1
|
Paule A, Lamy A, Roubeix V, Delmas F, Rols JL. Influence of the natural growth environment on the sensitivity of phototrophic biofilm to herbicide. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:8031-8043. [PMID: 25212811 DOI: 10.1007/s11356-014-3429-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 08/07/2014] [Indexed: 06/03/2023]
Abstract
Ecotoxicological experiments were performed in laboratory-scale microcosms to investigate community-level structural responses of river phototrophic biofilms from different environments to herbicide exposure. Biofilms were initially cultivated on artificial supports placed in situ for 4 weeks at two sites, site M, located in an agricultural watershed basin and site S, located in a forested watershed basin. The biofilms were subsequently transferred to microcosms and, after an acclimatisation phase of 7 days were exposed to alachlor at 10 and 30 μg L(-1) for 23 days. Alachlor effects were assessed by a combination of structural parameters, including biomass (ash-free dry mass and chlorophyll a), molecular fingerprinting of the bacterial community (polymerase chain reaction (PCR)-denaturing gradient gel electrophoresis (DGGE)) and diatom species composition. Alachlor impacted the chlorophyll a and ash-free dry mass levels of phototrophic biofilms previously cultivated at site S. The structural responses of bacterial and diatom communities were difficult to distinguish from changes linked to the microcosm incubation period. Phototrophic biofilms from site S exposed at 30 μg L(-1) alachlor were characterised by an increase of Achnanthidium minutissimum (K-z.) Czarnecki abundance, as well as a higher proportion of abnormal frustules. Thus, phototrophic biofilms with different histories, exhibited different responses to alachlor exposure demonstrating the importance of growth environment. These observations also confirm the problem of distinguishing changes induced by the stress of pesticide toxicity from temporal evolution of the community in the microcosm.
Collapse
Affiliation(s)
- A Paule
- University de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), 118 route de Narbonne, 31062, Toulouse, France,
| | | | | | | | | |
Collapse
|
2
|
Paule A, Roubeix V, Lauga B, Duran R, Delmas F, Paul E, Rols JL. Changes in tolerance to herbicide toxicity throughout development stages of phototrophic biofilms. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2013; 144-145:310-321. [PMID: 24211795 DOI: 10.1016/j.aquatox.2013.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 06/02/2023]
Abstract
Ecotoxicological experiments have been performed in laboratory-scale microcosms to investigate the sensitivity of phototrophic biofilm communities to the alachlor herbicide, in relation to the stages of phototrophic biofilm maturation (age of the phototrophic biofilms) and physical structure (intact biofilm versus recolonization). The phototrophic biofilms were initially cultivated on artificial supports in a prototype rotating annular bioreactor (RAB) with Taylor-Couette type flow under constant operating conditions. Biofilms were collected after 1.6 and 4.4 weeks of culture providing biofilms with different maturation levels, and then exposed to nominal initial alachlor concentration of 10 μg L(-1) in either intact or recolonized biofilms for 15 days in microcosms (mean time-weighted average concentration - TWAC of 5.52 ± 0.74 μg L(-1)). At the end of the exposure period, alachlor effects were monitored by a combination of biomass descriptors (ash-free dry mass - AFDM, chlorophyll a), structural molecular fingerprinting (T-RFLP), carbon utilization spectra (Biolog) and diatom species composition. We found significant effects that in terms of AFDM, alachlor inhibited growth of the intact phototrophic biofilms. No effect of alachlor was observed on diatom composition or functional and structural properties of the bacterial community regardless of whether they were intact or recolonized. The intact three-dimensional structure of the biofilm did not appear to confer protection from the effects of alachlor. Bacterial community structure and biomass level of 4.4 weeks - intact phototrophic biofilms were significantly influenced by the biofilm maturation processes rather than alachlor exposure. The diatom communities which were largely composed of mobile and colonizer life-form populations were not affected by alachlor. This study showed that the effect of alachlor (at initial concentration of 10 μg L(-1) or mean TWAC of 5.52 ± 0.74 μg L(-1)) is mainly limited to biomass reduction without apparent changes in the ecological succession trajectories of bacterial and diatom communities and suggested that carbon utilization spectra of the biofilm are not damaged resulting. These results confirmed the importance of considering the influence of maturation processes or community age when investigating herbicide effects. This is particularly important with regard to the use of phototrophic biofilms as bio-indicators.
