1
|
Yang SL, Ma BJ, Lu YS, Chen J, Yu J, Qiu J, Qian YZ, Xu YY. Multi-omics reveals the molecular mechanism of the combined toxic effects of PFOA and 4-HBP exposure in MCF-7 cells and the key player: mTORC1. ENVIRONMENT INTERNATIONAL 2024; 188:108778. [PMID: 38815467 DOI: 10.1016/j.envint.2024.108778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/06/2024] [Accepted: 05/25/2024] [Indexed: 06/01/2024]
Abstract
With the discovery of evidence that many endocrine-disrupting chemicals (EDCs) in the environment influence human health, their toxic effects and mechanisms have become a hot topic of research. However, investigations into their endocrine-disrupting toxicity under combined binary exposure, especially the molecular mechanism of combined effects, have rarely been documented. In this study, two typical EDCs, perfluorooctanoic acid (PFOA) and 4-hydroxybenzophenone (4-HBP), were selected to examine their combined effects and molecular mechanism on MCF-7 cell proliferation at environmentally relevant exposure concentrations. We have successfully established a model to evaluate the binary combined toxic effects of endocrine disruptors, presenting combined effects in a simple and direct way. Results indicated that the combined effect changed from additive to synergistic from 1.25 × 10-8 M to 4 × 10-7 M. Metabolomics analyses suggested that exposure to PFOA and 4-HBP caused significant alterations in purine metabolism, arginine, and proline metabolism and had superimposed influences on metabolism. Enhanced combined effects were observed in glycine, serine, and threonine metabolic pathways compared to exposure to PFOS and 4-HBP alone. Additionally, the differentially expressed genes (DEGs) are primarily involved in Biological Processes, especially protein targeting the endoplasmic reticulum, and significantly impact the oxidative phosphorylation and thermogenesis-related KEGG pathway. By integrating metabolome and transcriptome analyses, PFOA and 4-HBP regulate purine metabolism, the TCA cycle, and endoplasmic reticulum protein synthesis in MCF-7 cells via mTORC1, which provides genetic material, protein, and energy for cell proliferation. Furthermore, molecular docking confirmed the ability of PFOA and 4-HBP to stably bind the estrogen receptor, indicating that they have different binding pockets. Collectively, these findings will offer new insights into understanding the mechanisms by which EDCs produce combined toxicity.
Collapse
Affiliation(s)
- Shang-Lin Yang
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bing-Jie Ma
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Ju Chen
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
2
|
Strakhovskaya MG, Lukashev EP, Korvatovskiy BN, Kholina EG, Seifullina NK, Knox PP, Paschenko VZ. The effect of some antiseptic drugs on the energy transfer in chromatophore photosynthetic membranes of purple non-sulfur bacteria Rhodobacter sphaeroides. PHOTOSYNTHESIS RESEARCH 2021; 147:197-209. [PMID: 33389445 PMCID: PMC7778420 DOI: 10.1007/s11120-020-00807-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 11/24/2020] [Indexed: 06/12/2023]
Abstract
Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores. Here we present the experimental data on the reduced efficiency of light energy conversion in the chromatophore membranes isolated from the photosynthetic bacterium Rb. sphaeroides in the presence of cationic antiseptics. The addition of antiseptics did not affect the energy transfer between the light-harvesting LH1 complex and reaction center (RC). However, it significantly reduced the efficiency of the interaction between the LH2 and LH1 complexes. The effect was maximal with 100 μM octenidine. It has been proved that molecules of cationic antiseptics, which apparently bind to the heads of negatively charged cardiolipin molecules located in the rings of light-harvesting pigments on the cytoplasmic surface of the chromatophores, can disturb the optimal conditions for efficient energy migration in chromatophore membranes.
Collapse
Affiliation(s)
- Marina G Strakhovskaya
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234.
