1
|
Zhang Y, Zhang R, Chan CK, He M, Wei B, Liu H. Theoretical investigation on the oxidation mechanism of methylglyoxal in the aqueous phase. CHEMOSPHERE 2024; 366:143425. [PMID: 39341396 DOI: 10.1016/j.chemosphere.2024.143425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/01/2024]
Abstract
The oxidation mechanism of methylglyoxal (CH3COCHO) in the aqueous phase plays a crucial role in the formation of secondary organic aerosols (SOA). To date, the investigations of reaction mechanisms of MG in the aqueous phase still needs to be refined, and the oxidation mechanisms of MG in the existence of various oxidants (e.g., H2O2, O3, ∙NO3, etc.) are in controversy. In this paper, we investigated the hypothesis that small-molecule organic acids are the primary products in cloud water and fog droplets, while large-molecule organic acids and oligomers play crucial roles in wet aerosols. Specifically, the hydration reaction, oxidation mechanism and oligomerization reaction of MG in aqueous phase were investigated on a theoretical basis. It has been indicated that the hydration reaction is a significant initiating reaction of MG in the atmospheric aqueous phase, whose generated hydrated compounds played a critical part in the process of forming oligomers. The aqueous oxidation reaction of MG could form a variety of organic acids, including pyruvic acid, formic acid, acetic acid, and oxalic acid. In the presence of OH radicals, pyruvic acid was the main first-generation production, which undergoes further reactions to form acetic acid, oxalic acid, and mesoxalic acid. Acetic acid was mainly derived from the reaction of OH radicals with pyruvic acid, whereas oxalic and mesoxalic acids were mainly generated by the OH radical reaction for MG and pyruvic acid. Of these, the formation of acetic acid was thermodynamically most favorable. Additionally, the reactions of MG with other oxidants also provided the possible pathways for pyruvic acid production. At 298 K, we calculated the rate constants for the reaction of MGHY with NO3, OH, HO2 radicals, and O3 to be 4.48 × 108, 2.54 × 107, 1.26 × 10-2, and 4.38 × 10-4 M-1 s-1, with atmospheric aqueous phase lifetimes (τ) of 4.43, 3.12 × 103, 2.21 × 1011, and 3.17 × 108 h, respectively. The theoretical results from this work will facilitate the explanation for the MG reaction process in the aqueous phase so as to further correctly estimate the relationship between the aqueous phase chemistry of MG and the formation of SOA.
Collapse
Affiliation(s)
- Yu Zhang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China; Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Ruifeng Zhang
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Chak K Chan
- Division of Physical Science and Engineering, King Abdullah University of Science and Technology, Thuwal, 23955-6900, Saudi Arabia
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao, 266237, PR China
| | - Bo Wei
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China; Environment Research Institute, Shandong University, Qingdao, 266237, PR China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| | - Huaqing Liu
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, PR China; Institute of Yellow River Delta Earth Surface Processes and Ecological Integrity, Shandong University of Science and Technology, Qingdao, 266590, PR China.
| |
Collapse
|
2
|
Salta Z, Schaefer T, Tasinato N, Kieninger M, Katz A, Herrmann H, Ventura ON. Energetics of the OH radical H-abstraction reactions from simple aldehydes and their geminal diol forms. J Mol Model 2024; 30:253. [PMID: 38970670 DOI: 10.1007/s00894-024-06058-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 07/01/2024] [Indexed: 07/08/2024]
Abstract
CONTEXT Carbonyl compounds, especially aldehydes, emitted to the atmosphere, may suffer hydration in aerosols or water droplets in clouds. At the same time, they can react with hydroxyl radicals which may add or abstract hydrogen atoms from these species. The interplay between hydration and hydrogen abstraction is studied using density functional and quantum composite theoretical methods, both in the gas phase and in simulated bulk water. The H-abstraction from the aldehydic and geminal diol forms of formaldehyde, acetaldehyde, glycolaldehyde, glyoxal, methylglyoxal, and acrolein is studied to determine whether the substituent has any noticeable effect in the preference for the abstraction of one form or another. It is found that abstraction of the H-atom adjacent to the carbonyl group gives a more stable radical than same abstraction from the geminal diol in the case of formaldehyde, acetaldehyde, and glycolaldehyde. The presence of a delocalizing group in the Cα (a carbonyl group in glyoxal and methylglyoxal, and a vinyl group in acrolein), reverts this trend, and now the abstraction of the H-atom from the geminal diol gives more stable radicals. A further study was conducted abstracting hydrogen atoms from the other different positions in the species considered, both in the aldehydic and geminal diol forms. Only in the case of glycolaldehyde, the radical formed by H-abstraction from the -CH2OH group is more stable than any of the other radical species. Abstraction of the hydrogen atom in one of the hydroxyl groups in the geminal diol is equivalent to the addition of the •OH radical to the aldehyde. It leads, in some cases, to decomposition into a smaller radical and a neutral molecule. In these cases, some interesting theoretical differences are observed between the results in gas phase and (simulated) bulk solvent, as well as with respect to the method of calculation chosen. METHODS DFT (M06-2X, B2PLYP, PW6B95), CCSD(T), and composite (CBS-QB3, jun-ChS, SCVECV-f12) methods using Dunning basis sets and extrapolation to the CBS limit were used to study the energetics of closed shell aldehydes in their keto and geminal-diol forms, as well as the radical derived from them by hydrogen abstraction. Both gas phase and simulated bulk solvent calculations were performed, in the last case using the Polarizable Continuum Model.
Collapse
Affiliation(s)
- Zoi Salta
- Scuola Normale Superiore, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318, Leipzig, Germany
| | - Nicola Tasinato
- Scuola Normale Superiore, Piazza Dei Cavalieri 7, 56126, Pisa, Italy
| | - Martina Kieninger
- Computational Chemistry and Biology Group, Facultad de Química, CCBG, Universidad de La República, 11400, Montevideo, DETEMA, Uruguay
| | - Aline Katz
- Computational Chemistry and Biology Group, Facultad de Química, CCBG, Universidad de La República, 11400, Montevideo, DETEMA, Uruguay
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Permoserstr. 15, 04318, Leipzig, Germany
| | - Oscar N Ventura
- Computational Chemistry and Biology Group, Facultad de Química, CCBG, Universidad de La República, 11400, Montevideo, DETEMA, Uruguay.
| |
Collapse
|
3
|
Chen PR, Chu LK. Infrared characterization of hydrated products of glyoxal in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 306:123571. [PMID: 37944380 DOI: 10.1016/j.saa.2023.123571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 11/12/2023]
Abstract
The simplest and most abundant dicarbonyl in the atmosphere, glyoxal ((CHO)2), and its geminal diols via stepwise hydration reactions, monohydrate (CHOCH(OH)2) and dihydrate ((HC(OH)2)2), are proposed to be responsible for the generation of atmospheric acid and the increase in aerosol viscosity. In this work, the hydrates of glyoxal were prepared by dissolving glyoxal trimer dihydrate (C6H10O8) in H2O and D2O and probed by infrared absorption spectrometry at varied temperatures. In glyoxal aqueous solution at a concentration of < 1 wt%, the monomeric dihydrate is predominant. Coupled with the predicted vibrational wavenumbers and the corresponding intensities using the B3LYP/aug-cc-pVTZ method, the intense IR bands at 1075 cm-1 and 1073 cm-1 are attributed to the C-O stretching modes of dihydrate and deuterium substituted dihydrate at the hydroxyl groups, denoted as d4-dihydrate ((HC(OD)2)2). Upon heating of the d4-dihydrate solution to cause dehydration, a new band generated at 1745 cm-1 was attributed to the C=O stretching mode of d2-monohydrate (CHOCH(OD)2). Comparing the predicted wavenumbers of glyoxal monohydrate and the observed vibrational wavenumbers of the glycolaldehyde (HCOCH2OH), the wavenumber of the C=O stretching mode of monohydrate is reasonably presumed to be 1745 ± 5 cm-1. These infrared characterizations of the glyoxal hydrates provide suitable detection windows for further investigating the roles of glyoxal and its hydrates in atmospheric and aerosol chemistry, as well as studying the relevant reaction kinetics.
Collapse
Affiliation(s)
- Pei-Rong Chen
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan
| | - Li-Kang Chu
- Department of Chemistry, National Tsing Hua University, 101, Sec. 2, Kuang-Fu Rd, Hsinchu 300044, Taiwan.
| |
Collapse
|
4
|
Liu Z, Zhu B, Zhu C, Ruan T, Li J, Chen H, Li Q, Wang X, Wang L, Mu Y, Collett J, George C, Wang Y, Wang X, Su J, Yu S, Mellouki A, Chen J, Jiang G. Abundant nitrogenous secondary organic aerosol formation accelerated by cloud processing. iScience 2023; 26:108317. [PMID: 38026147 PMCID: PMC10665807 DOI: 10.1016/j.isci.2023.108317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/04/2023] [Accepted: 10/20/2023] [Indexed: 12/01/2023] Open
Abstract
Nitrogenous organic (CHON), crucial for secondary organic aerosol (SOA), forms through poorly studied mechanisms in clouds. Our study explores CHON transformation during cloud processes (CPs). These processes play a vital role in enhancing the variety of CHONs, leading to the formation of CHONs with oxygen atom counts ranging from 1 to 10 and double bond equivalent (DBE) values spanning from 2 to 10. We proposed that the CHONs formed during CPs are formed through aqueous phase reactions with CHO compound precursors via nucleophilic attacks by NH3. This scheme can be account for roughly three-quarters of the CHONs by number in cloud water, and near two-thirds of all CHONs are formed through reactions between NH3 and carbonyl-containing biogenic volatile organic compound (BVOC) ozonolysis intermediates. This study provides the first insights into the evolution of CHONs during CPs and reveals the significant roles of CPs in the formation of CHONs.
Collapse
Affiliation(s)
- Zhe Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Bao Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chao Zhu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Ting Ruan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiarong Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Hui Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Qing Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Xiaofei Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Lin Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
| | - Yujing Mu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jeffrey Collett
- Department of Chemistry, College of Natural Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Christian George
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- University of Lyon, Université Claude Bernard Lyon 1, CNRS, IRCELYO, 69626 Villeurbanne, France
| | - Yan Wang
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Xinfeng Wang
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Jixin Su
- School of Environmental Science and Engineering, Research Institute of Environment, Shandong University, Qingdao 266237, China
| | - Shaocai Yu
- Key Laboratory of Environmental Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Abdewahid Mellouki
- Institut de Combustion, Aérothermique, Réactivité et Environnement, CNRS, 45071 Orléans Cedex 02, France
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP), Department of Environmental Science & Engineering, Institute of Atmospheric Sciences, Fudan University, Shanghai 200438, China
- Institute of Eco-Chongming (IEC), 3663 N. Zhongshan Road, Shanghai 200062, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
5
|
Wurm F, Lenninger M, Mayr A, Lass-Floerl C, Pham T, Bechtold T. Imperfect cross-linking of xanthan for pH-responsive bio-based composite moist wound dressings by stencil printing. J Biomater Appl 2023; 38:670-680. [PMID: 37929618 PMCID: PMC10676615 DOI: 10.1177/08853282231210712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2023]
Abstract
The work addresses the use of bio-based and -degradable materials for the production of a moist, adaptive and anti-microbial wound dressing. The dressing is targeted to exhibit a pH-dependent active agent release. Xanthan hydrogel structures are coated on cellulose fabrics via stencil printing and subsequently cross-linked using glyoxal. By alteration of the cross-linker content from 1 to 6% by mass, the hydrogel elasticity can be tuned within a range of 2-16 kPa storage modulus. Increasing initial glyoxal concentrations also result in higher amounts of glyoxal release. Glyoxal, an anti-microbial agent with approval in veterinary medicine, is mostly released upon wound application supporting infection management. As wound simulation, normal saline, as pH 5 and pH 8 buffer solutions, were used. The release profile and magnitude of approx. 65%-90% glyoxal is pH-dependent. Increased release rates of glyoxal are present in pH 8 fluids, which mostly base on faster hydrogel swelling. Higher total glyoxal release is present in pH 5 fluid and normal saline after 3 days. Accordingly, a pH-dependent release profile was encountered. As glyoxal attacks any cell unselectively, it is expected to be effective against antibiotic resistant bacteria. By stencil printing the dressing size can be adjusted to minimize healthy glyoxal tissue exposure.