Collapse
Affiliation(s)
- A Paule
- Université de Toulouse, UPS, INP, EcoLab (Laboratoire d'écologie fonctionnelle et environnement), 118 route de Narbonne, F-31062 Toulouse, France; CNRS, EcoLab, F-31062 Toulouse, France.
| | | | | | | | | | | | | |
Collapse
|
3
|
Knapp CW, Zhang W, Sturm BSM, Graham DW. Differential fate of erythromycin and beta-lactam resistance genes from swine lagoon waste under different aquatic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2010; 158:1506-12. [PMID: 20053492 DOI: 10.1016/j.envpol.2009.12.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2009] [Revised: 09/15/2009] [Accepted: 12/14/2009] [Indexed: 05/06/2023]
Abstract
The attenuation and fate of erythromycin-resistance-methylase (erm) and extended-spectrum beta-lactamse (bla) genes were quantified over time in aquatic systems by adding 20-L swine waste to 11,300-L outdoor mesocosms that simulated receiving water conditions below intensive agricultural operations. The units were prepared with two different light-exposure scenarios and included artificial substrates to assess gene movement into biofilms. Of eleven genes tested, only erm(B), erm(F), bla(SHV) and bla(TEM) were found in sufficient quantity for monitoring. The genes disappeared rapidly from the water column and first-order water-column disappearance coefficients were calculated. However, detected gene levels became elevated in the biofilms within 2 days, but then disappeared over time. Differences were observed between sunlight and dark treatments and among individual genes, suggesting that ecological and gene-specific factors play roles in the fate of these genes after release into the environment. Ultimately, this information will aid in generating better predictive models for gene fate.
Collapse
Affiliation(s)
- Charles W Knapp
- David Livingstone Centre for Sustainability, Department of Civil Engineering, University of Strathclyde, 50 Richmond Street, Glasgow, G1 1XN, UK.
| | | | | | | |
Collapse
|
4
|
Katagi T. Bioconcentration, bioaccumulation, and metabolism of pesticides in aquatic organisms. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2010; 204:1-132. [PMID: 19957234 DOI: 10.1007/978-1-4419-1440-8_1] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The ecotoxicological assessment of pesticide effects in the aquatic environment should normally be based on a deep knowledge of not only the concentration of pesticides and metabolites found but also on the influence of key abiotic and biotic processes that effect rates of dissipation. Although the bioconcentration and bioaccumulation potentials of pesticides in aquatic organisms are conveniently estimated from their hydrophobicity (represented by log K(ow), it is still indispensable to factor in the effects of key abiotic and biotic processes on such pesticides to gain a more precise understanding of how they may have in the natural environment. Relying only on pesticide hydrophobicity may produce an erroneous environmental impact assessment. Several factors affect rates of pesticide dissipation and accumulation in the aquatic environment. Such factors include the amount and type of sediment present in the water and type of diet available to water-dwelling organisms. The particular physiological behavior profiles of aquatic organisms in water, such as capacity for uptake, metabolism, and elimination, are also compelling factors, as is the chemistry of the water. When evaluating pesticide uptake and bioconcentration processes, it is important to know the amount and nature of bottom sediments present and the propensity that the stuffed aquatic organisms have to absorb and process xenobiotics. Extremely hydrophobic pesticides such as the organochlorines and pyrethroids are susceptible to adsorb strongly to dissolved organic matter associated with bottom sediment. Such absorption reduces the bioavailable fraction of pesticide dissolved in the water column and reduces the probable ecotoxicological impact on aquatic organisms living the water. In contrast, sediment dweller may suffer from higher levels of direct exposure to a pesticide, unless it is rapidly degraded in sediment. Metabolism is important to bioconcentration and bioaccumulation processes, as is detoxification and bioactivation. Hydrophobic pesticides that are expected to be highly stored in tissues would not be bioconcentrated if susceptible to biotic transformation by aquatic organisms to more rapidly metabolized to hydrophilic entities are generally less toxic. By analogy, pesticides that are metabolized to similar entities by aquatic species surely are les ecotoxicologically significant. One feature of fish and other aquatic species that makes them more relevant as targets of environmental studies and of regulation is that they may not only become contaminated by pesticides or other chemicals, but that they constitute and important part of the