGlxI and 15.7 and -2.2 kcal/mol for ZmGlxI). The first reaction step to produce S-HTA is facilitated by a crystal water molecule that forms hydrogen bonds with a Glu and a Thr residue in the active site. The two enzymes also follow similar paths to R-HTA. However, the reactions reach a deprotonated and protonated R-HTA in the human and corn enzymes, respectively. The production of deprotonated R-HTA in HuGlxI is consistent with other theoretical and experimental works. However, our calculations show a different behavior for ZmGlxI (both S- and R-HTA can be formed in the enzyme with the alcoholic proton on HTA). This implies that Glu-144 of corn GlxI is not basic enough to keep the alcoholic proton. In HuGlxI, the two binding modes of H-SG that lead to S- and R-HTA are degenerate, but the barrier leading to R-HTA is lower than the barrier to S-HTA. On the other hand, ZmGlxI prefers the binding mode, which produces S-HTA; this observation is consistent with experiments. Based on the results, we present a modification for a previously proposed two-substrate reaction mechanism for ZmGlxI.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran.,Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Mehdi Irani
- Department of Chemistry, University of Kurdistan, P.O. Box 66175-416, Sanandaj, Iran
| |
Collapse
|
28
|
Khrenova MG, Tsirelson VG, Nemukhin AV. Dynamical properties of enzyme-substrate complexes disclose substrate specificity of the SARS-CoV-2 main protease as characterized by the electron density descriptors. Phys Chem Chem Phys 2020; 22:19069-19079. [PMID: 32812956 DOI: 10.1039/d0cp03560b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A dynamical approach is proposed to discriminate between reactive (rES) and nonreactive (nES) enzyme-substrate complexes taking the SARS-CoV-2 main protease (Mpro) as an important example. Molecular dynamics simulations with the quantum mechanics/molecular mechanics potentials (QM(DFT)/MM-MD) followed by the electron density analysis are employed to evaluate geometry and electronic properties of the enzyme with different substrates along MD trajectories. We demonstrate that mapping the Laplacian of the electron density and the electron localization function provides easily visible images of the substrate activation that allow one to distinguish rES and nES. The computed fractions of reactive enzyme-substrate complexes along MD trajectories well correlate with the findings of recent experimental studies on the substrate specificity of Mpro. The results of our simulations demonstrate the role of the theory level used in QM subsystems for a proper description of the nucleophilic attack of the catalytic cysteine residue in Mpro. The activation of the carbonyl group of a substrate is correctly characterized with the hybrid DFT functional PBE0, whereas the use of a GGA-type PBE functional, that lacks the admixture of the Hartree-Fock exchange fails to describe activation.
Collapse
Affiliation(s)
- Maria G Khrenova
- Bach Institute of Biochemistry, Federal Research Centre "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Leninsky Prospect, 33, bld. 2, Moscow, 119071, Russia and Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - Vladimir G Tsirelson
- Mendeleev University of Chemical Technology, Miusskaya Square, 9, Moscow, 125047, Russia
| | - Alexander V Nemukhin
- Department of Chemistry, Lomonosov Moscow State University, Moscow, 119991, Russia. and Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, 119334, Russia
| |
Collapse
|
29
|
Dong C, Montes M, Al-Sawai WM. Xanthine oxidoreductase inhibition – A review of computational aspect. JOURNAL OF THEORETICAL & COMPUTATIONAL CHEMISTRY 2020. [DOI: 10.1142/s0219633620400088] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Xanthine Oxidoreductase (XOR) exists in a variety of organisms from bacteria to humans and catalyzes the oxidation of hypoxanthine to xanthine and from xanthine to uric acid. Excessive uric acid could lead to gout and hyperuricemia. In this paper, we have reviewed the recent computational studies on xanthine oxidase inhibition. Computational methods, such as molecular dynamics (molecular mechanics), quantum mechanics, and quantum mechanics/molecular mechanics (QM/MM), have been employed to investigate the binding affinity of xanthine oxidase with synthesized and isolated nature inhibitors. The limitations of different computational methods for xanthine oxidase inhibition studies were also discussed. Implications of the computational approach could be used to help to understand the existing arguments on substrate/product orientation in xanthine oxidase inhibition, which allows designing new inhibitors with higher efficacy.