Collapse
Affiliation(s)
- Florian Wurm
- Research Institute for Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria; University of Innsbruck, Innsbruck, Austria
| | - Margit Lenninger
- Research Institute for Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria; University of Innsbruck, Innsbruck, Austria
| | - Astrid Mayr
- Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Floerl
- Hygiene and Medical Microbiology, Medical University of Innsbruck, Innsbruck, Austria
| | - Tung Pham
- Research Institute for Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria; University of Innsbruck, Innsbruck, Austria
| | - Thomas Bechtold
- Research Institute for Textile Chemistry and Textile Physics, University of Innsbruck, Dornbirn, Austria; University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
6
|
Chen T, Liu J, Chu B, Ge Y, Zhang P, Ma Q, He H. Combined Smog Chamber/Oxidation Flow Reactor Study on Aging of Secondary Organic Aerosol from Photooxidation of Aromatic Hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:13937-13947. [PMID: 37691473 DOI: 10.1021/acs.est.3c04089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Secondary organic aerosol (SOA) is a significant component of atmospheric fine particulate matter (PM2.5), and their physicochemical properties can be significantly changed in the aging process. In this study, we used a combination consisting of a smog chamber (SC) and oxidation flow reactor (OFR) to investigate the continuous aging process of gas-phase organic intermediates and SOA formed from the photooxidation of toluene, a typical aromatic hydrocarbon. Our results showed that as the OH exposure increased from 2.6 × 1011 to 6.3 × 1011 molecules cm-3 s (equivalent aging time of 2.01-4.85 days), the SOA mass concentration (2.9 ± 0.05-28.7 ± 0.6 μg cm-3) and corrected SOA yield (0.073-0.26) were significantly enhanced. As the aging process proceeds, organic acids and multiple oxygen-containing oxidation products are continuously produced from the photochemical aging process of gas-phase organic intermediates (mainly semi-volatile and intermediate volatility species, S/IVOCs). The multigeneration oxidation products then partition to the aerosol phase, while functionalization of SOA rather than fragmentation dominated in the photochemical aging process, resulting in much higher SOA yield after aging compared to that in the SC. Our study indicates that SOA yields as a function of OH exposure should be considered in air quality models to improve SOA simulation, and thus accurately assess the impact on SOA properties and regional air quality.
Collapse
Affiliation(s)
- Tianzeng Chen
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanli Ge
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, Beijing Innovation Center for Engineering Science and Advanced Technology, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Peng Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qingxin Ma
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Brun N, González-Sánchez JM, Demelas C, Clément JL, Monod A. A fast and efficient method for the analysis of α-dicarbonyl compounds in aqueous solutions: Development and application. CHEMOSPHERE 2023; 319:137977. [PMID: 36736840 DOI: 10.1016/j.chemosphere.2023.137977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Among the highly oxygenated species formed in situ in the atmosphere, α-dicarbonyl compounds are the most reactive species, thus contributing to the formation of secondary organic aerosols that affect both air quality and climate. They are ubiquitous in the atmosphere and are easily transferred to the atmospheric aqueous phase due to their high solubility. In addition, α-dicarbonyl compounds are toxic compounds found in food in biochemistry studies as they can be produced endogenously through various pathways and exogenously through the Maillard reaction. In this work, we take advantage of the high reactivity of α-dicarbonyl compounds in alkaline solutions (intramolecular Cannizzaro reaction) to develop an analytical method based on high performance ion chromatography. This fast and efficient method is suitable for glyoxal, methylglyoxal and phenylglyoxal which are detected as glycolate, lactate and mandelate anions respectively, with 100% conversion at pH > 12 and room temperature for exposure times to hydroxide ranging from 5 min to 4 h. Diacetyl is detected as 2,4-dihydroxy-2,4-dimethyl-5-oxohexanoate due to a base-catalysed aldol reaction that occurs before the Cannizzaro reaction. The analytical method is successfully applied to monitor glyoxal consumption during aqueous phase HO∙-oxidation, an atmospherically relevant reaction using concentrations that can be observed in fog and cloud water. The method also reveals potential analytical artifacts that can occur in the use of ion chromatography for α-hydroxy carboxylates measurements in complex matrices due to α-dicarbonyl conversion during the analysis time. An estimation of the artifact is given for each of the studied α-hydroxy carboxylates. Other polyfunctional and pH-sensitive compounds that are potentially present in environmental samples (such as nitrooxycarbonyls) can also be converted into α-hydroxy carboxylates and/or nitrite ions within the HPIC run. This shows the need for complementary analytical measurements when complex matrices are studied.
Collapse
Affiliation(s)
- Nicolas Brun
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Aix Marseille Univ, CNRS, ICR, Marseille, France.
| | - Juan Miguel González-Sánchez
- Aix Marseille Univ, CNRS, LCE, Marseille, France; Aix Marseille Univ, CNRS, ICR, Marseille, France; Aix Marseille Univ, CNRS, MIO, Marseille, France
| | | | | | - Anne Monod
- Aix Marseille Univ, CNRS, LCE, Marseille, France.
| |
Collapse
|
8
|
Liu S, Wang Y, Xu X, Wang G. Effects of NO 2 and RH on secondary organic aerosol formation and light absorption from OH oxidation of ο-xylene. CHEMOSPHERE 2022; 308:136541. [PMID: 36150487 DOI: 10.1016/j.chemosphere.2022.136541] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/13/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Ο-xylene is an important aromatic volatile organic compound (VOC) in the atmosphere over urban areas. In this work, the effect of nitrogen dioxide (NO2) concentration and relative humidity (RH) on the mass concentration of secondary organic aerosols (SOA) formed from ο-xylene OH oxidization was investigated in a photooxidation chamber. The ο-xylene SOA mass concentration increased from 54.2 μg m-3 to 127.2 μg m-3 during dry conditions, but decreased from 177.7 μg m-3 to 146.5 μg m-3 during high RH conditions when the initial NO2 concentration increased form 0 ppbv to about 900 ppbv. An increase in the ratio of [NO3-]/[Org] and a decrease in the oxidation state of carbon (OSC) of SOA suggested that acid-catalyzed heterogeneous reaction was responsible for enhancing SOA formation with increasing NO2 concentrations in dry conditions. In contrast, in humid conditions, the high molecular diffusion capacity of SOA could promote the reactivity of OH towards the interior of SOA, and the enhancement of nitrous acid (HONO) formation under high NO2 conditions could promote the SOA aging processes and be responsible for the decreasing trend of SOA formation with NO2. Light absorption by SOA was also measured, and both NO2 and RH enhanced the mass absorption coefficient (MACλ = 365 nm) value for the optical properties of ο-xylene SOA. The highest MACλ = 365 nm value of ο-xylene SOA was 0.89 m2 g-1, observed during humid conditions with an initial NO2 concentration of 862 ppbv, which was 3.9 times higher than in the experiment conducted in the absence of NO2 under dry conditions. The formation of nitrogen-containing organic compounds (NOCs) and humic-like substances (HULIS) were responsible for the increased MACλ = 365 nm values of ο-xylene derived SOA. This study provides new insight into the effect of NO2 on SOA formation through the change in ο-xylene photooxidation under different RH conditions, and the complex effect of multiple environmental factors on SOA formation was also important and should not be ignored.
Collapse
Affiliation(s)
- Shijie Liu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China; Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai, 200062, China
| | - Yiqian Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Xinbei Xu
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China
| | - Gehui Wang
- Key Lab of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai, 210062, China; Institute of Eco-Chongming, 3663 North Zhongshan Road, Shanghai, 200062, China.
| |
Collapse
|
9
|
Hayashi Y. Diarylprolinol as an Effective Organocatalyst in Asymmetric Cross-aldol Reactions of Two Different Aldehydes. CHEM REC 2022:e202200159. [PMID: 35896950 DOI: 10.1002/tcr.202200159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 11/10/2022]
Abstract
The aldol reaction is one of the most important carbon-carbon bond-forming reactions in organic chemistry. Asymmetric direct cross-aldol reaction of two different aldehydes has been regarded as a difficult reaction because of the side reactions such as self-aldol reaction and over reaction. We found that trifluoromethyl-substituted diarylprolinol, α,α-bis[3,5-bis(trifluoromethyl)phenyl]-2-pyrrolidinemethanol (1), is an effective organocatalyst that promotes several cross-aldol reactions of aldehydes with excellent diastereo- and enantioselectivities. Acetaldehyde can be employed as a suitable nucleophilic aldehyde. Successful electrophilic aldehydes are ethyl glyoxylate, chloroacetaldehyde, dichloroacetaldehyde, chloral, α-alkyl-α-oxo aldehyde, trifluoroacetaldehyde, glyoxal, alkenyl aldehyde, alkynyl aldehyde, and formaldehyde. Some of the aldehydes are commercially available as a polymer solution, an aqueous solution, or in the hydrated form. They can be used directly in the asymmetric aldol reaction as a commercially available form, which is a synthetic advantage. Given that the obtained aldol products possess several functional groups along with a formyl moiety, they are synthetically useful chiral building blocks.
Collapse
Affiliation(s)
- Yujiro Hayashi
- Department of Chemistry, Graduate School of Science, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai, Miyagi, 980-8578, Japan
| |
Collapse
|
10
|
Chen J, Li J, Chen X, Gu J, An T. The underappreciated role of monocarbonyl-dicarbonyl interconversion in secondary organic aerosol formation during photochemical oxidation of m-xylene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 814:152575. [PMID: 34963606 DOI: 10.1016/j.scitotenv.2021.152575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 12/06/2021] [Accepted: 12/16/2021] [Indexed: 06/14/2023]
Abstract
Photochemical oxidation (including photolysis and OH-initiated reactions) of aromatic hydrocarbon produces carbonyls, which are involved in the formation of secondary organic aerosols (SOA). However, the mechanism of this process remains incompletely understood. Herein, the monocarbonyl-dicarbonyl interconversion and its role in SOA production were investigated via a series of photochemical oxidation experiments for m-xylene and representative carbonyls. The results showed that SOA mass concentration peaked at 113.5 ± 3.5 μg m-3 after m-xylene oxidation for 60 min and then decreased. Change in the main oxidation products from dicarbonyl (e.g., glyoxal, methylglyoxal) to monocarbonyl (e.g., formaldehyde) was responsible for this decrease. The photolysis of methylglyoxal or glyoxal produced formaldehyde, favoring SOA formation, while photopolymerization of formaldehyde to glyoxal decreased SOA production. The presence of ·OH altered the balance of photolysis interconversion, resulting in greater production of formaldehyde and SOA from glyoxal than methylglyoxal. Both photolysis and OH-initiated transformations of glyoxal to formaldehyde were suppressed by methylglyoxal, while glyoxal accelerated the reaction of ·OH with methylglyoxal to generate products which reversibly converted to glyoxal and methylglyoxal. These interconversion reactions reduced SOA production. The present study provides a new research perspective for the contribution mechanism of carbonyls in SOA formation and the findings are also helpful to efficiently evaluate the atmospheric fate of aromatic hydrocarbons.
