1
|
Raza S, Wdowiak M, Paczesny J. An Overview of Diverse Strategies To Inactivate Enterobacteriaceae-Targeting Bacteriophages. EcoSal Plus 2023; 11:eesp00192022. [PMID: 36651738 PMCID: PMC10729933 DOI: 10.1128/ecosalplus.esp-0019-2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 12/20/2022] [Indexed: 01/19/2023]
Abstract
Bacteriophages are viruses that infect bacteria and thus threaten industrial processes relying on the production executed by bacterial cells. Industries bear huge economic losses due to such recurring and resilient infections. Depending on the specificity of the process, there is a need for appropriate methods of bacteriophage inactivation, with an emphasis on being inexpensive and high efficiency. In this review, we summarize the reports on antiphagents, i.e., antibacteriophage agents on inactivation of bacteriophages. We focused on bacteriophages targeting the representatives of the Enterobacteriaceae family, as its representative, Escherichia coli, is most commonly used in the bio-industry. The review is divided into sections dealing with bacteriophage inactivation by physical factors, chemical factors, and nanotechnology-based solutions.
Collapse
Affiliation(s)
- Sada Raza
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Mateusz Wdowiak
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| | - Jan Paczesny
- Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
2
|
Ayub M, Othman MHD, Khan IU, Yusop MZM, Kurniawan TA. Graphene-based nanomaterials as antimicrobial surface coatings: A parallel approach to restrain the expansion of COVID-19. SURFACES AND INTERFACES 2021; 27:101460. [PMID: 34957347 PMCID: PMC8442307 DOI: 10.1016/j.surfin.2021.101460] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 09/03/2021] [Indexed: 05/26/2023]
Abstract
The recently emerged severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) has become a significant and topmost global health challenge of today. SARS-CoV-2 can propagate through several direct or indirect means resulting in its exponential spread in short times. Consequently, finding new research based real-world and feasible solutions to interrupt the spread of pathogenic microorganisms is indispensable. It has been established that this virus can survive on a variety of available surfaces ranging from a few hours to a few days, which has increased the risk of COVID-19 spread to large populations. Currently, available surface disinfectant chemicals provide only a temporary solution and are not recommended to be used in the long run due to their toxicity and irritation. Apart from the urgent development of vaccine and antiviral drugs, there is also a need to design and develop surface disinfectant antiviral coatings for long-term applications even for new variants. The unique physicochemical properties of graphene-based nanomaterials (GBNs) have been widely investigated for antimicrobial applications. However, the research work for their use in antimicrobial surface coatings is minimal. This perspective enlightens the scope of using GBNs as antimicrobial/antiviral surface coatings to reduce the spread of transmittable microorganisms, precisely, SARS-CoV-2. This study attempts to demonstrate the synergistic effect of GBNs and metallic nanoparticles (MNPs), for their potential antiviral applications in the development of surface disinfectant coatings. Some proposed mechanisms for the antiviral activity of the graphene family against SARS-CoV-2 has also been explained. It is anticipated that this study will potentially lead to new insights and future trends to develop a framework for further investigation on this research area of pivotal importance to minimize the transmission of current and any future viral outbreaks.
Collapse
Affiliation(s)
- Muhammad Ayub
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Mohd Hafiz Dzarfan Othman
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Imran Ullah Khan
- Department of Chemical and Energy Engineering, Pak-Austria Fachhochschule, Institute of Applied Sciences & Technology (PAF:IAST), Khanpur Road, Mang, Haripur 22650, Pakistan
| | - Mohd Zamri Mohd Yusop
- Advanced Membrane Technology Research Centre (AMTEC), School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Tonni Agustiono Kurniawan
- Key Laboratory of Coastal and Wetland Ecosystems, College of Environment & Ecology, Xiamen University, Xiamen, Fujian 361102, China
| |
Collapse
|
3
|
Stagi L, De Forni D, Malfatti L, Caboi F, Salis A, Poddesu B, Cugia G, Lori F, Galleri G, Innocenzi P. Effective SARS-CoV-2 antiviral activity of hyperbranched polylysine nanopolymers. NANOSCALE 2021; 13:16465-16476. [PMID: 34553728 DOI: 10.1039/d1nr03745e] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The coronavirus pandemic (COVID-19) had spread rapidly since December 2019, when it was first identified in Wuhan, China. As of April 2021, more than 130 million cases have been confirmed, with more than 3 million deaths, making it one of the deadliest pandemics in history. Different approaches must be put in place to confront a new pandemic: community-based behaviours (i.e., isolation and social distancing), antiviral treatments, and vaccines. Although behaviour-based actions have produced significant benefits and several efficacious vaccines are now available, there is still an urgent need for treatment options. Remdesivir represents the first antiviral drug approved by the Food and Drug Administration for COVID-19 but has several limitations in terms of safety and treatment benefits. There is still a strong request for other effective, safe, and broad-spectrum antiviral systems in light of future emergent coronaviruses. Here, we describe a polymeric nanomaterial derived from L-lysine, with an antiviral activity against SARS-CoV-2 associated with a good safety profile in vitro. Nanoparticles of hyperbranched polylysine, synthesized by L-lysine's thermal polymerization catalyzed by boric acid, effectively inhibit the SARS-CoV-2 replication. The virucidal activity is associated with the charge and dimension of the nanomaterial, favouring the electrostatic interaction with the viral surface being only slightly larger than the virions' dimensions. Low-cost production and easiness of synthesis strongly support the further development of such innovative nanomaterials as a tool for potential treatments of COVID-19 and, in general, as broad-spectrum antivirals.
Collapse
Affiliation(s)
- Luigi Stagi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | | | - Luca Malfatti
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| | - Francesca Caboi
- Laboratorio NMR e Tecnologie Bioanalitiche, Sardegna Ricerche, Parco Scientifico e Tecnologico della Sardegna, 09010 Pula, CA, Italy
| | - Andrea Salis
- Dipartimento di Scienze Chimiche e Geologiche, Università di Cagliari, Cittadella Universitaria, SS 554 bivio Sestu, 09042 Monserrato, CA, Italy
| | | | - Giulia Cugia
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Franco Lori
- ViroStatics srl, Viale Umberto I, 46, 07100 Sassari, Italy
| | - Grazia Galleri
- Dipartimento di Science Mediche, Chirurgiche e Sperimentali, Viale S. Pietro 8, 07100 Sassari, Italy
| | - Plinio Innocenzi
- Laboratorio di Scienza dei Materiali e Nanotecnologie (LMNT), Dipartimento di Chimica e Farmacia, CR-INSTM, Università di Sassari, Via Vienna 2, 07041 Sassari, Italy.
| |
Collapse
|
4
|
Kim K, Narayanan J, Sen A, Chellam S. Virus Removal and Inactivation Mechanisms during Iron Electrocoagulation: Capsid and Genome Damages and Electro-Fenton Reactions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:13198-13208. [PMID: 34546747 DOI: 10.1021/acs.est.0c04438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Virus destabilization and inactivation are critical considerations in providing safe drinking water. We demonstrate that iron electrocoagulation simultaneously removed (via sweep flocculation) and inactivated a non-enveloped virus surrogate (MS2 bacteriophage) under slightly acidic conditions, resulting in highly effective virus control (e.g., 5-logs at 20 mg Fe/L and pH 6.4 in 30 min). Electrocoagulation simultaneously generated H2O2 and Fe(II) that can potentially trigger electro-Fenton reactions to produce reactive oxygen species such as •OH and high valent oxoiron(IV) that are capable of inactivating viruses. To date, viral attenuation during water treatment has been largely probed by evaluating infective virions (as plaque forming units) or genomic damage (via the quantitative polymerase chain reaction). In addition to these existing means of assessing virus attenuation, a novel technique of correlating transmission electron micrographs of electrocoagulated MS2 with their computationally altered three-dimensional electron density maps was developed to provide direct visual evidence of capsid morphological damages during electrocoagulation. The majority of coliphages lost at least 10-60% of the capsid protein missing a minimum of one of the 5-fold and two of 3- and 2-fold regions upon electrocoagulation, revealing substantial localized capsid deformation. Attenuated total reflectance-Fourier transform infrared spectroscopy revealed potential oxidation of viral coat proteins and modification of their secondary structures that were attributed to reactive oxygen species. Iron electrocoagulation simultaneously disinfects and coagulates non-enveloped viruses (unlike conventional coagulation), adding to the robustness of multiple barriers necessary for public health protection and appears to be a promising technology for small-scale distributed water treatment.
