1
|
Chuntakaruk H, Boonpalit K, Kinchagawat J, Nakarin F, Khotavivattana T, Aonbangkhen C, Shigeta Y, Hengphasatporn K, Nutanong S, Rungrotmongkol T, Hannongbua S. Machine learning-guided design of potent darunavir analogs targeting HIV-1 proteases: A computational approach for antiretroviral drug discovery. J Comput Chem 2024; 45:953-968. [PMID: 38174739 DOI: 10.1002/jcc.27298] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/30/2023] [Accepted: 12/13/2023] [Indexed: 01/05/2024]
Abstract
In the pursuit of novel antiretroviral therapies for human immunodeficiency virus type-1 (HIV-1) proteases (PRs), recent improvements in drug discovery have embraced machine learning (ML) techniques to guide the design process. This study employs ensemble learning models to identify crucial substructures as significant features for drug development. Using molecular docking techniques, a collection of 160 darunavir (DRV) analogs was designed based on these key substructures and subsequently screened using molecular docking techniques. Chemical structures with high fitness scores were selected, combined, and one-dimensional (1D) screening based on beyond Lipinski's rule of five (bRo5) and ADME (absorption, distribution, metabolism, and excretion) prediction implemented in the Combined Analog generator Tool (CAT) program. A total of 473 screened analogs were subjected to docking analysis through convolutional neural networks scoring function against both the wild-type (WT) and 12 major mutated PRs. DRV analogs with negative changes in binding free energy (ΔΔ G bind ) compared to DRV could be categorized into four attractive groups based on their interactions with the majority of vital PRs. The analysis of interaction profiles revealed that potent designed analogs, targeting both WT and mutant PRs, exhibited interactions with common key amino acid residues. This observation further confirms that the ML model-guided approach effectively identified the substructures that play a crucial role in potent analogs. It is expected to function as a powerful computational tool, offering valuable guidance in the identification of chemical substructures for synthesis and subsequent experimental testing.
Collapse
Affiliation(s)
- Hathaichanok Chuntakaruk
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Kajjana Boonpalit
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Jiramet Kinchagawat
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Fahsai Nakarin
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Tanatorn Khotavivattana
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Chanat Aonbangkhen
- Center of Excellence in Natural Products Chemistry (CENP), Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Yasuteru Shigeta
- Center for Computational Sciences, University of Tsukuba, Ibaraki, Japan
| | | | - Sarana Nutanong
- School of Information Science and Technology, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong, Thailand
| | - Thanyada Rungrotmongkol
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Biochemistry, Faculty of Science, Center of Excellence in Structural and Computational Biology, Chulalongkorn University, Bangkok, Thailand
| | - Supot Hannongbua
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
- Department of Chemistry, Faculty of Science, Center of Excellence in Computational Chemistry (CECC), Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
2
|
Bobrovs R, Basens EE, Drunka L, Kanepe I, Matisone S, Velins KK, Andrianov V, Leitis G, Zelencova-Gopejenko D, Rasina D, Jirgensons A, Jaudzems K. Exploring Aspartic Protease Inhibitor Binding to Design-Selective Antimalarials. J Chem Inf Model 2022; 62:3263-3273. [PMID: 35712895 DOI: 10.1021/acs.jcim.2c00422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selectivity is a major issue in the development of drugs targeting pathogen aspartic proteases. Here, we explore the selectivity-determining factors by studying specifically designed malaria aspartic protease (plasmepsin) open-flap inhibitors. Metadynamics simulations are used to uncover the complex binding/unbinding pathways of these inhibitors and describe the critical transition states in atomistic resolution. The simulation results are compared with experimentally determined enzymatic activities. Our findings demonstrate that plasmepsin inhibitor selectivity can be achieved by targeting the flap loop with hydrophobic substituents that enable ligand binding under the flap loop, as such a behavior is not observed for several other aspartic proteases. The ability to estimate the selectivity of compounds before they are synthesized is of considerable importance in drug design; therefore, we expect that our approach will be useful in selective inhibitor designs against not only aspartic proteases but also other enzyme classes.
Collapse
Affiliation(s)
- Raitis Bobrovs
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | | | - Laura Drunka
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Iveta Kanepe
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Sofija Matisone
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | | | - Victor Andrianov
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Gundars Leitis
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | | | - Dace Rasina
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Aigars Jirgensons
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| | - Kristaps Jaudzems
- Latvian Institute of Organic Synthesis, Aizkraukles 21, Riga LV1006, Latvia
| |
Collapse
|
3
|
Abstract
Viral proteases are diverse in structure, oligomeric state, catalytic mechanism, and substrate specificity. This chapter focuses on proteases from viruses that are relevant to human health: human immunodeficiency virus subtype 1 (HIV-1), hepatitis C (HCV), human T-cell leukemia virus type 1 (HTLV-1), flaviviruses, enteroviruses, and coronaviruses. The proteases of HIV-1 and HCV have been successfully targeted for therapeutics, with picomolar FDA-approved drugs currently used in the clinic. The proteases of HTLV-1 and the other virus families remain emerging therapeutic targets at different stages of the drug development process. This chapter provides an overview of the current knowledge on viral protease structure, mechanism, substrate recognition, and inhibition. Particular focus is placed on recent advances in understanding the molecular basis of diverse substrate recognition and resistance, which is essential toward designing novel protease inhibitors as antivirals.
Collapse
Affiliation(s)
- Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, United States.
| |
Collapse
|
4
|
Mutations in PBP2 from ceftriaxone-resistant Neisseria gonorrhoeae alter the dynamics of the β3-β4 loop to favor a low-affinity drug-binding state. J Biol Chem 2021; 297:101188. [PMID: 34529975 PMCID: PMC8503634 DOI: 10.1016/j.jbc.2021.101188] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/03/2021] [Accepted: 09/08/2021] [Indexed: 11/20/2022] Open
Abstract
Resistance to the extended-spectrum cephalosporin ceftriaxone in the pathogenic bacteria Neisseria gonorrhoeae is conferred by mutations in penicillin-binding protein 2 (PBP2), the lethal target of the antibiotic, but how these mutations exert their effect at the molecular level is unclear. Using solution NMR, X-ray crystallography, and isothermal titration calorimetry, we report that WT PBP2 exchanges dynamically between a low-affinity state with an extended β3–β4 loop conformation and a high-affinity state with an inward β3–β4 loop conformation. Histidine-514, which is located at the boundary of the β4 strand, plays an important role during the exchange between these two conformational states. We also find that mutations present in PBP2 from H041, a ceftriaxone-resistant strain of N. gonorrhoeae, increase resistance to ceftriaxone by destabilizing the inward β3–β4 loop conformation or stabilizing the extended β3–β4 loop conformation to favor the low-affinity drug-binding state. These observations reveal a unique mechanism for ceftriaxone resistance, whereby mutations in PBP2 lower the proportion of target molecules in the high-affinity drug-binding state and thus reduce inhibition at lower drug concentrations.