Collapse
Affiliation(s)
- Chao Dong
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Milka Montes
- Department of Chemistry, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| | - Wael M. Al-Sawai
- Department of Mathematics & Physics, The University of Texas of the Permian Basin, Odessa, Texas 79762, USA
| |
Collapse
|
30
|
Mehmood R, Kulik HJ. Both Configuration and QM Region Size Matter: Zinc Stability in QM/MM Models of DNA Methyltransferase. J Chem Theory Comput 2020; 16:3121-3134. [PMID: 32243149 DOI: 10.1021/acs.jctc.0c00153] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Quantum-mechanical/molecular-mechanical (QM/MM) methods are essential to the study of metalloproteins, but the relative importance of sampling and degree of QM treatment in achieving quantitative predictions is poorly understood. We study the relative magnitude of configurational and QM-region sensitivity of energetic and electronic properties in a representative Zn2+ metal binding site of a DNA methyltransferase. To quantify property variations, we analyze snapshots extracted from 250 ns of molecular dynamics simulation. To understand the degree of QM-region sensitivity, we perform analysis using QM regions ranging from a minimal 49-atom region consisting only of the Zn2+ metal and its four coordinating Cys residues up to a 628-atom QM region that includes residues within 12 Å of the metal center. Over the configurations sampled, we observe that illustrative properties (e.g., rigid Zn2+ removal energy) exhibit large fluctuations that are well captured with even minimal QM regions. Nevertheless, for both energetic and electronic properties, we observe a slow approach to asymptotic limits with similarly large changes in absolute values that converge only with larger (ca. 300-atom) QM region sizes. For the smaller QM regions, the electronic description of Zn2+ binding is incomplete: the metal binds too tightly and is too stabilized by the strong electrostatic potential of MM point charges, and the Zn-S bond covalency is overestimated. Overall, this work suggests that efficient sampling with QM/MM in small QM regions is an effective method to explore the influence of enzyme structure on target properties. At the same time, accurate descriptions of electronic and energetic properties require a larger QM region than the minimal metal-coordinating residues in order to converge treatment of both metal-local bonding and the overall electrostatic environment.
Collapse
Affiliation(s)
- Rimsha Mehmood
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
31
|
Jafari S, Ryde U, Fouda AEA, Alavi FS, Dong G, Irani M. Quantum Mechanics/Molecular Mechanics Study of the Reaction Mechanism of Glyoxalase I. Inorg Chem 2020; 59:2594-2603. [PMID: 32011880 DOI: 10.1021/acs.inorgchem.9b03621] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Glyoxalase I (GlxI) is a member of the glyoxalase system, which is important in cell detoxification and converts hemithioacetals of methylglyoxal (a cytotoxic byproduct of sugar metabolism that may react with DNA or proteins and introduce nucleic acid strand breaks, elevated mutation frequencies, and structural or functional changes of the proteins) and glutathione into d-lactate. GlxI accepts both the S and R enantiomers of hemithioacetal, but converts them to only the S-d enantiomer of lactoylglutathione. Interestingly, the enzyme shows this unusual specificity with a rather symmetric active site (a Zn ion coordinated to two glutamate residues; Glu-99 and Glu-172), making the investigation of its reaction mechanism challenging. Herein, we have performed a series of combined quantum mechanics and molecular mechanics calculations to study the reaction mechanism of GlxI. The substrate can bind to the enzyme in two different modes, depending on the direction of its alcoholic proton (H2; toward Glu-99 or Glu-172). Our results show that the S substrate can react only if H2 is directed toward Glu-99 and the R substrate only if H2 is directed toward Glu-172. In both cases, the reactions lead to the experimentally observed S-d enantiomer of the product. In addition, the results do not show any low-energy paths to the wrong enantiomer of the product from neither the S nor the R substrate. Previous studies have presented several opposing mechanisms for the conversion of R and S enantiomers of the substrate to the correct enantiomer of the product. Our results confirm one of them for the S substrate, but propose a new one for the R substrate.