human diet. In this chapter, we provide an overview of the enzymes that are capable of metabolizing or otherwise assisting in the removal of xenobiotics from aquatic species. Many studies have been performed on the enzymes that are responsible for metabolizing xenobiotics. In addition to the use of conventional biochemical methods, such studies on enzymes are increasingly being conducted using immunochemical methods and amino acid or gene sequences analysis. Such studies have been performed in algae, in some aquatic macrophytes, and in bivalva, but less information is available for other aquatic species such as crustacea, annelids, aquatic insecta, and other species. Although their catabolizing activity is often lower than in mammals, oxidases, especially cytochrome P450 enzymes, play a central role in transforming pesticides in aquatic organisms. Primary metabolites, formed from such initial enzymatic action, are further conjugated with natural components such as carbohydrates, and this aids removal form the organisms. The pesticides that are susceptible to abiotic hydrolysis are generally also biotically degraded by various esterases to from hydrophilic conjugates. Reductive transformation is the main metabolic pathway for organochlorine pesticides, but less information on reductive enzymology processes is available. The information on aquatic species, other than fish, that pertains to bioconcentration factors, metabolism, and elimination is rather limited in the literature. The kinds of basic information that is unavailable but is needed on important aquatic species includes biochemistry, physiology, position in food web, habitat, life cycle, etc. such information is very important to obtaining improved ecotoxicology risk assessments for many pesticides and other chemicals. More research attention on the behavior of pesticides in, and affect on many standard aquatic test species (e.g., daphnids, chironomids, oligochaetes and some bivalves) would particularly be welcome. In addition to improving ecotoxicology risk assessments on target species, such information would also assist in better delineating affects on species at higher trophic levels that are predaceous on the target species. There is also need for designing and employing more realistic approaches to measure bioconcentration and bioaccumulation, and ecotoxicology effects of pesticides in natural environment. The currently employed steady-state laboratory exposure studies are insufficient to deal with the complexity of parameters that control the contrasts to the abiotic processes of pesticide investigated under the strictly controlled conditions, each process is significantly affected in the natural environment not only by the site-specific chemistry of water and sediment but also by climate. From this viewpoint, ecotoxicological assessment should be conducted, together with the detailed analyses of abiotic processes, when higher-tier mesocosm studies are performed. Moreover, in-depth investigation is needed to better understand the relationship between pesticide residues in organisms and associated ecotoxicological endpoints. The usual exposure assessment is based on apparent (nominal) concentrations fo pesticides, and the residues of pesticides or their metabolites in the organisms are not considered in to the context of ecotoxicological endpoints. Therefore, more metabolic and tissue distribution information for terminal pesticide residues is needed for aquatic species both in laboratory settings and in higher-tier (microcosm, mesocosm) studies.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Environmental Health Science Laboratory, Sumitomo Chemical Co., Ltd., Takarazuka, Hyogo, 665-8555, Japan.
| |
Collapse
|
5
|
Nélieu S, Perreau F, Bonnemoy F, Ollitrault M, Azam D, Lagadic L, Bohatier J, Einhorn J. Sunlight nitrate-induced photodegradation of chlorotoluron: evidence of the process in aquatic mesocosms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:3148-3154. [PMID: 19534127 DOI: 10.1021/es8033439] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
The nitrate-induced photodegradation of chlorotoluron was demonstrated to occur efficiently in natural water through two series of experiments in outdoor aquatic mesocosms. During the first campaign, it was shown that the pesticide degradation kinetics was clearly dependent on nitrate concentration. This parameter also influenced the accumulation of the first- and second-generation byproducts, including predominantly N-terminus oxidation products and nitro-derivatives of the phenyl ring. The latter compounds, specific to the NO3- -induced photoprocess, appeared particularly abundant as compared to laboratory-simulated sunlight irradiation conditions. During the second campaign, a dual day-night sampling was achieved, which demonstrated the almost exclusive role of photodegradation versus biodegradation.