Collapse
|
5
|
Matthew AN, Leidner F, Lockbaum GJ, Henes M, Zephyr J, Hou S, Desaboini NR, Timm J, Rusere LN, Ragland DA, Paulsen JL, Prachanronarong K, Soumana DI, Nalivaika EA, Yilmaz NK, Ali A, Schiffer CA. Drug Design Strategies to Avoid Resistance in Direct-Acting Antivirals and Beyond. Chem Rev 2021; 121:3238-3270. [PMID: 33410674 PMCID: PMC8126998 DOI: 10.1021/acs.chemrev.0c00648] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Drug resistance is prevalent across many diseases, rendering therapies ineffective with severe financial and health consequences. Rather than accepting resistance after the fact, proactive strategies need to be incorporated into the drug design and development process to minimize the impact of drug resistance. These strategies can be derived from our experience with viral disease targets where multiple generations of drugs had to be developed to combat resistance and avoid antiviral failure. Significant efforts including experimental and computational structural biology, medicinal chemistry, and machine learning have focused on understanding the mechanisms and structural basis of resistance against direct-acting antiviral (DAA) drugs. Integrated methods show promise for being predictive of resistance and potency. In this review, we give an overview of this research for human immunodeficiency virus type 1, hepatitis C virus, and influenza virus and the lessons learned from resistance mechanisms of DAAs. These lessons translate into rational strategies to avoid resistance in drug design, which can be generalized and applied beyond viral targets. While resistance may not be completely avoidable, rational drug design can and should incorporate strategies at the outset of drug development to decrease the prevalence of drug resistance.
Collapse
Affiliation(s)
- Ashley N. Matthew
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Virginia Commonwealth University
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Gordon J. Lockbaum
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Mina Henes
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jacqueto Zephyr
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Shurong Hou
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nages Rao Desaboini
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Jennifer Timm
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Rutgers University
| | - Linah N. Rusere
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Raybow Pharmaceutical
| | - Debra A. Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- University of North Carolina, Chapel Hill
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Schrodinger, Inc
| | - Kristina Prachanronarong
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Icahn School of Medicine at Mount Sinai
| | - Djade I. Soumana
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
- Cytiva
| | - Ellen A. Nalivaika
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Akbar Ali
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, United States
| |
Collapse
|
6
|
Khan SN, Persons JD, Guerrero M, Ilina TV, Oda M, Ishima R. A synergy of activity, stability, and inhibitor-interaction of HIV-1 protease mutants evolved under drug-pressure. Protein Sci 2020; 30:571-582. [PMID: 33314454 DOI: 10.1002/pro.4013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/06/2020] [Indexed: 01/01/2023]
Abstract
A clinically-relevant, drug-resistant mutant of HIV-1 protease (PR), termed Flap+(I54V) and containing L10I, G48V, I54V and V82A mutations, is known to produce significant changes in the entropy and enthalpy balance of drug-PR interactions, compared to wild-type PR. A similar mutant, Flap+(I54A) , which evolves from Flap+(I54V) and contains the single change at residue 54 relative to Flap+(I54V) , does not. Yet, how Flap+(I54A) behaves in solution is not known. To understand the molecular basis of V54A evolution, we compared nuclear magnetic resonance (NMR) spectroscopy, fluorescence spectroscopy, isothermal titration calorimetry, and enzymatic assay data from four PR proteins: PR (pWT), Flap+(I54V) , Flap+(I54A) , and Flap+(I54) , a control mutant that contains only L10I, G48V and V82A mutations. Our data consistently show that selection to the smaller side chain at residue 54, not only decreases inhibitor affinity, but also restores the catalytic activity.
Collapse
Affiliation(s)
- Shahid N Khan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.,Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Michel Guerrero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Tatiana V Ilina
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Masayuki Oda
- Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, Kyoto, Japan
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Darunavir-Resistant HIV-1 Protease Constructs Uphold a Conformational Selection Hypothesis for Drug Resistance. Viruses 2020; 12:v12111275. [PMID: 33171603 PMCID: PMC7695139 DOI: 10.3390/v12111275] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 10/23/2020] [Accepted: 10/30/2020] [Indexed: 01/24/2023] Open
Abstract
Multidrug resistance continues to be a barrier to the effectiveness of highly active antiretroviral therapy in the treatment of human immunodeficiency virus 1 (HIV-1) infection. Darunavir (DRV) is a highly potent protease inhibitor (PI) that is oftentimes effective when drug resistance has emerged against first-generation inhibitors. Resistance to darunavir does evolve and requires 10–20 amino acid substitutions. The conformational landscapes of six highly characterized HIV-1 protease (PR) constructs that harbor up to 19 DRV-associated mutations were characterized by distance measurements with pulsed electron double resonance (PELDOR) paramagnetic resonance spectroscopy, namely double electron–electron resonance (DEER). The results show that the accumulated substitutions alter the conformational landscape compared to PI-naïve protease where the semi-open conformation is destabilized as the dominant population with open-like states becoming prevalent in many cases. A linear correlation is found between values of the DRV inhibition parameter Ki and the open-like to closed-state population ratio determined from DEER. The nearly 50% decrease in occupancy of the semi-open conformation is associated with reduced enzymatic activity, characterized previously in the literature.
Collapse
|
8
|
Singh A, Turner JM, Tomberg J, Fedarovich A, Unemo M, Nicholas RA, Davies C. Mutations in penicillin-binding protein 2 from cephalosporin-resistant Neisseria gonorrhoeae hinder ceftriaxone acylation by restricting protein dynamics. J Biol Chem 2020; 295:7529-7543. [PMID: 32253235 PMCID: PMC7247294 DOI: 10.1074/jbc.ra120.012617] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
The global incidence of the sexually transmitted disease gonorrhea is expected to rise due to the spread of Neisseria gonorrhoeae strains with decreased susceptibility to extended-spectrum cephalosporins (ESCs). ESC resistance is conferred by mosaic variants of penicillin-binding protein 2 (PBP2) that have diminished capacity to form acylated adducts with cephalosporins. To elucidate the molecular mechanisms of ESC resistance, we conducted a biochemical and high-resolution structural analysis of PBP2 variants derived from the decreased-susceptibility N. gonorrhoeae strain 35/02 and ESC-resistant strain H041. Our data reveal that mutations both lower affinity of PBP2 for ceftriaxone and restrict conformational changes that normally accompany acylation. Specifically, we observe that a G545S substitution hinders rotation of the β3 strand necessary to form the oxyanion hole for acylation and also traps ceftriaxone in a noncanonical configuration. In addition, F504L and N512Y substitutions appear to prevent bending of the β3-β4 loop that is required to contact the R1 group of ceftriaxone in the active site. Other mutations also appear to act by reducing flexibility in the protein. Overall, our findings reveal that restriction of protein dynamics in PBP2 underpins the ESC resistance of N. gonorrhoeae.
