1
|
Chokejaroenrat C, Hammawiboon N, Poompoung T, Weaoseng P, Laobuthee A, Techauay K, Angkaew M, Worachananant P, Sakulthaew C. Impacts of microplastic decomposition using heat-activated persulfate on antibiotic adsorption and environmental toxicity. MARINE POLLUTION BULLETIN 2024; 205:116576. [PMID: 38875969 DOI: 10.1016/j.marpolbul.2024.116576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/02/2024] [Accepted: 06/07/2024] [Indexed: 06/16/2024]
Abstract
The objective of this study was to determine microplastic-antibiotic interaction by examining how heat-activated persulfate decomposed polyamide adsorbed antibiotics and explored the environmental consequences of treated water. Sulfate radicals roughened the microplastic surfaces, significantly enhancing the adsorption capacity of polyamide. The kinetic and isotherm studies provided confirmation that electrostatic interactions were the primary mechanisms, with a minor contribution from H-bonding, highlighting that antibiotic adsorption was prone to occur, especially on the aged surface. Thermodynamic data indicated that the process was spontaneous and exothermic. The results showed significant negative effects of treated water on seed germination, copepod survival, and cell lines at only a higher concentration, due to a decrease in pH and the potential presence of polymer degradates. Our findings revealed the significant impact of decomposed polyamide on the antibiotic adsorption and offered insight into the potential harm that microplastic-treated water might cause to aquatic and marine ecosystems.
Collapse
Affiliation(s)
- C Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand.
| | - N Hammawiboon
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - T Poompoung
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - P Weaoseng
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand.
| | - A Laobuthee
- Department of Materials Engineering, Faculty of Engineering, Kasetsart University, Bangkok 10900, Thailand.
| | - K Techauay
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| | - M Angkaew
- Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - P Worachananant
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand; Center of Research and Academic Services, Faculty of Environment, Kasetsart University, Bangkok, 10900, Thailand.
| | - C Sakulthaew
- Department of Veterinary Nursing, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand.
| |
Collapse
|
2
|
Sakulthaew C, Chokejaroenrat C, Panya S, Songsasen A, Poomipuen K, Imman S, Suriyachai N, Kreetachat T, Comfort S. Developing a Slow-Release Permanganate Composite for Degrading Aquaculture Antibiotics. Antibiotics (Basel) 2023; 12:1025. [PMID: 37370344 DOI: 10.3390/antibiotics12061025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2023] [Revised: 05/27/2023] [Accepted: 06/01/2023] [Indexed: 06/29/2023] Open
Abstract
Copious use of antibiotics in aquaculture farming systems has resulted in surface water contamination in some countries. Our objective was to develop a slow-release oxidant that could be used in situ to reduce antibiotic concentrations in discharges from aquaculture lagoons. We accomplished this by generating a slow-release permanganate (SR-MnO4-) that was composed of a biodegradable wax and a phosphate-based dispersing agent. Sulfadimethoxine (SDM) and its synergistic antibiotics were used as representative surrogates. Kinetic experiments verified that the antibiotic-MnO4- reactions were first-order with respect to MnO4- and initial antibiotic concentration (second-order rates: 0.056-0.128 s-1 M-1). A series of batch experiments showed that solution pH, water matrices, and humic acids impacted SDM degradation efficiency. Degradation plateaus were observed in the presence of humic acids (>20 mgL-1), which caused greater MnO2 production. A mixture of KMnO4/beeswax/paraffin (SRB) at a ratio of 11.5:4:1 (w/w) was better for biodegradability and the continual release of MnO4-, but MnO2 formation altered release patterns. Adding tetrapotassium pyrophosphate (TKPP) into the composite resulted in delaying MnO2 aggregation and increased SDM removal efficiency to 90% due to the increased oxidative sites on the MnO2 particle surface. The MnO4- release data fit the Siepmann-Peppas model over the long term (t < 48 d) while a Higuchi model provided a better fit for shorter timeframes (t < 8 d). Our flow-through discharge tank system using SRB with TKPP continually reduced the SDM concentration in both DI water and lagoon wastewater. These results support SRB with TKPP as an effective composite for treating antibiotic residues in aquaculture discharge water.