Collapse
Affiliation(s)
- Kyungho Kim
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
| | - Jothikumar Narayanan
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, Atlanta, Georgia 30329, United States
| | - Anindito Sen
- Microscopy and Imaging Center, Texas A&M University, College Station, Texas 77843-2257, United States
| | - Shankararaman Chellam
- Department of Civil & Environmental Engineering, Texas A&M University, College Station, Texas 77843-3136, United States
- Department of Chemical Engineering, Texas A&M University, College Station, Texas 77843-3122, United States
| |
Collapse
|
5
|
Tong Y, Shi G, Hu G, Hu X, Han L, Xie X, Xu Y, Zhang R, Sun J, Zhong J. Photo-catalyzed TiO 2 inactivates pathogenic viruses by attacking viral genome. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2021; 414:128788. [PMID: 33558800 PMCID: PMC7857067 DOI: 10.1016/j.cej.2021.128788] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 12/06/2020] [Accepted: 12/31/2020] [Indexed: 05/03/2023]
Abstract
Previous observations have been reported that viruses were inactivated using strong irradiation. Here, new evidence was disclosed by studying the effects of nanosized TiO2 on viral pathogens under a low irradiation condition (0.4 mW/cm2 at UVA band) that mimics the field setting. We showed that photo-activated TiO2 efficiently inhibits hepatitis C virus infection, and weak indoor light with intensity of 0.6 mW/cm2 at broad-spectrum wavelength and around 0.15 mW/cm2 of UVA band also lead to partial inhibition. Mechanistic studies demonstrated that hydroxyl radicals produced by photo-activated TiO2 do not destroy virion structure and contents, but attack viral RNA genome, thus inactivating the virus. Furthermore, we showed that photo-activated TiO2 inactivates a broad range of human viral pathogens, including SARS-CoV-2, a novel coronavirus responsible for the ongoing COVID-19 pandemic. In conclusion, we showed that photo-catalyzed nanosized TiO2 inactivates pathogenic viruses, paving a way to its field application in control of viral infectious diseases.
Collapse
Affiliation(s)
- Yimin Tong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Gansheng Shi
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Gaowei Hu
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiaoyou Hu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Han
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- ShanghaiTech University, Shanghai 201210, China
| | - Xiaofeng Xie
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Yongfen Xu
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
| | - Rong Zhang
- Key Laboratory of Medical Molecular Virology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Jing Sun
- The State Key Lab of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Dingxi Road, Shanghai 200050, China
| | - Jin Zhong
- CAS Key Laboratory of Molecular Virology and Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai 200031, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- ShanghaiTech University, Shanghai 201210, China
| |
Collapse
|
6
|
Smith D, Neu-Baker NM, Eastlake AC, Zurbenko IG, Brenner SA. Evaluation of classification methods for identifying multiwalled carbon nanotubes collected on mixed cellulose ester filter media. J Microsc 2021; 283:102-116. [PMID: 33825198 DOI: 10.1111/jmi.13012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 03/19/2021] [Accepted: 04/01/2021] [Indexed: 12/23/2022]
Abstract
Enhanced darkfield microscopy (EDFM) and hyperspectral imaging (HSI) are being evaluated as a potential rapid screening modality to reduce the time-to-knowledge for direct visualisation and analysis of filter media used to sample nanoparticulate from work environments, as compared to the current analytical gold standard of transmission electron microscopy (TEM). Here, we compare accuracy, specificity, and sensitivity of several hyperspectral classification models and data preprocessing techniques to determine how to most effectively identify multiwalled carbon nanotubes (MWCNTs) in hyperspectral images. Several classification schemes were identified that are capable of classifying pixels as MWCNT(+) or MWCNT(-) in hyperspectral images with specificity and sensitivity over 99% on the test dataset. Functional principal component analysis (FPCA) was identified as an appropriate data preprocessing technique, testing optimally when coupled with a quadratic discriminant analysis (QDA) model with forward stepwise variable selection and with a support vector machines (SVM) model. The success of these methods suggests that EDFM-HSI may be reliably employed to assess filter media exposed to MWCNTs. Future work will evaluate the ability of EDFM-HSI to quantify MWCNTs collected on filter media using this classification algorithm framework using the best-performing model identified here - quadratic discriminant analysis with forward stepwise selection on functional principal component data - on an expanded sample set.
Collapse
Affiliation(s)
- Devin Smith
- Department of Epidemiology & Biostatistics, School of Public Health, State University of New York (SUNY) at Albany, Rensselaer, New York.,Present address: Department of Mathematics, School of Science, Rensselaer Polytechnic Institute (RPI), 110 8th Street, Troy, NY, 12180, USA
| | - Nicole M Neu-Baker
- College of Nanoscale Science & Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York
| | - Adrienne C Eastlake
- National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio, USA
| | - Igor G Zurbenko
- Department of Epidemiology & Biostatistics, School of Public Health, State University of New York (SUNY) at Albany, Rensselaer, New York
| | - Sara A Brenner
- College of Nanoscale Science & Engineering, State University of New York (SUNY) Polytechnic Institute, Albany, New York.,Present address: United States Food and Drug Administration (FDA), Office of In Vitro Diagnostics and Radiological Health, Office of Product Evaluation and Quality, 10903 New Hampshire Avenue, Silver Spring, MA, 20993, USA
| |
Collapse
|
7
|
Enhancement of Antimicrobial Activity of Alginate Films with a Low Amount of Carbon Nanofibers (0.1% w/w). APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11052311] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The World Health Organization has called for new effective and affordable alternative antimicrobial materials for the prevention and treatment of microbial infections. In this regard, calcium alginate has previously been shown to possess antiviral activity against the enveloped double-stranded DNA herpes simplex virus type 1. However, non-enveloped viruses are more resistant to inactivation than enveloped ones. Thus, the viral inhibition capacity of calcium alginate and the effect of adding a low amount of carbon nanofibers (0.1% w/w) were explored here against a non-enveloped double-stranded DNA virus model for the first time. The results of this study showed that neat calcium alginate films partly inactivated this type of non-enveloped virus and that including that extremely low percentage of carbon nanofibers (CNFs) significantly enhanced its antiviral activity. These calcium alginate/CNFs composite materials also showed antibacterial properties against the Gram-positive Staphylococcus aureus bacterial model and no cytotoxic effects in human keratinocyte HaCaT cells. Since alginate-based materials have also shown antiviral activity against four types of enveloped positive-sense single-stranded RNA viruses similar to SARS-CoV-2 in previous studies, these novel calcium alginate/carbon nanofibers composites are promising as broad-spectrum antimicrobial biomaterials for the current COVID-19 pandemic.
