1
|
Ghadimi S, Zhu H, Durbin TD, Cocker DR, Karavalakis G. Exceedances of Secondary Aerosol Formation from In-Use Natural Gas Heavy-Duty Vehicles Compared to Diesel Heavy-Duty Vehicles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:19979-19989. [PMID: 37988584 DOI: 10.1021/acs.est.3c04880] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2023]
Abstract
This work, for the first time, assessed the secondary aerosol formation from both in-use diesel and natural gas heavy-duty vehicles of different vocations when they were operated on a chassis dynamometer while the vehicles were exercised on different driving cycles. Testing was performed on natural gas vehicles equipped with three-way catalysts (TWCs) and diesel trucks equipped with diesel oxidation catalysts, diesel particulate filters, and selective catalytic reduction systems. Secondary aerosol was measured after introducing dilute exhaust into a 30 m3 environmental chamber. Particulate matter ranged from 0.18 to 0.53 mg/mile for the diesel vehicles vs 1.4-85 mg/mile for the natural gas vehicles, total particle number ranged from 4.01 × 1012 to 3.61 × 1013 for the diesel vehicles vs 5.68 × 1012-2.75 × 1015 for the natural gas vehicles, and nonmethane organic gas emissions ranged from 0.032 to 0.05 mg/mile for the diesel vehicles vs 0.012-1.35 mg/mile for the natural gas vehicles. Ammonia formation was favored in the TWC and was found in higher concentrations for the natural gas vehicles (ranged from ∼0 to 1.75 g/mile) than diesel vehicles (ranged from ∼0 to 0.4 g/mile), leading to substantial secondary ammonium nitrate formation (ranging from 8.5 to 98.8 mg/mile for the natural gas vehicles). For the diesel vehicles, one had a secondary ammonium nitrate of 18.5 mg/mile, while the other showed essentially no secondary ammonium nitrate formation. The advanced aftertreatment controls in diesel vehicles resulted in almost negligible secondary organic aerosol (SOA) formation (ranging from 0.046 to 2.04 mg/mile), while the natural gas vehicles led to elevated SOA formation that was likely sourced from the engine lubricating oil (ranging from 3.11 to 39.7 mg/mile). For two natural gas vehicles, the contribution of lightly oxidized lubricating oil in the primary organic aerosol was dominant (as shown in the mass spectra analysis), leading to enhanced SOA mass. Heavily oxidized lubricating oil was also observed to contribute to the SOA formation for other natural gas vehicles.
Collapse
Affiliation(s)
- Sahar Ghadimi
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Hanwei Zhu
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Thomas D Durbin
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - David R Cocker
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| | - Georgios Karavalakis
- Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, 1084 Columbia Avenue, Riverside, California 92507, United States
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, University of California, Riverside, California 92521, United States
| |
Collapse
|
2
|
Jaoui M, Docherty KS, Lewandowski M, Kleindienst TE. Yields and molecular composition of gas phase and secondary organic aerosol from the photooxidation of the volatile consumer product benzyl alcohol: formation of highly oxygenated and hydroxy nitroaromatic compounds. ATMOSPHERIC CHEMISTRY AND PHYSICS 2023; 23:4637-4661. [PMID: 38361764 PMCID: PMC10866305 DOI: 10.5194/acp-23-4637-2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/17/2024]
Abstract
Recently, volatile chemical products (VCPs) have been increasingly recognized as important precursors for secondary organic aerosol (SOA) and ozone in urban areas. However, their atmospheric chemistry, physical transformation, and their impact on climate, environment and human health remain poorly understood. Here, the yields and chemical composition at the molecular level of gas and particle phase products originating from the photooxidation of one of these VCPs, benzyl alcohol (BnOH), is reported. The SOA was generated in the presence of seed aerosol from nebulized ammonium sulfate solution in a 14.5 m3 smog chamber operated in flow mode. More than 50 organic compounds containing nitrogen and/or up to seven oxygen atoms were identified by mass spectrometry. While a detailed non-targeted analysis has been made, our primary focus has been to examine highly oxygenated and nitro-aromatic compounds. The major components include ring-opening products with high oxygen to carbon ratio (e.g., malic acid, tartaric acids, arabic acid, trihydroxy-oxo-pentanoic acids, and pentaric acid), and ring-retaining products (e.g., benzaldehyde, benzoic acid, catechol, 3-nitrobenzyl alcohol, 4-nitrocatechol, 2-hydroxy-5-nitrobenzyl alcohol, 2-nitrophloroglucinol, 3,4-dihydroxy-5-nitrobenzyl alcohol). The presence of some of these products in the gas and particle phases simultaneously provides evidence of their gas/particle partitioning. These oxygenated oxidation products made dominant contributions to the SOA particle composition in both low and high NOx systems. Yields, organic mass to organic carbon ratio, and proposed reaction schemes for selected compounds are provided. The aerosol yield was 5.2% for BnOH/H2O2 at SOA concentration of 52.9 µg m-3 and ranged between 1.7-8.1 % for BnOH/NOx at SOA concentration of 40.0-119.5 µg m-3.
