1
|
Mishra A, Lelieveld S, Pöschl U, Berkemeier T. Multiphase Kinetic Modeling of Air Pollutant Effects on Protein Modification and Nitrotyrosine Formation in Epithelial Lining Fluid. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:12642-12653. [PMID: 37587684 PMCID: PMC10469477 DOI: 10.1021/acs.est.3c03556] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/18/2023]
Abstract
Exposure to ambient air pollution is a major risk factor for human health. Inhalation of air pollutants can enhance the formation of reactive species in the epithelial lining fluid (ELF) of the respiratory tract and can lead to oxidative stress and oxidative damage. Here, we investigate the chemical modification of proteins by reactive species from air pollution and endogenous biological sources using an extended version of the multiphase chemical kinetic model KM-SUB-ELF 2.0 with a detailed mechanism of protein modification. Fine particulate matter (PM2.5) and nitrogen dioxide (•NO2) act synergistically and increase the formation of nitrotyrosine (Ntyr), a common biomarker of oxidative stress. Ozone (O3) is found to be a burden on the antioxidant defense system but without substantial influence on the Ntyr concentration. In simulations with low levels of air pollution, the Ntyr concentration in the ELF is consistent with the range of literature values for bronchoalveolar lavage fluid from healthy individuals. With high levels of air pollution, however, we obtain strongly elevated Ntyr concentrations. Our model analysis shows how chemical reactions of air pollutants can modify proteins and thus their functionality in the human body, elucidating a molecular pathway that may explain air pollutant effects on human health.
Collapse
Affiliation(s)
- Ashmi Mishra
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Steven Lelieveld
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Ulrich Pöschl
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| | - Thomas Berkemeier
- Multiphase Chemistry Department, Max Planck Institute for Chemistry, Hahn-Meitner-Weg 1, 55128, Mainz, Germany
| |
Collapse
|
2
|
Wang Q, An D, Yuan Z, Sun R, Lu W, Wang L. A field investigation into the characteristics and formation mechanisms of particles during the operation of laser printers and photocopiers. J Environ Sci (China) 2023; 126:697-707. [PMID: 36503794 DOI: 10.1016/j.jes.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Indoor particle release from toner printing equipment (TPE) is a major health concern and has received wide attention. In this study, nine printing centers were randomly selected and three working phases were simulated, namely, non-working, normal printing/copying, and heavy printing/copying. The dynamics of the ozone (O3), volatile organic compound (VOC), and particle emissions from TPE were determined by portable detectors. Results showed that particles, VOCs, and O3 were indeed discharged, and particles and VOCs concentrations remained at high levels. Among them, 44% of the rooms represented high-level particle releases. Submicrometer-sized particles, especially nanoparticles, were positively correlated with VOCs, but were inversely proportional to the O3 concentration. Four elements, Ca, Al, Mg and Ni, were usually present in nanoparticles because of the discharge of paper. Si, Al, K, Ni and Pb were found in the submicrometer-sized particles and were consistent with the toner composition. The potential particle precursors were identified, which suggested that styrene was the most likely secondary organic aerosol (SOA) precursor. Overall, the use of the toner formulation and the discharge of paper attribute to the TPE-emitted particles, in which styrene is a specific monitoring indicator for the formation of SOA.
Collapse
Affiliation(s)
- Qiang Wang
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China.
| | - Daizhi An
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Zhengquan Yuan
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Rubao Sun
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Wei Lu
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Lili Wang
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| |
Collapse
|
3
|
Zhou S, Kahan TF. Spatiotemporal characterization of irradiance and photolysis rate constants of indoor gas-phase species in the UTest house during HOMEChem. INDOOR AIR 2022; 32:e12964. [PMID: 34854500 DOI: 10.1111/ina.12966] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/20/2021] [Accepted: 11/14/2021] [Indexed: 05/25/2023]
Abstract
We made intensive measurements of wavelength-resolved spectral irradiance in a test house during the HOMEChem campaign and report diurnal profiles and two-dimensional spatial distribution of photolysis rate constants (J) of several important indoor photolabile gases. Results show that sunlight entering through windows, which was the dominant source of ultraviolet (UV) light in this house, led to clear diurnal cycles, and large time- and location-dependent variations in local gas-phase photochemical activity. Local J values of several key indoor gases under direct solar illumination were 1.8-7.4 times larger-and more strongly dependent on time, solar zenith angle, and incident angle of sunlight relative to the window-than under diffuse sunlight. Photolysis rate constants were highly spatially heterogeneous and fast photochemical reactions in the gas phase were generally confined to within tens of cm of the region that were directly sunlit. Opening windows increased UV photon fluxes by 3 times and increased predicted local hydroxyl radical (OH) concentrations in the sunlit region by 4.5 times to 3.2 × 107 molec cm-3 due to higher J values and increased contribution from O3 photolysis. These results can be used to improve the treatment of photochemistry in indoor chemistry models and are a valuable resource for future studies that use the publicly available HOMEChem measurements.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas, USA
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
4
|
Zhou S, Liu Z, Wang Z, Young CJ, VandenBoer TC, Guo BB, Zhang J, Carslaw N, Kahan TF. Hydrogen Peroxide Emission and Fate Indoors during Non-bleach Cleaning: A Chamber and Modeling Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15643-15651. [PMID: 33258369 DOI: 10.1021/acs.est.0c04702] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Activities such as household cleaning can greatly alter the composition of air in indoor environments. We continuously monitored hydrogen peroxide (H2O2) from household non-bleach surface cleaning in a chamber designed to simulate a residential room. Mixing ratios of up to 610 ppbv gaseous H2O2 were observed following cleaning, orders of magnitude higher than background levels (sub-ppbv). Gaseous H2O2 levels decreased rapidly and irreversibly, with removal rate constants (kH2O2) 17-73 times larger than air change rate (ACR). Increasing the surface-area-to-volume ratio within the room caused peak H2O2 mixing ratios to decrease and kH2O2 to increase, suggesting that surface uptake dominated H2O2 loss. Volatile organic compound (VOC) levels increased rapidly after cleaning and then decreased with removal rate constants 1.2-7.2 times larger than ACR, indicating loss due to surface partitioning and/or chemical reactions. We predicted photochemical radical production rates and steady-state concentrations in the simulated room using a detailed chemical model for indoor air (the INDCM). Model results suggest that, following cleaning, H2O2 photolysis increased OH concentrations by 10-40% to 9.7 × 105 molec cm-3 and hydroperoxy radical (HO2) concentrations by 50-70% to 2.3 × 107 molec cm-3 depending on the cleaning method and lighting conditions.