Collapse
Affiliation(s)
- Sylvie Nélieu
- INRA, UR 258 Phytopharmacie et Médiateurs Chimiques, 78000 Versailles, France.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Engemann CA, Keen PL, Knapp CW, Hall KJ, Graham DW. Fate of tetracycline resistance genes in aquatic systems: migration from the water column to peripheral biofilms. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5131-6. [PMID: 18754359 DOI: 10.1021/es800238e] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Antibiotic resistance genes (ARGs) are emerging contaminants that are being found at elevated levels in sediments and other aquatic compartments in areas of intensive agricultural and urban activity. However, little quantitative data exist on the migration and attenuation of ARGs in natural ecosystems, which is central to predicting their fate after release into receiving waters. Here we examined the fate of tetracycline-resistance genes in bacterial hosts released in cattle feedlot wastewater using field-scale mesocosms to quantify ARG attenuation rate in the water column and also the migration of ARGs into peripheral biofilms. Feedlot wastewater was added to fifteen cylindrical 11.3-m3 mesocosms (some of which had artificial substrates) simulating five different receiving water conditions (in triplicate), and the abundance of six resistance genes (tet(O), tet(W), tet(M), tet(Q), tet(B), and tet(L)) and 16S-rRNA genes was monitored for 14 days. Mesocosm treatments were varied according to light supply, microbial supplements (via river water additions), and oxytetracycline (OTC) level. First-order water column disappearance coefficients (kd) for the sum of the six genes (tetR) were always higher in sunlight than in the dark (-0.72 d(-1) and -0.51 d(-1), respectively). However, water column kd varied among genes (tet(O) < tet(W) < tet(M) < tet(Q); tet(B) and tet(L) were below detection) and some genes, particularly tet(W), readily migrated into biofilms, suggesting that different genes be considered separately and peripheral compartments be included in future fate models. This work provides the first quantitative field data for modeling ARG fate in aquatic systems.
Collapse
Affiliation(s)
- Christina A Engemann
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | | | |
Collapse
|
7
|
Knapp CW, Engemann CA, Hanson ML, Keen PL, Hall KJ, Graham DW. Indirect evidence of transposon-mediated selection of antibiotic resistance genes in aquatic systems at low-level oxytetracycline exposures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5348-53. [PMID: 18754392 DOI: 10.1021/es703199g] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Subinhibitory levels of antibiotics can promote the development of antibiotic resistance in bacteria. However, it is unclear whether antibiotic concentrations released into aquatic systems exert adequate pressure to select populations with resistance traits. To examine this issue, 15 mesocosms containing pristine surface water were treated with oxytetracycline (OTC) for 56 days at five levels (0, 5, 20, 50, and 250 microg L(-1)), and six tetracycline-resistance genes (tet(B), tet(L), tet(M), ted(O), tet(Q), and tet(W)), the sum of those genes (tet(R)), "total" 16S-rRNA genes, and transposons (Tn916 and Tn 1545) were monitored using real-time PCR. Absolute water-column resistance-gene abundances did not change at any OTC exposure. However, an increase was observed in the ratio of tet(R) to 16S-rRNA genes in the 250 microg L(-1) OTC units, and an increase in the selection rate of Tc(r) genes (relative to 16S-rRNA genes) was seen when OTC levels were at 20 microg L(-1). Furthermore, tet(M) and Tn916/1545 gene abundances correlated among all treatments (r2 = 0.701, p = 0.05), and there were similar selection patterns of tetR and Tn916/1545 genes relative to the OTC level, suggesting a possible mechanism for retention of specific resistance genes within the systems.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil, Environmental and Architectural Engineering, University of Kansas, Lawrence, Kansas 66045, USA.
| | | | | | | | | | | |
Collapse
|
8
|
Foley ME, Sigler V, Gruden CL. A multiphasic characterization of the impact of the herbicide acetochlor on freshwater bacterial communities. ISME JOURNAL 2007; 2:56-66. [PMID: 18180747 DOI: 10.1038/ismej.2007.99] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Acetochlor is the third most frequently detected herbicide in natural waters; however, it is unknown if exposure to environmentally relevant concentrations of acetochlor will impact bacterial community structure and function. This study examined the impact of acetochlor on freshwater heterotrophic bacteria number, and community structure and function using direct counting, community level physiological profiling (CLPP) and denaturing gradient gel electrophoresis (DGGE) analysis. Acetochlor concentration did not appear to correlate with the number of total (P=0.69) and viable (P=0.80) bacteria, even at concentrations up to 500 microg l(-1). However, CLPP indicated that acetochlor increased functional diversity as shown by (i) an increase in the number of carbon sources utilized by the microbial community, relative to nonexposed controls and (ii) increased functional evenness within the heterotrophic bacterial community. Conversely, DGGE fingerprints suggested that exposure to acetochlor generally decreased the community complexity, as the average number of DGGE bands in most treatments was significantly less than in the control treatment. Cluster analysis of DGGE fingerprints revealed three distinct, dose-dependent clusters (i) communities exposed to 0, 1 and 5 microg l(-1); (ii) 50 and 100 microg l(-1) and (iii) 500 microg l(-1), indicating a relationship between acetochlor concentration bacterial community changes. This study indicated that while exposure to environmentally relevant concentrations of acetochlor resulted in no significant impact to the number of freshwater bacteria, impacts to the function and structure of the community were revealed by adopting a multiphasic approach.