Collapse
Affiliation(s)
- Chainarong Sakulthaew
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Chanat Chokejaroenrat
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Sidaporn Panya
- Department of Environmental Technology and Management, Faculty of Environment, Kasetsart University, Bangkok 10900, Thailand
| | - Apisit Songsasen
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Kitipong Poomipuen
- Department of Veterinary Technology, Faculty of Veterinary Technology, Kasetsart University, Bangkok 10900, Thailand
| | - Saksit Imman
- Integrated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Nopparat Suriyachai
- Integrated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Torpong Kreetachat
- Integrated Biorefinery Excellent Center (IBC), School of Energy and Environment, University of Phayao, Phayao 56000, Thailand
| | - Steve Comfort
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583-0915, USA
| |
Collapse
|
3
|
Zhang K, Qin M, Kao CM, Deng J, Guo J, Guo Q, Hu J, Lin WH. Permanganate activation by glucose-derived carbonaceous materials for highly efficient degradation of phenol and p-nitrophenol: Formation of hydroxyl radicals and multiple roles of carbonaceous materials. CHEMOSPHERE 2023; 334:138859. [PMID: 37169093 DOI: 10.1016/j.chemosphere.2023.138859] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/03/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
Owing to its inertness toward refractory organic pollutants and the release of Mn2+, the use of permanganate was limited in soil and groundwater remediation. The present study proposed an improvement strategy based on glucose-derived carbonaceous materials, which enhanced the potential of permanganate degrading organic pollutants. The glucose-derived carbonaceous material with 1000 °C charring temperature was named C1000, which was exploited in activating KMnO4 for the elimination of refractory organic contaminants. The addition of C1000 in the KMnO4 system triggered the degradation of refractory p-nitrophenol and quicken phenol degradation. Unlike the detection of Mn(III) species in a solo KMnO4 system, the presence of C1000 facilitated the formation of •OH in the KMnO4 system, which was confirmed by the use of quenchers such as methanol, benzoic acid, tertiary butanol, and carbonate. Additionally, the glucose-derived carbonaceous material played multiple roles in improving the performance of permanganate, including the enrichment of organic pollutants, donation of electrons to permanganate, and acting as an electron shuttle to facilitate the oxidation of organic pollutants by permanganate. The study's novel findings have the potential to expand the use of permanganate in the remediation of organic pollutants.
Collapse
Affiliation(s)
- Kaikai Zhang
- School of Environment, Tsinghua University, Beijing, China
| | - Muhan Qin
- School of Environment, Tsinghua University, Beijing, China
| | - Chih-Ming Kao
- Institute of Environmental Engineering, National Sun Yat-Sen University Kaohsiung, Taiwan
| | - Jiayu Deng
- School of Environment, Tsinghua University, Beijing, China
| | - Jing Guo
- School of Environment, Tsinghua University, Beijing, China
| | - Qiong Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, China
| | - Jing Hu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wei-Han Lin
- School of Environment, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Dehkordi NR, Knapp M, Compton P, Fernandez LA, Alshawabkeh AN, Larese-Casanova P. Degradation of Dissolved RDX, NQ, and DNAN by Cathodic Processes in an Electrochemical Flow-Through Reactor. JOURNAL OF ENVIRONMENTAL CHEMICAL ENGINEERING 2022; 10:107865. [PMID: 37124117 PMCID: PMC10147348 DOI: 10.1016/j.jece.2022.107865] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Both legacy munitions compounds (e.g., RDX) and new insensitive high explosives (e.g. DNAN, NQ) are being manufactured and utilized concurrently, and there exists a need for wastewater treatment systems that are able to degrade both classes of explosives. Electrochemical systems offer treatment possibilities using inexpensive materials and no chemical additions. Electrochemically induced removal of RDX, NQ, and DNAN were separately studied within an electrochemical plug flow reactor hosting a stainless steel (SS) cathode and downstream Ti/MMO anode. Varying wire mesh cathodes and operating conditions were evaluated in an effort to identify the optimal cathode material, to determine the relative contributions of cathodically-induced removal processes, to shorten time to steady-state removal conditions, and to find practical ranges of operating conditions. Applied current allowed the cathode to support munitions removal mainly by direct reduction at the cathode surface, and the secondary reactions of cathodically-induced alkaline hydrolysis and catalytic hydrogenation by adsorbed H on Ni-containing cathode surfaces might contribute to some munitions degradation. The optimal cathode material was identified as SS grade 316, possibly due to its superior Ni content and lack of corrosion protection coating. Higher current, longer cathode length, and smaller mesh pore sizes resulted in slightly greater removal extents and shorter acclimation times to steady state removal conditions, but there are practical upper limits to these properties. Higher Ni content within SS improved RDX and NQ removal but does not affect DNAN removal. Prolonged use of SS grade 316 showed no debilitating changes in electrical performance or chemical content.