Collapse
Affiliation(s)
- Avinash Singh
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Jonathan M Turner
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Joshua Tomberg
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599
| | - Alena Fedarovich
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425
| | - Magnus Unemo
- WHO Collaborating Centre for Gonorrhoea and other STIs, Department of Laboratory Medicine, Microbiology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert A Nicholas
- Departments of Pharmacology and Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599.
| | - Christopher Davies
- Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425.
| |
Collapse
|
9
|
Ishima R, Kurt Yilmaz N, Schiffer CA. NMR and MD studies combined to elucidate inhibitor and water interactions of HIV-1 protease and their modulations with resistance mutations. JOURNAL OF BIOMOLECULAR NMR 2019; 73:365-374. [PMID: 31243634 PMCID: PMC6941145 DOI: 10.1007/s10858-019-00260-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Accepted: 06/19/2019] [Indexed: 06/09/2023]
Abstract
Over the last two decades, both the sensitivity of NMR and the time scale of molecular dynamics (MD) simulation have increased tremendously and have advanced the field of protein dynamics. HIV-1 protease has been extensively studied using these two methods, and has presented a framework for cross-evaluation of structural ensembles and internal dynamics by integrating the two methods. Here, we review studies from our laboratories over the last several years, to understand the mechanistic basis of protease drug-resistance mutations and inhibitor responses, using NMR and crystal structure-based parallel MD simulations. Our studies demonstrate that NMR relaxation experiments, together with crystal structures and MD simulations, significantly contributed to the current understanding of structural/dynamic changes due to HIV-1 protease drug resistance mutations.
Collapse
Affiliation(s)
- Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA.
| |
Collapse
|
10
|
Characterizing early drug resistance-related events using geometric ensembles from HIV protease dynamics. Sci Rep 2018; 8:17938. [PMID: 30560871 PMCID: PMC6298995 DOI: 10.1038/s41598-018-36041-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 11/14/2018] [Indexed: 02/07/2023] Open
Abstract
The use of antiretrovirals (ARVs) has drastically improved the life quality and expectancy of HIV patients since their introduction in health care. Several millions are still afflicted worldwide by HIV and ARV resistance is a constant concern for both healthcare practitioners and patients, as while treatment options are finite, the virus constantly adapts via complex mutation patterns to select for resistant strains under the pressure of drug treatment. The HIV protease is a crucial enzyme for viral maturation and has been a game changing drug target since the first application. Due to similarities in protease inhibitor designs, drug cross-resistance is not uncommon across ARVs of the same class. It is known that resistance against protease inhibitors is associated with a wider active site, but results from our large scale molecular dynamics simulations combined with statistical tests and network analysis further show, for the first time, that there are regions of local expansions and compactions associated with high levels of resistance conserved across eight different protease inhibitors visible in their complexed form within closed receptor conformations. The observed conserved expansion sites may provide an alternative drug-targeting site. Further, the method developed here is novel, supplementary to methods of variation analysis at sequence level, and should be applicable in analysing the structural consequences of mutations in other contexts using molecular ensembles.
Collapse
|
11
|
Nayak C, Chandra I, Singh SK. An
in silico
pharmacological approach toward the discovery of potent inhibitors to combat drug resistance HIV‐1 protease variants. J Cell Biochem 2018; 120:9063-9081. [DOI: 10.1002/jcb.28181] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Accepted: 11/08/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Chirasmita Nayak
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| | - Ishwar Chandra
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling, Department of Bioinformatics Alagappa University Karaikudi India
| |
Collapse
|
12
|
Venkatramani A, Ricci CG, Oldfield E, McCammon JA. Remarkable similarity in Plasmodium falciparum and Plasmodium vivax geranylgeranyl diphosphate synthase dynamics and its implication for antimalarial drug design. Chem Biol Drug Des 2018; 91:1068-1077. [PMID: 29345110 PMCID: PMC6707526 DOI: 10.1111/cbdd.13170] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 12/13/2017] [Accepted: 12/31/2017] [Indexed: 12/14/2022]
Abstract
Malaria, mainly caused by Plasmodium falciparum and Plasmodium vivax, has been a growing cause of morbidity and mortality. P. falciparum is more lethal than is P. vivax, but there is a vital need for effective drugs against both species. Geranylgeranyl diphosphate synthase (GGPPS) is an enzyme involved in the biosynthesis of quinones and in protein prenylation and has been proposed to be a malaria drug target. However, the structure of P. falciparumGGPPS (PfGGPPS) has not been determined, due to difficulties in crystallization. Here, we created a PfGGPPS model using the homologous P.vivaxGGPPS X-ray structure as a template. We simulated the modeled PfGGPPS as well as PvGGPPS using conventional and Gaussian accelerated molecular dynamics in both apo- and GGPP-bound states. The MD simulations revealed a striking similarity in the dynamics of both enzymes with loop 9-10 controlling access to the active site. We also found that GGPP stabilizes PfGGPPS and PvGGPPS into closed conformations and via similar mechanisms. Shape-based analysis of the binding sites throughout the simulations suggests that the two enzymes will be readily targeted by the same inhibitors. Finally, we produced three MD-validated conformations of PfGGPPS to be used in future virtual screenings for potential new antimalarial drugs acting on both PvGGPPS and PfGGPPS.