Collapse
Affiliation(s)
- Mohammed Jaoui
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | | | - Michael Lewandowski
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| | - Tadeusz E. Kleindienst
- Center for Environmental Measurement & Modeling, U.S. Environmental Protection Agency, Research Triangle Park, NC, 27711, USA
| |
Collapse
|
3
|
Wang Q, An D, Yuan Z, Sun R, Lu W, Wang L. A field investigation into the characteristics and formation mechanisms of particles during the operation of laser printers and photocopiers. J Environ Sci (China) 2023; 126:697-707. [PMID: 36503794 DOI: 10.1016/j.jes.2022.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 05/04/2022] [Accepted: 05/04/2022] [Indexed: 06/17/2023]
Abstract
Indoor particle release from toner printing equipment (TPE) is a major health concern and has received wide attention. In this study, nine printing centers were randomly selected and three working phases were simulated, namely, non-working, normal printing/copying, and heavy printing/copying. The dynamics of the ozone (O3), volatile organic compound (VOC), and particle emissions from TPE were determined by portable detectors. Results showed that particles, VOCs, and O3 were indeed discharged, and particles and VOCs concentrations remained at high levels. Among them, 44% of the rooms represented high-level particle releases. Submicrometer-sized particles, especially nanoparticles, were positively correlated with VOCs, but were inversely proportional to the O3 concentration. Four elements, Ca, Al, Mg and Ni, were usually present in nanoparticles because of the discharge of paper. Si, Al, K, Ni and Pb were found in the submicrometer-sized particles and were consistent with the toner composition. The potential particle precursors were identified, which suggested that styrene was the most likely secondary organic aerosol (SOA) precursor. Overall, the use of the toner formulation and the discharge of paper attribute to the TPE-emitted particles, in which styrene is a specific monitoring indicator for the formation of SOA.
Collapse
Affiliation(s)
- Qiang Wang
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China.
| | - Daizhi An
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Zhengquan Yuan
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Rubao Sun
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Wei Lu
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| | - Lili Wang
- Chinese People's Liberation Army Center for Disease Control and Prevention, Beijing 100071, China
| |
Collapse
|
4
|
Yu S, Jia L, Xu Y, Zhang H, Zhang Q, Pan Y. Wall losses of oxygenated volatile organic compounds from oxidation of toluene: Effects of chamber volume and relative humidity. J Environ Sci (China) 2022; 114:475-484. [PMID: 35459510 DOI: 10.1016/j.jes.2021.09.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/14/2021] [Accepted: 09/24/2021] [Indexed: 11/24/2022]
Abstract
Vapor wall losses can affect the yields of secondary organic aerosol. The effects of surface-to-volume (S/V) ratio and relative humidity (RH) on the vapor-wall interactions were investigated in this study. The oxygenated volatile organic compounds (OVOCs) were generated from toluene-H2O2 irradiations. The average gas to wall loss rate constant (kgw) of OVOCs in a 400 L reactor (S/V = 7.5 m-1) is 2.47 (2.41 under humid conditions) times higher than that in a 5000 L reactor (S/V = 3.6 m-1) under dry conditions. In contrast, the average desorption rate constant (kwg) of OVOCs in 400 L reactor is only 1.37 (1.20 under humid conditions) times higher than that in 5000 L reactor under dry conditions. It shows that increasing the S/V ratio can promote the wall losses of OVOCs. By contrast, the RH effect on kgw is not prominent. The average kgw value under humid conditions is almost the same as under dry conditions in the 400 L (5000 L) reactor. However, increasing RH can decrease the desorption rates. The average kwg value under dry conditions is 1.45 (1.27) times higher than that under humid conditions in the 400 L (5000 L) reactor. The high RH can increase the partitioning equilibrium timescales and enhance the wall losses of OVOCs.