Collapse
Affiliation(s)
| | | | | | | | | | - Philip Larese-Casanova
- Corresponding Author: Philip Larese-Casanova, Department of Civil & Environmental Engineering, Northeastern University, 400 Snell Engineering, Boston, Massachusetts, 02115, USA, Phone: +1-617-373-2899; Fax: +1-617-373-4419,
| |
Collapse
|
5
|
Laszakovits JR, Kerr A, MacKay AA. Permanganate Oxidation of Organic Contaminants and Model Compounds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:4728-4748. [PMID: 35356836 DOI: 10.1021/acs.est.1c03621] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Permanganate oxidation is an attractive environmental remediation strategy due to its low cost, ease of use, and wide range in reactivity. Here, permanganate reactivity trends are investigated for model organic compounds and organic contaminants. Second-order permanganate reaction rate constants were compiled for 215 compounds from 82 references (journal articles, conference proceedings, master's theses, and dissertations). Additionally, we validated some phenol rate constants and contribute a few additional phenol rate constants. Commonalities between contaminant oxidation products are also discussed, and we tentatively identify several model compound oxidation products. Aromatic rings, alcohols, and ether groups had low reaction rate constants with permanganate. Alkene reaction sites had the highest reaction rate constants, followed by phenols, anilines, and benzylic carbon-hydrogen bonds. Generally, permanganate reactivity follows electrophilic substitution trends at the reaction site where electron donating groups increase the rate of reaction, while electron withdrawing groups decrease the rate of reaction. Solution conditions, specifically, buffer type and concentration, may impact the rate of reaction, which could be due to either an ionic strength effect or the buffer ions acting as ligands. The impact of these solution conditions, unfortunately, precludes the development of a quantitative structure-activity relationship for permanganate reaction rate constants with the currently available data. We note that critical experimental details are often missing in the literature, which posed a challenge when comparing rate constants between studies. Future research directions on permanganate oxidation should seek to improve our understanding of buffer effects and to identify oxidation products for model compounds so that extrapolations can be made to more complex contaminant structures.
Collapse
Affiliation(s)
- Juliana R Laszakovits
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| | - Adaline Kerr
- Department of Organismal Biology and Ecology, Colorado College, Colorado Springs, Colorado 80903, United States
| | - Allison A MacKay
- Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
6
|
Li C, Gu X, Wu Z, Qin T, Guo L, Wang T, Zhang L, Jiang G. Assessing the effects of elevated ozone on physiology, growth, yield and quality of soybean in the past 40 years: A meta-analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 191:110234. [PMID: 33396164 DOI: 10.1016/j.ecoenv.2020.110234] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 01/02/2020] [Accepted: 01/19/2020] [Indexed: 05/20/2023]
Abstract
Soybean (Glycine max) production is seriously threatened by ground-level ozone (O3) pollution. The goal of our study is to summarize the impacts of O3 on physiology, growth, yield, and quality of soybean, as well as root parameters. We performed meta-analysis on the collated 48 peer-reviewed papers published between 1980 and 2019 to quantitatively summarize the response of soybean to elevated O3 concentrations ([O3]). Relative to charcoal-filtered air (CF), elevated [O3] significantly accelerated chlorophyll degradation, enhanced foliar injury, and inhibited growth of soybean, evidenced by great reductions in leaf area (-20.8%), biomass of leaves (-13.8%), shoot (-22.8%), and root (-16.9%). Shoot of soybean was more sensitive to O3 than root in case of biomass. Chronic ozone exposure of about 75.5 ppb posed pronounced decrease in seed yield of soybean (-28.3%). In addition, root environment in pot contributes to higher reduction in shoot biomass and yield of soybean. Negative linear relationships were observed between yield loss and intensity of O3 treatment, AOT40. The larger loss in seed yield was significantly associated with higher reduction in shoot biomass and other yield component. This meta-analysis demonstrates the effects of elevated O3 on soybean were pronounced, suggesting that O3 pollution is still a soaring threat to the productivity of soybean in regions with high ozone levels.