Collapse
Affiliation(s)
- Sonia Jafari
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj 66177-15177 , Iran.,Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Adam Emad Ahmed Fouda
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Fatemeh Sadat Alavi
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Geng Dong
- Department of Theoretical Chemistry , Lund University , P.O. Box 124, SE-22100 Lund , Sweden
| | - Mehdi Irani
- Department of Chemistry , University of Kurdistan , P.O. Box 66175-416, Sanandaj 66177-15177 , Iran
| |
Collapse
|
32
|
A thiocarbonate sink on the enzymatic energy landscape of aerobic CO oxidation? Answers from DFT and QM/MM models of Mo Cu CO-dehydrogenases. J Catal 2019. [DOI: 10.1016/j.jcat.2019.02.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
QM/MM study of the stereospecific proton exchange of glutathiohydroxyacetone by glyoxalase I. RESULTS IN CHEMISTRY 2019. [DOI: 10.1016/j.rechem.2019.100011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
|
34
|
Wei WJ, Qian HX, Wang WJ, Liao RZ. Computational Understanding of the Selectivities in Metalloenzymes. Front Chem 2018; 6:638. [PMID: 30622942 PMCID: PMC6308299 DOI: 10.3389/fchem.2018.00638] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 12/07/2018] [Indexed: 01/26/2023] Open
Abstract
Metalloenzymes catalyze many different types of biological reactions with high efficiency and remarkable selectivity. The quantum chemical cluster approach and the combined quantum mechanics/molecular mechanics methods have proven very successful in the elucidation of the reaction mechanism and rationalization of selectivities in enzymes. In this review, recent progress in the computational understanding of various selectivities including chemoselectivity, regioselectivity, and stereoselectivity, in metalloenzymes, is discussed.
Collapse
Affiliation(s)
| | | | | | - Rong-Zhen Liao
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Ministry of Education, Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, Hubei Key Laboratory of Materials Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
35
|
Dong G, Phung QM, Pierloot K, Ryde U. Reaction Mechanism of [NiFe] Hydrogenase Studied by Computational Methods. Inorg Chem 2018; 57:15289-15298. [PMID: 30500163 DOI: 10.1021/acs.inorgchem.8b02590] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
[NiFe] hydrogenases catalyze the reversible conversion of molecular hydrogen to protons and electrons. This seemingly simple reaction has attracted much attention because of the prospective use of H2 as a clean fuel. In this paper, we have studied the full reaction mechanism of this enzyme with various computational methods. Geometries were obtained with combined quantum mechanical and molecular mechanics (QM/MM) calculations. To get more accurate energies and obtain a detailed account of the surroundings, we performed big-QM calculations with 819 atoms in the QM region. Moreover, QM/MM thermodynamic cycle perturbation calculations were performed to obtain free energies. Finally, density matrix renormalisation group complete active space self-consistent field calculations were carried out to study the electronic structures of the various states in the reaction mechanism. Our calculations indicate that the Ni-L state is not involved in the reaction mechanism. Instead, the Ni-C state is reduced by one electron and then the bridging hydride ion is transferred to the sulfur atom of Cys546 as a proton and the two electrons transfer to the Ni ion. This step turned out to be rate-determining with an energy barrier of 58 kJ/mol, which is consistent with the experimental rate of 750 ± 90 s-1 (corresponding to ∼52 kJ/mol). The cleavage of the H-H bond is facile with an energy barrier of 33 kJ/mol, according to our calculations. We also find that the reaction energies are sensitive to the size of the QM system, the basis set, and the density functional theory method, in agreement with previous studies.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Chemical Centre , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