Collapse
Affiliation(s)
- Shanshan Yu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Long Jia
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Yongfu Xu
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hailiang Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qun Zhang
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuepeng Pan
- State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing 100029, China; Department of Atmospheric Chemistry and Environmental Sciences, College of Earth and Planetary Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Tang B, Zou J, Wang X, Li B, Fu D, Thapa S, Sun X, Qi H. Theoretical insights into the gas/heterogeneous phase reactions of hydroxyl radicals with chlorophenols: Mechanism, kinetic and toxicity assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150974. [PMID: 34656601 DOI: 10.1016/j.scitotenv.2021.150974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/16/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Emission of 2-chlorophenols (2-CPs) can cause serious air pollution and health problems. Here, the reaction kinetics and products of key radicals in 2-CPs photo-oxidation are explored in both gaseous and heterogeneous reactions. Quantum chemical calculations show that •OH-addition pathways are more preferable than H-abstraction pathways in gas phase, while that is opposite in heterogeneous phase. At 298 K, the overall rate coefficients of the title reactions in gas and heterogeneous phases are 3.48 × 10-13 and 2.37 × 10-13 cm3 molecule-1 s-1 with half-lives of 55.3 h and 81.2 h, respectively. The strong H-bonds between linear Si3O2(OH)8 and 2-CPs change the energy barriers of initial •OH-addition and H-abstraction reactions, resulting in the competition between heterogeneous reactions and gas phase reactions. The products in heterogeneous reactions are chloroquinone and HONO, which can cause atmospheric acid deposition and eco-toxicity. In gas phase, self-cyclization of alkoxy radical (RO•) leads to formation of •HO2 and highly‑oxygenated molecules, which cause formation of secondary organic aerosol. It is emphasized that oxidation of 2-CPs by •OH leads to formation of more toxic products for aquatic organisms. Therefore, more attention should be focused on the products originated from •OH-initiated reactions of (2-)CPs in gaseous and heterogeneous reactions.
Collapse
Affiliation(s)
- Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinlong Zou
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education of the People's Republic of China, School of Chemistry and Materials Science, Heilongjiang University, Harbin, 150090, China
| | - Xueyu Wang
- Key Laboratory of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Bo Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Donglei Fu
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Samit Thapa
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiazhong Sun
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hong Qi
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, Harbin 150090, China; Key Laboratory of Polar Environment and Ecosystem, Heilongjiang Province, Harbin 150090, China.
| |
Collapse
|
6
|
Kohli RK, Davies JF. Measuring the Chemical Evolution of Levitated Particles: A Study on the Evaporation of Multicomponent Organic Aerosol. Anal Chem 2021; 93:12472-12479. [PMID: 34455787 DOI: 10.1021/acs.analchem.1c02890] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Single-particle levitation methods provide an effective platform for probing the physical properties of atmospheric aerosol via micrometer-sized particles. Until recently, chemical composition measurements on levitated particles were limited to spectroscopy, yielding only basic chemical information. Here, we describe, benchmark, and discuss the applications of an approach for probing the physical properties and chemical composition of single levitated particles using high-resolution mass spectrometry (MS). Using a linear quadrupole electrodynamic balance (LQ-EDB) coupled to paper spray mass spectrometry, we report accurate measurements of the evolving size within 5 nm (using broadband light scattering) and relative composition (using MS) of evaporating multicomponent levitated particles in real time. Measurements of the evaporation dynamics of semivolatile organic particles containing a range of n-ethylene glycols (n = 3, 4, and 6) in various binary and ternary mixtures were made under dry conditions and compared with predictions from a gas-phase diffusion evaporation model. Under assumptions of ideal mixing, excellent agreement for both size and composition evolution between measurements and models were obtained for these mixtures. At increased relative humidity, the presence of water in particles causes the assumption of ideality to break down, and the evaporative mass flux becomes a function of the mole fraction and activity coefficient. Through compositionally resolved evaporation measurements and thermodynamic models, we characterize the activity of organic components in multicomponent particles. Our results demonstrate that the LQ-EDB-MS platform can identify time-dependent size and compositional changes with high precision and reproducibility, yielding an effective methodology for future studies on chemical aging and gas-particle partitioning in suspended particles.