- Federal Scientific and Clinical Center of Specialized Types of Medical Care and Medical Technologies of the Federal Medical and Biological Agency of Russia, Moscow, Russian Federation.
| | - Eugene P Lukashev
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Boris N Korvatovskiy
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Ekaterina G Kholina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Nuranija Kh Seifullina
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Peter P Knox
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| | - Vladimir Z Paschenko
- Biophysics Department, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia, 119234
| |
Collapse
|
3
|
Brock AL, Kästner M, Trapp S. Microbial growth yield estimates from thermodynamics and its importance for degradation of pesticides and formation of biogenic non-extractable residues. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2017; 28:629-650. [PMID: 28893109 DOI: 10.1080/1062936x.2017.1365762] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Accepted: 08/07/2017] [Indexed: 06/07/2023]
Abstract
In biodegradation studies with isotope-labelled pesticides, fractions of non-extractable residues (NER) remain, but their nature and composition is rarely known, leading to uncertainty about their risk. Microbial growth leads to incorporation of carbon into the microbial mass, resulting in biogenic NER. Formation of microbial mass can be estimated from the microbial growth yield, but experimental data is rare. Instead, we suggest using prediction methods for the theoretical yield based on thermodynamics. Recently, we presented the Microbial Turnover to Biomass (MTB) method that needs a minimum of input data. We have estimated the growth yield of 40 organic chemicals (31 pesticides) using the MTB and two existing methods. The results were compared to experimental values, and the sensitivity of the methods was assessed. The MTB method performed best for pesticides. Having the theoretical yield and using the released CO2 as a measure for microbial activity, we predicted a range for the formation of biogenic NER. For the majority of the pesticides, a considerable fraction of the NER was estimated to be biogenic. This novel approach provides a theoretical foundation applicable to the evaluation and prediction of biogenic NER formation during pesticide degradation experiments, and may also be employed for the interpretation of NER data from regulatory studies.
Collapse
Affiliation(s)
- A L Brock
- a Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| | - M Kästner
- b Department of Environmental Biotechnology , UFZ-Helmholtz Centre for Environmental Research, Leipzig , Germany
| | - S Trapp
- a Department of Environmental Engineering , Technical University of Denmark , Kongens Lyngby , Denmark
| |
Collapse
|
4
|
Czechowska K, Reimmann C, van der Meer JR. Characterization of a MexAB-OprM efflux system necessary for productive metabolism of Pseudomonas azelaica HBP1 on 2-hydroxybiphenyl. Front Microbiol 2013; 4:203. [PMID: 23882265 PMCID: PMC3715732 DOI: 10.3389/fmicb.2013.00203] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2013] [Accepted: 06/28/2013] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas azelaica HBP1 is one of the few bacteria known to completely mineralize the biocide and toxic compound 2-hydroxybiphenyl (2-HBP), but the mechanisms of its tolerance to the toxicity are unknown. By transposon mutant analysis and screening for absence of growth on water saturating concentrations of 2-HBP (2.7 mM) we preferentially found insertions in three genes with high homology to the mexA, mexB, and oprM efflux system. Mutants could grow at 2-HBP concentrations below 100 μM but at lower growth rates than the wild-type. Exposure of the wild-type to increasing 2-HBP concentrations resulted in acute cell growth arrest and loss of membrane potential, to which the cells adapt after a few hours. By using ethidium bromide (EB) as proxy we could show that the mutants are unable to expel EB effectively. Inclusion of a 2-HBP reporter plasmid revealed that the wild-type combines efflux with metabolism at all 2-HBP concentrations, whereas the mutants cannot remove the compound and arrest metabolism at concentrations above 24 μM. The analysis thus showed the importance of the MexAB-OprM system for productive metabolism of 2-HBP.
Collapse
Affiliation(s)
- K Czechowska
- Department of Fundamental Microbiology, University of Lausanne, Bâtiment Biophore, Quartier UNIL-Sorge Lausanne, Switzerland
| | | | | |
Collapse
|
5
|
Tennekes HA, Sánchez-Bayo F. The molecular basis of simple relationships between exposure concentration and toxic effects with time. Toxicology 2013; 309:39-51. [PMID: 23603429 DOI: 10.1016/j.tox.2013.04.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Revised: 04/09/2013] [Accepted: 04/10/2013] [Indexed: 11/19/2022]
Abstract
Understanding the toxicity of chemicals to organisms requires considering the molecular mechanisms involved as well as the relationships between exposure concentration and toxic effects with time. Our current knowledge about such relationships is mainly explained from a toxicodynamic and toxicokinetic perspective. This paper re-introduces an old approach that takes into account the biochemical mode of action and their resulting biological effects over time of exposure. Empirical evidence demonstrates that the Druckrey-Küpfmüller toxicity model, which was validated for chemical carcinogens in the early 1960s, is also applicable to a wide range of toxic compounds in ecotoxicology. According to this model, the character of a poison is primarily determined by the reversibility of critical receptor binding. Chemicals showing irreversible or slowly reversible binding to specific receptors will produce cumulative effects with time of exposure, and whenever the effects are also irreversible (e.g. death) they are reinforced over time; these chemicals have time-cumulative toxicity. Compounds having non-specific receptor binding, or involving slowly reversible binding to some receptors that do not contribute to toxicity, may also be time-dependent; however, their effects depend primarily on the exposure concentration, with time playing a minor role. Consequently, the mechanism of toxic action has important implications for risk assessment. Traditional risk approaches cannot predict the impacts of toxicants with time-cumulative toxicity in the environment. New assessment procedures are needed to evaluate the risk that the latter chemicals pose on humans and the environment. An example is shown to explain how the risk of time-dependent toxicants is underestimated when using current risk assessment protocols.