Collapse
Affiliation(s)
- Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Jiani Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyan Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianwei Gu
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, Guangdong Technology Research Center for Photocatalytic Technology Integration and Equipment Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China; Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong-Hong Kong-Macao Joint Laboratory for Contaminants Exposure and Health, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| |
Collapse
|
11
|
Free L-Lysine and Its Methyl Ester React with Glyoxal and Methylglyoxal in Phosphate Buffer (100 mM, pH 7.4) to Form Nε-Carboxymethyl-Lysine, Nε-Carboxyethyl-Lysine and Nε-Hydroxymethyl-Lysine. Int J Mol Sci 2022; 23:ijms23073446. [PMID: 35408807 PMCID: PMC8998464 DOI: 10.3390/ijms23073446] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 02/01/2023] Open
Abstract
Glyoxal (GO) and methylglyoxal (MGO) are highly reactive species formed in carbohydrate metabolism. Nε-Carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL) are considered to be the advanced glycation end-products (AGEs) of L-lysine (Lys) with GO and MGO, respectively. Here, we investigated the reaction of free L-lysine (Lys) with GO and MGO in phosphate buffer (pH 7.4) at 37 °C and 80 °C in detail in the absence of any other chemicals which are widely used to reduce Schiff bases. The concentrations of Lys, GO and MGO used in the experiments were 0.5, 2.5, 5.0, 7.5 and 10 mM. The reaction time ranged between 0 and 240 min. Experiments were performed in triplicate. The concentrations of remaining Lys and of CML and CEL formed in the reaction mixtures were measured by stable-isotope dilution gas chromatography-mass spectrometry (GC-MS). Our experiments showed that CML and CEL were formed at higher concentrations at 80 °C compared to 37 °C. CML was found to be the major reaction product. In mixtures of GO and MGO, MGO inhibited the formation of CML from Lys (5 mM) in a concentration-dependent manner. The highest CML concentration was about 300 µM corresponding to a reaction yield of 6% with respect to Lys. An addition of Lys to GO, MGO and their mixtures resulted in strong reversible decreases in the Lys concentration up to 50%. It is assumed that free Lys reacts rapidly with GO and MGO to form many not yet identified reaction products. Reaction mixtures of Lys and MGO were stronger colored than those of Lys and GO, notably at 80 °C, indicating higher reactivity of MGO towards Lys that leads to polymeric colored MGO species. We have a strong indication of the formation of Nε-(hydroxymethyl)-lysine (HML) as a novel reaction product of Lys methyl ester with MGO. A mechanism is proposed for the formation of HML from Lys and MGO. This mechanism may explain why Lys and GO do not react to form a related product. Preliminary analyses show that HML is formed at higher concentrations than CEL from Lys methyl ester and MGO. No Schiff bases or their hydroxylic precursors were identified as reaction products. In their reactions with Lys, GO and MGO are likely to act both as chemical oxidants on the terminal aldehyde group to a carboxylic group (i.e., R-CHO to R-COOH) and as chemical reductors on labile Schiff bases (R-CH=N-R to R-CH2-NH-R) presumably via disproportionation and hydride transfer. Our study shows that free non-proteinic Lys reacts with GO and MGO to form CML, CEL and HML in very low yield. Whether proteinic Lys also reacts with MGO to form HML residues in proteins remains to be investigated. The physiological occurrence and concentration of HML in biological fluids and tissues and its relation to CML and CEL are elusive and warrant further investigations in health and disease. Chemical synthesis and structural characterization of HML are expected to advance and accelerate the scientific research in this topic.
Collapse
|
12
|
Zhang R, Gen M, Liang Z, Li YJ, Chan CK. Photochemical Reactions of Glyoxal during Particulate Ammonium Nitrate Photolysis: Brown Carbon Formation, Enhanced Glyoxal Decay, and Organic Phase Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1605-1614. [PMID: 35023733 DOI: 10.1021/acs.est.1c07211] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Glyoxal is an important precursor of aqueous secondary organic aerosol (aqSOA). Its photooxidation to form organic acids and oligomers and reactions with reduced nitrogen compounds to form brown carbon (BrC) have been extensively investigated separately, although these two types of reactions can occur simultaneously during the daytime. Here, we examine the reactions of glyoxal during photooxidation and BrC formation in premixed NH4NO3 + Glyoxal droplets. We find that nitrate photolysis and photosensitization can enhance the decay rates of glyoxal by a factor of ∼5 and ∼6 compared to those under dark, respectively. A significantly enhanced glyoxal decay rate by a factor of ∼12 was observed in the presence of both nitrate photolysis and photosensitization. Furthermore, a new organic phase was formed in irradiated NH4NO3 + Glyoxal droplets, which had no noticeable degradation under prolonged photooxidation. It was attributed to the imidazole oxidation mediated by nitrate photolysis and/or photosensitization. The persistent organic phase suggests the potential to contribute to SOA formation in ambient fine particles. This study highlights that glyoxal photooxidation mediated by nitrate photolysis and photosensitization can significantly enhance the atmospheric sink of glyoxal, which may partially narrow the gap between model predictions and field measurements of ambient glyoxal concentrations.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Zhancong Liang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, and Centre for Regional Oceans, Faculty of Science and Technology, University of Macau, Macau 999078, China
| | - Chak Keung Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon 999077, Hong Kong, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
13
|
Tilgner A, Schaefer T, Alexander B, Barth M, Collett JL, Fahey KM, Nenes A, Pye HOT, Herrmann H, McNeill VF. Acidity and the multiphase chemistry of atmospheric aqueous particles and clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2021; 21:10.5194/acp-21-13483-2021. [PMID: 34675968 PMCID: PMC8525431 DOI: 10.5194/acp-21-13483-2021] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
The acidity of aqueous atmospheric solutions is a key parameter driving both the partitioning of semi-volatile acidic and basic trace gases and their aqueous-phase chemistry. In addition, the acidity of atmospheric aqueous phases, e.g., deliquesced aerosol particles, cloud, and fog droplets, is also dictated by aqueous-phase chemistry. These feedbacks between acidity and chemistry have crucial implications for the tropospheric lifetime of air pollutants, atmospheric composition, deposition to terrestrial and oceanic ecosystems, visibility, climate, and human health. Atmospheric research has made substantial progress in understanding feedbacks between acidity and multiphase chemistry during recent decades. This paper reviews the current state of knowledge on these feedbacks with a focus on aerosol and cloud systems, which involve both inorganic and organic aqueous-phase chemistry. Here, we describe the impacts of acidity on the phase partitioning of acidic and basic gases and buffering phenomena. Next, we review feedbacks of different acidity regimes on key chemical reaction mechanisms and kinetics, as well as uncertainties and chemical subsystems with incomplete information. Finally, we discuss atmospheric implications and highlight the need for future investigations, particularly with respect to reducing emissions of key acid precursors in a changing world, and the need for advancements in field and laboratory measurements and model tools.
Collapse
Affiliation(s)
- Andreas Tilgner
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA 98195, USA
| | - Mary Barth
- Atmospheric Chemistry Observation & Modeling Laboratory, National Center for Atmospheric Research, Boulder, CO 80307, USA
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras 26504, Greece
| | - Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, Durham, NC 27711, USA
| | - Hartmut Herrmann
- Atmospheric Chemistry Department (ACD), Leibniz Institute for Tropospheric Research (TROPOS), Leipzig 04318, Germany
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY 10027, USA
- Department of Earth and Environmental Sciences, Columbia University, New York, NY 10027, USA
| |
Collapse
|
14
|
Hensley JC, Birdsall AW, Keutsch FN. Competition of Partitioning and Reaction Controls Brown Carbon Formation from Butenedial in Particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11549-11556. [PMID: 34378922 DOI: 10.1021/acs.est.1c02891] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Organic reactions in atmospheric particles impact human health and climate, such as by the production of brown carbon. Previous work suggests that reactions are faster in particles than in bulk solutions because of higher reactant concentrations and pronounced surface-mediated processes. Additionally, dialdehydes may have accelerated reactions in particles, as has been shown for the glyoxal reaction with ammonium sulfate (AS). Here, we examine the competition between evaporation and reaction of butenedial, a semivolatile dialdehyde, and reduced nitrogen (NHX) in bulk solutions and levitated particles with mass spectrometry (MS). Pyrrolinone is the major product of butenedial/AS bulk solutions, indicating brown carbon formation via accretion reactions. By contrast, pyrrolinone is completely absent in all MS measurements of comparable levitated particles suspended in a pure N2 stream. Pyrrolinone is only produced in levitated butenedial particles exposed to gas-phase ammonia, without enhanced reaction kinetics previously observed for glyoxal and other systems. Despite butenedial's large Henry's law constant and fast reaction with NHX compared to glyoxal, the brown carbon pathway competes with evaporation only in polluted regions with extreme NHX. Therefore, accurate knowledge of effective volatilities or Henry's law constants for complex aerosol matrices is required when chemistry studied in bulk solutions is extrapolated to atmospheric particles.
Collapse
Affiliation(s)
- Jack C Hensley
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Adam W Birdsall
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Frank N Keutsch
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Chemistry and Chemical Biology, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
15
|
Aqueous Photochemistry of 2-Oxocarboxylic Acids: Evidence, Mechanisms, and Atmospheric Impact. Molecules 2021; 26:molecules26175278. [PMID: 34500711 PMCID: PMC8433822 DOI: 10.3390/molecules26175278] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 08/27/2021] [Accepted: 08/29/2021] [Indexed: 11/17/2022] Open
Abstract
Atmospheric organic aerosols play a major role in climate, demanding a better understanding of their formation mechanisms by contributing multiphase chemical reactions with the participation of water. The sunlight driven aqueous photochemistry of small 2-oxocarboxylic acids is a potential major source of organic aerosol, which prompted the investigations into the mechanisms of glyoxylic acid and pyruvic acid photochemistry reviewed here. While 2-oxocarboxylic acids can be contained or directly created in the particles, the majorities of these abundant and available molecules are in the gas phase and must first undergo the surface uptake process to react in, and on the surface, of aqueous particles. Thus, the work also reviews the acid-base reaction that occurs when gaseous pyruvic acid meets the interface of aqueous microdroplets, which is contrasted with the same process for acetic acid. This work classifies relevant information needed to understand the photochemistry of aqueous pyruvic acid and glyoxylic acid and motivates future studies based on reports that use novel strategies and methodologies to advance this field.
Collapse
|
16
|
Chemical Composition of Gas and Particle Phase Products of Toluene Photooxidation Reaction under High OH Exposure Condition. ATMOSPHERE 2021. [DOI: 10.3390/atmos12070915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In the current study, the photooxidation reaction of toluene (C7H8) was investigated in a Potential Aerosol Mass Oxidation Flow Reactor (PAM OFR). The hydroxyl radical (OH) exposure of toluene in the PAM OFR ranged from 0.4 to 1.4 × 1012 molec cm−3 s, which is equivalent to 3 to 12 days of atmospheric oxidation. A proton transfer reaction-mass spectrometer (PTR-MS) and a scanning mobility particle sizer (SMPS) were used to study the gas-phase products formed and particle number changes of the oxidation reaction in PAM OFR. The secondary organic aerosol (SOA) formed in the PAM OFR was also collected for off-line chemical analysis. Key gas-phase reaction products of toluene, including glyoxal, methyl glyoxal, unsaturated carbonyl compounds, and benzaldehyde, were identified by the PTR-MS. Second generation products, including acetic acid, formaldehyde, formic acid, and acetaldehyde, were also detected. By comparing the mass spectrums obtained under different OH exposures and relative humidity (RH), changes in the two parameters have minimal effects on the composition of gas-phase products formed, expect for the spectrum obtained at OH exposure of 0.4 × 1012 cm−3 s and RH = 17%, which is slightly different from other spectrums. SMPS results showed that particle mass concentration increases with increasing OH exposure, while particle number concentration first increases and then decreases with increasing OH exposure. This result probably suggests the formation of oligomers at high OH exposure conditions. Off-line chemical analysis of the SOA sample was dominated by C4 diacids, including malic acid, citramalic acid, and tartaric acid. The well-known toluene SOA marker 2,3-Dihydroxy-4-oxopentanoic acid, as well as 2,3-dihydroxyglutaric acid, which has not been identified in previous toluene photooxidation experiments, were also detected in the SOA sample. Our results showed good agreements with the results of previous smog chamber studies of toluene photooxidation reaction, and they suggested that using PAM OFR for studies of oxidation reaction of different VOCs can be atmospherically relevant.