Collapse
Affiliation(s)
- Ravleen Kaur Kohli
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - James F Davies
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
Zhu J, Li J, Du L. Exploring the formation potential and optical properties of secondary organic aerosol from the photooxidation of selected short aliphatic ethers. J Environ Sci (China) 2020; 95:82-90. [PMID: 32653196 DOI: 10.1016/j.jes.2020.03.050] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 03/20/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Secondary organic aerosol (SOA) formation potential for six kinds of short aliphatic ethers has been studied. The size distribution, mass concentration, and yield of SOA formed by ethers photooxidation were determined under different conditions. The results showed that all six ethers can generate SOA via reaction with OH radicals even under no seed and NOx-free condition. The mass concentration for six seedless experiments was less than 10 µg/m3 and the SOA yields were all below 1%. The strong increase in the SOA formation was observed when the system contained ammonium sulfate seed particles, while SOA yield decreased under the high-NOx condition. SOA composition was analyzed using offline methods. Infrared spectra indicated that there are complex components in the particle-phase including carbonyls acid and aldehydes species. Moreover, the aqueous filter extracts were analyzed using ultraviolet-visible spectrometer and fluorescence spectrophotometer. For the fresh methyl n-butyl ether SOA, the largest absorption peak occurs at 280 nm and there exists slightly absorption in the 300-400 nm. Excitation-emission matrices display the distinct peak at excitation/emission = 470 nm/480 nm according to the fluorescence spectrum. These findings are important considerations of formation for ether SOA that can eventually be included in atmospheric models.
Collapse
Affiliation(s)
- Jianqiang Zhu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jianlong Li
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Lin Du
- Environment Research Institute, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Qi X, Zhu S, Zhu C, Hu J, Lou S, Xu L, Dong J, Cheng P. Smog chamber study of the effects of NOx and NH 3 on the formation of secondary organic aerosols and optical properties from photo-oxidation of toluene. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138632. [PMID: 32315905 DOI: 10.1016/j.scitotenv.2020.138632] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 05/24/2023]
Abstract
Secondary organic aerosols (SOAs) have been receiving significant attention because of their significant impacts on air quality and human health. In this study, the influences of nitrogen oxides (NOx) and ammonia (NH3) on SOA formation from photooxidation of toluene was investigated in the Shanghai university smog chamber. The chemical and physical characteristics of gas-phase products and SOAs from toluene photo-oxidation were characterized using laboratory-developed single photon ionization time-of-flight mass spectrometry, single particle aerosol mass spectrometry, and cavity ring-down aerosol extinction albedo spectroscopy instruments. It was observed that increasing the initial nitrogen oxides ([NOx]0) under low-[NOx]0 conditions enhanced the SOA yield, while increasing [NOx]0 under high-[NOx]0 conditions suppressed the SOA yield. After adding NH3, the number concentration, average SOA diameter, and extinction and scattering coefficients showed an immediate and rapid increase due to the formation of significant amounts of condensable ammonium nitrate and nitrogen-containing (NOC) compounds. Moreover, a simplified reaction mechanism for the photooxidation of toluene initiated by the hydroxyl radical (OH) was believed to follow two reaction channels: minor H abstraction, and major OH addition, which continuously induced the subsequent reactions. The results of this study presented rapid analytical method for the joint use of a smog chamber with on-line analytical instruments to immediately characterize the effects of SOA formation, which will help in understanding the new particle formation and particle growth, and thus provides a new insight for in-depth understanding of the haze pollution in China.
Collapse
Affiliation(s)
- Xue Qi
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shuping Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Chenzhang Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Shengrong Lou
- State Environmental Protection Key Laboratory of the Formation and Prevention of Urban Air Pollution Complex, Shanghai Academy of Environmental Science, Shanghai 200233, China.
| | - Li Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Junguo Dong
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ping Cheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
9
|
Li K, Li J, Wang W, Li J, Peng C, Wang D, Ge M. Effects of Gas-Particle Partitioning on Refractive Index and Chemical Composition of m-Xylene Secondary Organic Aerosol. J Phys Chem A 2018. [DOI: 10.1021/acs.jpca.7b12792] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Kun Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Junling Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Weigang Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jiangjun Li
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Chao Peng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dong Wang
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Maofa Ge
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
10
|
Cochran RE, Kubátová A, Kozliak EI. An Approach to the Estimation of Adsorption Enthalpies of Polycyclic Aromatic Hydrocarbons on Particle Surfaces. J Phys Chem A 2016; 120:6029-38. [DOI: 10.1021/acs.jpca.6b03611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Richard E. Cochran
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Alena Kubátová
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| | - Evguenii I. Kozliak
- Department of Chemistry, University of North Dakota, Grand Forks, North Dakota 58202, United States
| |
Collapse
|
11
|