Collapse
|
8
|
Li R, Cui L, Chen M, Huang Y. Nanomaterials for Airborne Virus Inactivation: A Short Review. AEROSOL SCIENCE AND ENGINEERING 2021; 5:1-11. [PMCID: PMC7596633 DOI: 10.1007/s41810-020-00080-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 10/10/2020] [Accepted: 10/14/2020] [Indexed: 05/18/2023]
Abstract
The coronavirus disease 2019 (COVID-19) that broke out at the end of 2019 spread rapidly around the world, causing a large number of deaths and serious economic losses. Previous studies showed that aerosol transmission is one of the main pathways for the spread of COVID-19, Therefore, effective control measures are urgently needed to contain the epidemic. Nanomaterials have broad-spectrum antiviral capabilities, and their inactivation for viruses in the air has been extensively studied. This review discusses antiviral nanomaterials such as metal nanomaterials, metal oxide-based nano-photocatalysts, and nonmetallic nanomaterials; summarizes their structure and chemical properties, the efficiency of inactivating viruses, the mechanism of inactivating viruses, and the application of virus purification in the air. This review provides insights on the development and application of antiviral nanomaterials, which can help control the aerosol transmission of viruses.
Collapse
Affiliation(s)
- Rong Li
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Long Cui
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| | - Meijuan Chen
- School of Human Settlements and Civil Engineering, Xi’an Jiaotong University, Xi’an, 710049 People’s Republic of China
| | - Yu Huang
- Key Laboratory of Aerosol Chemistry and Physics, State Key Laboratory of Loess and Quaternary Geology (SKLLQG), Institute of Earth Environment, Chinese Academy of Sciences, Xi’an, 710061 People’s Republic of China
- CAS Center for Excellence in Quaternary Science and Global Change, Xi’an, 710061 People’s Republic of China
| |
Collapse
|
9
|
Innocenzi P, Stagi L. Carbon-based antiviral nanomaterials: graphene, C-dots, and fullerenes. A perspective. Chem Sci 2020; 11:6606-6622. [PMID: 33033592 PMCID: PMC7499860 DOI: 10.1039/d0sc02658a] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Accepted: 06/13/2020] [Indexed: 12/19/2022] Open
Abstract
The appearance of new and lethal viruses and their potential threat urgently requires innovative antiviral systems. In addition to the most common and proven pharmacological methods, nanomaterials can represent alternative resources to fight viruses at different stages of infection, by selective action or in a broad spectrum. A fundamental requirement is non-toxicity. However, biocompatible nanomaterials have very often little or no antiviral activity, preventing their practical use. Carbon-based nanomaterials have displayed encouraging results and can present the required mix of biocompatibility and antiviral properties. In the present review, the main candidates for future carbon nanometric antiviral systems, namely graphene, carbon dots and fullerenes, have been critically analysed. In general, different carbon nanostructures allow several strategies to be applied. Some of the materials have peculiar antiviral properties, such as singlet oxygen emission, or the capacity to interfere with virus enzymes. In other cases, nanomaterials have been used as a platform for functional molecules able to capture and inhibit viral activity. The use of carbon-based biocompatible nanomaterials as antivirals is still an almost unexplored field, while the published results show promising prospects.
Collapse
Affiliation(s)
- Plinio Innocenzi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| | - Luigi Stagi
- Department of Chemistry and Pharmacy , Laboratory of Materials Science and Nanotechnology , CR-INSTM , University of Sassari , via Vienna 2 , Sassari , 07100 , Italy . ;
| |
Collapse
|
10
|
Wiehe A, O'Brien JM, Senge MO. Trends and targets in antiviral phototherapy. Photochem Photobiol Sci 2019; 18:2565-2612. [PMID: 31397467 DOI: 10.1039/c9pp00211a] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Photodynamic therapy (PDT) is a well-established treatment option in the treatment of certain cancerous and pre-cancerous lesions. Though best-known for its application in tumor therapy, historically the photodynamic effect was first demonstrated against bacteria at the beginning of the 20th century. Today, in light of spreading antibiotic resistance and the rise of new infections, this photodynamic inactivation (PDI) of microbes, such as bacteria, fungi, and viruses, is gaining considerable attention. This review focuses on the PDI of viruses as an alternative treatment in antiviral therapy, but also as a means of viral decontamination, covering mainly the literature of the last decade. The PDI of viruses shares the general action mechanism of photodynamic applications: the irradiation of a dye with light and the subsequent generation of reactive oxygen species (ROS) which are the effective phototoxic agents damaging virus targets by reacting with viral nucleic acids, lipids and proteins. Interestingly, a light-independent antiviral activity has also been found for some of these dyes. This review covers the compound classes employed in the PDI of viruses and their various areas of use. In the medical area, currently two fields stand out in which the PDI of viruses has found broader application: the purification of blood products and the treatment of human papilloma virus manifestations. However, the PDI of viruses has also found interest in such diverse areas as water and surface decontamination, and biosafety.
Collapse
Affiliation(s)
- Arno Wiehe
- biolitec research GmbH, Otto-Schott-Str. 15, 07745 Jena, Germany. and Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
| | - Jessica M O'Brien
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| | - Mathias O Senge
- Medicinal Chemistry, Trinity Translational Medicine Institute, Trinity Centre for Health Sciences, Trinity College Dublin, The University of Dublin, St. James's Hospital, Dublin 8, Ireland.
| |
Collapse
|
11
|
Neu-Baker NM, Eastlake AC, Brenner SA. Sample preparation method for visualization of nanoparticulate captured on mixed cellulose ester filter media by enhanced darkfield microscopy and hyperspectral imaging. Microsc Res Tech 2019; 82:878-883. [PMID: 30768825 DOI: 10.1002/jemt.23231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 12/10/2018] [Accepted: 01/20/2019] [Indexed: 12/20/2022]
Abstract
A significant hurdle in conducting effective health and safety hazard analysis and risk assessment for the nanotechnology workforce is the lack of a rapid method for the direct visualization and analysis of filter media used to sample nanomaterials from work environments that represent potential worker exposure. Current best-known methods include transmission electron microscopy (TEM) coupled with energy dispersive x-ray spectroscopy (EDS) for elemental identification. TEM-EDS is considerably time-, cost-, and resource-intensive, which may prevent timely health and safety recommendations and corrective actions. A rapid screening method is currently being explored using enhanced darkfield microscopy with hyperspectral imaging (EDFM-HSI). For this approach to be effective, rapid, and easy, sample preparation that is amenable to the analytical technique is needed. Here, we compare the sample preparation steps for mixed cellulose ester (MCE) filter media specified in NIOSH Method 7400-Asbestos and Other Fibers by Phase Contrast Microscopy (PCM)-against a new method, which involves saturation of the filter media with acetone. NIOSH Method 7400 was chosen as a starting point since it is an established technique for preparing transparent MCE filters for optical microscopy. Limitations in this method led to the development and comparison of a new method. The new method was faster, easier, and rendered filters more transparent, resulting in improved visualization and analysis of nanomaterials via EDFM-HSI. This new method is suitable for a rapid screening protocol due to its speed, ease of use, and the improvement in image acquisition and analysis.