Collapse
Affiliation(s)
- Aishwarya Venkatramani
- Department of Pharmacology and Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093, USA; National Biomedical Computation Resource, University of California at San Diego, La Jolla, California 92093, USA
| | - Clarisse G. Ricci
- Department of Pharmacology and Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093, USA; National Biomedical Computation Resource, University of California at San Diego, La Jolla, California 92093, USA
| | - Eric Oldfield
- Department of Chemistry, University of Illinois at Urbana-Champaign, 600 South Mathews Avenue, Urbana, Illinois 61801, USA
| | - J. Andrew McCammon
- Department of Pharmacology and Department of Chemistry & Biochemistry, University of California at San Diego, La Jolla, California 92093, USA; National Biomedical Computation Resource, University of California at San Diego, La Jolla, California 92093, USA
| |
Collapse
|
13
|
Leidner F, Kurt Yilmaz N, Paulsen J, Muller YA, Schiffer CA. Hydration Structure and Dynamics of Inhibitor-Bound HIV-1 Protease. J Chem Theory Comput 2018; 14:2784-2796. [PMID: 29570286 DOI: 10.1021/acs.jctc.8b00097] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Water is essential in many biological processes, and the hydration structure plays a critical role in facilitating protein folding, dynamics, and ligand binding. A variety of biophysical spectroscopic techniques have been used to probe the water solvating proteins, often complemented with molecular dynamics (MD) simulations to resolve the spatial and dynamic features of the hydration shell, but comparing relative water structure is challenging. In this study 1 μs MD simulations were performed to identify and characterize hydration sites around HIV-1 protease bound to an inhibitor, darunavir (DRV). The water density, hydration site occupancy, extent and anisotropy of fluctuations, coordinated water molecules, and hydrogen bonds were characterized and compared to the properties of bulk water. The water density of the principal hydration shell was found to be higher than bulk, dependent on the topology and physiochemical identity of the biomolecular surface. The dynamics of water molecules occupying principal hydration sites was highly dependent on the number of water-water interactions and inversely correlated with hydrogen bonds to the protein-inhibitor complex. While many waters were conserved following the symmetry of homodimeric HIV protease, the asymmetry induced by DRV resulted in asymmetric lower-occupancy hydration sites at the concave surface of the active site. Key interactions between water molecules and the protease, that stabilize the protein in the inhibited form, were altered in a drug resistant variant of the protease indicating that modulation of solvent-solute interactions might play a key role in conveying drug resistance. Our analysis provides insights into the interplay between an enzyme inhibitor complex and the hydration shell and has implications in elucidating water structure in a variety of biological processes and applications including ligand binding, inhibitor design, and resistance.
Collapse
Affiliation(s)
- Florian Leidner
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Janet Paulsen
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| | - Yves A Muller
- Division of Biotechnology , Friedrich-Alexander-Universität Erlangen-Nürnberg , Erlangen 91052 , Germany
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology , University of Massachusetts Medical School , Worcester , Massachusetts 01605 , United States
| |
Collapse
|
14
|
Persons JD, Khan SN, Ishima R. An NMR strategy to detect conformational differences in a protein complexed with highly analogous inhibitors in solution. Methods 2018; 148:9-18. [PMID: 29656080 DOI: 10.1016/j.ymeth.2018.04.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2018] [Revised: 04/06/2018] [Accepted: 04/08/2018] [Indexed: 11/17/2022] Open
Abstract
This manuscript presents an NMR strategy to investigate conformational differences in protein-inhibitor complexes, when the inhibitors tightly bind to a protein at sub-nanomolar dissociation constants and are highly analogous to each other. Using HIV-1 protease (PR), we previously evaluated amide chemical shift differences, ΔCSPs, of PR bound to darunavir (DRV) compared to PR bound to several DRV analogue inhibitors, to investigate subtle but significant long-distance conformation changes caused by the inhibitor's chemical moiety variation [Khan, S. N., Persons, J. D. Paulsen, J. L., Guerrero, M., Schiffer, C. A., Kurt-Yilmaz, N., and Ishima, R., Biochemistry, (2018), 57, 1652-1662]. However, ΔCSPs are not ideal for investigating subtle PR-inhibitor interface differences because intrinsic differences in the electron shielding of the inhibitors affect protein ΔCSPs. NMR relaxation is also not suitable as it is not sensitive enough to detect small conformational differences in rigid regions among similar PR-inhibitor complexes. Thus, to gain insight into conformational differences at the inhibitor-protein interface, we recorded 15N-half filtered NOESY spectra of PR bound to two highly analogous inhibitors and assessed NOEs between PR amide protons and inhibitor protons, between PR amide protons and hydroxyl side chains, and between PR amide protons and water protons. We also verified the PR amide-water NOEs using 2D water-NOE/ROE experiments. Differences in water-amide proton NOE peaks, possibly due to amide-protein hydrogen bonds, were observed between subunit A and subunit B, and between the DRV-bound form and an analogous inhibitor-bound form, which may contribute to remote conformational changes.
Collapse
Affiliation(s)
- John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Shahid N Khan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Biomedical Science Tower 3, 3501 Fifth Avenue, Pittsburgh, PA 15260, USA.
| |
Collapse
|
15
|
Khan SN, Persons JD, Paulsen JL, Guerrero M, Schiffer CA, Kurt-Yilmaz N, Ishima R. Probing Structural Changes among Analogous Inhibitor-Bound Forms of HIV-1 Protease and a Drug-Resistant Mutant in Solution by Nuclear Magnetic Resonance. Biochemistry 2018; 57:1652-1662. [PMID: 29457713 PMCID: PMC5850901 DOI: 10.1021/acs.biochem.7b01238] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the era of state-of-the-art inhibitor design and high-resolution structural studies, detection of significant but small protein structural differences in the inhibitor-bound forms is critical to further developing the inhibitor. Here, we probed differences in HIV-1 protease (PR) conformation among darunavir and four analogous inhibitor-bound forms and compared them with a drug-resistant mutant using nuclear magnetic resonance chemical shifts. Changes in amide chemical shifts of wild-type (WT) PR among these inhibitor-bound forms, ΔCSP, were subtle but detectable and extended >10 Å from the inhibitor-binding site, asymmetrically between the two subunits of PR. Molecular dynamics simulations revealed differential local hydrogen bonding as the molecular basis of this remote asymmetric change. Inhibitor-bound forms of the drug-resistant mutant also showed a similar long-range ΔCSP pattern. Differences in ΔCSP values of the WT and the mutant (ΔΔCSPs) were observed at the inhibitor-binding site and in the surrounding region. Comparing chemical shift changes among highly analogous inhibitors and ΔΔCSPs effectively eliminated local environmental effects stemming from different chemical groups and enabled exploitation of these sensitive parameters to detect subtle protein conformational changes and to elucidate asymmetric and remote conformational effects upon inhibitor interaction.
Collapse
Affiliation(s)
- Shahid N Khan
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - John D Persons
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Janet L. Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Michel Guerrero
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Celia A. Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Rieko Ishima
- Department of Structural Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| |
Collapse
|
16
|
Weber IT, Harrison RW. Decoding HIV resistance: from genotype to therapy. Future Med Chem 2017; 9:1529-1538. [PMID: 28791894 PMCID: PMC5694023 DOI: 10.4155/fmc-2017-0048] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 05/03/2017] [Indexed: 01/14/2023] Open
Abstract
Genetic variation in HIV poses a major challenge for prevention and treatment of the AIDS pandemic. Resistance occurs by mutations in the target proteins that lower affinity for the drug or alter the protein dynamics, thereby enabling viral replication in the presence of the drug. Due to the prevalence of drug-resistant strains, monitoring the genotype of the infecting virus is recommended. Computational approaches for predicting resistance from genotype data and guiding therapy are discussed. Many prediction methods rely on rules derived from known resistance-associated mutations, however, statistical or machine learning can improve the classification accuracy and assess unknown mutations. Adding classifiers such as information on the atomic structure of the protein can further enhance the predictions.