Collapse
|
17
|
Zhang R, Gen M, Fu TM, Chan CK. Production of Formate via Oxidation of Glyoxal Promoted by Particulate Nitrate Photolysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:5711-5720. [PMID: 33861585 DOI: 10.1021/acs.est.0c08199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Particulate nitrate photolysis can produce oxidants (i.e., OH, NO2, and NO2-/HNO2) in aqueous droplets and may play a potential role in increased atmospheric oxidative capacity. Our earlier works have reported on the SO2 oxidation promoted by nitrate photolysis to produce sulfate. Here, we used glyoxal as a model precursor to examine the role of particulate nitrate photolysis in the formation of secondary organic aerosol (SOA) from particle-phase oxidation of glyoxal by OH radicals. Particles containing sodium nitrate and glyoxal were irradiated at 300 nm. Interestingly, typical oxidation products of oxalic acid, glyoxylic acid, and higher-molecular-weight products reported in the literature were not found in the photooxidation process of glyoxal during nitrate photolysis in the particle phase. Instead, formic acid/formate production was found as the main oxidation product. At glyoxal concentration higher than 3 M, we found that the formic acid/formate production rate increases significantly with increasing glyoxal concentration. Such results suggest that oxidation of glyoxal at high concentrations by OH radicals produced from nitrate photolysis in aqueous particles may not contribute significantly to SOA formation since formic acid is a volatile species. Furthermore, recent predictions of formic acid/formate concentration from the most advanced chemical models are lower than ambient observations at both the ground level and high altitude. The present study reveals a new insight into the production of formic acid/formate as well as a sink of glyoxal in the atmosphere, which may partially narrow the gap between model predictions and field measurements in both species.
Collapse
Affiliation(s)
- Ruifeng Zhang
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Masao Gen
- Faculty of Frontier Engineering, Institute of Science and Engineering, Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan
| | - Tzung-May Fu
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Chak K Chan
- School of Energy and Environment, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| |
Collapse
|
18
|
Li Y, Ji Y, Zhao J, Wang Y, Shi Q, Peng J, Wang Y, Wang C, Zhang F, Wang Y, Seinfeld JH, Zhang R. Unexpected Oligomerization of Small α-Dicarbonyls for Secondary Organic Aerosol and Brown Carbon Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4430-4439. [PMID: 33721996 DOI: 10.1021/acs.est.0c08066] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Large amounts of small α-dicarbonyls (glyoxal and methylglyoxal) are produced in the atmosphere from photochemical oxidation of biogenic isoprene and anthropogenic aromatics, but the fundamental mechanisms leading to secondary organic aerosol (SOA) and brown carbon (BrC) formation remain elusive. Methylglyoxal is commonly believed to be less reactive than glyoxal because of unreactive methyl substitution, and available laboratory measurements showed negligible aerosol growth from methylglyoxal. Herein, we present experimental results to demonstrate striking oligomerization of small α-dicarbonyls leading to SOA and BrC formation on sub-micrometer aerosols. Significantly more efficient growth and browning of aerosols occur upon exposure to methylglyoxal than glyoxal under atmospherically relevant concentrations and in the absence/presence of gas-phase ammonia and formaldehyde, and nonvolatile oligomers and light-absorbing nitrogen-heterocycles are identified as the dominant particle-phase products. The distinct aerosol growth and light absorption are attributed to carbenium ion-mediated nucleophilic addition, interfacial electric field-induced attraction, and synergetic oligomerization involving organic/inorganic species, leading to surface- or volume-limited reactions that are dependent on the reactivity and gaseous concentrations. Our findings resolve an outstanding discrepancy concerning the multiphase chemistry of small α-dicarbonyls and unravel a new avenue for SOA and BrC formation from atmospherically abundant, ubiquitous carbonyls and ammonia/ammonium sulfate.
Collapse
Affiliation(s)
- Yixin Li
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yuemeng Ji
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiayun Zhao
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Yuan Wang
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, California 91125, United States
| | - Qiuju Shi
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jianfei Peng
- Tianjin Key Laboratory of Urban Transport Emission Research, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yuying Wang
- School of Atmospheric Physics, Nanjing University of Information Science & Technology, Nanjing, Jiangsu 210044, China
| | - Chunyu Wang
- Department of Automation, University of Science and Technology of China, Hefei, Anhui 230022, China
| | - Fang Zhang
- State Key Laboratory of Earth Surface Processes and Resource Ecology, College of Global Change and Earth System Science, Beijing Normal University, Beijing 100875, China
| | - Yuxuan Wang
- Department of Earth and Atmospheric Sciences, University of Houston, Houston, Texas 77004, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, United States
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
19
|
Gordon BP, Lindquist GA, Crawford ML, Wren SN, Moore FG, Scatena LF, Richmond GL. Diol it up: The influence of NaCl on methylglyoxal surface adsorption and hydration state at the air–water interface. J Chem Phys 2020; 153:164705. [DOI: 10.1063/5.0017803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Department of Chemistry, University of California, Irvine, 1214 Natural Sciences II, Irvine, California 92697, USA
| | - Grace A. Lindquist
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Michael L. Crawford
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Sumi N. Wren
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
- Environment and Climate Change Canada (ECCC), Air Quality Research Division, 4905 Dufferin Street, Toronto, Ontario M3H 5T4, Canada
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, USA
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, USA
| |
Collapse
|
20
|
Kasthuriarachchi NY, Rivellini LH, Chen X, Li YJ, Lee AKY. Effect of Relative Humidity on Secondary Brown Carbon Formation in Aqueous Droplets. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13207-13216. [PMID: 32924450 DOI: 10.1021/acs.est.0c01239] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Atmospheric brown carbon (BrC) is a significant contributor to particulate light absorption. Reactions between small aldehydes and reduced nitrogen species have been shown to produce secondary BrC in atmospheric droplets. These reactions can be substantially accelerated upon droplet evaporation. Despite aqueous droplets undergoing continuous water evaporation and uptake in response to the surrounding relative humidity (RH), secondary BrC formation in these droplets under various RH conditions remains poorly understood. In this work, we investigate BrC formation from reactions of two aqueous-phase precursors, glyoxal and methylglyoxal, with ammonium sulfate or glycine in aqueous droplets after drying at a range of RH (30-90%). Our results illustrate, for the first time, that BrC production varies as a function of RH. For all four chemical reaction systems being investigated, mass absorption efficiencies (MAE, m2/g C) of aqueous aerosol products (from 270 to 512 nm wavelength range) generally increase with reducing RH to reach a maximum at ∼55-65% RH and subsequently decrease, caused by further drying. Chemical characterization using high-resolution aerosol mass spectrometry shows that the formation of nitrogen-containing organic species also follows a similar variation with RH. Our observations reveal that the acceleration of BrC production from evaporation of water may be diminished by other factors, such as limited particle-phase water content, phase transition, and volatility of reactants and products. Overall, our results highlight that intermediate RH conditions in the atmosphere may be more efficient in secondary BrC formation, indicating that the effect of RH needs to be included in atmospheric models for a more accurate representation of light-absorbing aerosol formation in aqueous droplets.
Collapse
Affiliation(s)
- Nethmi Y Kasthuriarachchi
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Laura-Hélèna Rivellini
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| | - Xi Chen
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Yong Jie Li
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Alex K Y Lee
- Department of Civil and Environmental Engineering, National University of Singapore, Singapore 117576, Singapore
- NUS Environmental Research Institute, National University of Singapore, Singapore 117411, Singapore
| |
Collapse
|
21
|
Qin Y, Ye J, Ohno PE, Lei Y, Wang J, Liu P, Thomson RJ, Martin ST. Synergistic Uptake by Acidic Sulfate Particles of Gaseous Mixtures of Glyoxal and Pinanediol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11762-11770. [PMID: 32838520 DOI: 10.1021/acs.est.0c02062] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The uptake of gaseous organic species by atmospheric particles can be affected by the reactive interactions among multiple co-condensing species, yet the underlying mechanisms remain poorly understand. Here, the uptake of unary and binary mixtures of glyoxal and pinanediol by neutral and acidic sulfate particles is investigated. These species are important products from the oxidation of volatile organic compounds (VOCs) under atmospheric conditions. The uptake to acidic aerosol particles greatly increased for a binary mixture of glyoxal and pinanediol compared to the unary counterparts. The strength of the synergism depended on the particle acidity and water content (i.e., relative humidity). The greater uptake was up to 2.5× to 8× at 10% relative humidity (RH) for glyoxal and pinanediol, respectively. At 50% RH, it was 2× and 1.2× for the two species. Possible mechanisms of acid-catalyzed cross reactions between the species are proposed to explain the synergistic uptake. The proposed mechanisms are applicable to a broader extent across atmospheric species having carbonyl and hydroxyl functionalities. The results thus suggest that synergistic uptake reactions can be expected to significantly influence the gas-particle partitioning of VOC oxidation products under atmospheric conditions and thus greatly affect their atmospheric transport and lifetime.
Collapse
Affiliation(s)
- Yiming Qin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Jianhuai Ye
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Paul E Ohno
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Harvard University Center for the Environment, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Yali Lei
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Junfeng Wang
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| | - Pengfei Liu
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Regan J Thomson
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Scot T Martin
- School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
- Department of Earth and Planetary Sciences, Harvard University, Cambridge, Massachusetts 02138, United States
| |
Collapse
|
22
|
A family of structural and functional models for the active site of a unique dioxygenase: Acireductone dioxygenase (ARD). J Inorg Biochem 2020; 212:111253. [PMID: 32949987 DOI: 10.1016/j.jinorgbio.2020.111253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 08/15/2020] [Accepted: 09/06/2020] [Indexed: 11/20/2022]
Abstract
We report the synthesis and biomimetic activity of a family of model complexes with relevance to acireductone dioxygenase (ARD), an enzyme that displays dual function based on metal identity found in the methionine salvage pathway (MSP). Three complexes with related structural motifs were synthesized and characterized derived from phenolate, and pyridine N4O Schiff-base ligands. They display pseudo-octahedral Ni(II)-N4O ligand coordination with water at the sixth site, in close alignment to the structure in the resting state of ARD. The three featured complexes exhibit carbon‑carbon bond cleavage activation of lithium acetylacetonate, which was used as a model enzyme substrate. Computationally derived mechanistic routes for the observed reactivity consistent with experimental conditions are herein proposed. The mechanism suggests the possibility of Ni(II)-substrate interactions, followed by oxygen insertion. These results constitute only the third functional model system of ARD, in an attempt to further advance biomimetic contributions to the ongoing debate of ARD's unique metal mediated, regioselective oxidative cleavage.