Collapse
Affiliation(s)
- Shan Zhou
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
| | - Zhenlei Liu
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Zixu Wang
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Cora J Young
- Department of Chemistry, York University, Toronto, Ontario M3J 1P3, Canada
| | | | - B Beverly Guo
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Jianshun Zhang
- Department of Mechanical and Aerospace Engineering, Syracuse University, Syracuse, New York 13244, United States
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York YO10 5DD, U.K
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, New York 13244, United States
- Department of Chemistry, University of Saskatchewan, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
5
|
Wang Z, Kowal SF, Carslaw N, Kahan TF. Photolysis-driven indoor air chemistry following cleaning of hospital wards. INDOOR AIR 2020; 30:1241-1255. [PMID: 32485006 DOI: 10.1111/ina.12702] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 04/17/2020] [Accepted: 05/19/2020] [Indexed: 05/25/2023]
Abstract
Effective cleaning techniques are essential for the sterilization of rooms in hospitals and industry. No-touch devices (NTDs) that use fumigants such as hydrogen peroxide (H2 O2 ), formaldehyde (HCHO), ozone (O3 ), and chlorine dioxide (OClO) are a recent innovation. This paper reports a previously unconsidered potential consequence of such cleaning technologies: the photochemical formation of high concentrations of hydroxyl radicals (OH), hydroperoxy radicals (HO2 ), organic peroxy radicals (RO2 ), and chlorine radicals (Cl) which can form harmful reaction products when exposed to chemicals commonly found in indoor air. This risk was evaluated by calculating radical production rates and concentrations based on measured indoor photon fluxes and typical fumigant concentrations during and after cleaning events. Sunlight and fluorescent tubes without covers initiated photolysis of all fumigants, and plastic-covered fluorescent tubes initiated photolysis of only some fumigants. Radical formation was often dominated by photolysis of fumigants during and after decontamination processes. Radical concentrations were predicted to be orders of magnitude greater than background levels during and immediately following cleaning events with each fumigant under one or more illumination condition. Maximum predicted radical concentrations (1.3 × 107 molecule cm-3 OH, 2.4 ppb HO2 , 6.8 ppb RO2 and 2.2 × 108 molecule cm-3 Cl) were much higher than baseline concentrations. Maximum OH concentrations occurred with O3 photolysis, HO2 with HCHO photolysis, and RO2 and Cl with OClO photolysis. Elevated concentrations may persist for hours after NTD use, depending on the air change rate and air composition. Products from reactions involving radicals could significantly decrease air quality when disinfectants are used, leading to adverse health effects for occupants.
Collapse
Affiliation(s)
- Zixu Wang
- Department of Environment and Geography, University of York, York, UK
| | - Shawn F Kowal
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
| | - Nicola Carslaw
- Department of Environment and Geography, University of York, York, UK
| | - Tara F Kahan
- Department of Chemistry, Syracuse University, Syracuse, NY, USA
- Department of Chemistry, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
6
|
Wang C, Collins DB, Abbatt JPD. Indoor Illumination of Terpenes and Bleach Emissions Leads to Particle Formation and Growth. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:11792-11800. [PMID: 31576741 DOI: 10.1021/acs.est.9b04261] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Application of chlorine bleach solution (major component sodium hypochlorite, NaOCl) in indoor environments leads to the emission of gaseous hypochlorous acid (HOCl) and chlorine (Cl2), both of which are strong oxidants. In contrast to the outdoor atmosphere, where mixing ratios of HOCl and Cl2 tend to be low (10s-100s of ppt), indoor HOCl and Cl2 can reach high levels during cleaning activities (100s of ppb or higher). HOCl and Cl2 may react with unsaturated organic compounds on indoor surfaces and in indoor air. In this study, we studied the reaction of limonene, one of the most common indoor volatile organic compounds (VOCs) arising from use of cleaning products, fragrance, and air fresheners, with HOCl and Cl2 in an environmental chamber. A dark reaction was observed between limonene and HOCl/Cl2 leading to gas-phase reaction products that were investigated using proton transfer reaction mass spectrometry (PTR-MS). With subsequent exposure to indoor fluorescent lights or diffuse sunlight through a nearby window, a substantial mass loading of secondary particles were formed with an averaged mass yield of 40% relative to the amount of limonene consumed. Aerosol mass spectrometry (AMS) measurements indicate a large contribution of particulate chlorine species. Electrospray ionization mass spectrometry (ESI-MS) analysis of filter-collected particles indicates the formation of high molecular weight products. This is the first study of the oxidation of limonene with HOCl and Cl2, and it illustrates the potential for particle formation to occur with indoor lighting during the use of common cleaning products.