Collapse
Affiliation(s)
- Henk A Tennekes
- Experimental Toxicology Services (ETS) Nederland BV, Frankensteeg 4, 7201 KN Zutphen, The Netherlands.
| | | |
Collapse
|
6
|
Endo S, Escher BI, Goss KU. Capacities of membrane lipids to accumulate neutral organic chemicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2011; 45:5912-21. [PMID: 21671592 DOI: 10.1021/es200855w] [Citation(s) in RCA: 224] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Lipids have been considered as the predominant components for bioaccumulation of organic chemicals. However, differences in accumulation properties between different types of lipid (e.g., storage and membrane lipids) have rarely been considered. Moreover, in view of toxic effects on organisms, chemical accumulation specifically in biological membranes is of particular importance. In this review article, partition coefficients of 240 neutral organic compounds between liposomes (phospholipid membrane vesicles) and water (K(lipw)), reported in the literature or measured additionally for this work, were evaluated. Values of log K(lipw) and log K(ow) (octanol-water partition coefficients) differ by 0.4 on average. Polyparameter linear free energy relationships (PP-LFERs) can describe the log K(lipw) data even better (standard deviations = 0.28-0.31) than the log K(ow) model. Recent experimental data for highly hydrophobic compounds fit well to the PP-LFERs and do not indicate the existence of a previously postulated "hydrophobicity cutoff". Predictive approaches based only on the molecular structure (KOWWIN, SPARC, COSMOthermX, COSMOmic) were also evaluated for K(lipw) prediction. The PP-LFERs revealed that partition coefficients into membrane lipids can be two log units higher than those into storage lipids for H-bond donor compounds, suggesting that distinguishing between the two lipids is necessary to account for the bioaccumulation of these compounds, and that tissues rich in membrane lipids (e.g., kidneys, liver) instead of fat tissue can be the primary phase for accumulation.
Collapse
Affiliation(s)
- Satoshi Endo
- Department of Analytical Environmental Chemistry, UFZ - Helmholtz Centre for Environmental Research, Permoserstrasse 15, D-04318 Leipzig, Germany.
| | | | | |
Collapse
|
7
|
Dou RN, Liu SS, Mo LY, Liu HL, Deng FC. A novel direct equipartition ray design (EquRay) procedure for toxicity interaction between ionic liquid and dichlorvos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2011; 18:734-42. [PMID: 21108009 DOI: 10.1007/s11356-010-0419-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2010] [Accepted: 11/16/2010] [Indexed: 05/03/2023]
Abstract
BACKGROUND, AIM AND SCOPE Pollutants always co-exist in the environment. Determining and characterizing the interaction among chemicals is an important issue. Experimental designs (ED) play an important role in evaluating the interactions. The main aim of our study is to provide the test and analysis of the toxicity interaction with a novel ED method. MATERIALS AND METHODS A novel direct equipartition ray design (EquRay) procedure was proposed to effectively and systematically determine the toxicities of binary mixtures on Vibrio qinghaiensis sp.-Q67. Here, one component is ionic liquid, 1-butyl-2,3-dimethylimidazolium chloride (IL1), 1-butylpyridinium bromide (IL2) or N-hexylpyridinium bis(trifluoromethylsulfonyl)imide (IL3), and another is dichlorvos (DIC). The toxicity interaction was evaluated by comparing experiment and additive model together with three-dimension deviation response surface (DRS) analysis. RESULT Selecting CA as a reference model, the binary mixtures exerted less than additive (antagonism). Most of the deviations occurred in the centre portion of the DRS where the dCA (deviation from CA) values are between -15% and -26% for IL1-DIC and IL2-DIC mixtures and -10% and -15% for IL3 and DIC. Selecting IA as a additive model, IL1-DIC and IL2-DIC mixtures exhibited less than additive (antagonism) while IL3-DIC displayed an addition action and the absolute values of dIAs (deviation from IA) were less than 10%. CONCLUSION A novel EquRay procedure was developed in this study and the EquRay can provide us with the information about the toxicity interaction between binary mixture components (such as DIC and IL) in different concentration regions across different mixture ratios.