Collapse
|
23
|
Yu F, Ji BQ, Jagodič M, Su YM, Zhang SS, Feng L, Kurmoo M, Jagličić Z, Sun D. Copper(II)-Assisted Ligand Fragmentation Leading to Three Families of Metallamacrocycle. Inorg Chem 2020; 59:13524-13532. [DOI: 10.1021/acs.inorgchem.0c01915] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Fei Yu
- Institute of Advanced Materials and Flexible Electronics (IAMFE), School of Chemistry and Materials Science, Nanjing University of Information Science & Technology, Nanjing 210044, PR China
| | - Bao-Qian Ji
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, PR China
| | - Marko Jagodič
- Institute of Mathematics, Physics and Mechanics, Jadranska 19, SI-1000 Ljubljana, Slovenia
| | - Yan-Min Su
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, PR China
| | - Shan-Shan Zhang
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, PR China
| | - Lei Feng
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, PR China
| | - Mohamedally Kurmoo
- Institut de Chimie de Strasbourg, Université de Strasbourg, CNRS-UMR 7177, 4 rue Blaise Pascal, Strasbourg CEDEX 67008, France
| | - Zvonko Jagličić
- Faculty of Civil and Geodetic Engineering & Institute of Mathematics, Physics and Mechanics, University of Ljubljana, Jamova 2, 1000 Ljubljana, Slovenia
| | - Di Sun
- Key Laboratory of Colloid and Interface Chemistry, Ministry of Education, School of Chemistry and Chemical Engineering, State Key Laboratory of Crystal Materials, Shandong University, Ji’nan 250100, PR China
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, and School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, PR China
| |
Collapse
|
24
|
Ji Y, Qin D, Zheng J, Shi Q, Wang J, Lin Q, Chen J, Gao Y, Li G, An T. Mechanism of the atmospheric chemical transformation of acetylacetone and its implications in night-time second organic aerosol formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137610. [PMID: 32146400 DOI: 10.1016/j.scitotenv.2020.137610] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/24/2020] [Accepted: 02/26/2020] [Indexed: 06/10/2023]
Abstract
Recently, a high concentration of acetylacetone (AcAc) has been measured in China, and its day-time chemistry with OH reaction has been evaluated. The phenomenon has profound implications in air pollution, human health and climate change. To systematically understand the atmospheric chemistry of AcAc and its role in the atmosphere, the night-time chemistry of AcAc with O3 and NO3 radical were investigated in this work in detail using density functional theory. The results show that for O3- and NO3-initiated atmospheric oxidation reactions of AcAc, the barrier energies of O3/NO3-addition are found to be much lower than those of H-abstraction, suggesting that O3/NO3-addition to AcAc is a major contributing pathway in the atmospheric chemical transformation reactions. The total degradation rate constants were calculated to be 2.36 × 10-17 and 1.92 × 10-17 cm3 molecule-1 s-1 for the O3- and NO3-initiated oxidation of AcAc at 298 K, respectively. The half-life of AcAc+O3 in some polluted areas (such as, Pearl River Delta and Yangtze River Delta) is close to 3 h under typical tropospheric conditions. Due to its short half-life, the ozonolysis of AcAc plays a more significant role in the night-time hours, leading to fast transformations to form primary ozonides (POZs). A prompt, thermal decomposition of POZs occurred to yield methylglyoxal, acetic acid and Criegee intermediates, which mainly contributed to the formation of secondary organic aerosol (SOA). Subsequently, using the high-resolution time-of-flight chemical ionization mass spectrometer (HR-ToF-CIMS), a non-negligible concentration of AcAc was measured in the field observation during the night-time in Nanjing, China. The obtained results reveal that the atmospheric oxidation of AcAc can successively contribute to the formation of SOA under polluted environments regardless of the time (day-time or night-time). This is due to its high reactivity to tropospheric oxidant species (such as, O3 and NO3 radicals at night-time).
Collapse
Affiliation(s)
- Yuemeng Ji
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Dandan Qin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jun Zheng
- Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Qiuju Shi
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiaxin Wang
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Qinhao Lin
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Jiangyao Chen
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Yanpeng Gao
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Guiying Li
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Taicheng An
- Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
25
|
Gladich I, Carignano MA, Francisco JS. Adsorption and isomerization of glyoxal and methylglyoxal at the air/hydroxylated silica surface. J Chem Phys 2020; 152:164702. [PMID: 32357765 DOI: 10.1063/1.5143402] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We present results from molecular dynamics simulations coupled with enhanced sampling techniques on the adsorption and isomerization of glyoxal (GL) and methylglyoxal (MG) at the air/hydroxylated silica (α-Quartz) interface. GL and MG are two organic compounds present in the atmosphere as oxidation products of both biogenic and anthropogenic precursors. By adsorption and hydration on liquid droplets or wetted dust particles, they can enable aerosol growth in the atmosphere. Moreover, thanks to the different polar characters of their trans and cis conformers, GL and MG have been suggested as possible molecular switches capable of responding to changes in solvent polarity. Here, we show that the hydroxylated silica surface does not significantly catalyze the trans-to-cis isomerization, but it stabilizes the cis-isomers, indicating a higher interfacial cis/trans relative concentration compared to the gas phase. Moreover, adsorbed GL prefers to lie parallel on the silica surface, while adsorbed MG shows a tilted orientation. In particular, we report the aldehyde group pointing upward (downward) to the gas phase (to the silica surface) in trans-MG (cis-MG). These results will help in the rationalization of upcoming experimental and modeling work on the adsorption of ketonic compounds on dust aerosols, while it clarifies the catalytic role of the solid substrate surface in promoting conformational changes.
Collapse
Affiliation(s)
- Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Marcelo A Carignano
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 34110, Doha, Qatar
| | - Joseph S Francisco
- Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
26
|
Pye HOT, Nenes A, Alexander B, Ault AP, Barth MC, Clegg SL, Collett JL, Fahey KM, Hennigan CJ, Herrmann H, Kanakidou M, Kelly JT, Ku IT, McNeill VF, Riemer N, Schaefer T, Shi G, Tilgner A, Walker JT, Wang T, Weber R, Xing J, Zaveri RA, Zuend A. The Acidity of Atmospheric Particles and Clouds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4809-4888. [PMID: 33424953 PMCID: PMC7791434 DOI: 10.5194/acp-20-4809-2020] [Citation(s) in RCA: 155] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Acidity, defined as pH, is a central component of aqueous chemistry. In the atmosphere, the acidity of condensed phases (aerosol particles, cloud water, and fog droplets) governs the phase partitioning of semi-volatile gases such as HNO3, NH3, HCl, and organic acids and bases as well as chemical reaction rates. It has implications for the atmospheric lifetime of pollutants, deposition, and human health. Despite its fundamental role in atmospheric processes, only recently has this field seen a growth in the number of studies on particle acidity. Even with this growth, many fine particle pH estimates must be based on thermodynamic model calculations since no operational techniques exist for direct measurements. Current information indicates acidic fine particles are ubiquitous, but observationally-constrained pH estimates are limited in spatial and temporal coverage. Clouds and fogs are also generally acidic, but to a lesser degree than particles, and have a range of pH that is quite sensitive to anthropogenic emissions of sulfur and nitrogen oxides, as well as ambient ammonia. Historical measurements indicate that cloud and fog droplet pH has changed in recent decades in response to controls on anthropogenic emissions, while the limited trend data for aerosol particles indicates acidity may be relatively constant due to the semi-volatile nature of the key acids and bases and buffering in particles. This paper reviews and synthesizes the current state of knowledge on the acidity of atmospheric condensed phases, specifically particles and cloud droplets. It includes recommendations for estimating acidity and pH, standard nomenclature, a synthesis of current pH estimates based on observations, and new model calculations on the local and global scale.
Collapse
Affiliation(s)
- Havala O. T. Pye
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Athanasios Nenes
- School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, Lausanne, CH-1015, Switzerland
- Institute for Chemical Engineering Sciences, Foundation for Research and Technology Hellas, Patras, GR-26504, Greece
| | - Becky Alexander
- Department of Atmospheric Science, University of Washington, Seattle, WA, 98195, USA
| | - Andrew P. Ault
- Department of Chemistry, University of Michigan, Ann Arbor, MI, 48109-1055, USA
| | - Mary C. Barth
- National Center for Atmospheric Research, Boulder, CO, 80307, USA
| | - Simon L. Clegg
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Jeffrey L. Collett
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - Kathleen M. Fahey
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Christopher J. Hennigan
- Department of Chemical, Biochemical, and Environmental Engineering, University of Maryland Baltimore County, Baltimore, MD, 21250, USA
| | - Hartmut Herrmann
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Maria Kanakidou
- Department of Chemistry, University of Crete, Voutes, Heraklion Crete, 71003, Greece
| | - James T. Kelly
- Office of Air Quality Planning & Standards, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - I-Ting Ku
- Department of Atmospheric Science, Colorado State University, Fort Collins, CO, 80523, USA
| | - V. Faye McNeill
- Department of Chemical Engineering, Columbia University, New York, NY, 10027, USA
| | - Nicole Riemer
- Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, Urbana-Champaign, Illinois, 61801, USA
| | - Thomas Schaefer
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - Guoliang Shi
- State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, Nankai University, Tianjin, 300071, China
| | - Andreas Tilgner
- Leibniz Institute for Tropospheric Research (TROPOS), Atmospheric Chemistry Department (ACD), Leipzig, 04318, Germany
| | - John T. Walker
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tao Wang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Rodney Weber
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Jia Xing
- School of Environment, Tsinghua University, Beijing, 100084, China
| | - Rahul A. Zaveri
- Atmospheric Sciences & Global Change Division, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, Montreal, Quebec, H3A 0B9, Canada
| |
Collapse
|
27
|
Modeling of Carbonyl/Ammonium Sulfate Aqueous Brown Carbon Chemistry via UV/Vis Spectral Decomposition. ATMOSPHERE 2020. [DOI: 10.3390/atmos11040358] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The proper characterization of aqueous brown carbon (BrC) species, their formation, and their light absorbance properties is critical to understanding the aggregate effect that they have on overall atmospheric aerosol climate forcing. The contribution of dark chemistry secondary organic aerosol (SOA) products from carbonyl-containing organic compounds (CVOCs) to overall aqueous aerosol optical properties is expected to be significant. However, the multiple, parallel pathways that take place within CVOC reaction systems and the differing chromophoricity of individual products complicates the ability to reliably model the chemical kinetics taking place. Here, we proposed an alternative method of representing UV-visible absorbance spectra as a composite of Gaussian lineshape functions to infer kinetic information. Multiple numbers of curves and different CVOC/ammonium reaction systems were compared. A model using three fitted Gaussian curves with magnitudes following first-order kinetics achieved an accuracy within 65.5% in the 205–300-nm range across multiple organic types and solution aging times. Asymmetrical peaks that occurred in low-200-nm wavelengths were decomposed into two overlapping Gaussian curves, which may have been attributable to different functional groups or families of reaction products. Component curves within overall spectra exhibited different dynamics, implying that the utilization of absorbance at a single reference wavelength to infer reaction rate constants may result in misrepresentative kinetics for these systems.