- Department of Biochemistry and Molecular Biology , Shantou University Medical College , Shantou 514041 , Guangdong , PR China
| | - Quan Manh Phung
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Kristine Pierloot
- Department of Chemistry , KU Leuven , Celestijnenlaan 200F , B-3001 Leuven , Belgium
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre , Lund University , P.O. Box 124, SE-221 00 Lund , Sweden
| |
Collapse
|
36
|
Dong G, Ryde U. Reaction mechanism of formate dehydrogenase studied by computational methods. J Biol Inorg Chem 2018; 23:1243-1254. [PMID: 30173398 DOI: 10.1007/s00775-018-1608-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 08/22/2018] [Indexed: 02/05/2023]
Abstract
Formate dehydrogenases (FDHs) are metalloenzymes that catalyse the reversible conversion of formate to carbon dioxide. Since such a process may be used to combat the greenhouse effect, FDHs have been extensively studied by experimental and theoretical methods. However, the reaction mechanism is still not clear; instead five putative mechanisms have been suggested. In this work, the reaction mechanism of FDH was studied by computational methods. Combined quantum mechanical and molecular mechanic (QM/MM) optimisations were performed to obtain the geometries. To get more accurate energies and obtain a detailed account of the surroundings, big-QM calculations with a very large (1121 atoms) QM region were performed. Our results indicate that the formate substrate does not coordinate directly to Mo when it enters the oxidised active site of the FDH, but instead resides in the second coordination sphere. The sulfido ligand abstracts a hydride ion from the substrate, giving a Mo(IV)-SH state and a thiocarbonate ion attached to Cys196. The latter releases CO2 when the active site is oxidised back to the resting (MoVI) state. This mechanism is supported by recent experimental studies.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00, Lund, Sweden
- Department of Biochemistry and Molecular Biology, Shantou University Medical College, Shantou, 514041, Guangdong, People's Republic of China
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00, Lund, Sweden.
| |
Collapse
|
37
|
Kulik HJ. Large-scale QM/MM free energy simulations of enzyme catalysis reveal the influence of charge transfer. Phys Chem Chem Phys 2018; 20:20650-20660. [PMID: 30059109 PMCID: PMC6085747 DOI: 10.1039/c8cp03871f] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Hybrid quantum mechanical-molecular mechanical (QM/MM) simulations provide key insights into enzyme structure-function relationships. Numerous studies have demonstrated that large QM regions are needed to systematically converge ground state, zero temperature properties with electrostatic embedding QM/MM. However, it is not well known if ab initio QM/MM free energy simulations have this same dependence, in part due to the hundreds of thousands of energy evaluations required for free energy estimations that in turn limit QM region size. Here, we leverage recent advances in electronic structure efficiency and accuracy to carry out range-separated hybrid density functional theory free energy simulations in a representative methyltransferase. By studying 200 ps of ab initio QM/MM dynamics for each of five QM regions from minimal (64 atoms) to one-sixth of the protein (544 atoms), we identify critical differences between large and small QM region QM/MM in charge transfer between substrates and active site residues as well as in geometric structure and dynamics that coincide with differences in predicted free energy barriers. Distinct geometric and electronic structure features in the largest QM region indicate that important aspects of enzymatic rate enhancement in methyltransferases are identified with large-scale electronic structure.