Collapse
Affiliation(s)
- Meghan E Foley
- Department of Civil Engineering, University of Toledo, Toledo, OH, USA
| | | | | |
Collapse
|
9
|
Hanson ML, Graham DW, Babin E, Azam D, Coutellec MA, Knapp CW, Lagadic L, Caquet T. Influence of isolation on the recovery of pond mesocosms from the application of an insecticide. I. Study design and planktonic community responses. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2007; 26:1265-79. [PMID: 17571694 DOI: 10.1897/06-248r.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The influence of relative isolation on the ecological recovery of freshwater outdoor mesocosm communities after an acute toxic stress was assessed in a 14-month-long study. A single concentration of deltamethrin was applied to 8 out of 16 outdoor 9-m3 mesocosms to create a rapid decrease of the abundance of arthropods. To discriminate between external and internal recovery mechanisms, four treated and four untreated (control) mesocosms were covered with 1-mm mesh screen lids. The dynamics of planktonic communities were monitored in the four types of ponds. The abundance of many phytoplankton taxa increased after deltamethrin addition, but the magnitude of most increases was relatively small, probably due to low nutrient availability and the survival of rotifers. The greatest impact on zooplankton was seen in Daphniidae and, to a lesser extent, calanoid copepods. Recovery (defined as when statistical analysis failed to detect a difference in the abundance between the deltamethrin-treated ponds and corresponding control ponds for two consecutive sampling dates) of Daphniidae was observed in the water column 105 and 77 d after deltamethrin addition in open and covered mesocosms, respectively, and <42 d for both open and covered ponds at the surface of the sediments. Rotifers did not proliferate, probably because of the survival of predators (e.g., cyclopoid copepods). These results confirm that the recovery of planktonic communities after exposure to a strong temporary chemical stress mostly depends upon internal mechanisms (except for larvae of the insect Chaoborus sp.) and that recovery dynamics are controlled by biotic factors, such as the presence of dormant forms and selective survival of predators.
Collapse
Affiliation(s)
- Mark L Hanson
- UMR985 INRA-Agrocampus Ecobiologie et Qualité des Hydrosystèmes Continentaux, Equipe Ecotoxicologie et Qualité des Milieux Aquatiques, 65 Rue de Saint-Brieuc, F35042 Rennes, France
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Gordon DA, Toth GP, Graham DW, Lazorchak JM, Reddy TV, Knapp CW, deNoyelles F, Campbell S, Lattier DL. Effects of eutrophication on vitellogenin gene expression in male fathead minnows (Pimephales promelas) exposed to 17alpha-ethynylestradiol in field mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 142:559-66. [PMID: 16413089 DOI: 10.1016/j.envpol.2005.10.041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 09/30/2005] [Accepted: 10/13/2005] [Indexed: 05/06/2023]
Abstract
This study evaluated the effect of aquatic secondary nutrient supply levels (nitrogen and phosphorus) on the subcellular response of adult male fathead minnows (Pimephales promelas) exposed to a single nominal concentration of 17alpha-ethynylestradiol (EE2), a potent synthetic estrogen, under quasi-natural field conditions. Outdoor mesocosms were maintained under low, medium, and high nutrient supply conditions as categorized by total phosphorus (TP) level (nominal 0.012, 0.025, and 0.045 mg TP/L, respectively), and treated with EE2 with and without a carrier solvent. Using reverse transcription-polymerase chain reaction methods, vitellogenin gene (Vg) expression was determined in the fish collected at 0 h, 8 h, 24 h, 4 d, 7 d, and 14 d post-exposure. Induction of Vg was detected as early as 8h post-exposure, with and without the carrier solvent, and persisted through Day 14. Results showed Vg to be significantly greater at low nutrient levels (p<0.05), suggesting that EE2 bioavailability to the fish was likely greater under less-turbid water conditions.