Collapse
|
28
|
Zhu C, Zeng XC, Francisco JS, Gladich I. Hydration, Solvation, and Isomerization of Methylglyoxal at the Air/Water Interface: New Mechanistic Pathways. J Am Chem Soc 2020; 142:5574-5582. [PMID: 32091211 DOI: 10.1021/jacs.9b09870] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Aqueous-phase processing of methylglyoxal (MG) has been suggested to play a key role in the formation of secondary organic aerosols and catalyze particle growth in the atmosphere. However, the details of these processes remain speculative owing to the lack of a complete description of the physicochemical behavior of MG on atmospheric aerosols. Here, the solvation and hydrolysis of MG at the air/liquid water interface is studied via classical and first-principles molecular dynamics simulations combined with free-energy methods. Our results reveal that the polarity of the water solvent catalyzed the trans-to-cis isomerization of MG at the air/liquid water interface relative to the gas phase. Despite the presence of a hydrophobic group, MG often solvates with both the ketone and methyl groups parallel to the water interface. Analysis of the instantaneous water surface reveals that when MG is in the trans state, the methyl group repels interfacial water to maintain the planarity of the molecule, indicating that lateral and temporal inhomogeneities of interfacial environments are important for fully characterizing the solvation of MG. The counterintuitive behavior of the hydrophobic group is ascribed to a tendency to maximize the number of hydrogen bonds between MG and interfacial water while minimizing the torsional free energy. This drives MG hydration, and our simulations indicate that the formation of MG diol is catalyzed at the air/liquid water interface compared to the gas phase and occurs through nucleophilic attack of water on the carbonyl carbon.
Collapse
Affiliation(s)
- Chongqin Zhu
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Xiao Cheng Zeng
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Joseph S Francisco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States.,Department of Earth and Environmental Science and Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ivan Gladich
- Qatar Environment and Energy Research Institute, Hamad Bin Khalifa University, P.O. Box 5825, Doha, Qatar.,European Centre for Living Technology (ECLT), Ca' Bottacin, Dorsoduro 3911, Calle Crosera, 30124 Venice, Italy
| |
Collapse
|
29
|
Abstract
Abstract
Glycerol electrooxidation has attracted immense attention due to the economic advantage it could add to biodiesel production. One of the significant challenges for the industrial development of glycerol electrooxidation process is the search for a suitable electrocatalyst that is sustainable, cost effective, and tolerant to carbonaceous species, results in high performance, and is capable of replacing the conventional Pt/C catalyst. We review suitable, sustainable, and inexpensive alternative electrocatalysts with enhanced activity, selectivity, and durability, ensuring the economic viability of the glycerol electrooxidation process. The alternatives discussed here include Pd-based, Au-based, Ni-based, and Ag-based catalysts, as well as the combination of two or three of these metals. Also discussed here are the prospective materials that are yet to be explored for glycerol oxidation but are reported to be bifunctional (being capable of both anodic and cathodic reaction). These include heteroatom-doped metal-free electrocatalysts, which are carbon materials doped with one or two heteroatoms (N, B, S, P, F, I, Br, Cl), and heteroatom-doped nonprecious transition metals. Rational design of these materials can produce electrocatalysts with activity comparable to that of Pt/C catalysts. The takeaway from this review is that it provides an insight into further study and engineering applications on the efficient and cost-effective conversion of glycerol to value-added chemicals.
Collapse
|
30
|
Lbadaoui-Darvas M, Takahama S. Water Activity from Equilibrium Molecular Dynamics Simulations and Kirkwood-Buff Theory. J Phys Chem B 2019; 123:10757-10768. [DOI: 10.1021/acs.jpcb.9b06735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Mária Lbadaoui-Darvas
- ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Satoshi Takahama
- ENAC/IIE Swiss Federal Institute of Technology Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
31
|
Gordon BP, Moore FG, Scatena LF, Richmond GL. On the Rise: Experimental and Computational Vibrational Sum Frequency Spectroscopy Studies of Pyruvic Acid and Its Surface-Active Oligomer Species at the Air–Water Interface. J Phys Chem A 2019; 123:10609-10619. [DOI: 10.1021/acs.jpca.9b08854] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Brittany P. Gordon
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Frederick G. Moore
- Department of Physics, Whitman College, Walla Walla, Washington 99362, United States
| | - Lawrence F. Scatena
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| | - Geraldine L. Richmond
- Department of Chemistry, University of Oregon, 1253 University of Oregon, Eugene, Oregon 97403, United States
| |
Collapse
|
32
|
Lushington GH, Barnes AC. Protein Glycation: An Old Villain is Shedding Secrets. Comb Chem High Throughput Screen 2019; 22:362-369. [DOI: 10.2174/1386207322666190704094356] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/02/2019] [Accepted: 06/10/2019] [Indexed: 01/16/2023]
Abstract
:
The glycation of proteins is non-physiological post-translational incorporation of
carbohydrates onto the free amines or guanidines of proteins and some lipids. Although the
existence of glycated proteins has been known for forty years, a full understanding of their
pathogenic nature has been slow in accruing. In recent years, however, glycation has gained widespread
acceptance as a contributing factor in numerous metabolic, autoimmune, and neurological
disorders, tying together several confounding aspects of disease etiology. From diabetes, arthritis,
and lupus, to multiple sclerosis, amyotrophic lateral sclerosis, Alzheimer’s, and Parkinson’s
diseases, an emerging glycation/inflammation paradigm now offers significant new insight into a
physiologically important toxicological phenomenon. It exposes novel drug targets and treatment
options, and may even lay foundations for long-awaited breakthroughs.
:
This ‘current frontier’ article briefly profiles current knowledge regarding the underlying causes
of glycation, the structural biology implications of such modifications, and their pathological
consequences. Although several emerging therapeutic strategies for addressing glycation
pathologies are introduced, the primary purpose of this mini-review is to raise awareness of the
challenges and opportunities inherent in this emerging new medicinal target area.
Collapse
|
33
|
Zhang F, Yu X, Sui X, Chen J, Zhu Z, Yu XY. Evolution of aqSOA from the Air-Liquid Interfacial Photochemistry of Glyoxal and Hydroxyl Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:10236-10245. [PMID: 31361474 DOI: 10.1021/acs.est.9b03642] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The effect of photochemical reaction time on glyoxal and hydrogen peroxide at the air-liquid (a-l) interface is investigated using in situ time-of-flight secondary ion mass spectrometry (ToF-SIMS) enabled by a system for analysis at the liquid vacuum interface (SALVI) microreactor. Carboxylic acids are formed mainly by reaction with hydroxyl radicals in the initial reactions. Oligomers, cluster ions, and water clusters formed due to longer photochemistry. Our results provide direct molecular evidence that water clusters are associated with proton transfer and the formation of oligomers and cluster ions at the a-l interface. The oligomer formation is facilitated by water cluster and cluster ion formation over time. Formation of higher m/z oligomers and cluster ions indicates the possibility of highly oxygenated organic components formation at the a-l interface. Furthermore, new chemical reaction pathways, such as surface organic cluster, hydration shell, and water cluster formation, are proposed based on SIMS spectral observations, and the existing understanding of glyoxal photochemistry is expanded. Our in situ findings verify that the a-l interfacial reactions are important pathways for aqueous secondary organic aerosol (aqSOA) formation.
Collapse
Affiliation(s)
- Fei Zhang
- Department of Environmental Science & Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai , 200433 , China
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Xiaofei Yu
- Environmental and Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Xiao Sui
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Jianmin Chen
- Department of Environmental Science & Engineering, Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3) , Fudan University , Shanghai , 200433 , China
- Institute of Atmospheric Sciences , Fudan University , Shanghai , 200433 , China
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| | - Xiao-Ying Yu
- Energy and Environment Directorate , Pacific Northwest National Laboratory , Richland , Washington 99354 , United States
| |
Collapse
|
34
|
Wang H, Xu Y, Rao L, Yang C, Yuan H, Gao T, Chen X, Sun H, Xian M, Liu C, Liu C. Ratiometric Fluorescent Probe for Monitoring Endogenous Methylglyoxal in Living Cells and Diabetic Blood Samples. Anal Chem 2019; 91:5646-5653. [DOI: 10.1021/acs.analchem.8b05426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Huiling Wang
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Yulin Xu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Li Rao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Chuntao Yang
- Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 510182, China
| | - Hong Yuan
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Tingjuan Gao
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Xin Chen
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Hongyan Sun
- Department of Chemistry, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Ming Xian
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
| | - Chunrong Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| | - Changlin Liu
- Key Laboratory of Pesticide and Chemical Biology, Ministry of Education, Chemical Biology Center, College of Chemistry, and International Joint Research Center for Intelligent Biosensing Technology and Health, Central China Normal University, Wuhan, 430079 Hubei, China
| |
Collapse
|
35
|
Saretia S, Machatschek R, Schulz B, Lendlein A. Reversible 2D networks of oligo(
ε
-caprolactone) at the air–water interface. Biomed Mater 2019; 14:034103. [DOI: 10.1088/1748-605x/ab0cef] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
36
|
Marrero-Ortiz W, Hu M, Du Z, Ji Y, Wang Y, Guo S, Lin Y, Gomez-Hermandez M, Peng J, Li Y, Secrest J, Zamora ML, Wang Y, An T, Zhang R. Formation and Optical Properties of Brown Carbon from Small α-Dicarbonyls and Amines. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:117-126. [PMID: 30499298 DOI: 10.1021/acs.est.8b03995] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Brown Carbon (BrC) aerosols scatter and absorb solar radiation, directly affecting the Earth's radiative budget. However, considerable uncertainty exists concerning the chemical mechanism leading to BrC formation and their optical properties. In this work, BrC particles were prepared from mixtures of small α-dicarbonyls (glyoxal and methylglyoxal) and amines (methylamine, dimethylamine, and trimethylamine). The absorption and scattering of BrC particles were measured using a photoacoustic extinctometer (405 and 532 nm), and the chemical composition of the α-dicarbonyl-amine mixtures was analyzed using orbitrap-mass spectrometry and thermal desorption-ion drift-chemical ionization mass spectrometry. The single scattering albedo for methylglyoxal-amine mixtures is smaller than that of glyoxal-amine mixtures and increases with the methyl substitution of amines. The mass absorption cross-section for methylglyoxal-amine mixtures is two times higher at 405 nm wavelength than that at 532 nm wavelength. The derived refractive indexes at the 405 nm wavelength are 1.40-1.64 for the real part and 0.002-0.195 for the imaginary part. Composition analysis in the α-dicarbonyl-amine mixtures reveals N-heterocycles as the dominant products, which are formed via multiple steps involving nucleophilic attack, steric hindrance, and dipole-dipole interaction between α-dicarbonyls and amines. BrC aerosols, if formed from the particle-phase reaction of methylglyoxal with methylamine, likely contribute to atmospheric warming.
Collapse
Affiliation(s)
- Wilmarie Marrero-Ortiz
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Zhuofei Du
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yuemeng Ji
- Center for Urban Transport Emission Research & State Environmental Protection Key Laboratory of Urban Ambient Air Particulate Matter Pollution Prevention and Control, College of Environmental Science and Engineering , Nankai University , Tianjin , 300071 , China
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Yujue Wang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Song Guo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering , Peking University , Beijing 100871 , China
| | - Yun Lin
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Mario Gomez-Hermandez
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , United States
| | - Jianfei Peng
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| | - Yixin Li
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Jeremiah Secrest
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
| | - Misti L Zamora
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
- Environmental Health & Engineering, Johns Hopkins School of Public Health , Johns Hopkins University , Baltimore , Maryland 21218 , United States
| | - Yuan Wang
- Division of Geological and Planetary Sciences , California Institute of Technology , Pasadena , California 91125 , United States
| | - Taicheng An
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, Guangdong Key Laboratory of Environmental Catalysis and Health Risk Control, School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control , Guangdong University of Technology , Guangzhou 510006 , China
| | - Renyi Zhang
- Department of Chemistry , Texas A&M University , College Station , Texas 77840 , United States
- Department of Atmospheric Sciences , Texas A&M University , College Station , Texas 77843 , United States
| |
Collapse
|
37
|
Hong S, Ratpukdi T, Sivaguru J, Khan E. Photolysis of glutaraldehyde in brine: A showcase study for removal of a common biocide in oil and gas produced water. JOURNAL OF HAZARDOUS MATERIALS 2018; 353:254-260. [PMID: 29677527 DOI: 10.1016/j.jhazmat.2018.03.056] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 03/26/2018] [Accepted: 03/27/2018] [Indexed: 06/08/2023]
Abstract
Glutaraldehyde (GA) has been used extensively as a biocide in hydraulic fracturing fluid leading to its presence in oil and gas produced water. In this study, photolysis was used to degrade GA from brine solutions simulating produced water. Photolysis of GA was performed under ultraviolet (UV) irradiation. GA can be photolyzed by UV at all studied conditions with the efficiency ranging from 52 to 85% within one hour irradiation. Photolysis of GA followed pseudo-first order kinetics. A photolysis rate constant of GA at 0.1 mM in 200 g/L of salt at pH 7 was 0.0269 min-1 with a quantum yield of 0.0549 under 224 W illumination. The degradation rate of GA increased with increasing incident light intensity and decreasing pH. Increasing initial GA concentration resulted in decreasing degradation rate of GA. The degradation of GA was affected by salt concentration. At lower salt concentrations, notable retardation of GA photodegradation rate was observed while at higher salt concentrations GA photodegradation was improved compared to those without salt. OH was more dominant in sample without salt than sample with salt suggesting different photolytic mechanisms, indirect and direct photolysis, respectively. Oligomers were identified as the main photoproducts of GA photolysis.