Collapse
Affiliation(s)
- Irene T Weber
- Department of Biology, Georgia State University, PO Box 4010, Atlanta, GA 30302-4010, USA
| | - Robert W Harrison
- Department of Computer Science, Georgia State University, Atlanta, GA 30303, USA
| |
Collapse
|
17
|
Paulsen JL, Leidner F, Ragland DA, Kurt Yilmaz N, Schiffer CA. Interdependence of Inhibitor Recognition in HIV-1 Protease. J Chem Theory Comput 2017; 13:2300-2309. [PMID: 28358514 PMCID: PMC5425943 DOI: 10.1021/acs.jctc.6b01262] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
![]()
Molecular recognition
is a highly interdependent process. Subsite
couplings within the active site of proteases are most often revealed
through conditional amino acid preferences in substrate recognition.
However, the potential effect of these couplings on inhibition and
thus inhibitor design is largely unexplored. The present study examines
the interdependency of subsites in HIV-1 protease using a focused
library of protease inhibitors, to aid in future inhibitor design.
Previously a series of darunavir (DRV) analogs was designed to systematically
probe the S1′ and S2′ subsites. Co-crystal structures
of these analogs with HIV-1 protease provide the ideal opportunity
to probe subsite interdependency. All-atom molecular dynamics simulations
starting from these structures were performed and systematically analyzed
in terms of atomic fluctuations, intermolecular interactions, and
water structure. These analyses reveal that the S1′ subsite
highly influences other subsites: the extension of the hydrophobic
P1′ moiety results in 1) reduced van der Waals contacts in
the P2′ subsite, 2) more variability in the hydrogen bond frequencies
with catalytic residues and the flap water, and 3) changes in the
occupancy of conserved water sites both proximal and distal to the
active site. In addition, one of the monomers in this homodimeric
enzyme has atomic fluctuations more highly correlated with DRV than
the other monomer. These relationships intricately link the HIV-1
protease subsites and are critical to understanding molecular recognition
and inhibitor binding. More broadly, the interdependency of subsite
recognition within an active site requires consideration in the selection
of chemical moieties in drug design; this strategy is in contrast
to what is traditionally done with independent optimization of chemical
moieties of an inhibitor.
Collapse
Affiliation(s)
- Janet L Paulsen
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Florian Leidner
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Debra A Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| |
Collapse
|
18
|
Gerlits O, Keen DA, Blakeley MP, Louis JM, Weber IT, Kovalevsky A. Room Temperature Neutron Crystallography of Drug Resistant HIV-1 Protease Uncovers Limitations of X-ray Structural Analysis at 100 K. J Med Chem 2017; 60:2018-2025. [PMID: 28195728 DOI: 10.1021/acs.jmedchem.6b01767] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
HIV-1 protease inhibitors are crucial for treatment of HIV-1/AIDS, but their effectiveness is thwarted by rapid emergence of drug resistance. To better understand binding of clinical inhibitors to resistant HIV-1 protease, we used room-temperature joint X-ray/neutron (XN) crystallography to obtain an atomic-resolution structure of the protease triple mutant (V32I/I47V/V82I) in complex with amprenavir. The XN structure reveals a D+ ion located midway between the inner Oδ1 oxygen atoms of the catalytic aspartic acid residues. Comparison of the current XN structure with our previous XN structure of the wild-type HIV-1 protease-amprenavir complex suggests that the three mutations do not significantly alter the drug-enzyme interactions. This is in contrast to the observations in previous 100 K X-ray structures of these complexes that indicated loss of interactions by the drug with the triple mutant protease. These findings, thus, uncover limitations of structural analysis of drug binding using X-ray structures obtained at 100 K.
Collapse
Affiliation(s)
- Oksana Gerlits
- UT/ORNL Joint Institute of Biological Sciences, University of Tennessee , Knoxville, Tennessee 37996, United States
| | - David A Keen
- ISIS Facility, Rutherford Appleton Laboratory , Harwell Campus, Didcot, OX11 0QX, U.K
| | - Matthew P Blakeley
- Large-Scale Structures Group, Institut Laue Langevin , 71 avenue des Martyrs, 38000 Grenoble, France
| | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health , DHHS, Bethesda, Maryland 20892-0520, United States
| | - Irene T Weber
- Departments of Chemistry and Biology, Georgia State University , Atlanta, Georgia 30302, United States
| | - Andrey Kovalevsky
- Biology and Soft Matter Division, Oak Ridge National Laboratory , Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
19
|
Yu Y, Wang J, Chen Z, Wang G, Shao Q, Shi J, Zhu W. Structural insights into HIV-1 protease flap opening processes and key intermediates. RSC Adv 2017. [DOI: 10.1039/c7ra09691g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The study provided an integrated view of the transition pathway of the flap opening of HIV-1 protease using MD simulation.
Collapse
Affiliation(s)
- Yuqi Yu
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jinan Wang
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Zhaoqiang Chen
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Guimin Wang
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Qiang Shao
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| | - Jiye Shi
- UCB Biopharma SPRL
- Chemin du Foriest
- Belgium
| | - Weiliang Zhu
- Drug Discovery and Design Center
- CAS Key Laboratory of Receptor Research
- Shanghai Institute of Materia Medica
- Chinese Academy of Sciences
- Shanghai
| |
Collapse
|
20
|
Liu Z, Huang X, Hu L, Pham L, Poole KM, Tang Y, Mahon BP, Tang W, Li K, Goldfarb NE, Dunn BM, McKenna R, Fanucci GE. Effects of Hinge-region Natural Polymorphisms on Human Immunodeficiency Virus-Type 1 Protease Structure, Dynamics, and Drug Pressure Evolution. J Biol Chem 2016; 291:22741-22756. [PMID: 27576689 DOI: 10.1074/jbc.m116.747568] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 08/30/2016] [Indexed: 11/06/2022] Open
Abstract
Multidrug resistance to current Food and Drug Administration-approved HIV-1 protease (PR) inhibitors drives the need to understand the fundamental mechanisms of how drug pressure-selected mutations, which are oftentimes natural polymorphisms, elicit their effect on enzyme function and resistance. Here, the impacts of the hinge-region natural polymorphism at residue 35, glutamate to aspartate (E35D), alone and in conjunction with residue 57, arginine to lysine (R57K), are characterized with the goal of understanding how altered salt bridge interactions between the hinge and flap regions are associated with changes in structure, motional dynamics, conformational sampling, kinetic parameters, and inhibitor affinity. The combined results reveal that the single E35D substitution leads to diminished salt bridge interactions between residues 35 and 57 and gives rise to the stabilization of open-like conformational states with overall increased backbone dynamics. In HIV-1 PR constructs where sites 35 and 57 are both mutated (e.g. E35D and R57K), x-ray structures reveal an altered network of interactions that replace the salt bridge thus stabilizing the structural integrity between the flap and hinge regions. Despite the altered conformational sampling and dynamics when the salt bridge is disrupted, enzyme kinetic parameters and inhibition constants are similar to those obtained for subtype B PR. Results demonstrate that these hinge-region natural polymorphisms, which may arise as drug pressure secondary mutations, alter protein dynamics and the conformational landscape, which are important thermodynamic parameters to consider for development of inhibitors that target for non-subtype B PR.