Collapse
Affiliation(s)
- Nicole M Neu-Baker
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, New York
| | - Adrienne C Eastlake
- Education and Information Division (EID), National Institute for Occupational Safety and Health (NIOSH), Cincinnati, Ohio
| | - Sara A Brenner
- College of Nanoscale Science, Nanobioscience Constellation, State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, New York
| |
Collapse
|
12
|
Nelson KL, Boehm AB, Davies-Colley RJ, Dodd MC, Kohn T, Linden KG, Liu Y, Maraccini PA, McNeill K, Mitch WA, Nguyen TH, Parker KM, Rodriguez RA, Sassoubre LM, Silverman AI, Wigginton KR, Zepp RG. Sunlight-mediated inactivation of health-relevant microorganisms in water: a review of mechanisms and modeling approaches. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2018; 20:1089-1122. [PMID: 30047962 PMCID: PMC7064263 DOI: 10.1039/c8em00047f] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Health-relevant microorganisms present in natural surface waters and engineered treatment systems that are exposed to sunlight can be inactivated by a complex set of interacting mechanisms. The net impact of sunlight depends on the solar spectral irradiance, the susceptibility of the specific microorganism to each mechanism, and the water quality; inactivation rates can vary by orders of magnitude depending on the organism and environmental conditions. Natural organic matter (NOM) has a large influence, as it can attenuate radiation and thus decrease inactivation by endogenous mechanisms. Simultaneously NOM sensitizes the formation of reactive intermediates that can damage microorganisms via exogenous mechanisms. To accurately predict inactivation and design engineered systems that enhance solar inactivation, it is necessary to model these processes, although some details are not yet sufficiently well understood. In this critical review, we summarize the photo-physics, -chemistry, and -biology that underpin sunlight-mediated inactivation, as well as the targets of damage and cellular responses to sunlight exposure. Viruses that are not susceptible to exogenous inactivation are only inactivated if UVB wavelengths (280-320 nm) are present, such as in very clear, open waters or in containers that are transparent to UVB. Bacteria are susceptible to slightly longer wavelengths. Some viruses and bacteria (especially Gram-positive) are susceptible to exogenous inactivation, which can be initiated by visible as well as UV wavelengths. We review approaches to model sunlight-mediated inactivation and illustrate how the environmental conditions can dramatically shift the inactivation rate of organisms. The implications of this mechanistic understanding of solar inactivation are discussed for a range of applications, including recreational water quality, natural treatment systems, solar disinfection of drinking water (SODIS), and enhanced inactivation via the use of sensitizers and photocatalysts. Finally, priorities for future research are identified that will further our understanding of the key role that sunlight disinfection plays in natural systems and the potential to enhance this process in engineered systems.
Collapse
Affiliation(s)
- Kara L Nelson
- Civil and Environmental Engineering, University of California, Berkeley, CA, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Photocatalytic inactivation of human adenovirus 40: Effect of dissolved organic matter and prefiltration. Sep Purif Technol 2018. [DOI: 10.1016/j.seppur.2017.11.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
14
|
Claveau R, Montgomery P, Flury M, Montaner D. Depth-resolved local reflectance spectra measurements in full-field optical coherence tomography. OPTICS EXPRESS 2017; 25:20216-20232. [PMID: 29041705 DOI: 10.1364/oe.25.020216] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 05/28/2017] [Indexed: 06/07/2023]
Abstract
Full-field optical coherence tomography (FF-OCT) is a widely used technique for applications such as biological imaging, optical metrology, and materials characterization, providing structural and spectral information. By spectral analysis of the backscattered light, the technique of spectroscopic-OCT enables the differentiation of structures having different spectral properties, but not the determination of their reflectance spectrum. For surface measurements, this can be achieved by applying a Fourier transform to the interferometric signals and using an accurate calibration of the optical system. An extension of this method is reported for local spectroscopic characterization of transparent samples and in particular for the determination of depth-resolved reflectance spectra of buried interfaces. The correct functioning of the method is demonstrated by comparing the results with those obtained using a program based on electromagnetic matrix methods for stratified media. Experimental measurements of spatial resolutions are provided to demonstrate the smallest structures that can be characterized.
Collapse
|
15
|
Lin S, Mortimer M, Chen R, Kakinen A, Riviere JE, Davis TP, Ding F, Ke PC. NanoEHS beyond Toxicity - Focusing on Biocorona. ENVIRONMENTAL SCIENCE. NANO 2017; 7:1433-1454. [PMID: 29123668 PMCID: PMC5673284 DOI: 10.1039/c6en00579a] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
The first phase of environmental health and safety of nanomaterials (nanoEHS) studies has been mainly focused on evidence-based investigations that probe the impact of nanoparticles, nanomaterials and nano-enabled products on biological and ecological systems. The integration of multiple disciplines, including colloidal science, nanomaterial science, chemistry, toxicology/immunology and environmental science, is necessary to understand the implications of nanotechnology for both human health and the environment. While strides have been made in connecting the physicochemical properties of nanomaterials with their hazard potential in tiered models, fundamental understanding of nano-biomolecular interactions and their implications for nanoEHS is largely absent from the literature. Research on nano-biomolecular interactions within the context of natural systems not only provides important clues for deciphering nanotoxicity and nanoparticle-induced pathology, but also presents vast new opportunities for screening beneficial material properties and designing greener products from bottom up. This review highlights new opportunities concerning nano-biomolecular interactions beyond the scope of toxicity.
Collapse
Affiliation(s)
- Sijie Lin
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Monika Mortimer
- Bren School of Environmental Science and Management, Earth Research Institute and University of California Center for the Environmental Implications of Nanotechnology (UC CEIN), University of California, Santa Barbara, California 93106, United States
| | - Ran Chen
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Aleksandr Kakinen
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| | - Jim E. Riviere
- Nanotechnology Innovation Center of Kansas State, Kansas State University, Manhattan, Kansas 66506, United States
| | - Thomas P. Davis
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry, CV4 7AL, United Kingdom
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Pu Chun Ke
- ARC Center of Excellence in Convergent Bio-Nano Science and Technology, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Parade, Parkville, VIC 3052, Australia
| |
Collapse
|
16
|
Boyes WK, Thornton BLM, Al-Abed SR, Andersen CP, Bouchard DC, Burgess RM, Hubal EAC, Ho KT, Hughes MF, Kitchin K, Reichman JR, Rogers KR, Ross JA, Rygiewicz PT, Scheckel KG, Thai SF, Zepp RG, Zucker RM. A comprehensive framework for evaluating the environmental health and safety implications of engineered nanomaterials. Crit Rev Toxicol 2017; 47:767-810. [DOI: 10.1080/10408444.2017.1328400] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- William K. Boyes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Brittany Lila M. Thornton
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Souhail R. Al-Abed
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Christian P. Andersen
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Dermont C. Bouchard
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Burgess
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Elaine A. Cohen Hubal
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kay T. Ho
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Narragansett, RI, USA
| | - Michael F. Hughes
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Kirk Kitchin
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jay R. Reichman
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kim R. Rogers
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Jeffrey A. Ross
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Paul T. Rygiewicz
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Corvallis, OR, USA
| | - Kirk G. Scheckel
- National Risk Management Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, OH, USA
| | - Sheau-Fung Thai
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Richard G. Zepp
- National Exposure Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Athens, GA, USA
| | - Robert M. Zucker
- National Health and Environmental Effects Research Laboratory, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| |
Collapse
|
17
|
Hou WC, Huang SH. Photochemical reactivity of aqueous fullerene clusters: C 60 versus C 70. JOURNAL OF HAZARDOUS MATERIALS 2017; 322:310-317. [PMID: 27344404 DOI: 10.1016/j.jhazmat.2016.04.050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2015] [Revised: 04/13/2016] [Accepted: 04/19/2016] [Indexed: 06/06/2023]
Abstract
Over the past few years, there has been a strong interest in exploring the potential impact of fullerenes in the environment. Despite that both C60 and C70 have been detected in environmental matrices, the research on the impact of higher fullerenes, such as C70, has been largely missing. This study evaluated and compared the phototransformation of aqueous C60 and C70 clusters (nC60 and nC70) and their 1O2 production under sunlight and lamp light irradiation (315nm, 360nm and 420nm). The nC60 and nC70 samples formed by direct mixing with water adopted a face-centered cubic (FCC) crystal structure. The apparent quantum yields (AQYs) of fullerene phototransformed were relatively constant over the examined wavelengths, while 1O2 production AQYs decreased with increased wavelengths. The long-term fate studies with outdoor sunlight indicated that both nC60 and nC70 lost considerable organic carbon contents (>80%) in water after ∼8 months of irradiation and that the intermediate photoproducts of nC60 and nC70 exhibited a progressively increased level of oxygen-containing functionalities. Overall, the study indicates that nC70 can be photochemically removed under sunlight conditions and that the photoreactivity of nC60 based on AQYs is greater than that of nC70.