Collapse
Affiliation(s)
- Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Xian Gu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China; College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Zhiyuan Wu
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Tianyu Qin
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China
| | - Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Lu Zhang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China.
| | - Gaoming Jiang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, The Chinese Academy of Sciences, Beijing, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
7
|
Lapointe MC, Martel R, Cassidy DP. RDX degradation by chemical oxidation using calcium peroxide in bench scale sludge systems. ENVIRONMENTAL RESEARCH 2020; 188:109836. [PMID: 32798953 DOI: 10.1016/j.envres.2020.109836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/31/2020] [Accepted: 06/14/2020] [Indexed: 06/11/2023]
Abstract
The ability of calcium peroxide (CaO2) to degrade hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) in contaminated soil slurries using CaO2-based modified Fenton oxidation was investigated. Results showed that increasing the CaO2 dose increased degradation rates of RDX and pH. RDX concentrations decreased to below detection after 18 h with 2 M and 2.5 M CaO2, after 30 h with 1.5 M CaO2, after 54 h with 1 M CaO2, but 0.1 M CaO2 achieved no significant RDX removal. Increasing the soil organic matter content decreased the rate and extent of RDX degradation. RDX degradation products 4-nitro-2,4-diazabutanal (NDAB) and methylenedinitramine (MEDINA) were quantified, and the greater accumulation of NDAB than MEDINA suggests denitration of RDX was the most likely initial degradation step. Isotopic ratios for nitrogen and oxygen associated with RDX oxidation are also consistent with either nitrification of NH4+ from soil or precipitation. Existing technologies merely only extract energetics from soils for treatment ex situ, whereas the approach introduced herein destroys RDX in situ with a one-step application.
Collapse
Affiliation(s)
- Marie-Claude Lapointe
- Institut National de La Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de La Couronne, Quebec, Qc, G1K 9A9, Canada.
| | - Richard Martel
- Institut National de La Recherche Scientifique, Centre Eau, Terre et Environnement (INRS-ETE), 490 de La Couronne, Quebec, Qc, G1K 9A9, Canada
| | - Daniel Patrick Cassidy
- Department of Geological & Environmental Sciences, Western Michigan University, 1903 W Michigan Ave, Kalamazoo, MI, 49008-5241, USA
| |
Collapse
|
8
|
Song D, Cheng H, Jiang X, Sun H, Kong F, Liang R, Qiang Z, Liu H, Qu J. Oxidative removal of quinclorac by permanganate through a rate-limiting [3 + 2] cycloaddition reaction. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:790-797. [PMID: 29620783 DOI: 10.1039/c8em00024g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Quinclorac, a widely used herbicide in agriculture, has been recognized as an emerging environmental pollutant owing to its long persistence and potential risk to humans. However, no related information is available on the degradation of quinclorac by employing oxidants. Herein, the reactivity of quinclorac with permanganate was systematically investigated in water by combining experimental and computational approaches. The reaction followed overall second-order kinetics pointing to a bimolecular rate-limiting step. The second-order rate constant was found to be 3.47 × 10-3 M-1 s-1 at 25 °C, which was independent of pH over the range from 5 to 9 and was dependent on temperature over the range from 19 to 35 °C. The initial product was identified by UPLC-Q-TOF-MS to be mono-hydroxylated quinclorac, which was more susceptible to further oxidation. The result could be supported by the complete simulation of the reaction process in DFT calculations, indicating the [3 + 2] cycloaddition oxidation of the benzene ring in the rate-limiting step. The plausible mechanism was then proposed, accompanied by the analysis of the HOMO indicating the hydroxylation position and of the ESP suggesting a more electron-rich moiety. Considering the high effectiveness and low toxicity, permanganate oxidation was considered to be a very promising technique for removing quinclorac from aquatic environments.