Collapse
Affiliation(s)
- Rong-Ni Dou
- College of Chemistry and Bioengineering, Guilin University of Technology, 541004, Guilin, China
| | | | | | | | | |
Collapse
|
8
|
Escher BI, Ashauer R, Dyer S, Hermens JLM, Lee JH, Leslie HA, Mayer P, Meador JP, Warne MSJ. Crucial role of mechanisms and modes of toxic action for understanding tissue residue toxicity and internal effect concentrations of organic chemicals. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:28-49. [PMID: 21184568 DOI: 10.1002/ieam.100] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
This article reviews the mechanistic basis of the tissue residue approach for toxicity assessment (TRA). The tissue residue approach implies that whole-body or organ concentrations (residues) are a better dose metric for describing toxicity to aquatic organisms than is the aqueous concentration typically used in the external medium. Although the benefit of internal concentrations as dose metrics in ecotoxicology has long been recognized, the application of the tissue residue approach remains limited. The main factor responsible for this is the difficulty of measuring internal concentrations. We propose that environmental toxicology can advance if mechanistic considerations are implemented and toxicokinetics and toxicodynamics are explicitly addressed. The variability in ecotoxicological outcomes and species sensitivity is due in part to differences in toxicokinetics, which consist of several processes, including absorption, distribution, metabolism, and excretion (ADME), that influence internal concentrations. Using internal concentrations or tissue residues as the dose metric substantially reduces the variability in toxicity metrics among species and individuals exposed under varying conditions. Total internal concentrations are useful as dose metrics only if they represent a surrogate of the biologically effective dose, the concentration or dose at the target site. If there is no direct proportionality, we advise the implementation of comprehensive toxicokinetic models that include deriving the target dose. Depending on the mechanism of toxicity, the concentration at the target site may or may not be a sufficient descriptor of toxicity. The steady-state concentration of a baseline toxicant associated with the biological membrane is a good descriptor of the toxicodynamics of baseline toxicity. When assessing specific-acting and reactive mechanisms, additional parameters (e.g., reaction rate with the target site and regeneration of the target site) are needed for characterization. For specifically acting compounds, intrinsic potency depends on 1) affinity for, and 2) type of interaction with, a receptor or a target enzyme. These 2 parameters determine the selectivity for the toxic mechanism and the sensitivity, respectively. Implementation of mechanistic information in toxicokinetic-toxicodynamic (TK-TD) models may help explain time-delayed effects, toxicity after pulsed or fluctuating exposure, carryover toxicity after sequential pulses, and mixture toxicity. We believe that this mechanistic understanding of tissue residue toxicity will lead to improved environmental risk assessment.
Collapse
Affiliation(s)
- Beate I Escher
- Department of Environmental Toxicology (Utox), Swiss Federal Institute of Aquatic Science and Technology (Eawag), Überlandstrasse 133, PO Box 611, 8600 Dübendorf, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dyer S, St J Warne M, Meyer JS, Leslie HA, Escher BI. Tissue residue approach for chemical mixtures. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2011; 7:99-115. [PMID: 21184571 DOI: 10.1002/ieam.106] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
At the SETAC Pellston Workshop "The Tissue Residues Approach for Toxicity Assessment," held in June 2007, we discussed mixture toxicology in terms of the tissue residue approach (TRA). This article reviews the literature related to the TRA for mixtures of chemicals and recommends a practical, tiered approach that can be implemented in regulatory or risk assessment applications. As with the toxicity of individual chemicals, addressing mixture toxicity by means of the TRA has a number of significant advantages. Early work provided a theoretical basis and experimental data to support the use of TRA for mixtures; later work provided a field-based validation of the integration. However, subsequent development has been hindered by the lack of mixture toxicity data expressed in tissue or preferably target-site concentrations. We recommend a framework for addressing the toxicology of mixtures that integrates the TRA and mixture toxicology in a 3-tier approach. Tier I uses concentration addition (CA) to estimate the toxicity of mixtures regardless of the mechanism of action of the components. However, the common approach that uses a bioaccumulation factor (BAF) to predict TR from the exposure-water concentration for organics must be modified slightly for metals because, unlike organics, the BAF for a metal changes as 1) the aqueous exposure concentration changes, and 2) the concentration of other metals changes. In addition, total tissue residues of a metal are not a good predictor of toxicity, because some organisms store high concentrations of metals internally in detoxified forms. In tier I, if the combination of measured concentrations in the mixture exceeds that predicted to produce adverse effects or above-reference levels, it is necessary to proceed to tier II. Tier II is a mixed model that employs CA and independent action to estimate mixture toxicity. Tiers I and II estimate the toxicity of mixtures to individual species. In tier III, the TRA is integrated with the multisubstance potentially affected fraction (ms-PAF) method to derive TR levels that are protective of a selected percentage of species in aquatic communities (e.g., hazardous concentration for 5% of the species [HC5]).