Collapse
Affiliation(s)
- Chen Wang
- Department of Chemistry , University of Toronto , Toronto , ON , M5S 3H6 , Canada
| | - Douglas B Collins
- Department of Chemistry , University of Toronto , Toronto , ON , M5S 3H6 , Canada
- Department of Chemistry , Bucknell University , Lewisburg , Pennsylvania 17837 , United States
| | - Jonathan P D Abbatt
- Department of Chemistry , University of Toronto , Toronto , ON , M5S 3H6 , Canada
| |
Collapse
|
7
|
Megahed A, Aldridge B, Lowe J. The microbial killing capacity of aqueous and gaseous ozone on different surfaces contaminated with dairy cattle manure. PLoS One 2018; 13:e0196555. [PMID: 29758045 PMCID: PMC5951574 DOI: 10.1371/journal.pone.0196555] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 04/16/2018] [Indexed: 11/19/2022] Open
Abstract
A high reactivity and leaving no harmful residues make ozone an effective disinfectant for farm hygiene and biosecurity. Our objectives were therefore to (1) characterize the killing capacity of aqueous and gaseous ozone at different operational conditions on dairy cattle manure-based pathogens (MBP) contaminated different surfaces (plastic, metal, nylon, rubber, and wood); (2) determine the effect of microbial load on the killing capacity of aqueous ozone. In a crossover design, 14 strips of each material were randomly assigned into 3 groups, treatment (n = 6), positive-control (n = 6), and negative-control (n = 2). The strips were soaked in dairy cattle manure with an inoculum level of 107–108 for 60 minutes. The treatment strips were exposed to aqueous ozone of 2, 4, and 9 ppm and gaseous ozone of 1and 9 ppm for 2, 4, and 8 minutes exposure. 3M™ Petrifilm™ rapid aerobic count plate and plate reader were used for bacterial culture. On smooth surfaces, plastic and metal, aqueous ozone at 4 ppm reduced MBP to a safe level (≥5-log10) within 2 minutes (6.1 and 5.1-log10, respectively). However, gaseous ozone at 9 ppm for 4 minutes inactivated 3.3-log10 of MBP. Aqueous ozone of 9 ppm is sufficient to reduce MBP to a safe level, 6.0 and 5.4- log10, on nylon and rubber surfaces within 2 and 8 minutes, respectively. On complex surfaces, wood, both aqueous and gaseous ozone at up to 9 ppm were unable to reduce MBP to a safe level (3.6 and 0.8-log10, respectively). The bacterial load was a strong predictor for reduction in MBP (P<0.0001, R2 = 0.72). We conclude that aqueous ozone of 4 and 9 ppm for 2 minutes may provide an efficient method to reduce MBP to a safe level on smooth and moderately rough surfaces, respectively. However, ozone alone may not an adequate means of controlling MBP on complex surfaces.
Collapse
Affiliation(s)
- Ameer Megahed
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Animal Medicine, Internal Medicine, Faculty of Veterinary Medicine, Benha University, Moshtohor-Toukh, Kalyobiya, Egypt
| | - Brian Aldridge
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - James Lowe
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
8
|
Wells JR, Schoemaecker C, Carslaw N, Waring MS, Ham JE, Nelissen I, Wolkoff P. Reactive indoor air chemistry and health-A workshop summary. Int J Hyg Environ Health 2017; 220:1222-1229. [PMID: 28964679 PMCID: PMC6388628 DOI: 10.1016/j.ijheh.2017.09.009] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Revised: 09/18/2017] [Accepted: 09/22/2017] [Indexed: 12/23/2022]
Abstract
The chemical composition of indoor air changes due to the reactive nature of the indoor environment. Historically, only the stable parent compounds were investigated due to their ease of measurement by conventional methods. Today, however, scientists can better characterize oxidation products (gas and particulate-phase) formed by indoor chemistry. An understanding of occupant exposure can be developed through the investigation of indoor oxidants, the use of derivatization techniques, atmospheric pressure detection, the development of real-time technologies, and improved complex modeling techniques. Moreover, the connection between exposure and health effects is now receiving more attention from the research community. Nevertheless, a need still exists for improved understanding of the possible link between indoor air chemistry and observed acute or chronic health effects and long-term effects such as work-related asthma.
Collapse
Affiliation(s)
- J R Wells
- NIOSH/HELD/EAB, Morgantown, WV, USA.
| | | | - N Carslaw
- Environment Department, University of York, York, UK
| | - M S Waring
- Drexel University, Philadelphia, PA, USA
| | - J E Ham
- NIOSH/HELD/EAB, Morgantown, WV, USA
| | - I Nelissen
- Flemish Institute for Technological Research (VITO), Mol, Belgium
| | - P Wolkoff
- National Research Center for the Working Environment, Copenhagen, Denmark
| |
Collapse
|
9
|
Kowal SF, Allen SR, Kahan TF. Wavelength-Resolved Photon Fluxes of Indoor Light Sources: Implications for HO x Production. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10423-10430. [PMID: 28805371 DOI: 10.1021/acs.est.7b02015] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Photochemistry is a largely unconsidered potential source of reactive species such as hydroxyl and peroxy radicals (OH and HO2, "HOx") indoors. We present measured wavelength-resolved photon fluxes and distance dependences of indoor light sources including halogen, incandescent, and compact fluorescent lights (CFL) commonly used in residential buildings; fluorescent tubes common in industrial and commercial settings; and sunlight entering buildings through windows. We use these measurements to predict indoor HOx production rates from the photolysis of nitrous acid (HONO), hydrogen peroxide (H2O2), ozone (O3), formaldehyde (HCHO), and acetaldehyde (CH3CHO). Our results suggest that while most lamps can photolyze these molecules, only sunlight and fluorescent tubes will be important to room-averaged indoor HOx levels due to the strong distance dependence of the fluxes from compact bulbs. Under ambient conditions, we predict that sunlight and fluorescent lights will photolyze HONO to form OH at rates of 106-107 molecules cm-3 s-1, and that fluorescent lights will photolyze HCHO to form HO2 at rates of ∼106 molecules cm-3 s-1; rates could be 2 orders of magnitude higher under high precursor concentrations. Ozone and H2O2 will not be important photochemical OH sources under most conditions, and CH3CHO will generally increase HO2 production rates only slightly. We also calculated photolysis rate constants for nitrogen dioxide (NO2) and nitrate radicals (NO3) in the presence of the different light sources. Photolysis is not likely an important fate for NO3 indoors, but NO2 photolysis could be an important source of indoor O3.