Collapse
Affiliation(s)
- Wen-Che Hou
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan.
| | - Shih-Hong Huang
- Department of Environmental Engineering, National Cheng Kung University, Tainan City, 70101, Taiwan
| |
Collapse
|
18
|
Das R, Vecitis CD, Schulze A, Cao B, Ismail AF, Lu X, Chen J, Ramakrishna S. Recent advances in nanomaterials for water protection and monitoring. Chem Soc Rev 2017; 46:6946-7020. [DOI: 10.1039/c6cs00921b] [Citation(s) in RCA: 353] [Impact Index Per Article: 50.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nanomaterials (NMs) for adsorption, catalysis, separation, and disinfection are scrutinized. NMs-based sensor technologies and environmental transformations of NMs are highlighted.
Collapse
Affiliation(s)
- Rasel Das
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Chad D. Vecitis
- School of Engineering and Applied Sciences
- Harvard University
- Cambridge
- USA
| | - Agnes Schulze
- Leibniz Institute of Surface Modification
- D-04318 Leipzig
- Germany
| | - Bin Cao
- School of Civil and Environmental Engineering
- Nanyang Technological University
- Singapore
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre
- Universiti Teknologi Malaysia
- 81310 Johor
- Malaysia
| | - Xianbo Lu
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Jiping Chen
- CAS Key Laboratory of Separation Science for Analytical Chemistry
- Dalian Institute of Chemical Physics
- Dalian 116023
- China
| | - Seeram Ramakrishna
- Centre for Nanofibers and Nanotechnology
- Department of Mechanical Engineering
- National University of Singapore
- Singapore
| |
Collapse
|
19
|
Li Y, Zhang C, Shuai D, Naraginti S, Wang D, Zhang W. Visible-light-driven photocatalytic inactivation of MS2 by metal-free g-C 3N 4: Virucidal performance and mechanism. WATER RESEARCH 2016; 106:249-258. [PMID: 27728819 DOI: 10.1016/j.watres.2016.10.009] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Revised: 10/01/2016] [Accepted: 10/03/2016] [Indexed: 05/21/2023]
Abstract
The challenge to achieve effective water disinfection of pathogens, especially viruses, with minimized harmful disinfection byproducts calls for a cost-effective and environmentally benign technology. Here, polymeric graphitic carbon nitride (g-C3N4), as a metal-free robust photocatalyst, was explored for the first time for its ability to inactivate viruses under visible light irradiation. MS2 with an initial concentration of 1 × 108 PFU/mL was completely inactivated by g-C3N4 with a loading of 150 mg/L under visible light irradiation of 360 min. g-C3N4 was a robust photocatalyst, and no decrease in its virucidal performance was observed over five cycles of sequential MS2 photocatalytic inactivation. The reactive oxygen species (ROSs) were measured by a range of scavengers, and photo-generated electrons and its derived ROSs (O- 2) were found to be the leading contributor for viral inactivation. TEM images indicated that the viral particle shape was distorted and the capsid shell was ruptured after photocatalysis. Viral surface proteins, particularly replicase proteins and maturation proteins, were damaged by photocatalytic oxidation. The loss of proteins would result in the leakage and rapid destruction of interior components (four main types of RNA genes), finally leading to viral death without regrowth. Our work opens a new avenue for the exploration and applications of a low-cost, high-efficient, and robust metal-free photocatalyst for green/sustainable viral disinfection.
Collapse
Affiliation(s)
- Yi Li
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China.
| | - Chi Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Danmeng Shuai
- Department of Civil and Environmental Engineering, The George Washington University, 800 22nd St NW Suite 3530, Science and Engineering Hall, Washington, DC 20052, USA
| | - Saraschandra Naraginti
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Dawei Wang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| | - Wenlong Zhang
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes, Ministry of Education, College of Environment, Hohai University, Xikang Road #1, Nanjing, 210098, PR China
| |
Collapse
|
20
|
Guttenberg M, Bezerra L, Neu-Baker NM, Del Pilar Sosa Idelchik M, Elder A, Oberdörster G, Brenner SA. Biodistribution of inhaled metal oxide nanoparticles mimicking occupational exposure: a preliminary investigation using enhanced darkfield microscopy. JOURNAL OF BIOPHOTONICS 2016; 9:987-993. [PMID: 27528427 PMCID: PMC5291524 DOI: 10.1002/jbio.201600125] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 06/24/2016] [Accepted: 07/25/2016] [Indexed: 05/23/2023]
Abstract
Inhalation exposure to engineered nanomaterials (ENMs) may result in adverse pulmonary and/or systemic health effects. In this study, enhanced darkfield microscopy (EDFM) was used as a novel approach to visualizing industrial metal oxide nanoparticles (NPs) (silica, ceria, or alumina) in multiple tissue types following inhalation in rats mimicking occupational exposures. Advantages of EDFM over electron microscopy (EM) include reduced cost, time, and ease of sample preparation and operation. Following 4-6 hour inhalation exposures at three concentrations (3.5-34.0 mg/m3 ), lungs and secondary organs were harvested at 24 hours or 7 days post-exposure and prepared for brightfield (BF) microscopy and EDFM. NPs were visualized within the lung and associated lymphatic tissues and in major organs of excretion (liver, spleen, kidney). EDFM also revealed NPs within pulmonary blood vessels and localization within specific regions of toxicological relevance in liver and kidney, indicating pathways of excretion. Results demonstrate the utility of EDFM for rapid direct visualization of NPs in various tissue types and suggest the potential for metal oxide NPs to distribute to secondary tissues following inhalation exposure. Confirmation of the composition, distribution, and relative abundance of inhaled NPs will be pursued by combining EDFM with hyperspectral imaging (HSI) and mapping.
Collapse
Affiliation(s)
- Marissa Guttenberg
- State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, 257 Fuller Road, Albany, New York, 12203, United States
| | - Leonardo Bezerra
- State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, 257 Fuller Road, Albany, New York, 12203, United States
| | - Nicole M Neu-Baker
- State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, 257 Fuller Road, Albany, New York, 12203, United States
| | - María Del Pilar Sosa Idelchik
- State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, 257 Fuller Road, Albany, New York, 12203, United States
| | - Alison Elder
- University of Rochester, Department of Environmental Medicine, 601 Elmwood Avenue, Rochester, New York, 14642, United States
| | - Günter Oberdörster
- University of Rochester, Department of Environmental Medicine, 601 Elmwood Avenue, Rochester, New York, 14642, United States
| | - Sara A Brenner
- State University of New York (SUNY) Polytechnic Institute, College of Nanoscale Science, 257 Fuller Road, Albany, New York, 12203, United States.
| |
Collapse
|
21
|
Marchese Robinson RL, Lynch I, Peijnenburg W, Rumble J, Klaessig F, Marquardt C, Rauscher H, Puzyn T, Purian R, Åberg C, Karcher S, Vriens H, Hoet P, Hoover MD, Hendren CO, Harper SL. How should the completeness and quality of curated nanomaterial data be evaluated? NANOSCALE 2016; 8:9919-43. [PMID: 27143028 PMCID: PMC4899944 DOI: 10.1039/c5nr08944a] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Nanotechnology is of increasing significance. Curation of nanomaterial data into electronic databases offers opportunities to better understand and predict nanomaterials' behaviour. This supports innovation in, and regulation of, nanotechnology. It is commonly understood that curated data need to be sufficiently complete and of sufficient quality to serve their intended purpose. However, assessing data completeness and quality is non-trivial in general and is arguably especially difficult in the nanoscience area, given its highly multidisciplinary nature. The current article, part of the Nanomaterial Data Curation Initiative series, addresses how to assess the completeness and quality of (curated) nanomaterial data. In order to address this key challenge, a variety of related issues are discussed: the meaning and importance of data completeness and quality, existing approaches to their assessment and the key challenges associated with evaluating the completeness and quality of curated nanomaterial data. Considerations which are specific to the nanoscience area and lessons which can be learned from other relevant scientific disciplines are considered. Hence, the scope of this discussion ranges from physicochemical characterisation requirements for nanomaterials and interference of nanomaterials with nanotoxicology assays to broader issues such as minimum information checklists, toxicology data quality schemes and computational approaches that facilitate evaluation of the completeness and quality of (curated) data. This discussion is informed by a literature review and a survey of key nanomaterial data curation stakeholders. Finally, drawing upon this discussion, recommendations are presented concerning the central question: how should the completeness and quality of curated nanomaterial data be evaluated?