Collapse
Affiliation(s)
- Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
38
|
Escorcia AM, Stein M. QM/MM Investigation of the Role of a Second Coordination Shell Arginine in [NiFe]-Hydrogenases. Front Chem 2018; 6:164. [PMID: 29868565 PMCID: PMC5962704 DOI: 10.3389/fchem.2018.00164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 04/23/2018] [Indexed: 01/01/2023] Open
Abstract
[NiFe]-hydrogenases are highly efficient catalysts for the heterolytic splitting of molecular hydrogen (H2). The heterobimetallic cysteine-coordinated active site of these enzymes is covered by a highly conserved arginine residue, whose role in the reaction is not fully resolved yet. The structural and catalytic role of this arginine is investigated here using QM/MM calculations with various exchange-correlation functionals. All of them give a very consistent picture of the thermodynamics of H2 oxidation. The concept of the presence of a neutral arginine and its direct involvement as a Frustrated Lewis Pair (FLP) in the reaction is critically evaluated. The arginine, however, would exist in its standard protonation state and perform a critical role in positioning and slightly polarizing the substrate H2. It is not directly involved in the heterolytic processing of H2 but guides its approach and reduces its flexibility during binding. Upon substitution of the positively charged arginine by a charge-conserving lysine residue, the H2 binding position remains unaffected. However, critical hydrogen bonding interactions with nearby aspartate residues are lost. In addition, the H2 polarization is unfavorable and the reduced side-chain volume may negatively affect the kinetics of the catalytic process.
Collapse
Affiliation(s)
- Andrés M Escorcia
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Matthias Stein
- Molecular Simulations and Design Group, Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| |
Collapse
|
39
|
Abstract
Sulfite oxidase is a mononuclear molybdenum enzyme that oxidises sulfite to sulfate in many organisms, including man. Three different reaction mechanisms have been suggested, based on experimental and computational studies. Here, we study all three with combined quantum mechanical (QM) and molecular mechanical (QM/MM) methods, including calculations with large basis sets, very large QM regions (803 atoms) and QM/MM free-energy perturbations. Our results show that the enzyme is set up to follow a mechanism in which the sulfur atom of the sulfite substrate reacts directly with the equatorial oxo ligand of the Mo ion, forming a Mo-bound sulfate product, which dissociates in the second step. The first step is rate limiting, with a barrier of 39–49 kJ/mol. The low barrier is obtained by an intricate hydrogen-bond network around the substrate, which is preserved during the reaction. This network favours the deprotonated substrate and disfavours the other two reaction mechanisms. We have studied the reaction with both an oxidised and a reduced form of the molybdopterin ligand and quantum-refinement calculations indicate that it is in the normal reduced tetrahydro form in this protein.
Collapse
|
40
|
Dong G, Cao L, Ryde U. Insight into the reaction mechanism of lipoyl synthase: a QM/MM study. J Biol Inorg Chem 2018; 23:221-229. [PMID: 29204715 PMCID: PMC5816104 DOI: 10.1007/s00775-017-1522-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 11/28/2017] [Indexed: 11/26/2022]
Abstract
Lipoyl synthase (LipA) catalyses the final step of the biosynthesis of the lipoyl cofactor by insertion of two sulfur atoms at the C6 and C8 atoms of the protein-bound octanoyl substrate. In this reaction, two [4Fe4S] clusters and two molecules of S-adenosyl-L-methionine are used. One of the two FeS clusters is responsible for the generation of a powerful oxidant, the 5'-deoxyadenosyl radical (5'-dA•). The other (the auxiliary cluster) is the source of both sulfur atoms that are inserted into the substrate. In this paper, the spin state of the FeS clusters and the reaction mechanism is investigated by the combined quantum mechanical and molecular mechanics approach. The calculations show that the ground state of the two FeS clusters, both in the [4Fe4S]2+ oxidation state, is a singlet state with antiferromagnetically coupled high-spin Fe ions and that there is quite a large variation of the energies of the various broken-symmetry states, up to 40 kJ/mol. For the two S-insertion reactions, the highest energy barrier is found for the hydrogen-atom abstraction from the octanoyl substrate by 5'-dA•. The formation of 5'-dA• is very facile for LipA, with an energy barrier of 6 kJ/mol for the first S-insertion reaction and without any barrier for the second S-insertion reaction. In addition, the first S ion attack on the C6 radical of octanoyl was found to take place directly by the transfer of the H6 from the substrate to 5'-dA•, whereas for the second S-insertion reaction, a C8 radical intermediate was formed with a rate-limiting barrier of 71 kJ/mol.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden.