Collapse
Affiliation(s)
- Shawn F Kowal
- 1-014 Center for Science and Technology, Syracuse University 111 College Place Syracuse, New York 13244, United States
| | - Seth R Allen
- 1-014 Center for Science and Technology, Syracuse University 111 College Place Syracuse, New York 13244, United States
| | - Tara F Kahan
- 1-014 Center for Science and Technology, Syracuse University 111 College Place Syracuse, New York 13244, United States
| |
Collapse
|
10
|
Kaimoto T, Hatakeyama Y, Takahashi K, Imagawa T, Tominaga M, Ohta T. Involvement of transient receptor potential A1 channel in algesic and analgesic actions of the organic compound limonene. Eur J Pain 2016; 20:1155-65. [DOI: 10.1002/ejp.840] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/02/2015] [Indexed: 12/26/2022]
Affiliation(s)
- T. Kaimoto
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
| | - Y. Hatakeyama
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
| | - K. Takahashi
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
- Division of Functional Fungal Physiology and Pharmacology; Fungus/Mushroom Resource and Research Center; Faculty of Agriculture; Tottori University; Tottori Japan
| | - T. Imagawa
- Biological Chemistry; Department of Chemistry; Faculty of Science; Hokkaido University; Sapporo Japan
| | - M. Tominaga
- Division of Cell Signaling; Okazaki Institute for Integrative Bioscience (National Institute for Physiological Sciences); National Institutes of Natural Sciences; Okazaki Japan
| | - T. Ohta
- Department of Veterinary Pharmacology; Faculty of Agriculture; Tottori University; Tottori Japan
- Division of Functional Fungal Physiology and Pharmacology; Fungus/Mushroom Resource and Research Center; Faculty of Agriculture; Tottori University; Tottori Japan
| |
Collapse
|
11
|
Waring MS, Wells JR. Volatile organic compound conversion by ozone, hydroxyl radicals, and nitrate radicals in residential indoor air: Magnitudes and impacts of oxidant sources. ATMOSPHERIC ENVIRONMENT (OXFORD, ENGLAND : 1994) 2015; 106:382-391. [PMID: 26855604 PMCID: PMC4741105 DOI: 10.1016/j.atmosenv.2014.06.062] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Indoor chemistry may be initiated by reactions of ozone (O3), the hydroxyl radical (OH), or the nitrate radical (NO3) with volatile organic compounds (VOC). The principal indoor source of O3 is air exchange, while OH and NO3 formation are considered as primarily from O3 reactions with alkenes and nitrogen dioxide (NO2), respectively. Herein, we used time-averaged models for residences to predict O3, OH, and NO3 concentrations and their impacts on conversion of typical residential VOC profiles, within a Monte Carlo framework that varied inputs probabilistically. We accounted for established oxidant sources, as well as explored the importance of two newly realized indoor sources: (i) the photolysis of nitrous acid (HONO) indoors to generate OH and (ii) the reaction of stabilized Criegee intermediates (SCI) with NO2 to generate NO3. We found total VOC conversion to be dominated by reactions both with O3, which almost solely reacted with d-limonene, and also with OH, which reacted with d-limonene, other terpenes, alcohols, aldehydes, and aromatics. VOC oxidation rates increased with air exchange, outdoor O3, NO2 and d-limonene sources, and indoor photolysis rates; and they decreased with O3 deposition and nitric oxide (NO) sources. Photolysis was a strong OH formation mechanism for high NO, NO2, and HONO settings, but SCI/NO2 reactions weakly generated NO3 except for only a few cases.
Collapse
Affiliation(s)
- Michael S. Waring
- Drexel University, Department of Civil, Architectural and Environmental Engineering, 3141 Chestnut St., Philadelphia, PA 19104, United States
- Corresponding author. (M.S. Waring)
| | - J. Raymond Wells
- Exposure Assessment Branch, Health Effects Laboratory Division, National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505, United States
| |
Collapse
|
12
|
Montesinos VN, Sleiman M, Cohn S, Litter MI, Destaillats H. Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta 2015; 138:20-27. [PMID: 25863366 DOI: 10.1016/j.talanta.2015.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 02/06/2015] [Accepted: 02/09/2015] [Indexed: 11/19/2022]
Abstract
Reactive oxygen species (ROS), such as free radicals and peroxides, are environmental trace pollutants potentially associated with asthma and airways inflammation. These compounds are often not detected in indoor air due to sampling and analytical limitations. This study developed and validated an experimental method to sample, identify and quantify ROS in indoor air using fluorescent probes. Tests were carried out simultaneously using three different probes: 2',7'-dichlorofluorescin (DCFH) to detect a broad range of ROS, Amplex ultra Red® (AuR) to detect peroxides, and terephthalic acid (TPA) to detect hydroxyl radicals (HO(•)). For each test, air samples were collected using two impingers in series kept in an ice bath, containing each 10 mL of 50 mM phosphate buffer at pH 7.2. In tests with TPA, that probe was also added to the buffer prior to sampling; in the other two tests, probes and additional reactants were added immediately after sampling. The concentration of fluorescent byproducts was determined fluorometrically. Calibration curves were developed by reacting DCFH and AuR with known amounts of H2O2, and using known amounts of 2-hydroxyterephthalic acid (HTPA) for TPA. Low detection limits (9-13 nM) and quantification limits (18-22 nM) were determined for all three probes, which presented a linear response in the range 10-500 nM for AuR and TPA, and 100-2000 nM for DCFH. High collection efficiency (CE) and recovery efficiency (RE) were observed for DCFH (CE=RE=100%) and AuR (CE=100%; RE=73%) by sampling from a laboratory-developed gas phase H2O2 generator. Interference of co-occurring ozone was evaluated and quantified for the three probes by sampling from the outlet of an ozone generator. The method was demonstrated by sampling air emitted by two portable air cleaners: a strong ozone generator (AC1) and a plasma generator (AC2). High ozone levels emitted by AC1 did not allow for simultaneous determination of ROS levels due to high background levels associated with ozone decomposition in the buffer. However, emitted ROS were quantified at the outlet of AC2 using two of the three probes. With AuR, the concentration of peroxides in air emitted by the air cleaner was 300 ppt of H2O2 equivalents. With TPA, the HO(•) concentration was 47 ppt. This method is best suited to quantify ROS in the presence of low ozone levels.
Collapse
Affiliation(s)
- V Nahuel Montesinos
- Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina; Universidad de Buenos Aires, FCEN, INQUIMAE, DQIAQF, Ciudad Universitaria Pabellón II, 1428 Ciudad Autónoma de Buenos Aires, Argentina
| | - Mohamad Sleiman
- Lawrence Berkeley National Laboratory, Indoor Environment Group, 1 Cyclotron Road MS 70-108B, Berkeley, CA, USA; Clermont Université, ENSCCF, Institut de Chimie de Clermont-Ferrand, BP 10448, F-63000 Clermont-Ferrand, France; CNRS, UMR 6296, ICCF, BP 80026, F-63177 Aubière, France
| | - Sebastian Cohn
- Lawrence Berkeley National Laboratory, Indoor Environment Group, 1 Cyclotron Road MS 70-108B, Berkeley, CA, USA
| | - Marta I Litter
- Comisión Nacional de Energía Atómica, Avenida Gral. Paz 1499, 1650 San Martín, Provincia de Buenos Aires, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, Avenida Rivadavia 1917, 1033 Ciudad Autónoma de Buenos Aires, Argentina; Universidad de General San Martín, Instituto de Investigación e Ingeniería Ambiental, Peatonal Belgrano 3563, 1650 San Martín, Pcia. Buenos Aires, Argentina
| | - Hugo Destaillats
- Lawrence Berkeley National Laboratory, Indoor Environment Group, 1 Cyclotron Road MS 70-108B, Berkeley, CA, USA.