Collapse
Affiliation(s)
- Scott Dyer
- Procter & Gamble, 11810 East Miami River Road, Cincinnati, Ohio 45201, USA.
| | | | | | | | | |
Collapse
|
10
|
Xu L, Wang X, Zhao W. Bridging the gap between molecular descriptors and mechanism: cases studies by molecular dynamics simulations. J Mol Graph Model 2009; 27:829-35. [PMID: 19195915 DOI: 10.1016/j.jmgm.2008.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2008] [Revised: 12/17/2008] [Accepted: 12/30/2008] [Indexed: 10/21/2022]
Abstract
In recent years, both classification models and quantitative structure-activity relationships (QSARs) have been developed to discriminate the acute toxicity of polar narcotics and uncouplers. One of fundamental issues is how to select and interpret the molecular descriptors used in both methods. In this work, we first employed support vector machine on a dataset containing 155 polar narcotics and 19 uncouplers to filter the predictive hydrophobic and hydrogen bonding descriptors. Molecular dynamics simulations were then conducted to investigate the behavior of salicylate and pentachlorophenol molecules in the context of a palmitoyl-oleoyl-phosphatidylcholine lipid bilayer. The results demonstrated that their equilibrium properties in the lipid bilayer were closely associated with hydrophobic and hydrogen bonding descriptors. The preferable occupations of these molecules in the lipid bilayer were discussed in terms of their modes of toxic action. The observations from molecular dynamics simulations facilitated to elucidate the mechanism of polar narcotics and uncouplers.
Collapse
Affiliation(s)
- Liang Xu
- Department of Engineering Mechanics, State Key Laboratory of Structural Analyses for Industrial Equipment, Dalian University of Technology, Dalian 116023, China
| | | | | |
Collapse
|
11
|
Duan Z, Zhu L, Zhu L, Kun Y, Zhu X. Individual and joint toxic effects of pentachlorophenol and bisphenol A on the development of zebrafish (Danio rerio) embryo. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2008; 71:774-780. [PMID: 18359083 DOI: 10.1016/j.ecoenv.2008.01.021] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2007] [Revised: 01/21/2008] [Accepted: 01/27/2008] [Indexed: 05/26/2023]
Abstract
Investigation of the toxicological effects of pentachlorophenol (PCP) and bisphenol A (BPA) alone and in combination was carried out following the method of the early life stage (ELS) test on zebrafish embryos. Both chemicals revealed lethal and sub-lethal effects, such as no blood flow, cardiac edema, delayed hatching, and tail malformations. According to their median effective concentrations (EC(50) values) in the single exposure, the toxic level of PCP was about two orders of magnitude higher than that of BPA. Result of the joint action modes varied depending on different endpoints. Synergistic action was observed based on the endpoint of 24h mortality and antagonistic effect displayed based on the endpoint of 72 h cardiac edema. It was also found that the toxicity of PCP would be enhanced with the addition of BPA even below its no observed effect concentration (NOEC) level at the endpoint of 32 h with no blood flow, and the level of the increase was influenced by the toxic unit (TU) ratio.