Li R, Palm BB, Ortega AM, Hlywiak J, Hu W, Peng Z, Day DA, Knote C, Brune WH, de Gouw JA, Jimenez JL. Modeling the Radical Chemistry in an Oxidation Flow Reactor: Radical Formation and Recycling, Sensitivities, and the OH Exposure Estimation Equation. J Phys Chem A 2015; 119:4418-32. [DOI: 10.1021/jp509534k] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Rui Li
- Chemical Sciences
Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | | | | | - James Hlywiak
- Department
of Meteorology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | | | | | | | - Christoph Knote
- Atmospheric Chemistry
Division, National Center for Atmospheric Research, Boulder, Colorado 80301, United States
| | - William H. Brune
- Department
of Meteorology, Pennsylvania State University, University Park, Pennsylvania 16802, United States
| | - Joost A. de Gouw
- Chemical Sciences
Division, Earth System Research Laboratory, National Oceanic and Atmospheric Administration, Boulder, Colorado 80305, United States
| | | |
Collapse
|
12
|
Chu B, Liu Y, Li J, Takekawa H, Liggio J, Li SM, Jiang J, Hao J, He H. Decreasing effect and mechanism of FeSO4 seed particles on secondary organic aerosol in α-pinene photooxidation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 193:88-93. [PMID: 25014016 DOI: 10.1016/j.envpol.2014.06.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/11/2014] [Accepted: 06/12/2014] [Indexed: 06/03/2023]
Abstract
α-Pinene/NOx and α-pinene/HONO photooxidation experiments at varying humidity were conducted in smog chambers in the presence or absence of FeSO4 seed particles. FeSO4 seed particles decrease SOA mass as long as water was present on the seed particle surface, but FeSO4 seed particles have no decreasing effect on SOA under dryer conditions at 12% relative humidity (RH). The decreasing effect of FeSO4 seed particles on the SOA mass is proposed to be related to oxidation processes in the surface layer of water on the seed particles. Free radicals, including OH, can be formed from catalytic cycling of Fe(2+) and Fe(3+) in the aqueous phase. These radicals can react further with the organic products of α-pinene oxidation on the seed particles. The oxidation may lead to formation of smaller molecules which have higher saturation vapor pressures and favor repartitioning to the gas phase, and therefore, reduces SOA mass.
Collapse
Affiliation(s)
- Biwu Chu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yongchun Liu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
| | - Junhua Li
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hideto Takekawa
- Toyota Central Research and Development Laboratory, Nagakute, Aichi 480-1192, Japan
| | - John Liggio
- Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
| | - Shao-Meng Li
- Air Quality Research Division, Environment Canada, Toronto, Ontario, Canada
| | - Jingkun Jiang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiming Hao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hong He
- State Key Joint Laboratory of Environment Simulation and Pollution Control, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
13
|
Youssefi S, Waring MS. Transient secondary organic aerosol formation from limonene ozonolysis in indoor environments: impacts of air exchange rates and initial concentration ratios. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7899-908. [PMID: 24940869 DOI: 10.1021/es5009906] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Secondary organic aerosol (SOA) results from the oxidation of reactive organic gases (ROGs) and is an indoor particle source. The aerosol mass fraction (AMF), a.k.a. SOA yield, quantifies the SOA forming potential of ROGs and is the ratio of generated SOA to oxidized ROG. The AMF depends on the organic aerosol concentration, as well as the prevalence of later generation reactions. AMFs have been measured in unventilated chambers or steady-state flow through chambers. However, indoor settings have outdoor air exchange, and indoor SOA formation often occurs when ROGs are transiently emitted, for instance from emissions of cleaning products. Herein, we quantify "transient AMFs" from ozonolysis of pulse-emitted limonene in a ventilated chamber, for 18 experiments at low (0.28 h(-1)), moderate (0.53 h(-1)), and high (0.96 h(-1)) air exchange rates (AER) with varying initial ozone-limonene ratios. Transient AMFs increased with the amount of ROG reacted; AMFs also increased with decreasing AERs and increasing initial ozone-limonene ratios, which together likely promoted more ozone reactions with the remaining exocyclic bond of oxidized limonene products in the SOA phase. Knowing the AER and initial ozone-limonene ratio is crucial to predict indoor transient SOA behavior accurately.
Collapse
Affiliation(s)
- Somayeh Youssefi
- Department of Civil, Architectural and Environmental Engineering, Drexel University , 3141 Chestnut Street, Philadelphia, Pennsylvania 19104, United States
| | | |
Collapse
|
14
|
Jain S, Zahardis J, Petrucci GA. Soft ionization chemical analysis of secondary organic aerosol from green leaf volatiles emitted by turf grass. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:4835-43. [PMID: 24666343 DOI: 10.1021/es405355d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Globally, biogenic volatile organic compound (BVOC) emissions contribute 90% of the overall VOC emissions. Green leaf volatiles (GLVs) are an important component of plant-derived BVOCs, including cis-3-hexenylacetate (CHA) and cis-3-hexen-1-ol (HXL), which are emitted by cut grass. In this study we describe secondary organic aerosol (SOA) formation from the ozonolysis of dominant GLVs, their mixtures and grass clippings. Near-infrared laser desorption/ionization aerosol mass spectrometry (NIR-LDI-AMS) was used for chemical analysis of the aerosol. The chemical profile of SOA generated from grass clippings was correlated with that from chemical standards of CHA and HXL. We found that SOA derived from HXL most closely approximated SOA from turf grass, in spite of the approximately 5× lower emission rate of HXL as compared to CHA. Ozonolysis of HXL results in formation of low volatility, higher molecular weight compounds, such as oligomers, and formation of ester-type linkages. This is in contrast to CHA, where the hydroperoxide channel is the dominant oxidation pathway, as oligomer formation is inhibited by the acetate functionality.