| |
Collapse
|
13
|
Khurshid SS, Siegel JA, Kinney KA. Indoor particulate reactive oxygen species concentrations. ENVIRONMENTAL RESEARCH 2014; 132:46-53. [PMID: 24742727 DOI: 10.1016/j.envres.2014.03.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2013] [Revised: 02/21/2014] [Accepted: 03/12/2014] [Indexed: 05/18/2023]
Abstract
Despite the fact that precursors to reactive oxygen species (ROS) are prevalent indoors, the concentration of ROS inside buildings is unknown. ROS on PM2.5 was measured inside and outside twelve residential buildings and eleven institutional and retail buildings. The mean (± s.d.) concentration of ROS on PM2.5 inside homes (1.37 ± 1.2 nmoles/m(3)) was not significantly different from the outdoor concentration (1.41 ± 1.0 nmoles/m(3)). Similarly, the indoor and outdoor concentrations of ROS on PM2.5 at institutional buildings (1.16 ± 0.38 nmoles/m(3) indoors and 1.68 ± 1.3 nmoles/m(3) outdoors) and retail stores (1.09 ± 0.93 nmoles/m(3) indoors and 1.12 ± 1.1 nmoles/m(3) outdoors) were not significantly different and were comparable to those in residential buildings. The indoor concentration of particulate ROS cannot be predicted based on the measurement of other common indoor pollutants, indicating that it is important to separately assess the concentration of particulate ROS in air quality studies. Daytime indoor occupational and residential exposure to particulate ROS dominates daytime outdoor exposure to particulate ROS. These findings highlight the need for further study of ROS in indoor microenvironments.
Collapse
Affiliation(s)
- Shahana S Khurshid
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA.
| | - Jeffrey A Siegel
- Department of Civil Engineering, The University of Toronto, Toronto, ON, Canada
| | - Kerry A Kinney
- Department of Civil, Architectural and Environmental Engineering, The University of Texas at Austin, Austin, TX, USA
| |
Collapse
|
14
|
Dambruoso PR, de Gennaro G, Loiotile AD, Di Gilio A, Giungato P, Marzocca A, Mazzone A, Palmisani J, Porcelli F, Tutino M. School Air Quality: Pollutants, Monitoring and Toxicity. ENVIRONMENTAL CHEMISTRY FOR A SUSTAINABLE WORLD 2013. [DOI: 10.1007/978-3-319-02387-8_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
15
|
Youssefi S, Waring MS. Predicting secondary organic aerosol formation from terpenoid ozonolysis with varying yields in indoor environments. INDOOR AIR 2012; 22:415-426. [PMID: 22372506 DOI: 10.1111/j.1600-0668.2012.00776.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
UNLABELLED The ozonolysis of terpenoids generates secondary organic aerosol (SOA) indoors. Models of varying complexity have been used to predict indoor SOA formation, and many models use the SOA yield, which is the ratio of the mass of produced SOA and the mass of consumed reactive organic gas. For indoor simulations, the SOA yield has been assumed as a constant, even though it depends on the concentration of organic particles in the air, including any formed SOA. We developed two indoor SOA formation models for single terpenoid ozonolysis, with yields that vary with the organic particle concentration. The models have their own strengths and were in agreement with published experiments for d-limonene ozonolysis. Monte Carlo analyses were performed, which simulated different residential and office environments to estimate ranges of SOA concentrations and yields for d-limonene and α-pinene ozonolysis occurring indoors. Results indicate that yields are highly variable indoors and are most influenced by background organic particles for steady-state formation and indoor ozone concentration for transient peak formation. Additionally, a review of ozonolysis yields for indoor-relevant terpenoids in the literature revealed much uncertainty in their values at low concentrations typical of indoors. PRACTICAL IMPLICATIONS The results in this study suggest important factors that govern indoor secondary organic aerosol (SOA) formation and yields, in typical residential and office spaces. This knowledge informs the development and comparison of control strategies to reduce indoor-generated SOA. The ranges of SOA concentrations predicted indoors allow the quantification of the effects of sorptive interactions of semi-volatile organic compounds or reactive oxygen species with SOA, filter loading owing to SOA formation, and impacts of SOA on health, if links are established.
Collapse
Affiliation(s)
- S Youssefi
- Department of Civil, Architectural and Environmental Engineering, Drexel University, Philadelphia, PA, USA
| | | |
Collapse
|
16
|
Sun X, Zhang C, Zhao Y, Bai J, He M. Kinetic study on the linalool ozonolysis reaction in the atmosphere. CAN J CHEM 2012. [DOI: 10.1139/v2012-001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In the atmosphere, linalool ozonolysis will generate a series of oxidation products and then form particles through nucleation. In this study, the linalool ozonolysis mechanisms were studied and some of the main products detected from experiment are verified. The Rice–Ramsperger–Kassel–Marcus (RRKM) theory and the canonical variational transition state theory (CVT) with small curvature tunneling effect (SCT) are used to calculate rate constants over the temperature range of 200∼800 K. The total rate constant for the reaction of ozone with linalool is 4.50 × 10−16 cm3 molecule–l s–l, and the addition of ozone to (CH3)2C=CH– is the main ozone addition position. Furthermore, the Arrhenius formulas are fitted and the lifetimes of reaction species in the troposphere are discussed for the first time. The total atmospheric lifetime of linalool relative to O3 is 2.30 h. The O3-initiated atmospheric lifetimes of P1, P3, and P6 are 2.64 months, 16.67 days, and 15.5 h, respectively.