Collapse
Affiliation(s)
- Richard L. Marchese Robinson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool, L3 3AF, United Kingdom
| | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, B15 2TT Birmingham, United Kingdom
| | - Willie Peijnenburg
- National Institute of Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute of Environmental Sciences, Leiden University, Leiden, The Netherlands
| | - John Rumble
- R&R Data Services, 11 Montgomery Avenue, Gaithersburg MD 20877 USA
| | - Fred Klaessig
- Pennsylvania Bio Nano Systems LLC, 3805 Old Easton Road, Doylestown, PA 18902
| | - Clarissa Marquardt
- Institute of Applied Computer Sciences (IAI), Karlsruhe Institute of Technology (KIT), Hermann v. Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Hubert Rauscher
- European Commission, Joint Research Centre, Institute for Health and Consumer Protection, Via Fermi 2749, 21027 Ispra (VA), Italy
| | - Tomasz Puzyn
- Laboratory of Environmental Chemistry, University of Gdansk, Wita Stwosza 63, 80-308 Gdansk, Poland
| | - Ronit Purian
- Faculty of Engineering, Tel Aviv University, Tel Aviv 69978 Israel
| | - Christoffer Åberg
- Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, Nijenborgh 4, 9747 AG Groningen, The Netherlands
| | - Sandra Karcher
- Civil and Environmental Engineering, Carnegie Mellon University, Pittsburgh, PA 15213-3890
| | - Hanne Vriens
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Peter Hoet
- Department of Public Health and Primary Care, K.U.Leuven, Faculty of Medicine, Unit Environment & Health – Toxicology, Herestraat 49 (O&N 706), Leuven, Belgium
| | - Mark D. Hoover
- National Institute for Occupational Safety and Health, 1095 Willowdale Road, Morgantown, WV 26505-2888
| | - Christine Ogilvie Hendren
- Center for the Environmental Implications of NanoTechnology, Duke University, PO Box 90287 121 Hudson Hall, Durham NC 27708
| | - Stacey L. Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, 1007 ALS, Corvallis, OR 97331
| |
Collapse
|
22
|
Gao B, Xu Z, Fan L, Xu X, Bai J, Shen X. Synthesis and Chiral Recognition Ability of a Novel Fullerene-functionalized Cellulose Derivative. CHEM LETT 2015. [DOI: 10.1246/cl.150637] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bo Gao
- School of Material Science and Engineering, Changchun University of Science and Technology
| | - Zeyu Xu
- School of Material Science and Engineering, Changchun University of Science and Technology
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
| | - Luan Fan
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
| | - Xiaodong Xu
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
| | - Jianwei Bai
- Polymer Materials Research Center, Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University
| | - Xiande Shen
- School of Material Science and Engineering, Changchun University of Science and Technology
| |
Collapse
|
23
|
Schwab F, Zhai G, Kern M, Turner A, Schnoor JL, Wiesner MR. Barriers, pathways and processes for uptake, translocation and accumulation of nanomaterials in plants – Critical review. Nanotoxicology 2015; 10:257-78. [DOI: 10.3109/17435390.2015.1048326] [Citation(s) in RCA: 350] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Fabienne Schwab
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA,
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA, and
| | - Guangshu Zhai
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, USA
| | - Meaghan Kern
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, USA
| | - Amalia Turner
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA,
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA, and
| | - Jerald L. Schnoor
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA, USA
| | - Mark R. Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, NC, USA,
- Center for the Environmental Implications of Nanotechnology (CEINT), Duke University, Durham, NC, USA, and
| |
Collapse
|
24
|
Wang D, Chen Y. Critical review of the influences of nanoparticles on biological wastewater treatment and sludge digestion. Crit Rev Biotechnol 2015; 36:816-28. [DOI: 10.3109/07388551.2015.1049509] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Dongbo Wang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P.R. China
| | - Yinguang Chen
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environmental Science and Engineering, Tongji University, Shanghai, P.R. China
| |
Collapse
|
25
|
Moor KJ, Snow SD, Kim JH. Differential photoactivity of aqueous [C60] and [C70] fullerene aggregates. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5990-8. [PMID: 25950275 DOI: 10.1021/acs.est.5b00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Many past studies have focused on the aqueous photochemical properties of colloidal suspensions of C60 and various [C60] fullerene derivatives, yet few have investigated the photochemistry of other larger cage fullerene species (e.g., C70, C74, C84, etc.) in water. This is a critical knowledge gap because these larger fullerenes may exhibit different properties compared to C60, including increased visible light absorption, altered energy level structures, and variable cage geometries, which may greatly affect aggregate properties and resulting aqueous photoactivity. Herein, we take the first steps toward a detailed investigation of the aqueous photochemistry of larger cage fullerene species, by focusing on [C70] fullerene. We find that aqueous suspensions of C60 and C70, nC60 and nC70, respectively, exhibit many similar physicochemical properties, yet nC70 appears to be significantly more photoactive than nC60. Studies are conducted to elucidate the mechanism behind nC70's superior (1)O2 generation, including the measurement of (1)O2 production as a function of incident excitation wavelength, analysis of X-ray diffraction data to determine crystal packing arrangements, and the excited state dynamics of aggregate fullerene species via transient absorption spectroscopy.
Collapse
Affiliation(s)
| | - Samuel D Snow
- ‡School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jae-Hong Kim
- ‡School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
26
|
Snow SD, Kim KC, Moor KJ, Jang SS, Kim JH. Functionalized fullerenes in water: a closer look. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:2147-2155. [PMID: 25632831 DOI: 10.1021/es504735h] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The excellent photophysical properties of C60 fullerenes have spurred much research on their application to aqueous systems for biological and environmental applications. Spontaneous aggregation of C60 in water and the consequent diminution of photoactivity present a significant challenge to aqueous applications. The mechanisms driving the reduction of photoactivity in fullerene aggregates and the effects of functionalization on these processes, however, are not well understood. Here, we take a closer look at the molecular phenomena of functionalized fullerene interactions in water utilizing simulation and experimental tools. Molecular dynamic simulations were performed to investigate time-evolved molecular interactions in systems containing fullerenes with water, oxygen, and/or neighboring fullerene molecules, complimented by physical and chemical characterizations of the fullerenes pre- and postaggregation. Aggregates with widely different photoactivities exhibit similar fullerene-water interactions as well as surface and aggregation characteristics. Photoactive fullerene aggregates had weaker fullerene-fullerene and fullerene-O2 interactions, suggesting the importance of molecular interactions in the sensitization route.