Collapse
Affiliation(s)
- Zhanglong Liu
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Xi Huang
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Lingna Hu
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Linh Pham
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Katye M Poole
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Yan Tang
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Brian P Mahon
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Wenxing Tang
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Kunhua Li
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| | - Nathan E Goldfarb
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Ben M Dunn
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Robert McKenna
- the Department of Biochemistry and Molecular Biology, University of Florida, Gainesville, Florida 32610
| | - Gail E Fanucci
- From the Department of Chemistry, University of Florida, Gainesville, Florida 32611 and
| |
Collapse
|
21
|
Louis JM, Roche J. Evolution under Drug Pressure Remodels the Folding Free-Energy Landscape of Mature HIV-1 Protease. J Mol Biol 2016; 428:2780-92. [PMID: 27170547 PMCID: PMC4905781 DOI: 10.1016/j.jmb.2016.05.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Revised: 04/27/2016] [Accepted: 05/02/2016] [Indexed: 01/08/2023]
Abstract
Using high-pressure NMR spectroscopy and differential scanning calorimetry, we investigate the folding landscape of the mature HIV-1 protease homodimer. The cooperativity of unfolding was measured in the absence or presence of a symmetric active site inhibitor for the optimized wild type protease (PR), its inactive variant PRD25N, and an extremely multidrug-resistant mutant, PR20. The individual fit of the pressure denaturation profiles gives rise to first order, ∆GNMR, and second order, ∆VNMR (the derivative of ∆GNMR with pressure); apparent thermodynamic parameters for each amide proton considered. Heterogeneity in the apparent ∆VNMR values reflects departure from an ideal cooperative unfolding transition. The narrow to broad distribution of ∆VNMR spanning the extremes from inhibitor-free PR20D25N to PR-DMP323 complex, and distinctively for PRD25N-DMP323 complex, indicated large variations in folding cooperativity. Consistent with this data, the shape of thermal unfolding transitions varies from asymmetric for PR to nearly symmetric for PR20, as dimer-inhibitor ternary complexes. Lack of structural cooperativity was observed between regions located close to the active site, including the hinge and tip of the glycine-rich flaps, and the rest of the protein. These results strongly suggest that inhibitor binding drastically decreases the cooperativity of unfolding by trapping the closed flap conformation in a deep energy minimum. To evade this conformational trap, PR20 evolves exhibiting a smoother folding landscape with nearly an ideal two-state (cooperative) unfolding transition. This study highlights the malleability of retroviral protease folding pathways by illustrating how the selection of mutations under drug pressure remodels the free-energy landscape as a primary mechanism.
Collapse
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA.
| | - Julien Roche
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892, USA; Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA.
| |
Collapse
|
22
|
Soares RO, Torres PHM, da Silva ML, Pascutti PG. Unraveling HIV protease flaps dynamics by Constant pH Molecular Dynamics simulations. J Struct Biol 2016; 195:216-226. [PMID: 27291071 DOI: 10.1016/j.jsb.2016.06.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 06/08/2016] [Accepted: 06/09/2016] [Indexed: 11/15/2022]
Abstract
The active site of HIV protease (HIV-PR) is covered by two flaps. These flaps are known to be essential for the catalytic activity of the HIV-PR, but their exact conformations at the different stages of the enzymatic pathway remain subject to debate. Understanding the correct functional dynamics of the flaps might aid the development of new HIV-PR inhibitors. It is known that, the HIV-PR catalytic efficiency is pH-dependent, likely due to the influence of processes such as charge transfer and protonation/deprotonation of ionizable residues. Several Molecular Dynamics (MD) simulations have reported information about the HIV-PR flaps. However, in MD simulations the protonation of a residue is fixed and thus it is not possible to study the correlation between conformation and protonation state. To address this shortcoming, this work attempts to capture, through Constant pH Molecular Dynamics (CpHMD), the conformations of the apo, substrate-bound and inhibitor-bound HIV-PR, which differ drastically in their flap arrangements. The results show that the HIV-PR flaps conformations are defined by the protonation of the catalytic residues Asp25/Asp25' and that these residues are sensitive to pH changes. This study suggests that the catalytic aspartates can modulate the opening of the active site and substrate binding.
Collapse
Affiliation(s)
- Rosemberg O Soares
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil.
| | - Pedro H M Torres
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil
| | - Manuela L da Silva
- Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| | - Pedro G Pascutti
- Instituto de Biofísica Carlos Chagas Filho (IBCCF), Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, Brazil; Diretoria de Metrologia Aplicada às Ciências da Vida (DIMAV), Instituto Nacional de Metrologia Qualidade e Tecnologia (INMETRO), Xerém, Brazil
| |
Collapse
|
23
|
Kurt Yilmaz N, Swanstrom R, Schiffer CA. Improving Viral Protease Inhibitors to Counter Drug Resistance. Trends Microbiol 2016; 24:547-557. [PMID: 27090931 DOI: 10.1016/j.tim.2016.03.010] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2016] [Revised: 03/18/2016] [Accepted: 03/30/2016] [Indexed: 12/13/2022]
Abstract
Drug resistance is a major problem in health care, undermining therapy outcomes and necessitating novel approaches to drug design. Extensive studies on resistance to viral protease inhibitors, particularly those of HIV-1 and hepatitis C virus (HCV) protease, revealed a plethora of information on the structural and molecular mechanisms underlying resistance. These insights led to several strategies to improve viral protease inhibitors to counter resistance, such as exploiting the essential biological function and leveraging evolutionary constraints. Incorporation of these strategies into structure-based drug design can minimize vulnerability to resistance, not only for viral proteases but for other quickly evolving drug targets as well, toward designing inhibitors one step ahead of evolution to counter resistance with more intelligent and rational design.