Collapse
Affiliation(s)
- Denise A Gordon
- Molecular Indicators Research Branch, Ecological Exposure Research Division, National Exposure Research Laboratory, Office of Research and Development, United States Environmental Protection Agency, Cincinnati, OH 45268, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Katagi T. Behavior of pesticides in water-sediment systems. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2006; 187:133-251. [PMID: 16802581 DOI: 10.1007/0-387-32885-8_4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Many experimental reports on the fate of pesticides in either laboratory or outdoor water-sediment systems have been obtained from both research and regulatory aspects that show some trends in distribution and degradation for each chemical class of pesticides. Adsorption, diffusion, hydrolysis, and biodegradation processes are important in controlling the behavior of pesticides in these water-sediment systems. Through these investigations, the contribution of suspended particles and dissolved organic matter has become more accepted in relation to these processes. Not only the physicochemical properties and degradability of a pesticide but also the characteristics of the many phases composing a water-sediment system determine the actual pesticide behavior, and therefore we should appropriately design an experimental system by considering the real situation of the natural aqueous environment to be examined. Many factors controlling experimental results in a laboratory system such as water-sediment ratio, depth of water and sediment phases, and mixing of water column have been clarified; however, there are still many issues to be examined. For example, a pesticide is always used as a formulation, but its effects on pesticide behavior in a water-sediment system have not been extensively examined. When its behavior in a natural aquatic system is considered, the effect and importance of photolysis are necessary to examine as an individual degradation process, but photolysis has been only briefly discussed in outdoor microcosm and mesocosm studies. Many studies discuss the distribution and degradation pathways of a pesticide, but its transport between water and sediment phases has scarcely been investigated because of its complexity, especially for a pesticide that is moderately or easily degraded in a water-sediment system. This form of investigation would be very useful when metabolites or degradates having more toxicological impact on aquatic species and sediment dwellers are found. From this point of view, the behavior of a pesticide and its metabolite(s) in an interstitial sediment porewater should become another critical point to be examined in the future. Other issues to be investigated further are the relevant processes in the neighborhood of interfaces. In an air-water interface, the effect of a surface microlayer has been examined mainly through microcosm and mesocosm studies, but the contribution of interfaces to either volatilization or photodegradation should be examined in more detail to precisely estimate dissipation profiles of a pesticide in the real aquatic environment. Furthermore, the enrichment of a pesticide in this interface should be investigated in relation to an emergence of chironomids. Recently, many kinetic approaches have been attempted to more effectively use experimental data in prediction of the fate of a pesticide by the aid of a simulation model. Most existing rate data usually represent apparent dissipation rates but not degradation rates, and therefore separation of the degradation rate from dissipation by considering adsorption-desorption and transport processes would be of immense value.
Collapse
Affiliation(s)
- Toshiyuki Katagi
- Sumitomo Chemical Co., Ltd. Environmental Health Science Laboratory, 2-1 Takatsukasa 4-Chome, Takarazuka, Hyogo 665-8555, Japan
| |
Collapse
|
12
|
Knapp CW, Caquet T, Hanson ML, Lagadic L, Graham DW. Response of water column microbial communities to sudden exposure to deltamethrin in aquatic mesocosms. FEMS Microbiol Ecol 2005; 54:157-65. [PMID: 16329981 DOI: 10.1016/j.femsec.2005.03.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2004] [Revised: 02/04/2005] [Accepted: 03/16/2005] [Indexed: 11/20/2022] Open
Abstract