| | - Lili Cao
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry, Chemical Centre, Lund University, P.O. Box 124, 221 00, Lund, Sweden
| |
Collapse
|
41
|
The unique fold and lability of the [2Fe-2S] clusters of NEET proteins mediate their key functions in health and disease. J Biol Inorg Chem 2018; 23:599-612. [PMID: 29435647 PMCID: PMC6006223 DOI: 10.1007/s00775-018-1538-8] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Accepted: 01/26/2018] [Indexed: 02/08/2023]
Abstract
NEET proteins comprise a new class of [2Fe-2S] cluster proteins. In human, three genes encode for NEET proteins: cisd1 encodes mitoNEET (mNT), cisd2 encodes the Nutrient-deprivation autophagy factor-1 (NAF-1) and cisd3 encodes MiNT (Miner2). These recently discovered proteins play key roles in many processes related to normal metabolism and disease. Indeed, NEET proteins are involved in iron, Fe-S, and reactive oxygen homeostasis in cells and play an important role in regulating apoptosis and autophagy. mNT and NAF-1 are homodimeric and reside on the outer mitochondrial membrane. NAF-1 also resides in the membranes of the ER associated mitochondrial membranes (MAM) and the ER. MiNT is a monomer with distinct asymmetry in the molecular surfaces surrounding the clusters. Unlike its paralogs mNT and NAF-1, it resides within the mitochondria. NAF-1 and mNT share similar backbone folds to the plant homodimeric NEET protein (At-NEET), while MiNT's backbone fold resembles a bacterial MiNT protein. Despite the variation of amino acid composition among these proteins, all NEET proteins retained their unique CDGSH domain harboring their unique 3Cys:1His [2Fe-2S] cluster coordination through evolution. The coordinating exposed His was shown to convey the lability to the NEET proteins' [2Fe-2S] clusters. In this minireview, we discuss the NEET fold and its structural elements. Special attention is given to the unique lability of the NEETs' [2Fe-2S] cluster and the implication of the latter to the NEET proteins' cellular and systemic function in health and disease.
Collapse
|
42
|
Dong G, Ryde U, Aa. Jensen HJ, Hedegård ED. Exploration of H2 binding to the [NiFe]-hydrogenase active site with multiconfigurational density functional theory. Phys Chem Chem Phys 2018; 20:794-801. [DOI: 10.1039/c7cp06767d] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The combination of density functional theory (DFT) with a multiconfigurational wave function is an efficient way to include dynamical correlation in calculations with multiconfiguration self-consistent field wave functions.
Collapse
Affiliation(s)
- Geng Dong
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| | - Ulf Ryde
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| | - Hans Jørgen Aa. Jensen
- Department of Physics, Chemistry and Pharmacy
- University of Southern Denmark
- DK-5230 Odense M
- Denmark
| | - Erik D. Hedegård
- Department of Theoretical Chemistry
- Lund University
- Chemical Centre
- SE-221 00 Lund
- Sweden
| |
Collapse
|
43
|
Alavi FS, Zahedi M, Safari N, Ryde U. QM/MM Study of the Conversion of Oxophlorin into Verdoheme by Heme Oxygenase. J Phys Chem B 2017; 121:11427-11436. [PMID: 29090581 DOI: 10.1021/acs.jpcb.7b08332] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Heme oxygenase is an enzyme that degrades heme, thereby recycling iron in most organisms, including humans. Pervious density functional theory (DFT) calculations have suggested that iron(III) hydroxyheme, an intermediate generated in the first step of heme degradation by heme oxygenase, is converted to iron(III) superoxo oxophlorin in the presence of dioxygen. In this article, we have studied the detailed mechanism of conversion of iron(III) superoxo oxophlorin to verdoheme by using combined quantum mechanics and molecular mechanics (QM/MM) calculations. The calculations employed the B3LYP method and the def2-QZVP basis set, considering dispersion effects with the DFT-D3 approach, obtaining accurate energies with large QM regions of almost 1000 atoms. The reaction was found to be exothermic by -35 kcal/mol, with a rate-determining barrier of 19 kcal/mol in the doublet state. The protein environment and especially water in the enzyme pocket significantly affects the reaction by decreasing the reaction activation energies and changing the structures by providing strategic hydrogen bonds.