Collapse
Affiliation(s)
- Shashank Jain
- University of Vermont , Department of Chemistry, 82 University Place, Burlington, Vermont 05405-0125, United States
| | | | | |
Collapse
|
15
|
Influence of vapor wall loss in laboratory chambers on yields of secondary organic aerosol. Proc Natl Acad Sci U S A 2014; 111:5802-7. [PMID: 24711404 DOI: 10.1073/pnas.1404727111] [Citation(s) in RCA: 111] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Secondary organic aerosol (SOA) constitutes a major fraction of submicrometer atmospheric particulate matter. Quantitative simulation of SOA within air-quality and climate models--and its resulting impacts--depends on the translation of SOA formation observed in laboratory chambers into robust parameterizations. Worldwide data have been accumulating indicating that model predictions of SOA are substantially lower than ambient observations. Although possible explanations for this mismatch have been advanced, none has addressed the laboratory chamber data themselves. Losses of particles to the walls of chambers are routinely accounted for, but there has been little evaluation of the effects on SOA formation of losses of semivolatile vapors to chamber walls. Here, we experimentally demonstrate that such vapor losses can lead to substantially underestimated SOA formation, by factors as much as 4. Accounting for such losses has the clear potential to bring model predictions and observations of organic aerosol levels into much closer agreement.
Collapse
|
16
|
Chu B, Wang K, Takekawa H, Li J, Zhou W, Jiang J, Ma Q, He H, Hao J. Hygroscopicity of particles generated from photooxidation of alpha-pinene under different oxidation conditions in the presence of sulfate seed aerosols. J Environ Sci (China) 2014; 26:129-139. [PMID: 24649698 DOI: 10.1016/s1001-0742(13)60402-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Smog chamber experiments were conducted to investigate the hygroscopicity of particles generated from photooxidation of alpha-pinene/NO(x) with different sulfate seed aerosols or oxidation conditions. Hygroscopicity of particles was measured by a tandem differential mobility analyzer (TDMA) in terms of hygroscopic growth factor (Gf), with a relative humidity of 85%. With sulfate seed aerosols present, Gf of the aerosols decreased very fast before notable secondary organic aerosols (SOA) formation was observed, indicating a heterogeneous process between inorganic seeds and organic products might take place as soon as oxidation begins, rather than only happening after gas-aerosol partition of organic products starts. The final SOA-coated sulfate particles had similar or lower Gf than seed-free SOA. The hygroscopicity of the final particles was not dependent on the thickness but on the hygroscopicity properties of the SOA, which were influenced by the initial sulfate seed particles. In the two designed aging processes, Gf of the particles increased more significantly with introduction of OH radical than with ozone. However, the hygroscopicity of SOA was very low even after a long time of aging, implying that either SOA aging in the chamber was very slow or the Gf of SOA did not change significantly in aging. Using an aerosol composition speciation monitor (ACSM) and matrix factorization (PMF) method, two factors for the components of SOA were identified, but the correlation between SOA hygroscopicity and the proportion of the more highly oxidized factor could be either positive or negative depending on the speciation of seed aerosols present.