Collapse
Affiliation(s)
- Samuel D Snow
- School of Civil and Environmental Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332, United States
| | | | | | | | | |
Collapse
|
27
|
Choi JI, Snow SD, Kim JH, Jang SS. Interaction of C₆₀ with water: first-principles modeling and environmental implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1529-1536. [PMID: 25602529 DOI: 10.1021/es504614u] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The nature of fullerene-water interactions has been the subject of much research and debate. Specifically, the presence of a stabilizing, negative surface potential on colloidal aggregates of C60 in water is unexpected, given the neutral nature of pure carbon, and is not well understood. Previous simulation efforts have focused on the C60-water interaction using molecular dynamics simulations that lacked the ability to account for charge transfer and distribution interactions. In this study, first-principles density functional theory was used to analyze the fundamental electronic interactions to elucidate the polarization and charge transfer between water and C60. Simulations show that charge is inductively transferred to the C60 from water molecules, with subsequent polarization of the C60 molecule. In a case with two neighboring C60 molecules, the charge polarization induces a charge onto the second C60. Simulation suggests that this charge transfer and polarization may contribute at least partly to the observed negative surface potential of fullerene aggregates and, combined with hydrogen bonding network formation around C60, provides a fundamental driving force for aggregate formation in water.
Collapse
Affiliation(s)
- Ji Il Choi
- Computational NanoBio Technology Laboratory, School of Materials Science and Engineering, Georgia Institute of Technology , Atlanta, Georgia 30332-0245, United States
| | | | | | | |
Collapse
|
28
|
Roth GA, Tahiliani S, Neu-Baker NM, Brenner SA. Hyperspectral microscopy as an analytical tool for nanomaterials. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2015; 7:565-79. [DOI: 10.1002/wnan.1330] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2014] [Revised: 11/11/2014] [Accepted: 11/20/2014] [Indexed: 01/24/2023]
Affiliation(s)
- Gary A. Roth
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; New York NY USA
| | - Sahil Tahiliani
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; New York NY USA
| | - Nicole M. Neu-Baker
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; New York NY USA
| | - Sara A. Brenner
- College of Nanoscale Science, Nanobioscience Constellation; State University of New York (SUNY) Polytechnic Institute; New York NY USA
| |
Collapse
|
29
|
Tanneru CT, Jothikumar N, Hill VR, Chellam S. Relative insignificance of virus inactivation during aluminum electrocoagulation of saline waters. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:14590-14598. [PMID: 25405814 DOI: 10.1021/es504381f] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Combined removal and inactivation of the MS2 bacteriophage from model saline (0-100 mM NaCl) waters by electrochemical treatment using a sacrificial aluminum anode was evaluated. Both chemical and electrodissolution contributed to coagulant dosing since measured aluminum concentrations were statistically higher than purely electrochemical predictions using Faraday's law. Electrocoagulation generated only small amounts of free chlorine in situ but effectively destabilized viruses and incorporated them into Al(OH)3(s) flocs during electrolysis. Low chlorine concentrations combined with virus shielding and aggregation within flocs resulted in very slow disinfection rates necessitating extended flocculation/contact times to achieve significant log-inactivation. Therefore, the dominant virus control mechanism during aluminum electrocoagulation of saline waters is "physical" removal by uptake onto flocs rather than "chemical" inactivation by chlorine. Attenuated total reflectance-Fourier transform infrared spectroscopy provided evidence for oxidative transformations of capsid proteins including formation of oxyacids, aldehydes, and ketones. Electrocoagulation significantly altered protein secondary structures decreasing peak areas associated with turns, bends, α-helices, β-structures, and random coils for inactivated viruses compared with the MS2 stock. Quantitative reverse transcription polymerase chain reaction (qRT-PCR) measurements showed rapid initial RNA damage following a similar trend as plaque assay measurements of infectious viruses. However, ssRNA cleavage measured by qRT-PCR underestimated inactivation over longer durations. Although aluminum electrocoagulation of saline waters disorders virus capsids and damages RNA, inactivation occurs at a sufficiently low rate so as to only play a secondary role to floc-encapsulation during residence times typical of electrochemical treatment.
Collapse
Affiliation(s)
- Charan Tej Tanneru
- Department of Civil and Environmental Engineering, University of Houston , Houston, Texas 77204-4003, United States
| | | | | | | |
Collapse
|
30
|
Sanpui P, Zheng X, Loeb JC, Bisesi JH, Khan IA, Afrooz ARMN, Liu K, Badireddy AR, Wiesner MR, Ferguson PL, Saleh NB, Lednicky JA, Sabo-Attwood T. Single-walled carbon nanotubes increase pandemic influenza A H1N1 virus infectivity of lung epithelial cells. Part Fibre Toxicol 2014; 11:66. [PMID: 25497303 PMCID: PMC4318452 DOI: 10.1186/s12989-014-0066-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Accepted: 10/13/2014] [Indexed: 11/17/2022] Open
Abstract
Background Airborne exposure to nanomaterials from unintended occupational or environmental exposures or as a consequence of product use may lead to adverse health effects. Numerous studies have focused on single-walled carbon nanotubes (SWCNTs) and their ability to cause pulmonary injury related to fibrosis, and cancer; however few studies have addressed their impact on infectious agents, particularly viruses that are known for causing severe disease. Here we have demonstrated the ability of pristine SWCNTs of diverse electronic structure to increase the susceptibility of small airway epithelial cells (SAEC) to pandemic influenza A H1N1 infection and discerned potential mechanisms of action driving this response. Methods Small airway epithelial cells (SAEC) were exposed to three types of SWCNTs with varying electronic structure (SG65, SG76, CG200) followed by infection with A/Mexico/4108/2009 (pH1N1). Cells were then assayed for viral infectivity by immunofluorescence and viral titers. We quantified mRNA and protein levels of targets involved in inflammation and anti-viral activity (INFβ1, IL-8, RANTES/CCL5, IFIT2, IFIT3, ST3GAL4, ST6GAL1, IL-10), localized sialic acid receptors, and assessed mitochondrial function. Hyperspectral imaging analysis was performed to map the SWCNTs and virus particles in fixed SAEC preparations. We additionally performed characterization analysis to monitor SWCNT aggregate size and structure under biological conditions using dynamic light scattering (DLS), static light scattering (SLS). Results Based on data from viral titer and immunofluorescence assays, we report that pre-treatment of SAEC with SWCNTs significantly enhances viral infectivity that is not dependent on SWCNT electronic structure and aggregate size within the range of 106 nm – 243 nm. We further provide evidence to support that this noted effect on infectivity is not likely due to direct interaction of the virus and nanoparticles, but rather a combination of suppression of pro-inflammatory (RANTES) and anti-viral (IFIT2, IFIT3) gene/protein expression, impaired mitochondrial function and modulation of viral receptors by SWCNTs. Conclusions Results of this work reveal the potential for SWCNTs to increase susceptibility to viral infections as a mechanism of adverse effect. These data highlight the importance of investigating the ability of carbon-nanomaterials to modulate the immune system, including impacts on anti-viral mechanisms in lung cells, thereby increasing susceptibility to infectious agents. Electronic supplementary material The online version of this article (doi:10.1186/s12989-014-0066-0) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Pallab Sanpui
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Xiao Zheng
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Julia C Loeb
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Joseph H Bisesi
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Iftheker A Khan
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - A R M Nabiul Afrooz
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - Keira Liu
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Appala Raju Badireddy
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - P Lee Ferguson
- Department of Civil and Environmental Engineering, Nicholas School of the Environment, and Center for the Environmental Implications of NanoTechnology, Duke University, 121 Hudson Hall, Box 90287, Durham, NC, 27708, USA.
| | - Navid B Saleh
- Department of Civil, Architectural and Environmental Engineering, University of Texas at Austin, 301 E. Dean Keeton Street, Austin, TX, 78712, USA.
| | - John A Lednicky
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| | - Tara Sabo-Attwood
- Department of Environmental and Global Health, Center for Environmental and Human Toxicology and Emerging Pathogens Institute, University of Florida, 2187 Mowry Road, Box 110885, Gainesville, FL, 32611, USA.