Collapse
Affiliation(s)
- Xiaomin Sun
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy Of Science, Lanzhou 730000, P.R. China
| | - Chenxi Zhang
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Yuyang Zhao
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Jing Bai
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| | - Maoxia He
- Environment Research Institute, Shandong University, Jinan 250100, P.R. China
| |
Collapse
|
17
|
Bennett DH, Wu XM, Teague CH, Lee K, Cassady DL, Ritz B, Hertz-Picciotto I. Passive sampling methods to determine household and personal care product use. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2012; 22:148-160. [PMID: 22189587 DOI: 10.1038/jes.2011.40] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2010] [Accepted: 08/15/2011] [Indexed: 05/31/2023]
Abstract
Traditionally, use of household and personal care products has been collected through questionnaires, which is very time consuming, a burden on participants, and prone to recall bias. As part of the SUPERB Project (Study of Use of Products and Exposure-Related Behaviors), a novel platform was developed using bar codes to quickly and reliably determine what household and personal care products people have in their homes and determine the amount used over a 1-week period. We evaluated the acceptability and feasibility of our methodology in a longitudinal field study that included 47 California households, 30 with young children and 17 with an older adult. Acceptability was defined by refusal rates; feasibility was evaluated in terms of readable bar codes, useful product information in our database for all readable barcodes, and ability to find containers at both the start and end of the week. We found 63% of personal care products and 87% of the household care products had readable barcodes with 47% and 41% having sufficient data for product identification, respectively and secondly, the amount used could be determined most of the time. We present distributions for amount used by product category and compare inter- and intra-person variability. In summary, our method appears to be appropriate, acceptable, and useful for gathering information related to potential exposures stemming from the use of personal and household care products. A very low drop-out rate suggests that this methodology can be useful in longitudinal studies of exposure to household and personal care products.
Collapse
Affiliation(s)
- Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, California, USA.
| | | | | | | | | | | | | |
Collapse
|
18
|
Abstract
UNLABELLED In the two decades since the first issue of Indoor Air, there have been over 250 peer-reviewed publications addressing chemical reactions among indoor pollutants. The present review has assembled and categorized these publications. It begins with a brief account of the state of our knowledge in 1991 regarding 'indoor chemistry', much of which came from corrosion and art conservation studies. It then outlines what we have learned in the period between 1991 and 2010 in the context of the major reference categories: gas-phase chemistry, surface chemistry, health effects and reviews/workshops. The indoor reactions that have received the greatest attention are those involving ozone-with terpenoids in the gas-phase as well as with the surfaces of common materials, furnishings, and the occupants themselves. It has become clear that surface reactions often have a larger impact on indoor settings than do gas-phase processes. This review concludes with a subjective list of major research needs going forward, including more information on the decomposition of common indoor pollutants, better understanding of how sorbed water influences surface reactions, and further identification of short-lived products of indoor chemistry. Arguably, the greatest need is for increased knowledge regarding the impact that indoor chemistry has on the health and comfort of building occupants. PRACTICAL IMPLICATIONS Indoor chemistry changes the type and concentration of chemicals present in indoor environments. In the past, products of indoor chemistry were often overlooked, reflecting a focus on stable, relatively non-polar organic compounds coupled with the use of sampling and analytical methods that were unable to 'see' many of the products of such chemistry. Today, researchers who study indoor environments are more aware of the potential for chemistry to occur. Awareness is valuable, because it leads to the use of sampling methods and analytical tools that can detect changes in indoor environments resulting from chemical processes. This, in turn, leads to a more complete understanding of occupants' chemical exposures, potential links between these exposures and adverse health effects and, finally, steps that might be taken to mitigate these adverse effects.
Collapse
Affiliation(s)
- C J Weschler
- Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey and Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
19
|
Chen X, Hopke PK. A chamber study of secondary organic aerosol formation by limonene ozonolysis. INDOOR AIR 2010; 20:320-328. [PMID: 20557377 DOI: 10.1111/j.1600-0668.2010.00656.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
UNLABELLED Limonene ozonolysis was examined under conditions relevant to indoor environments in terms of temperatures, air exchange rates, and reagent concentrations. Secondary organic aerosols (SOA) produced and particle-bound reactive oxygen species (ROS) were studied under situations when the product of the two reagent concentrations was constant, the specific concentration combinations play an important role in determining the total SOA formed. A combination of concentration ratios of ozone/limonene between 1 and 2 produce the maximum SOA concentration. The two enantiomers, R-(+)-limonene and S-(-)-limonene, were found to have similar SOA yields. The measured ROS concentrations for limonene and ozone concentrations relevant to prevailing indoor concentrations ranged from 5.2 to 14.5 nmol/m(3) equivalent of H2O2. It was found that particle samples aged for 24 h in freezer lost a discernible fraction of the ROS compared to fresh samples. The residual ROS concentrations were around 83-97% of the values obtained from the analysis of samples immediately after collection. The ROS formed from limonene ozonolysis could be separated into three categories as short-lived, high reactive, and volatile; semi-volatile and relatively stable; non-volatile and low-reactive species based on ROS measurements under various conditions. Such chemical and physical characterization of the ROS in terms of reactivity and volatility provides useful insights into nature of ROS. PRACTICAL IMPLICATIONS A better understanding of the formation mechanism of secondary organic aerosol generated from indoor chemistry allows us to evaluate and predict the exposure under such environments. Measurements of particle-bound ROS shed light on potential adverse health effect associated with exposure to particles.
Collapse
Affiliation(s)
- X Chen
- Center for Air Resources Engineering and Science, Clarkson University, Potsdam, NY, USA
| | | |
Collapse
|
20
|
Wolkoff P. "Healthy" eye in office-like environments. ENVIRONMENT INTERNATIONAL 2008; 34:1204-1214. [PMID: 18499257 DOI: 10.1016/j.envint.2008.04.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2007] [Revised: 04/15/2008] [Accepted: 04/16/2008] [Indexed: 05/26/2023]
Abstract
Eye irritation symptoms, e.g. dry eyes, are common and abundant symptoms reported in office-like environments, e.g. aircraft cabins. To improve the understanding of indoor related eye symptomatology, relevant knowledge from the ophthalmological and indoor environmental science literature has been merged. A number of environmental (relative humidity, temperature, draft), occupational (e.g. visual display unit work), and individual (e.g. gender, use of cosmetics, and medication) risk factors have been identified, which are associated with alteration of the precorneal tear film (PTF); these factors may subsequently exacerbate development of eye irritation symptoms by desiccation. Low relative humidity including reduced atmospheric pressure further increases the water evaporation from an altered PTF; in addition, work with visual display units may destabilize the PTF by lower eye blink frequency and larger ocular surface. Results from epidemiological and clinical studies support that relative humidity >40% is beneficial for the PTF. Only few pollutants reach high enough indoor concentrations to cause sensory irritation of the eyes, while an altered PTF may exacerbate their sensory effect. Sustained low relative humidity causes impairment of the PTF, while its stability, including work performance, is retained by low gaze and intermittent breaks.