Collapse
Affiliation(s)
- Dean Song
- The State Agriculture Ministry Laboratory of Quality & Safety Risk Assessment for Tobacco, Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao 266101, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Cheng H, Song D, Liu H, Qu J. Permanganate oxidation of diclofenac: The pH-dependent reaction kinetics and a ring-opening mechanism. CHEMOSPHERE 2015; 136:297-304. [PMID: 25522850 DOI: 10.1016/j.chemosphere.2014.11.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 11/24/2014] [Accepted: 11/27/2014] [Indexed: 06/04/2023]
Abstract
In this work, the fate of diclofenac (DCF) during permanganate (Mn(VII)) oxidation was investigated at environmentally relevant pH conditions (from 5 to 9). The batch experiments showed that the kinetics of the Mn(VII)/DCF reaction follows a second-order rate law with an apparent rate constant of 1.57±0.02 M(-1) s(-1) at pH 7 and 20 °C. The half-value of DCF was calculated to be 37.5 min, when the concentration of Mn(VII) (0.4 mM) was 20-fold excess of DCF. The pH-dependence of the reaction kinetics was investigated, and the DCF reactivity with Mn(VII) was found to decrease with increasing pH. The second-order rate constants were then quantitatively described by incorporating the species distribution of DCF. A lower reactivity of the anionic DCF (DCF(-)) in comparison with its neutral counterpart (DCF(0)) was most likely attributable to the interaction between the ionized carboxylate group and amine nitrogen position, which can reduce the nucleophilicity of amine nitrogen by inductive and resonance effects. Moreover, a range of degradation products and the corresponding structures were proposed on the basis of the LC-Q-TOF-MS analysis. A detailed ring-opening reaction mechanism was proposed as follows: Mn(VII) acts as an electrophile to attack the amine moiety, leading to the formation of the primary intermediate products 2,6-dichloroaniline and 5-hydroxy-diclofenac, which can be further transformed. The further degradation proceeded through a multistep process including ring-opening, decarboxylation, hydroxylation, and cyclation reactions.
Collapse
Affiliation(s)
- Hanyang Cheng
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Dean Song
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| | - Huijuan Liu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Jiuhui Qu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
10
|
Rauscher L, Sakulthaew C, Comfort S. Using slow-release permanganate candles to remediate PAH-contaminated water. JOURNAL OF HAZARDOUS MATERIALS 2012; 241-242:441-449. [PMID: 23089061 DOI: 10.1016/j.jhazmat.2012.09.064] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/13/2012] [Accepted: 09/27/2012] [Indexed: 06/01/2023]
Abstract
Surface waters impacted by urban runoff in metropolitan areas are becoming increasingly contaminated with polycyclic aromatic hydrocarbons (PAHs). Slow-release oxidant candles (paraffin-KMnO(4)) are a relatively new technology being used to treat contaminated groundwater and could potentially be used to treat urban runoff. Given that these candles only release permanganate when submerged, the ephemeral nature of runoff events would influence when the permanganate is released for treating PAHs. Our objective was to determine if slow-release permanganate candles could be used to degrade and mineralize PAHs. Batch experiments quantified PAH degradation rates in the presence of the oxidant candles. Results showed most of the 16 PAHs tested were degraded within 2-4 h. Using (14)C-labled phenanthrene and benzo(a)pyrene, we demonstrated that the wax matrix of the candle initially adsorbs the PAH, but then releases the PAH back into solution as transformed, more water soluble products. While permanganate was unable to mineralize the PAHs (i.e., convert to CO(2)), we found that the permanganate-treated PAHs were much more biodegradable in soil microcosms. To test the concept of using candles to treat PAHs in multiple runoff events, we used a flow-through system where urban runoff water was pumped over a miniature candle in repetitive wet-dry, 24-h cycles. Results showed that the candle was robust in removing PAHs by repeatedly releasing permanganate and degrading the PAHs. These results provide proof-of-concept that permanganate candles could potentially provide a low-cost, low-maintenance approach to remediating PAH-contaminated water.
Collapse
Affiliation(s)
- Lindy Rauscher
- School of Natural Resources, University of Nebraska, Lincoln, NE 68583-0915, USA.
| | | | | |
Collapse
|