Collapse
Affiliation(s)
- Zhenghua Duan
- College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | | | | | | | | |
Collapse
|
12
|
Spycher S, Smejtek P, Netzeva TI, Escher BI. Toward a Class-Independent Quantitative Structure−Activity Relationship Model for Uncouplers of Oxidative Phosphorylation. Chem Res Toxicol 2008; 21:911-27. [DOI: 10.1021/tx700391f] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Simon Spycher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Pavel Smejtek
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Tatiana I. Netzeva
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| | - Beate I. Escher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, EAWAG, CH-8600 Dübendorf, Switzerland, Department of Physics, Portland State University, Portland, Oregon 97207, and European Chemicals Bureau, Institute for Health and Consumer Protection, Joint Research Centre, 21020 Ispra (VA), Italy
| |
Collapse
|
13
|
Spycher S, Netzeva TI, Worth AP, Escher BI. Mode of action-based classification and prediction of activity of uncouplers for the screening of chemical inventories. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2008; 19:433-463. [PMID: 18853296 DOI: 10.1080/10629360802348803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A new approach for classification of uncouplers of oxidative and photophosphorylation, also suitable for screening of large chemical inventories, is introduced. Earlier fragment-based approaches for this mode of toxic action are limited to phenols but weak acids of extremely diverse chemical classes can act as uncouplers. The proposed approach overcomes the limitation to phenolic uncouplers by combining structural fragments with the global information of physico-chemical descriptors. In a top-down approach to reduce the number of candidate chemicals, firstly substructure definitions for the detection of weak acids were applied. Subsequently, conservative physico-chemical thresholds for the two most important properties for the uncoupling activity were defined: an acid dissociation constant (pK(a)) between 3 and 9, and a sufficiently low energy barrier for the internal permeability of anions (17 kcal/mol). The later was derived from a novel approach to calculate the distribution of compounds across membranes. The combination of structural and physico-chemical criteria allowed a good separation of active from inactive chemicals with high sensitivity (95%) and slightly lower (more than 75%) specificity. Applying this approach to several thousand high and low production volume chemicals retrieved a surprisingly small number of 10 compounds with a predicted excess toxicity above 10. Nevertheless, uncoupling can be an important mode of action as highlighted with several examples ranging from pesticide metabolites to persistent organic compounds.
Collapse
Affiliation(s)
- S Spycher
- Department of Environmental Toxicology, UTOX, Swiss Federal Institute of Aquatic Science and Technology, Dübendorf, Switzerland.
| | | | | | | |
Collapse
|
14
|
Degradation of mixtures of phenolic compounds by Arthrobacter chlorophenolicus A6. Biodegradation 2007; 19:495-505. [PMID: 17917705 DOI: 10.1007/s10532-007-9154-2] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Accepted: 09/20/2007] [Indexed: 10/22/2022]
Abstract
In this study the chlorophenol-degrading actinobacterium, Arthrobacter chlorophenolicus A6, was tested for its ability to grow on mixtures of phenolic compounds. During the experiments depletion of the compounds was monitored, as were cell growth and activity. Activity assays were based on bioluminescence output from a luciferase-tagged strain. When the cells were grown on a mixture of 4-chlorophenol, 4-nitrophenol and phenol, 4-chlorophenol degradation apparently was delayed until 4-nitrophenol was almost completely depleted. Phenol was degraded more slowly than the other compounds and not until 4-nitrophenol and 4-chlorophenol were depleted, despite this being the least toxic compound of the three. A similar order of degradation was observed in non-sterile soil slurries inoculated with A. chlorophenolicus. The kinetics of degradation of the substituted phenols suggest that the preferential order of their depletion could be due to their respective pKa values and that the dissociated phenolate ions are the substrates. A mutant strain (T99), with a disrupted hydroxyquinol dioxygenase gene in the previously described 4-chlorophenol degradation gene cluster, was also studied for its ability to grow on the different phenols. The mutant strain was able to grow on phenol, but not on either of the substituted phenols, suggesting a different catabolic pathway for the degradation of phenol by this microorganism.