Collapse
Affiliation(s)
- Peder Wolkoff
- National Research Centre for the Working Environment, Copenhagen Ø, Denmark.
| |
Collapse
|
21
|
Nørgaard AW, Nøjgaard JK, Clausen PA, Wolkoff P. Secondary ozonides of substituted cyclohexenes: a new class of pollutants characterized by collision-induced dissociation mass spectrometry using negative chemical ionization. CHEMOSPHERE 2008; 70:2032-2038. [PMID: 17964632 DOI: 10.1016/j.chemosphere.2007.09.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2007] [Revised: 09/10/2007] [Accepted: 09/11/2007] [Indexed: 05/25/2023]
Abstract
Recent studies indicate that secondary ozonides of cyclic alkenes are formed in atmospheric reactions and may be relatively stable. The secondary ozonides (SOZs) of cyclohexene (1), 1-methylcyclohexene (2), 4-isopropyl-1-methylcyclohexene (3) and 4-isopropenyl-1-methylcyclohexene (limonene) (4) have been characterized by rapid gas chromatography electron ionization (EI), negative and positive chemical ionization (CI: ammonia, isobutane and methane) and collision-induced dissociation (CID) mass spectrometry. Both EI and positive CI spectra were found unsuitable for reproducible analysis. However, negative CI showed stable (M-H)(-) ions with minor fragmentation. CID of the (M-H)(-) ions resulted in simple and reproducible fragmentation patterns for all four SOZs with loss of m/z 18, 44 and 60, tentatively assigned as H(2)O, CO(2) and C(2)H(4)O(2) or CO(3), respectively. Thus, negative CI-MS-MS in combination with rapid gas chromatography is the preferred method for identification of secondary ozonides of cyclohexenes.
Collapse
Affiliation(s)
- Asger W Nørgaard
- Indoor Environment Group, National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | | | | | | |
Collapse
|
22
|
Weschler CJ. Ozone's impact on public health: contributions from indoor exposures to ozone and products of ozone-initiated chemistry. ENVIRONMENTAL HEALTH PERSPECTIVES 2006; 114:1489-96. [PMID: 17035131 PMCID: PMC1626413 DOI: 10.1289/ehp.9256] [Citation(s) in RCA: 193] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
OBJECTIVE The associations between ozone concentrations measured outdoors and both morbidity and mortality may be partially due to indoor exposures to ozone and ozone-initiated oxidation products. In this article I examine the contributions of such indoor exposures to overall ozone-related health effects by extensive review of the literature as well as further analyses of published data. FINDINGS Daily inhalation intakes of indoor ozone (micrograms per day) are estimated to be between 25 and 60% of total daily ozone intake. This is especially noteworthy in light of recent work indicating little, if any, threshold for ozone's impact on mortality. Additionally, the present study estimates that average daily indoor intakes of ozone oxidation products are roughly one-third to twice the indoor inhalation intake of ozone alone. Some of these oxidation products are known or suspected to adversely affect human health (e.g., formaldehyde, acrolein, hydroperoxides, fine and ultrafine particles). Indirect evidence supports connections between morbidity/mortality and exposures to indoor ozone and its oxidation products. For example, cities with stronger associations between outdoor ozone and mortality tend to have residences that are older and less likely to have central air conditioning, which implies greater transport of ozone from outdoors to indoors. CONCLUSIONS Indoor exposures to ozone and its oxidation products can be reduced by filtering ozone from ventilation air and limiting the indoor use of products and materials whose emissions react with ozone. Such steps might be especially valuable in schools, hospitals, and childcare centers in regions that routinely experience elevated outdoor ozone concentrations.
Collapse
Affiliation(s)
- Charles J Weschler
- Environmental and Occupational Health Sciences Institute, University of Medicine and Dentistry of New Jersey-Robert Wood Johnson Medical School and Rutgers University, Piscataway, New Jersey 08854, USA.
| |
Collapse
|
23
|
Gilbert NL, Gauvin D, Guay M, Héroux ME, Dupuis G, Legris M, Chan CC, Dietz RN, Lévesque B. Housing characteristics and indoor concentrations of nitrogen dioxide and formaldehyde in Quebec City, Canada. ENVIRONMENTAL RESEARCH 2006; 102:1-8. [PMID: 16620807 DOI: 10.1177/1420326x07089005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2005] [Revised: 02/07/2006] [Accepted: 02/17/2006] [Indexed: 05/23/2023]
Abstract
Concentrations of nitrogen dioxide and formaldehyde were determined in a study of 96 homes in Quebec City, Canada, between January and April 2005. In addition, relative humidity, temperature, and air change rates were measured in homes, and housing characteristics were documented through a questionnaire to occupants. Half of the homes had ventilation rates below 7.5 L/s person. Nitrogen dioxide (NO2) and formaldehyde concentrations ranged from 3.3 to 29.1 microg/m3 (geometric mean 8.3 microg/m3) and from 9.6 to 90.0 microg/m3 (geometric mean of 29.5 microg/m3), respectively. The housing characteristics documented in the study explained approximately half of the variance of NO2 and formaldehyde. NO2 concentrations in homes were positively correlated with air change rates (indicating a significant contribution of outdoor sources to indoor levels) and were significantly elevated in homes equipped with gas stoves and, to a lesser extent, in homes with gas heating systems. Formaldehyde concentrations were negatively correlated with air change rates and were significantly elevated in homes heated by electrical systems, in those with new wooden or melamine furniture purchased in the previous 12 months, and in those where painting or varnishing had been done in the sampled room in the previous 12 months. Results did not indicate any significant contribution of indoor combustion sources, including wood-burning appliances, to indoor levels of formaldehyde. These results suggest that formaldehyde concentrations in Quebec City homes are caused primarily by off-gassing, and that increasing air change rates in homes could reduce exposure to this compound. More generally, our findings confirm the influence of housing characteristics on indoor concentrations of NO2 and formaldehyde.