Collapse
Affiliation(s)
- Soklida Hong
- Environmental and Conservation Sciences Program, North Dakota State University, Fargo, ND 58108, USA; International Postgraduate Programs in Environmental Management, Graduate School Chulalongkorn University, Bangkok 10330, Thailand.
| | - Thunyalux Ratpukdi
- Department of Environmental Engineering, Khon Kaen University, Khon Kaen 40002, Thailand.
| | - Jayaraman Sivaguru
- Center for Photochemical Sciences and Department of Chemistry, Bowling Green State University, Bowling Green, OH, 43403, USA.
| | - Eakalak Khan
- Department of Civil and Environmental Engineering and Construction, University of Nevada, Las Vegas, NV 89154, USA.
| |
Collapse
|
38
|
Electrocatalytic artificial carbonylation assay for observation of human serum albumin inter-individual properties. Anal Biochem 2018; 550:137-143. [PMID: 29723520 DOI: 10.1016/j.ab.2018.04.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 04/27/2018] [Indexed: 02/06/2023]
Abstract
Human serum albumin (HSA) is a multifunctional protein with ligand binding, transporting and buffering properties. Posttranslational modifications and ligand binding processes are closely related to albumin final functional status. In the last few decades, HSA has been characterized using a broad spectrum of methods, but quantitative data on the HSA's modifications among individuals have not been reported. The investigations presented here are based on the non-denaturing electrocatalytic screening of HSA samples isolated from the blood serum of healthy subjects. The electrocatalytic responses of the native protein (Rnat) varied depending on its modifications among individuals, which enable us to express the inter-individual variability. Consequently, the native HSA samples were subjected to ex vivo carbonylation with 50 mM methylglyoxal for 36 h. The differences between Rnat and the responses of artificially carbonylated protein (Rmod) corresponded with inter-individual binding capacity variations (ΔR = Rnat-Rmod). The coefficients of variation for the Rnat and ΔR values of purified HSA samples were estimated to be 8.5 and 23.2%, respectively. A sensitive non-denaturing electrocatalytic assay was utilized to provide new data about albumin inter-individual variations and evaluate its oxidative modifications and binding capacity, which could be used for further studies targeting not only on HSA but also other clinically important proteins.
Collapse
|
39
|
Gordon BP, Moore FG, Scatena LF, Valley NA, Wren SN, Richmond GL. Model Behavior: Characterization of Hydroxyacetone at the Air-Water Interface Using Experimental and Computational Vibrational Sum Frequency Spectroscopy. J Phys Chem A 2018; 122:3837-3849. [PMID: 29608301 DOI: 10.1021/acs.jpca.8b01193] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Small atmospheric aldehydes and ketones are known to play a significant role in the formation of secondary organic aerosols (SOA). However, many of them are difficult to experimentally isolate, as they tend to form hydration and oligomer species. Hydroxyacetone (HA) is unusual in this class as it contributes to SOA while existing predominantly in its unhydrated monomeric form. This allows HA to serve as a valuable model system for similar secondary organic carbonyls. In this paper the surface behavior of HA at the air-water interface has been investigated using vibrational sum frequency (VSF) spectroscopy and Wilhelmy plate surface tensiometry in combination with computational molecular dynamics simulations and density functional theory calculations. The experimental results demonstrate that HA has a high degree of surface activity and is ordered at the interface. Furthermore, oriented water is observed at the interface, even at high HA concentrations. Spectral features also reveal the presence of both cis and trans HA conformers at the interface, in differing orientations. Molecular dynamics results indicate conformer dependent shifts in HA orientation between the subsurface (∼5 Å deep) and surface. Together, these results provide a picture of a highly dynamic, but statistically ordered, interface composed of multiple HA conformers with solvated water. These results have implications for HA's behavior in aqueous particles, which may affect its role in the atmosphere and SOA formation.
Collapse
Affiliation(s)
- Brittany P Gordon
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Frederick G Moore
- Department of Physics , Whitman College , Walla Walla , Washington 99362 , United States
| | - Lawrence F Scatena
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| | - Nicholas A Valley
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Science and Mathematics , California Northstate University College of Health Sciences , Rancho Cordova , California 95670 , United States
| | - Sumi N Wren
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States.,Department of Air Quality Process Research , Environment and Climate Change Canada (ECCC) , Toronto , Ontario M3H 5T4 , Canada
| | - Geraldine L Richmond
- Department of Chemistry , University of Oregon , 1253 University of Oregon , Eugene , Oregon 97403 , United States
| |
Collapse
|
40
|
Hayes G, Wright N, Gardner S, Telzrow C, Wommack A, Vigueira P. Manuka honey and methylglyoxal increase the sensitivity of Staphylococcus aureus
to linezolid. Lett Appl Microbiol 2018; 66:491-495. [DOI: 10.1111/lam.12880] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 01/24/2023]
Affiliation(s)
- G. Hayes
- Department of Biology; High Point University; High Point NC USA
| | - N. Wright
- Department of Biology; High Point University; High Point NC USA
| | - S.L. Gardner
- Department of Biology; High Point University; High Point NC USA
| | - C.L. Telzrow
- Department of Biology; High Point University; High Point NC USA
- Department of Chemistry; High Point University; High Point NC USA
| | - A.J. Wommack
- Department of Chemistry; High Point University; High Point NC USA
| | - P.A. Vigueira
- Department of Biology; High Point University; High Point NC USA
| |
Collapse
|
41
|
Docherty KS, Corse EW, Jaoui M, Offenberg JH, Kleindienst TE, Krug JD, Riedel TP, Lewandowski M. Trends in the oxidation and relative volatility of chamber-generated secondary organic aerosol. AEROSOL SCIENCE AND TECHNOLOGY : THE JOURNAL OF THE AMERICAN ASSOCIATION FOR AEROSOL RESEARCH 2018; 52:992-1004. [PMID: 31686721 PMCID: PMC6827343 DOI: 10.1080/02786826.2018.1500014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 05/31/2018] [Accepted: 06/11/2018] [Indexed: 05/28/2023]
Abstract
The relationship between the oxidation state and relative volatility of secondary organic aerosol (SOA) from the oxidation of a wide range of hydrocarbons is investigated using a fast-stepping, scanning thermodenuder interfaced with a high-resolution time-of-flight aerosol mass spectrometer (AMS). SOA oxidation state varied widely across the investigated range of parent hydrocarbons but was relatively stable for replicate experiments using a single hydrocarbon precursor. On average, unit mass resolution indicators of SOA oxidation (e.g., AMS f 43 and f 44) are consistent with previously reported values. Linear regression of H:C vs. O:C obtained from parameterization of f 43 and f 44 and elemental analysis of high-resolution spectra in Van Krevelen space both yield a slope of ~-0.5 across different SOA types. A similar slope was obtained for a distinct subset of toluene/NO x reactions in which the integrated oxidant exposure was varied to alter oxidation. The relative volatility of different SOA types displays similar variability and is strongly correlated with SOA oxidation state (OS - ). On average, relatively low oxidation and volatility were observed for aliphatic alkene (including terpenes) and n-alkane SOA while the opposite is true for mono- and polycyclic aromatic hydrocarbon SOA. Effective enthalpy for total chamber aerosol obtained from volatility differential mobility analysis is also highly correlated withOS - c indicating a primary role for oxidation levels in determining the volatility of chamber SOA. Effective enthalpies for chamber SOA are substantially lower than those of neat organic standards but are on the order of those obtained for partially oligomerized glyoxal and methyl glyoxal.
Collapse
Affiliation(s)
- Kenneth S Docherty
- Jacobs Technology, Inc., Research Triangle Park, Durham, North Carolina, USA
| | - Eric W Corse
- Jacobs Technology, Inc., Research Triangle Park, Durham, North Carolina, USA
| | - Mohammed Jaoui
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| | - John H Offenberg
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| | - Tadeusz E Kleindienst
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| | - Jonathan D Krug
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| | - Theran P Riedel
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| | - Michael Lewandowski
- United States Environmental Protection Agency, Office of Research and Development, Research Triangle Park, Durham, North Carolina, USA
| |
Collapse
|
42
|
Sui X, Zhou Y, Zhang F, Zhang Y, Chen J, Zhu Z, Yu X. ToF‐SIMS
characterization of glyoxal surface oxidation products by hydrogen peroxide: A comparison between dry and liquid samples. SURF INTERFACE ANAL 2017. [DOI: 10.1002/sia.6334] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Xiao Sui
- Environment Research Institute Shandong University Jinan 250100 China
| | - Yufan Zhou
- Environmental and Molecular Science Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Fei Zhang
- Department of Environmental Science and Engineering Fudan University Shanghai 200433 China
- Earth and Biological Sciences Directorate Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Yanyan Zhang
- Environmental and Molecular Science Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Jianmin Chen
- Environment Research Institute Shandong University Jinan 250100 China
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Fudan Tyndall Centre, Department of Environmental Science and Engineering Fudan University Shanghai 200433 China
| | - Zihua Zhu
- Environmental and Molecular Science Laboratory Pacific Northwest National Laboratory Richland WA 99354 USA
| | - Xiao‐Ying Yu
- Department of Environmental Science and Engineering Fudan University Shanghai 200433 China
| |
Collapse
|
43
|
Piletic IR, Edney EO, Bartolotti LJ. Barrierless Reactions with Loose Transition States Govern the Yields and Lifetimes of Organic Nitrates Derived from Isoprene. J Phys Chem A 2017; 121:8306-8321. [PMID: 28976756 PMCID: PMC6061928 DOI: 10.1021/acs.jpca.7b08229] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The chemical reaction mechanism of NO addition to two β and δ isoprene hydroxy-peroxy radical isomers is examined in detail using density functional theory, coupled cluster methods, and the energy resolved master equation formalism to provide estimates of rate constants and organic nitrate yields. At the M06-2x/aug-cc-pVTZ level, the potential energy surfaces of NO reacting with β-(1,2)-HO-IsopOO• and δ-Z-(1,4)-HO-IsopOO• possess barrierless reactions that produce alkoxy radicals/NO2 and organic nitrates. The nudged elastic band method was used to discover a loosely bound van der Waals (vdW) complex between NO2 and the alkoxy radical that is present in both exit reaction channels. Semiempirical master equation calculations show that the β organic nitrate yield is 8.5 ± 3.7%. Additionally, a relatively low barrier to C-C bond scission was discovered in the β-vdW complex that leads to direct HONO formation in the gas phase with a yield of 3.1 ± 1.3%. The δ isomer produces a looser vdW complex with a smaller dissociation barrier and a larger isomerization barrier, giving a 2.4 ± 0.8% organic nitrate yield that is relatively pressure and temperature insensitive. By considering all of these pathways, the first-generation NOx recycling efficiency from isoprene organic nitrates is estimated to be 21% and is expected to increase with decreasing NOx concentration.