Collapse
|
15
|
De Los Cobos-Vasconcelos D, Santoyo-Tepole F, Juárez-Ramírez C, Ruiz-Ordaz N, Galíndez-Mayer C. Cometabolic degradation of chlorophenols by a strain of Burkholderia in fed-batch culture. Enzyme Microb Technol 2006. [DOI: 10.1016/j.enzmictec.2005.10.038] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
16
|
Richter M, Escher BI. Mixture toxicity of reactive chemicals by using two bacterial growth assays as indicators of protein and DNA damage. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2005; 39:8753-61. [PMID: 16323773 DOI: 10.1021/es050758o] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
The mixture toxicity of reactive chemicals was investigated with a set of bioanalytical tests that quantify not only the toxic effects but also allow the identification of the preferred target of reactive chemicals in bacterial cells. Softer electrophiles such as acrylates react preferentially with thiol groups in proteins and peptides, and harder electrophiles such as epoxides preferentially attack DNA. In addition, some compounds, e.g., benzyl chloride, have no preference for a biological target and damage both DNA and proteins. A thiophenol was used as a model compound representing nucleophiles. We explored if the paradigms of mixture toxicity also hold true for reactive chemicals. Compounds with the same targets and the same modes of action should act concentration additive in mixtures, and compounds with different modes of action should act according to the concept of independent action. In addition, we investigated the potential for interaction of compounds of mixtures of electrophiles or electrophiles plus nucleophiles, which might lead to synergistic or antagonistic effects. The toxicity of mixtures of electrophiles with a single preferred target was consistent with the prediction for concentration addition. Unfortunately, the predictions for independent action did not differ much from those for concentration addition; therefore it was not possible to differentiate between these two models. Mixtures of two groups with different preferred target sites clearly showed concentration addition. In contrast, mixtures of compounds with multiple targets, i.e., compounds that show nonspecific reactivity toward any biological nucleophile, exhibited effects that lay distinctly between the predictions for concentration addition and independent action. We observed neither synergism (higher toxicity than predicted by concentration addition) nor antagonism (lower toxicity than predicted by independent action) for mixtures of electrophiles. Binary combinations of different electrophiles with the nucleophile 4-chlorothiophenol yielded smaller effects than those expected from the prediction for independent action. The degree of antagonism was correlated with the reaction rate constant of the electrophile with the thiol group of glutathione, which indicates that the interaction between the mixture components occur in the toxicokinetic phase and is purely a result of chemical reactivity between the mixture components. Overall, we conclude that the concepts of mixture toxicity apply not only for baseline toxicity and receptor-mediated mechanisms, as has been shown in a large number of studies, but also for reactive mechanisms of toxicity, provided that one has checked beforehand that no chemical reactions occur between the mixture components.
Collapse
Affiliation(s)
- Manuela Richter
- Department of Environmental Toxicology, Swiss Federal Institute for Aquatic Sciences and Technology Eawag, CH-8600 Dübendorf, Switzerland
| | | |
Collapse
|
17
|
Escher BI, Hermens JLM. Modes of action in ecotoxicology: their role in body burdens, species sensitivity, QSARs, and mixture effects. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2002; 36:4201-17. [PMID: 12387389 DOI: 10.1021/es015848h] [Citation(s) in RCA: 323] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
In contrast to the general research attitude in the basic sciences, environmental sciences are often goal-driven and should provide the scientific basis for risk assessment procedures, cleanup, and precautionary measures and finally provide a decision support for policy and management. Hence, the prominent role of mechanistic studies in ecotoxicology is not only to understand the impact of pollutants on living organisms but also to deduce general principles for the categorization and assessment of effects. The goal of this review is, therefore, not to provide an exhaustive coverage of modes of toxic action and their underlying biochemical mechanisms but rather to discuss critically the application of this knowledge in ecotoxicological risk assessment. Knowing the mechanism or, at least the mode of toxic action is indispensable for developing descriptive and predictive models in ecotoxicology. This review seeks to show the crucial role of target sites, interactions with the target site(s), and mechanisms for an adequate and efficient ecotoxicological risk assessment. Emphasis in the discussion is on target effect concentrations (or target occupancy), species selectivity and species sensitivity, time perspective of effect studies, Quantitative Structure-Activity Relationships (QSAR), and mixture toxicity. A particular focus of this review is on multiple mechanisms. Although the illustrative examples were mainly taken from studies in aquatic ecotoxicology, the proposed conceptual approach is also in principle applicable and even particularly useful for soil and sediment systems. Recommendations for further research and developments include the use of internal effect concentrations and target site concentrations in site-specific risk assessment and as a mixture toxicity parameter as well as general considerations for the derivation of mechanistically meaningful QSAR and other predictive models.
Collapse
Affiliation(s)
- Beate I Escher
- Swiss Federal Institute for Environmental Science and Technology (EAWAG), Dübendorf.
| | | |
Collapse
|