Collapse
Affiliation(s)
- Nese Kurt Yilmaz
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA
| | - Ronald Swanstrom
- Department of Biochemistry and Biophysics, and the UNC Center for AIDS Research, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, 364 Plantation Street, Worcester, MA 01605, USA.
| |
Collapse
|
24
|
Park JH, Sayer JM, Aniana A, Yu X, Weber IT, Harrison RW, Louis JM. Binding of Clinical Inhibitors to a Model Precursor of a Rationally Selected Multidrug Resistant HIV-1 Protease Is Significantly Weaker Than That to the Released Mature Enzyme. Biochemistry 2016; 55:2390-400. [PMID: 27039930 DOI: 10.1021/acs.biochem.6b00012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We have systematically validated the activity and inhibition of a HIV-1 protease (PR) variant bearing 17 mutations (PR(S17)), selected to represent high resistance by machine learning on genotype-phenotype data. Three of five mutations in PR(S17) correlating with major drug resistance, M46L, G48V, and V82S, and five of 11 natural variations differ from the mutations in two clinically derived extreme mutants, PR20 and PR22 bearing 19 and 22 mutations, respectively. PR(S17), which forms a stable dimer (<10 nM), is ∼10- and 2-fold less efficient in processing the Gag polyprotein than the wild type and PR20, respectively, but maintains the same cleavage order. Isolation of a model precursor of PR(S17) flanked by the 56-amino acid transframe region (TFP-p6pol) at its N-terminus, which is impossible upon expression of an analogous PR20 precursor, allowed systematic comparison of inhibition of TFP-p6pol-PR(S17) and mature PR(S17). Resistance of PR(S17) to eight protease inhibitors (PIs) relative to PR (Ki) increases by 1.5-5 orders of magnitude from 0.01 to 8.4 μM. Amprenavir, darunavir, atazanavir, and lopinavir, the most effective of the eight PIs, inhibit precursor autoprocessing at the p6pol/PR site with IC50 values ranging from ∼7.5 to 60 μM. Thus, this process, crucial for stable dimer formation, shows inhibition ∼200-800-fold weaker than that of the mature PR(S17). TFP/p6pol cleavage, which occurs faster, is inhibited even more weakly by all PIs except darunavir (IC50 = 15 μM); amprenavir shows a 2-fold increase in IC50 (∼15 μM), and atazanavir and lopinavir show increased IC50 values of >42 and >70 μM, respectively.
Collapse
Affiliation(s)
- Joon H Park
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Jane M Sayer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | | | | | | | - John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| |
Collapse
|
25
|
Liu Z, Casey TM, Blackburn ME, Huang X, Pham L, de Vera IMS, Carter JD, Kear-Scott JL, Veloro AM, Galiano L, Fanucci GE. Pulsed EPR characterization of HIV-1 protease conformational sampling and inhibitor-induced population shifts. Phys Chem Chem Phys 2016; 18:5819-31. [PMID: 26489725 PMCID: PMC4758878 DOI: 10.1039/c5cp04556h] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The conformational landscape of HIV-1 protease (PR) can be experimentally characterized by pulsed-EPR double electron-electron resonance (DEER). For this characterization, nitroxide spin labels are attached to an engineered cysteine residue in the flap region of HIV-1 PR. DEER distance measurements from spin-labels contained within each flap of the homodimer provide a detailed description of the conformational sampling of apo-enzyme as well as induced conformational shifts as a function of inhibitor binding. The distance distribution profiles are further interpreted in terms of a conformational ensemble scheme that consists of four unique states termed "curled/tucked", "closed", "semi-open" and "wide-open" conformations. Reported here are the DEER results for a drug-resistant variant clinical isolate sequence, V6, in the presence of FDA approved protease inhibitors (PIs) as well as a non-hydrolyzable substrate mimic, CaP2. Results are interpreted in the context of the current understanding of the relationship between conformational sampling, drug resistance, and kinetic efficiency of HIV-1PR as derived from previous DEER and kinetic data for a series of HIV-1PR constructs that contain drug-pressure selected mutations or natural polymorphisms. Specifically, these collective results support the notion that inhibitor-induced closure of the flaps correlates with inhibitor efficiency and drug resistance. This body of work also suggests DEER as a tool for studying conformational sampling in flexible enzymes as it relates to function.
Collapse
Affiliation(s)
- Zhanglong Liu
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Thomas M Casey
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Mandy E Blackburn
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Xi Huang
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Linh Pham
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Ian Mitchelle S de Vera
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jeffrey D Carter
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Jamie L Kear-Scott
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Angelo M Veloro
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Luis Galiano
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| | - Gail E Fanucci
- Department of Chemistry, University of Florida, PO BOX 117200, Gainesville, FL 32611-7200, USA.
| |
Collapse
|
26
|
Nakashima M, Ode H, Suzuki K, Fujino M, Maejima M, Kimura Y, Masaoka T, Hattori J, Matsuda M, Hachiya A, Yokomaku Y, Suzuki A, Watanabe N, Sugiura W, Iwatani Y. Unique Flap Conformation in an HIV-1 Protease with High-Level Darunavir Resistance. Front Microbiol 2016; 7:61. [PMID: 26870021 PMCID: PMC4737996 DOI: 10.3389/fmicb.2016.00061] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Accepted: 01/14/2016] [Indexed: 11/13/2022] Open
Abstract
Darunavir (DRV) is one of the most powerful protease inhibitors (PIs) for treating human immunodeficiency virus type-1 (HIV-1) infection and presents a high genetic barrier to the generation of resistant viruses. However, DRV-resistant HIV-1 infrequently emerges from viruses exhibiting resistance to other protease inhibitors. To address this resistance, researchers have gathered genetic information on DRV resistance. In contrast, few structural insights into the mechanism underlying DRV resistance are available. To elucidate this mechanism, we determined the crystal structure of the ligand-free state of a protease with high-level DRV resistance and six DRV resistance-associated mutations (including I47V and I50V), which we generated by in vitro selection. This crystal structure showed a unique curling conformation at the flap regions that was not found in the previously reported ligand-free protease structures. Molecular dynamics simulations indicated that the curled flap conformation altered the flap dynamics. These results suggest that the preference for a unique flap conformation influences DRV binding. These results provide new structural insights into elucidating the molecular mechanism of DRV resistance and aid to develop PIs effective against DRV-resistant viruses.