Collapse
Affiliation(s)
- Fatemeh Sadat Alavi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Mansour Zahedi
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Nasser Safari
- Department of Chemistry, Faculty of Sciences, Shahid Beheshti University , G.C., Evin, 19839-6313 Tehran, Iran
| | - Ulf Ryde
- Department of Theoretical Chemistry, Lund University , Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
44
|
Ryde U. How Many Conformations Need To Be Sampled To Obtain Converged QM/MM Energies? The Curse of Exponential Averaging. J Chem Theory Comput 2017; 13:5745-5752. [DOI: 10.1021/acs.jctc.7b00826] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Ulf Ryde
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
45
|
Cao L, Caldararu O, Ryde U. Protonation States of Homocitrate and Nearby Residues in Nitrogenase Studied by Computational Methods and Quantum Refinement. J Phys Chem B 2017; 121:8242-8262. [DOI: 10.1021/acs.jpcb.7b02714] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Lili Cao
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Octav Caldararu
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| | - Ulf Ryde
- Department of Theoretical
Chemistry, Lund University, Chemical Centre, P.O. Box 124, SE-221 00 Lund, Sweden
| |
Collapse
|
46
|
Dokainish HM, Yamada D, Iwata T, Kandori H, Kitao A. Electron Fate and Mutational Robustness in the Mechanism of (6-4)Photolyase-Mediated DNA Repair. ACS Catal 2017. [DOI: 10.1021/acscatal.7b00751] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Hisham M. Dokainish
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Daichi Yamada
- Department
of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Tatsuya Iwata
- Department
of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Hideki Kandori
- Department
of Frontier Materials, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
- OptoBioTechnology
Research Center, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan
| | - Akio Kitao
- Institute
of Molecular and Cellular Biosciences, The University of Tokyo, 1-1-1, Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| |
Collapse
|
47
|
Poudel L, Twarock R, Steinmetz NF, Podgornik R, Ching WY. Impact of Hydrogen Bonding in the Binding Site between Capsid Protein and MS2 Bacteriophage ssRNA. J Phys Chem B 2017; 121:6321-6330. [PMID: 28581757 DOI: 10.1021/acs.jpcb.7b02569] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
MS2 presents a well-studied example of a single-stranded RNA virus for which the genomic RNA plays a pivotal role in the virus assembly process based on the packaging signal-mediated mechanism. Packaging signals (PSs) are multiple dispersed RNA sequence/structure motifs varying around a central recognition motif that interact in a specific way with the capsid protein in the assembly process. Although the discovery and identification of these PSs was based on bioinformatics and geometric approaches, in tandem with sophisticated experimental protocols, we approach this problem using large-scale ab initio computation centered on critical aspects of the consensus protein-RNA interactions recognition motif. DFT calculations are carried out on two nucleoprotein complexes: wild-type and mutated (PDB IDs: 1ZDH and 5MSF ). The calculated partial charge distribution of residues and the strength of hydrogen bonding (HB) between them enabled us to locate the exact binding sites with the strongest HBs, identified to be LYS43-A-4, ARG49-C-13, TYR85-C-5, and LYS61-C-5, due to the change in the sequence of the mutated RNA.