Collapse
Affiliation(s)
- Nicolas L Gilbert
- Air Health Effects Division, Health Canada, 269 Laurier Avenue West, PL 4903B, Ottawa, Ontario, Canada K1A 0K9.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Singer BC, Destaillats H, Hodgson AT, Nazaroff WW. Cleaning products and air fresheners: emissions and resulting concentrations of glycol ethers and terpenoids. INDOOR AIR 2006; 16:179-91. [PMID: 16683937 DOI: 10.1111/j.1600-0668.2005.00414.x] [Citation(s) in RCA: 150] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
UNLABELLED Experiments were conducted to quantify emissions and concentrations of glycol ethers and terpenoids from cleaning product and air freshener use in a 50-m3 room ventilated at approximately 0.5/h. Five cleaning products were applied full-strength (FS); three were additionally used in dilute solution. FS application of pine-oil cleaner (POC) yielded 1-h concentrations of 10-1300 microg/m3 for individual terpenoids, including alpha-terpinene (90-120), d-limonene (1000-1100), terpinolene (900-1300), and alpha-terpineol (260-700). One-hour concentrations of 2-butoxyethanol and/or d-limonene were 300-6000 microg/m3 after FS use of other products. During FS application including rinsing with sponge and wiping with towels, fractional emissions (mass volatilized/dispensed) of 2-butoxyethanol and d-limonene were 50-100% with towels retained, and approximately 25-50% when towels were removed after cleaning. Lower fractions (2-11%) resulted from dilute use. Fractional emissions of terpenes from FS use of POC were approximately 35-70% with towels retained, and 20-50% with towels removed. During floor cleaning with dilute solution of POC, 7-12% of dispensed terpenes were emitted. Terpene alcohols were emitted at lower fractions: 7-30% (FS, towels retained), 2-9% (FS, towels removed), and 2-5% (dilute). During air-freshener use, d-limonene, dihydromyrcenol, linalool, linalyl acetate, and beta-citronellol) were emitted at 35-180 mg/day over 3 days while air concentrations averaged 30-160 microg/m3. PRACTICAL IMPLICATIONS While effective cleaning can improve the healthfulness of indoor environments, this work shows that use of some consumer cleaning agents can yield high levels of volatile organic compounds, including glycol ethers--which are regulated toxic air contaminants--and terpenes that can react with ozone to form a variety of secondary pollutants including formaldehyde and ultrafine particles. Persons involved in cleaning, especially those who clean occupationally or often, might encounter excessive exposures to these pollutants owing to cleaning product emissions. Mitigation options include screening of product ingredients and increased ventilation during and after cleaning. Certain practices, such as the use of some products in dilute solution vs. full-strength and the prompt removal of cleaning supplies from occupied spaces, can reduce emissions and exposures to 2-butoxyethanol and other volatile constituents. Also, it may be prudent to limit use of products containing ozone-reactive constituents when indoor ozone concentrations are elevated either because of high ambient ozone levels or because of the indoor use of ozone-generating equipment.
Collapse
Affiliation(s)
- B C Singer
- Atmospheric Sciences Department, Environmental Energy Technologies Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA.
| | | | | | | |
Collapse
|
25
|
Brooks SM, Spaul W, McCluskey JD. The spectrum of building-related airway disorders: difficulty in retrospectively diagnosing building-related asthma. Chest 2005; 128:1720-7. [PMID: 16162780 DOI: 10.1378/chest.128.3.1720] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
INTRODUCTION The specific causes and mechanism(s) for asthma occurring among occupants of non-residential buildings with poor indoor air quality are not known, but allergic and nonallergic processes are possible explanations METHODS Repeated indoor air quality measurements were made while employees were working in a building where cigarette smoking was allowed. Seven of 19 employees who sought medical care from their private physicians because of respiratory complaints received a diagnosis of asthma. Subsequently, 19 symptomatic employees were examined at the University of South Florida (USF) 2 +/- 0.8 months (mean +/- SD) after removal from the building. RESULTS The first floor of the building, where employee complaints were prevalent, was characterized by markedly reduced outdoor fresh air supply, diminished air circulation to the occupant spaces, and elevated airborne concentrations of formaldehyde. Nineteen workers examined at the USF 2 +/- 0.8 months after leaving the building reported ear, nose, and throat irritation and asthma-like symptoms while working in the building. There was resolution of symptoms in most of the seven employees (37%) with asthma previously diagnosed by their private physician. In fact, 16 of 19 subjects (84%) reported resolution or significant improvement of symptoms. Among 11 persons with symptoms suggesting asthma while working in the building, 4 persons (21%) showed a negative provocative concentration of methacholine producing a 20% fall in FEV1, including two subjects with doctor-diagnosed asthma. CONCLUSIONS Confirmation of building-related asthma is influenced by time factors and the clinical criteria used for diagnosis. A nonallergic mechanism seems operative in our cases. While considered an example of occupational asthma, building-related asthma is a challenge for the practicing physician to confirm retrospectively.
Collapse
Affiliation(s)
- Stuart M Brooks
- Department of Internal Medicine, College of Medicine, University of South Florida, 13201 Bruce B. Downs Blvd, MDC 56, Tampa, FL 33612, USA.
| | | | | |
Collapse
|
26
|
Abstract
Indoor air pollution is ubiquitous, and takes many forms, ranging from smoke emitted from solid fuel combustion, especially in households in developing countries, to complex mixtures of volatile and semi-volatile organic compounds present in modern buildings. This paper reviews sources of, and health risks associated with, various indoor chemical pollutants, from a historical and global perspective. Health effects are presented for individual compounds or pollutant mixtures based on real-world exposure situations. Health risks from indoor air pollution are likely to be greatest in cities in developing countries, especially where risks associated with solid fuel combustion coincide with risk associated with modern buildings. Everyday exposure to multiple chemicals, most of which are present indoors, may contribute to increasing prevalence of asthma, autism, childhood cancer, medically unexplained symptoms, and perhaps other illnesses. Given that tobacco consumption and synthetic chemical usage will not be declining at least in the near future, concerns about indoor air pollution may be expected to remain.
Collapse
Affiliation(s)
- Junfeng Zhang
- Environmental and Occupational Health Sciences Institute & School of Public Health, University of Medicine and Dentistry of New Jersey, NJ 08854, USA
| | | |
Collapse
|