Sudden exposure of an aquatic system to an insecticide can have significant effects on populations other than susceptible organisms. Although this is intuitively obvious, little is actually known about how such exposure might affect bacterial communities and their relative metabolic activity in ecosystems. Here, we assessed small sub-unit (ssu)-RNA levels in open and shaded 9 m(3) aquatic mesocosms (16 units - 2 x 2 factorial design in quadruplicate) to examine the effects of sudden addition of deltamethrin to the units. When deltamethrin was added, a cascade of bacterial then phytoplankton "blooms" occurred over time. The bacterial bloom, which most likely included organisms from the plastid/cyanobacterial phylogenetic guild, was almost immediate (within hours), whereas the phytoplankton (algal) bloom lagged by about 4 days. This sequential response can be explained by an apparent sudden release of nutrients consequent to arthropod death that triggered a series of responses in the microbial loop. Interestingly, bacterial blooms were noted in both open and shaded mesocosms, whereas the algal bloom was only seen in open units, suggesting that both deltamethrin addition (and presumptive nutrient release) and an adequate light supply was required for the phytoplankton response. Overall, this work shows that microbial activities as reflected by ssu-rRNA levels can respond dramatically via apparently indirect effects following insecticide application.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil, Environmental and Architectural Engineering, 4112 Learned Hall, University of Kansas, Lawrence, 66045, USA
| | | | | | | | | |
Collapse
|
13
|
Knapp CW, Graham DW. Development of alternate ssu-rRNA probing strategies for characterizing aquatic microbial communities. J Microbiol Methods 2004; 56:323-30. [PMID: 14967223 DOI: 10.1016/j.mimet.2003.10.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2003] [Revised: 10/31/2003] [Accepted: 10/31/2003] [Indexed: 10/26/2022]
Abstract
Plastids in phytoplankton retain prokaryote-like DNA sequences that may generate false-positive signals from eubacterial small subunit (ssu) rRNA oligonucleotide probes, resulting in the overestimation of bacterial activity in aquatic microbial communities. To assess the extent of possible plastid-associated binding to eubacterial signals, we performed an extensive database search, flask experiments using algal and cyanobacterial pure cultures, and field trials on five common eubacterial probes: S-D-Bact-008-a-A-19, S-D-Bact-338-a-A-18, S-D-Bact-785-a-A-19, S-D-Bact-927-a-A-17, and S-D-Bact-1088-a-A-20. The database search and laboratory tests showed significant potential for binding among most bacterial probes and organelle ssu-rRNA. However, we propose two probing strategies to overcome this problem. First, one could use Bact-785 and Bact-338 in tandem, with the plastid component being estimated as the difference between the two signals (Bact-338 has approximately 70% overlap with known plastid sequences). Alternately, one might use Bact-338 as the primary eubacterial probe, but then use Cyan-785-a-A-19 (a probe that binds significantly to plastid rRNA) to correct for the plastid-associated false-positive signal. Both strategies would use a eukaryotic probe (S-D-Euca-1379-a-A-16) and Cyan-785-b-A-19 (a probe for most cyanobacteria) to further segregate rRNA signals. Trials were successfully performed using the strategies on samples from a recent field study.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil, Environmental, and Architectural Engineering, University of Kansas, Lawrence, KS 66045, USA
| | | |
Collapse
|
14
|
Knapp CW, Graham DW, Berardesco G, deNoyelles F, Cutak BJ, Larive CK. Nutrient level, microbial activity, and alachlor transformation in aerobic aquatic systems. WATER RESEARCH 2003; 37:4761-4769. [PMID: 14568063 DOI: 10.1016/j.watres.2003.08.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Alachlor (2-chloro-N-(2,6-diethylphenyl)-N-(methoxymethyl)acetamide) is a moderately toxic herbicide that is frequently found in agriculturally impacted surface waters. To assess primary mechanism(s) that affect its fate in aquatic systems, two field experiments were performed using large mesocosms (n=39) and smaller microcosms with and without microbial inhibitors (n=16). The mesocosm experiment tested the effect of fertility conditions on alachlor fate, assessing alachlor disappearance over time under oligotrophic (total phosphorus (TP) <12 microg/L) through hypereutrophic (TP>80 microg/L) water conditions. Whereas, the microcosm experiment assessed alachlor fate in the presence of microbial inhibitors that selectively blocked eubacterial (chloroamphenicol, streptomycin, and penicillin combined), eukaryotic (cycloheximide), and universal (all inhibitors) microbial activity. First-order alachlor transformation rate coefficients ranged from 0.006 to 0.042 day(-1) when microbial inhibitors were not present (half-lives from 16 to 122 days) with the highest rates occurring in hypereutrophic waters. Statistics indicated that mean TP, and universal and eubacterial small sub-unit rRNA level most closely correlated with transformation rate. Further, the inhibitor study indicated that alachlor transformation was biotic (>90%), but that high transformation rates only occurred when eubacterial and eukaryotic domains were both metabolically active. Our results confirm that alachlor transformation is primarily biotic; however, efficient biotransformation only occurs when both major microbial domains in aerobic systems are active.
Collapse
Affiliation(s)
- Charles W Knapp
- Department of Civil and Environmental Engineering, University of Kansas, 4002 Learned Hall, 66045, Lawrence, KS, USA
| | | | | | | | | | | |
Collapse
|