| |
Collapse
|
31
|
Erdim E, Badireddy AR, Wiesner MR. Characterizing reactive oxygen generation and bacterial inactivation by a zerovalent iron-fullerene nano-composite device at neutral pH under UV-A illumination. JOURNAL OF HAZARDOUS MATERIALS 2014; 283:80-88. [PMID: 25262481 DOI: 10.1016/j.jhazmat.2014.08.049] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2014] [Revised: 07/16/2014] [Accepted: 08/13/2014] [Indexed: 06/03/2023]
Abstract
A nano-composite device composed of nano-scale zerovalent iron (ZVI) and C60 fullerene aggregates (ZVI/nC60) was produced via a rapid nucleation method. The device was conceived to deliver reactive oxygen species (ROS) generated by photosensitization and/or electron transfer to targeted contaminants, including waterborne pathogens under neutral pH conditions. Certain variations of the nano-composite were fabricated differing in the amounts of (1) ZVI (0.1mM and 2mM) but not nC60 (2.5mg-C/L), and (2) nC60 (0-25mg-C/L) but not ZVI (0.1mM). The generation of ROS by the ZVI/nC60 nano-composites and ZVI nanoparticles was quantified using organic probe compounds. 0.1mM ZVI/2.5mg-C/L C60 generated 3.74-fold higher O2(-) concentration and also resulted in an additional 2-log inactivation of Pseudomonas aeruginosa when compared to 0.1mM ZVI (3-log inactivation). 2mM ZVI/2.5mg-C/L nC60 showed negligible improvement over 2mM ZVI in terms of O2(-) generation or inactivation. Further, incremental amounts of nC60 in the range of 0-25mg-C/L in 0.1mM ZVI/nC60 led to increased O2(-) concentration, independent of UV-A. This study demonstrates that ZVI/nC60 device delivers (1) enhanced O2(-) with nC60 as a mediator for electron transfer, and (2) (1)O2 (only under UV-A illumination) at neutral pH conditions.
Collapse
Affiliation(s)
- Esra Erdim
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708, USA; Environmental Engineering Department, Marmara University, Istanbul 34469, Turkey
| | - Appala Raju Badireddy
- Center for the Environmental Implications of NanoTechnology, Duke University, Durham, NC 27708, USA; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA
| | - Mark R Wiesner
- Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA; Department of Civil and Environmental Engineering, Duke University, Durham, NC 27708, USA.
| |
Collapse
|
32
|
Patskovsky S, Bergeron E, Rioux D, Simard M, Meunier M. Hyperspectral reflected light microscopy of plasmonic Au/Ag alloy nanoparticles incubated as multiplex chromatic biomarkers with cancer cells. Analyst 2014; 139:5247-53. [PMID: 25133743 DOI: 10.1039/c4an01063a] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A hyperspectral microscopy system based on a reflected light method for plasmonic nanoparticle (NP) imaging was designed and compared with a conventional darkfield method for spatial localization and spectroscopic identification of single Au, Ag and Au/Ag alloy NPs incubated with fixed human cancer cell preparations. A new synthesis protocol based on co-reduction of Au and Ag salts combined with the seeded growth technique was used for the fabrication of monodispersed alloy NPs with sizes ranging from 30 to 100 nm in diameter. We validated theoretically and experimentally the performance of 60 nm Au, Ag and Au/Ag (50 : 50) NPs as multiplexed biological chromatic markers for biomedical diagnostics and optical biosensing. The advantages of the proposed reflected light microscopy method are presented for NP imaging in a complex and highly diffusing medium such as a cellular environment. The obtained information is essential for the development of a high throughput, selective and efficient strategy for cancer detection and treatment.
Collapse
Affiliation(s)
- Sergiy Patskovsky
- Engineering Physics Department, École Polytechnique de Montréal, Laser Processing and Plasmonics Laboratory, Montréal, Québec H3C 3A7, Canada.
| | | | | | | | | |
Collapse
|
33
|
Verebes GS, Melchiorre M, Garcia-Leis A, Ferreri C, Marzetti C, Torreggiani A. Hyperspectral enhanced dark field microscopy for imaging blood cells. JOURNAL OF BIOPHOTONICS 2013; 6:960-7. [PMID: 23913514 DOI: 10.1002/jbio.201300067] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Revised: 06/12/2013] [Accepted: 07/13/2013] [Indexed: 05/05/2023]
Abstract
In this work, a novel methodology based on hyperspectral imagery with enhanced Darkfield microscopy for probing and characterizing changes in blood cell components was tested. Two main categories of blood cells were analyzed, red and white blood cells. Unique spectral signatures of ordinary and most common deformed morphologies of red blood cells were identified. Moreover, examination of white blood cells allowed to characterize and differentiate active from inactive cells. The findings indicate the ability of this technique to detect changes in light scattering property of blood cells due to their morphological properties Since pathological states can alterate the discocyte shape, this preliminary, but promising application of the hyperspectral analysis to blood cells can be useful to evaluate significant correlations of blood cell spectral features in healthy and pathological conditions. The combination of the quali- and quantitative spectral signatures of hyperspectral imaging microscopy with the information of the subject health conditions may provide a new tool for clinical applications.
Collapse
|
34
|
Wang A, Marinakos SM, Badireddy AR, M. Powers C, A. Houck K. Characterization of physicochemical properties of nanomaterials and their immediate environments in high‐throughput screening of nanomaterial biological activity. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:430-48. [DOI: 10.1002/wnan.1229] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2012] [Revised: 02/23/2013] [Accepted: 04/03/2013] [Indexed: 11/07/2022]
Affiliation(s)
- Amy Wang
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Stella M. Marinakos
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Appala Raju Badireddy
- Center for the Environmental Implications of NanoTechnology (CEINT)Duke UniversityDurhamNCUSA
| | - Christina M. Powers
- National Center for Environmental Assessment (NCEA)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| | - Keith A. Houck
- National Center for Computational Toxicology (NCCT)Office of Research and Development, US Environmental Protection Agency (US EPA)Research Triangle ParkNCUSA
| |
Collapse
|
35
|
Silverman AI, Peterson BM, Boehm AB, McNeill K, Nelson KL. Sunlight inactivation of human viruses and bacteriophages in coastal waters containing natural photosensitizers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:1870-1878. [PMID: 23384052 DOI: 10.1021/es3036913] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Sunlight inactivation of poliovirus type 3 (PV3), adenovirus type 2 (HAdV2), and two bacteriophage (MS2 and PRD1) was investigated in an array of coastal waters to better understand solar inactivation mechanisms and the effect of natural water constituents on observed inactivation rates (k(obs)). Reactor scale inactivation experiments were conducted using a solar simulator, and k(obs) for each virus was measured in a sensitizer-free control and five unfiltered surface water samples collected from different sources. k(obs) values varied between viruses in the same water matrix, and for each virus in different matrices, with PV3 having the fastest and MS2 the slowest k(obs) in all waters. When exposed to full-spectrum sunlight, the presence of photosensitizers increased k(obs) of HAdV2, PRD1 and MS2, but not PV3, which provides evidence that the exogenous sunlight inactivation mechanism, involving damage by exogenously produced reactive intermediates, played a greater role for these viruses. While PV3 inactivation was observed to be dominated by endogenous mechanisms, this may be due to a masking of exogenous k(obs) by significantly faster endogenous k(obs). Results illustrate that differences in water composition can shift absolute and relative inactivation rates of viruses, which has important implications for natural wastewater treatment systems, solar disinfection (SODIS), and the use of indicator organisms for monitoring water quality.
Collapse
Affiliation(s)
- Andrea I Silverman
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, California, USA
| | | | | | | | | |
Collapse
|
36
|
Wen Y, Geitner NK, Chen R, Ding F, Chen P, Andorfer RE, Govindan PN, Ke PC. Binding of cytoskeletal proteins with silver nanoparticles. RSC Adv 2013. [DOI: 10.1039/c3ra43281e] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|