Collapse
Affiliation(s)
- Lokendra Poudel
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| | - Reidun Twarock
- Department of Mathematics and Biology and York Centre for Complex Systems Analysis, University of York , York YO10 5DD, United Kingdom
| | | | - Rudolf Podgornik
- Department of Theoretical Physics, J. Stefan Institute , SI-1000 Ljubljana, Slovenia.,Department of Physics, Faculty of Mathematics and Physics, University of Ljubljana , SI-1000 Ljubljana, Slovenia
| | - Wai-Yim Ching
- Department of Physics and Astronomy, University of Missouri-Kansas City , Kansas City, Missouri 64110, United States
| |
Collapse
|
48
|
Hedegård ED, Bast R, Kongsted J, Olsen JMH, Jensen HJA. Relativistic Polarizable Embedding. J Chem Theory Comput 2017; 13:2870-2880. [DOI: 10.1021/acs.jctc.7b00162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
| | - Radovan Bast
- High
Performance Computing Group, UiT The Arctic University of Norway, Tromsø 9037, Norway
| | - Jacob Kongsted
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| | | | - Hans Jørgen Aagaard Jensen
- Department
of Physics, Chemistry and Pharmacy, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
49
|
Quantum chemical approaches to [NiFe] hydrogenase. Essays Biochem 2017; 61:293-303. [PMID: 28487405 DOI: 10.1042/ebc20160079] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/22/2017] [Accepted: 03/01/2017] [Indexed: 11/17/2022]
Abstract
The mechanism by which [NiFe] hydrogenase catalyses the oxidation of molecular hydrogen is a significant yet challenging topic in bioinorganic chemistry. With far-reaching applications in renewable energy and carbon mitigation, significant effort has been invested in the study of these complexes. In particular, computational approaches offer a unique perspective on how this enzyme functions at an electronic and atomistic level. In this article, we discuss state-of-the art quantum chemical methods and how they have helped deepen our comprehension of [NiFe] hydrogenase. We outline the key strategies that can be used to compute the (i) geometry, (ii) electronic structure, (iii) thermodynamics and (iv) kinetic properties associated with the enzymatic activity of [NiFe] hydrogenase and other bioinorganic complexes.
Collapse
|
50
|
Slater JW, Marguet SC, Cirino SL, Maugeri PT, Shafaat HS. Experimental and DFT Investigations Reveal the Influence of the Outer Coordination Sphere on the Vibrational Spectra of Nickel-Substituted Rubredoxin, a Model Hydrogenase Enzyme. Inorg Chem 2017; 56:3926-3938. [PMID: 28323426 DOI: 10.1021/acs.inorgchem.6b02934] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Nickel-substituted rubredoxin (NiRd) is a functional enzyme mimic of hydrogenase, highly active for electrocatalytic and solution-phase hydrogen generation. Spectroscopic methods can provide valuable insight into the catalytic mechanism, provided the appropriate technique is used. In this study, we have employed multiwavelength resonance Raman spectroscopy coupled with DFT calculations on an extended active-site model of NiRd to probe the electronic and geometric structures of the resting state of this system. Excellent agreement between experiment and theory is observed, allowing normal mode assignments to be made on the basis of frequency and intensity analyses. Both metal-ligand and ligand-centered vibrational modes are enhanced in the resonance Raman spectra. The latter provide information about the hydrogen bonding network and structural distortions due to perturbations in the secondary coordination sphere. To reproduce the resonance enhancement patterns seen for high-frequency vibrational modes, the secondary coordination sphere must be included in the computational model. The structure and reduction potential of the NiIIIRd state have also been investigated both experimentally and computationally. This work begins to establish a foundation for computational resonance Raman spectroscopy to serve in a predictive fashion for investigating catalytic intermediates of NiRd.
Collapse
Affiliation(s)
- Jeffrey W Slater
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sean C Marguet
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Sabrina L Cirino
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Pearson T Maugeri
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| | - Hannah S Shafaat
- The Ohio State University , 100 West 18th Avenue, Columbus, Ohio 43210, United States
| |
Collapse
|