Collapse
|
17
|
Zhang Z, Xu X, Wang L. Atmospheric Oxidation Mechanism of 2,7-Dimethylnaphthalene is Different from That of Monocyclic Aromatic Benzenes. A Theoretical Study. J Phys Chem A 2012; 117:160-8. [DOI: 10.1021/jp309505s] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Zhijie Zhang
- School of Materials Science & Engineering and ‡School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xiaoyan Xu
- School of Materials Science & Engineering and ‡School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Liming Wang
- School of Materials Science & Engineering and ‡School of Chemistry & Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|
18
|
Wozniak AS, Bauer JE, Dickhut RM, Xu L, McNichol AP. Isotopic characterization of aerosol organic carbon components over the eastern United States. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd017153] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
19
|
Ahmadov R, McKeen SA, Robinson AL, Bahreini R, Middlebrook AM, de Gouw JA, Meagher J, Hsie EY, Edgerton E, Shaw S, Trainer M. A volatility basis set model for summertime secondary organic aerosols over the eastern United States in 2006. ACTA ACUST UNITED AC 2012. [DOI: 10.1029/2011jd016831] [Citation(s) in RCA: 154] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
20
|
Wang H, He C, Morawska L, McGarry P, Johnson G. Ozone-initiated particle formation, particle aging, and precursors in a laser printer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:704-712. [PMID: 22191732 DOI: 10.1021/es203066k] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
An increasing number of researchers have hypothesized that ozone may be involved in the particle formation processes that occur during printing, however no studies have investigated this further. In the current study, this hypothesis was tested in a chamber study by adding supplemental ozone to the chamber after a print job without measurable ozone emissions. Subsequent particle number concentration and size distribution measurements showed that new particles were formed minutes after the addition of ozone. The results demonstrated that ozone did react with printer-generated volatile organic compounds (VOCs) to form secondary organic aerosols (SOAs). The hypothesis was further confirmed by the observation of correlations among VOCs, ozone, and particles concentrations during a print job with measurable ozone emissions. The potential particle precursors were identified by a number of furnace tests, which suggested that squalene and styrene were the most likely SOA precursors with respect to ozone. Overall, this study significantly improved scientific understanding of the formation mechanisms of printer-generated particles, and highlighted the possible SOA formation potential of unsaturated nonterpene organic compounds by ozone-initiated reactions in the indoor environment.
Collapse
Affiliation(s)
- Hao Wang
- International Laboratory for Air Quality and Health, Institute of Health and Biomedical Innovation, Queensland University of Technology, GPO Box 2434, Brisbane QLD, 4001, Australia
| | | | | | | | | |
Collapse
|
21
|
Zhang Z, Lin L, Wang L. Atmospheric oxidation mechanism of naphthalene initiated by OH radical. A theoretical study. Phys Chem Chem Phys 2012; 14:2645-50. [DOI: 10.1039/c2cp23271e] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
22
|
Donahue NM, Robinson AL, Trump ER, Riipinen I, Kroll JH. Volatility and Aging of Atmospheric Organic Aerosol. Top Curr Chem (Cham) 2012; 339:97-143. [DOI: 10.1007/128_2012_355] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
23
|
Tortajada-Genaro LA, Borrás E. Temperature effect of tapered element oscillating microbalance (TEOM) system measuring semi-volatile organic particulate matter. ACTA ACUST UNITED AC 2011; 13:1017-26. [DOI: 10.1039/c0em00451k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
24
|
Shakya KM, Griffin RJ. Secondary organic aerosol from photooxidation of polycyclic aromatic hydrocarbons. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2010; 44:8134-8139. [PMID: 20919733 DOI: 10.1021/es1019417] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Secondary organic aerosol (SOA) formation from the photooxidation of five polycyclic aromatic hydrocarbons (PAHs, naphthalene, 1- and 2-methylnaphthalene, acenaphthylene, and acenaphthene) was investigated in a 9-m(3) chamber in the presence of nitrogen oxides and the absence of seed aerosols. Aerosol size distributions and PAH decay were monitored by a scanning mobility particle sizer and a gas chromatograph with a flame ionization detector. Over a wide range of conditions, the aerosol yields for the investigated PAHs were observed to be in the range of 2-22%. The observed evolution of aerosol and PAH decay indicate that light and oxidant sources influence the time required to form aerosol and the required threshold reacted concentration of the PAHs. The SOA yields also were related to this induction period and the hydroxyl radical concentrations, particularly for smaller aerosol loadings (<∼6 μg m(-3)). Estimation of SOA production from oxidation of PAHs emitted from mobile sources in Houston shows that PAHs could account for more than 10% of the SOA formed from emissions from mobile sources in this region.
Collapse
Affiliation(s)
- Kabindra M Shakya
- Department of Civil and Environmental Engineering, Rice University, 6100 Main St., Houston, Texas 77005, USA
| | | |
Collapse
|
25
|
Dommen J, Hellén H, Saurer M, Jaeggi M, Siegwolf R, Metzger A, Duplissy J, Fierz M, Baltensperger U. Determination of the aerosol yield of isoprene in the presence of an organic seed with carbon isotope analysis. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:6697-6702. [PMID: 19764237 DOI: 10.1021/es9006959] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
We examined a new method to determine the aerosol yield of precursors of secondary organic aerosols in the presence of organic seed particles. To distinguish between the oxidation products of the compound in question and the organic seed, the compound was labeled with stable isotopes and aerosol samples were analyzed by isotope ratio mass spectrometry (IRMS). 13C labeled isoprene was obtained from isoprene emitting plants that were exposed to (13)CO2. The aerosol yield of isoprene was determined from the 13C/12C ratio measured in the aerosol. Measurements at organic aerosol mass concentrations as low as 10 microg m(-3) were performed. Three different methods of aerosolsampling procedureswere evaluated: impactor, filter, and electrostatic deposition. The excess-% 13C measured by the three sampling methods agreed well. The aerosol yield of isoprene derived from these measurements showed a strong dependence on further oxidation of first-generation products and is within the range of reported yield values (1-5%) obtained so far from pure isoprene experiments.