Collapse
Affiliation(s)
- Masaaki Nakashima
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of Biotechnology, Nagoya University Graduate School of EngineeringNagoya, Japan
| | - Hirotaka Ode
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Koji Suzuki
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of Biotechnology, Nagoya University Graduate School of EngineeringNagoya, Japan
| | - Masayuki Fujino
- AIDS Research Center, National Institute of Infectious Diseases Tokyo, Japan
| | - Masami Maejima
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yuki Kimura
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of Biotechnology, Nagoya University Graduate School of EngineeringNagoya, Japan
| | - Takashi Masaoka
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Junko Hattori
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Masakazu Matsuda
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Atsuko Hachiya
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yoshiyuki Yokomaku
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Atsuo Suzuki
- Department of Biotechnology, Nagoya University Graduate School of Engineering Nagoya, Japan
| | - Nobuhisa Watanabe
- Department of Biotechnology, Nagoya University Graduate School of EngineeringNagoya, Japan; Synchrotron Radiation Research Center, Nagoya UniversityNagoya, Japan
| | - Wataru Sugiura
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical Center Nagoya, Japan
| | - Yasumasa Iwatani
- Department of Infectious Diseases and Immunology, Clinical Research Center, National Hospital Organization Nagoya Medical CenterNagoya, Japan; Department of AIDS Research, Nagoya University Graduate School of MedicineNagoya, Japan
| |
Collapse
|
27
|
Louis JM, Deshmukh L, Sayer JM, Aniana A, Clore GM. Mutations Proximal to Sites of Autoproteolysis and the α-Helix That Co-evolve under Drug Pressure Modulate the Autoprocessing and Vitality of HIV-1 Protease. Biochemistry 2015; 54:5414-24. [PMID: 26266692 DOI: 10.1021/acs.biochem.5b00759] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
N-Terminal self-cleavage (autoprocessing) of the HIV-1 protease precursor is crucial for liberating the active dimer. Under drug pressure, evolving mutations are predicted to modulate autoprocessing, and the reduced catalytic activity of the mature protease (PR) is likely compensated by enhanced conformational/dimer stability and reduced susceptibility to self-degradation (autoproteolysis). One such highly evolved, multidrug resistant protease, PR20, bears 19 mutations contiguous to sites of autoproteolysis in retroviral proteases, namely clusters 1-3 comprising residues 30-37, 60-67, and 88-95, respectively, accounting for 11 of the 19 mutations. By systematically replacing corresponding clusters in PR with those of PR20, and vice versa, we assess their influence on the properties mentioned above and observe no strict correlation. A 10-35-fold decrease in the cleavage efficiency of peptide substrates by PR20, relative to PR, is reflected by an only ∼4-fold decrease in the rate of Gag processing with no change in cleavage order. Importantly, optimal N-terminal autoprocessing requires all 19 PR20 mutations as evaluated in vitro using the model precursor TFR-PR20 in which PR is flanked by the transframe region. Substituting PR20 cluster 3 into TFR-PR (TFR-PR(PR20-3)) requires the presence of PR20 cluster 1 and/or 2 for autoprocessing. In accordance, substituting PR clusters 1 and 2 into TFR-PR20 affects the rate of autoprocessing more drastically (>300-fold) compared to that of TFR-PR(PR20-3) because of the cumulative effect of eight noncluster mutations present in TFR-PR20(PR-12). Overall, these studies imply that drug resistance involves a complex synchronized selection of mutations modulating all of the properties mentioned above governing PR regulation and function.
Collapse
Affiliation(s)
- John M Louis
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Lalit Deshmukh
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Jane M Sayer
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - Annie Aniana
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| | - G Marius Clore
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Department of Health and Human Services , Bethesda, Maryland 20892, United States
| |
Collapse
|
28
|
Effects of drug-resistant mutations on the dynamic properties of HIV-1 protease and inhibition by Amprenavir and Darunavir. Sci Rep 2015; 5:10517. [PMID: 26012849 PMCID: PMC4444956 DOI: 10.1038/srep10517] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022] Open
Abstract
Molecular dynamics simulations are performed to investigate the dynamic properties of wild-type HIV-1 protease and its two multi-drug-resistant variants (Flap + (L10I/G48V/I54V/V82A) and Act (V82T/I84V)) as well as their binding with APV and DRV inhibitors. The hydrophobic interactions between flap and 80 s (80’s) loop residues (mainly I50-I84’ and I50’-I84) play an important role in maintaining the closed conformation of HIV-1 protease. The double mutation in Act variant weakens the hydrophobic interactions, leading to the transition from closed to semi-open conformation of apo Act. APV or DRV binds with HIV-1 protease via both hydrophobic and hydrogen bonding interactions. The hydrophobic interactions from the inhibitor is aimed to the residues of I50 (I50’), I84 (I84’), and V82 (V82’) which create hydrophobic core clusters to further stabilize the closed conformation of flaps, and the hydrogen bonding interactions are mainly focused with the active site of HIV-1 protease. The combined change in the two kinds of protease-inhibitor interactions is correlated with the observed resistance mutations. The present study sheds light on the microscopic mechanism underlying the mutation effects on the dynamics of HIV-1 protease and the inhibition by APV and DRV, providing useful information to the design of more potent and effective HIV-1 protease inhibitors.
Collapse
|
29
|
Ragland DA, Nalivaika EA, Nalam MNL, Prachanronarong KL, Cao H, Bandaranayake RM, Cai Y, Kurt-Yilmaz N, Schiffer CA. Drug resistance conferred by mutations outside the active site through alterations in the dynamic and structural ensemble of HIV-1 protease. J Am Chem Soc 2014; 136:11956-63. [PMID: 25091085 PMCID: PMC4151706 DOI: 10.1021/ja504096m] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
HIV-1 protease inhibitors are part
of the highly active antiretroviral
therapy effectively used in the treatment of HIV infection and AIDS.
Darunavir (DRV) is the most potent of these inhibitors, soliciting
drug resistance only when a complex combination of mutations occur
both inside and outside the protease active site. With few exceptions,
the role of mutations outside the active site in conferring resistance
remains largely elusive. Through a series of DRV–protease complex
crystal structures, inhibition assays, and molecular dynamics simulations,
we find that single and double site mutations outside the active site
often associated with DRV resistance alter the structure and dynamic
ensemble of HIV-1 protease active site. These alterations correlate
with the observed inhibitor binding affinities for the mutants, and
suggest a network hypothesis on how the effect of
distal mutations are propagated to pivotal residues at the active
site and may contribute to conferring drug resistance.
Collapse
Affiliation(s)
- Debra A Ragland
- Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School , Worcester, Massachusetts 01605, United States
| | | | | | | | | | | | | | | | | |
Collapse
|