Collapse
Affiliation(s)
- Ivan R. Piletic
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711
| | - Edward O. Edney
- United States Environmental Protection Agency, National Exposure Research Laboratory, Research Triangle Park, NC 27711
| | | |
Collapse
|
44
|
De Haan DO, Hawkins LN, Welsh HG, Pednekar R, Casar JR, Pennington EA, de Loera A, Jimenez NG, Symons MA, Zauscher M, Pajunoja A, Caponi L, Cazaunau M, Formenti P, Gratien A, Pangui E, Doussin JF. Brown Carbon Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of Methylglyoxal and Photolytic Cloud Cycling. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:7458-7466. [PMID: 28562016 DOI: 10.1021/acs.est.7b00159] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
The effects of methylglyoxal uptake on the physical and optical properties of aerosol containing amines or ammonium sulfate were determined before and after cloud processing in a temperature- and RH-controlled chamber. The formation of brown carbon was observed upon methylglyoxal addition, detected as an increase in water-soluble organic carbon mass absorption coefficients below 370 nm and as a drop in single-scattering albedo at 450 nm. The imaginary refractive index component k450 reached a maximum value of 0.03 ± 0.009 with aqueous glycine aerosol particles. Browning of solid particles occurred at rates limited by chamber mixing (<1 min), and in liquid particles occurred more gradually, but in all cases occurred much more rapidly than in bulk aqueous studies. Further browning in AS and methylammonium sulfate seeds was triggered by cloud events with chamber lights on, suggesting photosensitized brown carbon formation. Despite these changes in optical aerosol characteristics, increases in dried aerosol mass were rarely observed (<1 μg/m3 in all cases), consistent with previous experiments on methylglyoxal. Under dry, particle-free conditions, methylglyoxal reacted (presumably on chamber walls) with methylamine with a rate constant k = (9 ± 2) × 10-17 cm3 molecule-1 s-1 at 294 K and activation energy Ea = 64 ± 37 kJ/mol.
Collapse
Affiliation(s)
- David O De Haan
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Lelia N Hawkins
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Hannah G Welsh
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Raunak Pednekar
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Jason R Casar
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Elyse A Pennington
- Department of Chemistry, Harvey Mudd College , 301 Platt Blvd, Claremont, California 91711, United States
| | - Alexia de Loera
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Natalie G Jimenez
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Michael A Symons
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Melanie Zauscher
- Department of Chemistry and Biochemistry, University of San Diego , 5998 Alcala Park, San Diego, California 92110, United States
| | - Aki Pajunoja
- Department of Applied Physics, University of Eastern Finland , P.O. Box 1627, 70211 Kuopio, Finland
| | - Lorenzo Caponi
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Mathieu Cazaunau
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Paola Formenti
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Aline Gratien
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Edouard Pangui
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| | - Jean-François Doussin
- Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR7583, CNRS, Université Paris-Est-Créteil (UPEC) et Université Paris Diderot (UPD), Institut Pierre Simon Laplace (IPSL), 94010 Créteil, France
| |
Collapse
|
45
|
Svrckova M, Zatloukalova M, Dvorakova P, Coufalova D, Novak D, Hernychova L, Vacek J. Na +/K +-ATPase interaction with methylglyoxal as reactive metabolic side product. Free Radic Biol Med 2017; 108:146-154. [PMID: 28342847 DOI: 10.1016/j.freeradbiomed.2017.03.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 12/26/2022]
Abstract
Proteins are subject to oxidative modification and the formation of adducts with a broad spectrum of reactive species via enzymatic and non-enzymatic mechanisms. Here we report that in vitro non-enzymatic methylglyoxal (MGO) binding causes the inhibition and formation of MGO advanced glycation end-products (MAGEs) in Na+/K+-ATPase (NKA). Concretely, MGO adducts with NKA amino acid residues (mainly Arg) and Nε-(carboxymethyl)lysine (CML) formation were found. MGO is not only an inhibitor for solubilized NKA (IC50=91±16μM), but also for reconstituted NKA in the lipid bilayer environment, which was clearly demonstrated using a DPPC/DPPE liposome model in the presence or absence of the NKA-selective inhibitor ouabain. High-resolution mass spectrometric analysis of a tryptic digest of NKA isolated from pig (Sus scrofa) kidney indicates that the intracellular α-subunit is naturally (post-translationally) modified by MGO in vivo. In contrast to this, the β-subunit could only be modified by MGO artificially, and the transmembrane part of the protein did not undergo MGO binding under the experimental setup used. As with bovine serum albumin, serving as the water-soluble model, we also demonstrated a high binding capacity of MGO to water-poorly soluble NKA using a multi-spectral methodology based on electroanalytical, immunochemical and fluorimetric tools. In addition, a partial suppression of the MGO-mediated inhibitory effect could be observed in the presence of aminoguanidine (pimagedine), a glycation suppressor and MGO-scavenger. All the results here were obtained with the X-ray structure of NKA in the E1 conformation (3WGV) and could be used in the further interpretation of the functionality of this key enzyme in the presence of highly-reactive metabolic side-products, glycation agents and generally under oxidative stress conditions.
Collapse
Affiliation(s)
- Marika Svrckova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| | - Martina Zatloukalova
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Petra Dvorakova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Dominika Coufalova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - David Novak
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic
| | - Lenka Hernychova
- Regional Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Zluty kopec 7, 656 53 Brno, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacky University, Hnevotinska 3, 775 15 Olomouc, Czech Republic.
| |
Collapse
|
46
|
Reactivity of Copper Electrodes towards Functional Groups and Small Molecules in the Context of CO2 Electro-Reductions. Catalysts 2017. [DOI: 10.3390/catal7050161] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
47
|
Stangl CM, Johnston MV. Aqueous Reaction of Dicarbonyls with Ammonia as a Potential Source of Organic Nitrogen in Airborne Nanoparticles. J Phys Chem A 2017; 121:3720-3727. [DOI: 10.1021/acs.jpca.7b02464] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Christopher M. Stangl
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Murray V. Johnston
- Department of Chemistry and
Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
48
|
Bikkina S, Kawamura K, Sarin M. Secondary Organic Aerosol Formation over Coastal Ocean: Inferences from Atmospheric Water-Soluble Low Molecular Weight Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:4347-4357. [PMID: 28355054 DOI: 10.1021/acs.est.6b05986] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A lack of consensus on the distributions and formation pathways of secondary organic aerosols (SOA) over oceanic regions downwind of pollution sources limits our ability to assess their climate impact globally. As a case study, we report here on water-soluble SOA components such as dicarboxylic acids, oxocarboxylic acids, and α-dicarbonyls in the continental outflows from the Indo-Gangetic Plain (IGP) and Southeast Asia (SEA) to the Bay of Bengal. Oxalic acid (C2) is the dominant species followed by succinic (C4) and glyoxylic acids (ωC2) in the outflow. Nonsea-salt SO42- also dominates (∼70%) total water-soluble inorganic constituents and correlates well with aerosol liquid water content (LWC) and C2, indicating their production through aqueous phase photochemical reactions. Furthermore, mass ratios of dicarboxylic acids (C2/C4, C2/ωC2), and their relative abundances in water-soluble organic carbon and total organic carbon are quite similar between the two continental (IGP and SEA) outflows, indicating the formation of SOA through aqueous phase photochemical reactions in LWC-enriched aerosols, largely controlled by anthropogenic SO42-.
Collapse
Affiliation(s)
- Srinivas Bikkina
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
- Physical Research Laboratory , Navrangpura, Ahmedabad 380009, India
| | - Kimitaka Kawamura
- Institute of Low Temperature Science, Hokkaido University , Sapporo 060-0819, Japan
| | - Manmohan Sarin
- Physical Research Laboratory , Navrangpura, Ahmedabad 380009, India
| |
Collapse
|
49
|
Faust JA, Wong JPS, Lee AKY, Abbatt JPD. Role of Aerosol Liquid Water in Secondary Organic Aerosol Formation from Volatile Organic Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:1405-1413. [PMID: 28124902 DOI: 10.1021/acs.est.6b04700] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A key mechanism for atmospheric secondary organic aerosol (SOA) formation occurs when oxidation products of volatile organic compounds condense onto pre-existing particles. Here, we examine effects of aerosol liquid water (ALW) on relative SOA yield and composition from α-pinene ozonolysis and the photooxidation of toluene and acetylene by OH. Reactions were conducted in a room-temperature flow tube under low-NOx conditions in the presence of equivalent loadings of deliquesced (∼20 μg m-3 ALW) or effloresced (∼0.2 μg m-3 ALW) ammonium sulfate seeds at exactly the same relative humidity (RH = 70%) and state of wall conditioning. We found 13% and 19% enhancements in relative SOA yield for the α-pinene and toluene systems, respectively, when seeds were deliquesced rather than effloresced. The relative yield doubled in the acetylene system, and this enhancement was partially reversible upon drying the prepared SOA, which reduced the yield by 40% within a time scale of seconds. We attribute the high relative yield of acetylene SOA on deliquesced seeds to aqueous partitioning and particle-phase reactions of the photooxidation product glyoxal. The observed range of relative yields for α-pinene, toluene, and acetylene SOA on deliquesced and effloresced seeds suggests that ALW plays a complicated, system-dependent role in SOA formation.
Collapse
Affiliation(s)
- Jennifer A Faust
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jenny P S Wong
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Alex K Y Lee
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 Saint George Street, Toronto, Ontario M5S 3H6, Canada
| |
Collapse
|
50
|
Pi inhibits intracellular accumulation of methylglyoxal in promastigote form of L. donovani. Mol Biochem Parasitol 2016; 207:89-95. [PMID: 27297182 DOI: 10.1016/j.molbiopara.2016.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2015] [Revised: 06/04/2016] [Accepted: 06/09/2016] [Indexed: 11/21/2022]
Abstract
Similar to their mammalian counterpart, protozoan parasites including Leishmania donovani detoxify methylglyoxal (MG),(1) a toxic ubiquitous product generated in glycolysis pathway. However, it differs in one or more way(s) from the humans. It is known that MG is eliminated either through glyoxalase (GLO)(2) pathway and/or excreted across the cell membrane. This toxic metabolic by-product is known to be detoxified predominantly by the GLO pathway and excretion across the cell membrane is never considered to be a significant pathway for its detoxification. We have tried to modulate these pathways under various physiological conditions to find ways that may lead to accumulation of MG in L. donovani. Besides targeting the GLO pathway, we intend to understand the mechanism of MG release across the cell membrane and possible ways to inhibit its exclusion from parasites. In our study, it was found that inorganic phosphate (Pi)(3) in the presence of glucose inhibits the production of MG as well as promotes the expulsion of MG from the cell. Moreover, the trivalent form of antimony (Sb(III)) inhibits GLO pathway and thus detoxification of MG. Inhibition of Pi transport, which is a Na(+)/H(+) dependent process, restores the Pi mediated abrogation of MG production. Thus, Sb(III) along with inhibitors of Pi transporter may be a therapeutic advancement for treatment of antimony resistant cases of human visceral leishmaniasis. However, it requires further validation using specific inhibitor(s) of Pi transporter.
Collapse
|