Collapse
Affiliation(s)
- Josef Dommen
- Laboratory of Atmospheric Chemistry, Paul Scherrer Institut, 5232 Villigen PSI, Switzerland.
| | | | | | | | | | | | | | | | | |
Collapse
|
26
|
Chan AWH, Galloway MM, Kwan AJ, Chhabra PS, Keutsch FN, Wennberg PO, Flagan RC, Seinfeld JH. Photooxidation of 2-methyl-3-Buten-2-ol (MBO) as a potential source of secondary organic aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2009; 43:4647-4652. [PMID: 19673246 DOI: 10.1021/es802560w] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
2-Methyl-3-buten-2-ol (MBO) is an important biogenic hydrocarbon emitted in large quantities by pine forests. Atmospheric photooxidation of MBO is known to lead to oxygenated compounds, such as glycolaldehyde, which is the precursor to glyoxal. Recent studies have shown that the reactive uptake of glyoxal onto aqueous particles can lead to formation of secondary organic aerosol (SOA). In this work, MBO photooxidation under high- and low-NO(x) conditions was performed in dual laboratory chambers to quantify the yield of glyoxal and investigate the potential for SOA formation. The yields of glycolaldehyde and 2-hydroxy-2-methylpropanal (HMPR), fragmentation products of MBO photooxidation, were observed to be lower at lower NO(x) concentrations. Overall, the glyoxal yield from MBO photooxidation was 25% under high-NO(x) and 4% under low-NO(x) conditions. In the presence of wet ammonium sulfate seed and under high-NO(x) conditions, glyoxal uptake and SOA formation were not observed conclusively, due to relatively low (< 30 ppb) glyoxal concentrations. Slight aerosol formation was observed under low-NO(x) and dry conditions, with aerosol mass yields on the order of 0.1%. The small amount of SOA was not related to glyoxal uptake, but is likely a result of reactions similar to those that generate isoprene SOA under low-NO(x) conditions. The difference in aerosol yields between MBO and isoprene photooxidation under low-NO(x) conditions is consistent with the difference in vapor pressures between triols (from MBO) and tetrols (from isoprene). Despite its structural similarity to isoprene, photooxidation of MBO is not expected to make a significant contribution to SOA formation.
Collapse
Affiliation(s)
- Arthur W H Chan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Warren B, Song C, Cocker DR. Light intensity and light source influence on secondary organic aerosol formation for the m-xylene/NO(x) photooxidation system. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2008; 42:5461-5466. [PMID: 18754461 DOI: 10.1021/es702985n] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A series of m-xylene/NO(x) photooxidation experiments were conducted to determine the influence of light intensity and radiation spectrum on secondary organic aerosol (SOA) formation within the UC Riverside/CE-CERT environmental chamber. The environmental chamber is equipped with 80 115-W black lights and a variable voltage 200 kW argon arc lamp that emits a wavelength spectrum more similar to natural light. SOA formation increased significantly with light intensity, measured as the photolysis rate of NO2 to NO (k1), increased from 0.09 to 0.26 min(-1). The argon arc lamp produced approximately 20% more SOA than black lights at a k1 of 0.09 min(-1) for similar amounts of m-xylene consumed. These results may help explain the variation of SOA formation between environmental chambers and the differences between measured SOA in the ambient atmosphere versus environmental chamber predictions.
Collapse
Affiliation(s)
- Bethany Warren
- Department of Chemical and Environmental Engineering, Bourns College of Engineering, Center for Environmental Research and Technology (CE-CERT), University of California, Riverside, California 92521, USA
| | | | | |
Collapse
|
28
|
Stimac PJ, Barker JR. Non-RRKM Dynamics in the CH3O2 + NO Reaction System. J Phys Chem A 2008; 112:2553-62. [DOI: 10.1021/jp710016n] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Philip J. Stimac
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143
| | - John R. Barker
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, Michigan 48109-2143
| |
Collapse
|