1
|
Gribble GW. Naturally Occurring Organohalogen Compounds-A Comprehensive Review. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2023; 121:1-546. [PMID: 37488466 DOI: 10.1007/978-3-031-26629-4_1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/26/2023]
Abstract
The present volume is the third in a trilogy that documents naturally occurring organohalogen compounds, bringing the total number-from fewer than 25 in 1968-to approximately 8000 compounds to date. Nearly all of these natural products contain chlorine or bromine, with a few containing iodine and, fewer still, fluorine. Produced by ubiquitous marine (algae, sponges, corals, bryozoa, nudibranchs, fungi, bacteria) and terrestrial organisms (plants, fungi, bacteria, insects, higher animals) and universal abiotic processes (volcanos, forest fires, geothermal events), organohalogens pervade the global ecosystem. Newly identified extraterrestrial sources are also documented. In addition to chemical structures, biological activity, biohalogenation, biodegradation, natural function, and future outlook are presented.
Collapse
Affiliation(s)
- Gordon W Gribble
- Department of Chemistry, Dartmouth College, Hanover, NH, 03755, USA.
| |
Collapse
|
2
|
Wu Q, Eisenhardt N, Holbert SS, Pawlik JR, Kucklick JR, Vetter W. Naturally occurring organobromine compounds (OBCs) including polybrominated dibenzo-p-dioxins in the marine sponge Hyrtios proteus from The Bahamas. MARINE POLLUTION BULLETIN 2021; 172:112872. [PMID: 34454388 DOI: 10.1016/j.marpolbul.2021.112872] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 08/09/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Halogenated natural products (HNPs) were identified from organic extracts of the marine sponge Hyrtios proteus from The Bahamas using gas chromatography with electron capture negative ion mass spectrometry and non-targeted gas chromatography with electron ionization mass spectrometry. The HNPs found have similar properties to anthropogenic persistent organic pollutants (POPs). Two ortho-methoxy brominated diphenyl ethers (MeO-BDEs) 2'-MeO-BDE 68 and 6-MeO-BDE 47 were the most abundant compounds. Fourteen other MeO-BDEs were detected along with several polybrominated dibenzo-p-dioxins (PBDDs) (1,3,7-triBDD, 1,3,6,8-tetraBDD and 1,3,7,9-tetraBDD) and MeO-PBDDs. Further analysis of a higher trophic level octopus (Octopus maya) from the same FAO fishing area showed that the major HNPs detected in Hyrtios proteus were also predominant. Moreover, HNPs were more than 30-fold higher in abundance than the major POPs in the octopus, i.e., polychlorinated biphenyls. Hence, Caribbean marine organisms, including those potentially used for food, harbor relatively high concentrations of HNPs.
Collapse
Affiliation(s)
- Qiong Wu
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany
| | - Natalie Eisenhardt
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Stephanie Shaw Holbert
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States; College of Charleston, Department of Biology, Grice Marine Laboratory, Charleston, SC 29412, United States
| | - Joseph R Pawlik
- University of North Carolina Wilmington, Center of Marine Science, 500 Marvin K Moss Lane, Wilmington, NC 28409, United States
| | - John R Kucklick
- National Institute of Standards and Technology, Chemical Sciences Division, 331 Fort Johnson Road, Charleston, SC 29412, United States
| | - Walter Vetter
- University of Hohenheim, Institute of Food Chemistry, Garbenstrasse 28, 70599 Stuttgart, Germany.
| |
Collapse
|
3
|
Bianchini K, Morrissey CA. Species traits predict the aryl hydrocarbon receptor 1 (AHR1) subtypes responsible for dioxin sensitivity in birds. Sci Rep 2020; 10:11706. [PMID: 32678147 PMCID: PMC7367299 DOI: 10.1038/s41598-020-68497-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/22/2020] [Indexed: 12/30/2022] Open
Abstract
Differences in avian sensitivity to dioxin-like compounds (DLCs) are directly attributable to the identities of amino acids at two sites within the ligand binding domain (LBD) of the aryl hydrocarbon receptor 1 (AHR1). Recent work suggests that by influencing avian exposure to naturally occurring dioxins, differences in diet, habitat, and migration may have influenced the evolution of three AHR1 LBD genotypes in birds: type 1 (high sensitivity), type 2 (moderate sensitivity), and type 3 (low sensitivity). Using a boosted regression tree (BRT) analysis, we built on previous work by examining the relationship between a comprehensive set of 17 species traits, phylogeny, and the AHR1 LBD across 89 avian species. The 17 traits explained a combined 74% of the model deviance, while phylogenetic relatedness explained only 26%. The strongest predictors of AHR1 LBD were incubation period and habitat type. We found that type 3 birds tended to occupy aquatic habitats, and, uniquely, we also found that type 3 birds tended to have slower developmental rates. We speculate that this reflects higher evolutionary exposure to naturally occurring dioxins in waterbirds and species with K-selected life histories. This study highlights the value of trait-based approaches in helping to understand differing avian species sensitivities to environmental contaminants.
Collapse
Affiliation(s)
- Kristin Bianchini
- Long Point Waterfowl and Wetlands Research Program, Birds Canada, 115 Front Road, Port Rowan, ON, N0E 1M0, Canada
- Biology Department, Acadia University, Wolfville, NS, B4P 2R6, Canada
| | - Christy A Morrissey
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, S7N 5E2, Canada.
- School of Environment and Sustainability, University of Saskatchewan, 117 Science Place, Saskatoon, SK, S7N 5C8, Canada.
| |
Collapse
|
4
|
Badea SL, Geana EI, Niculescu VC, Ionete RE. Recent progresses in analytical GC and LC mass spectrometric based-methods for the detection of emerging chlorinated and brominated contaminants and their transformation products in aquatic environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 722:137914. [PMID: 32208267 DOI: 10.1016/j.scitotenv.2020.137914] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 03/10/2020] [Accepted: 03/12/2020] [Indexed: 06/10/2023]
Abstract
This paper is an overview of screening methods recently developed for emerging halogenated contaminants and their transformation products. The target screening methods are available only for a limited number of emerging pollutants since the reference standards for these compounds are not always available, but a risk assessment of those micropollutants in environment must be performed anyhow. Therefore, the chromatographic techniques hyphenated with high resolution mass spectrometry (HRMS) trend to become indispensable methods for suspect and non-target screening of emerging halogenated contaminants. HRMS is also an effective tool for tentatively identification of the micropollutants' transformation products existing in much lower concentrations. To assess the transformation pathway of halogenated contaminants in environment, the non-target screening methods must be combined with biodegradation lab experiments and also with advanced oxidation and reduction processes that can mimic the transformation on these contaminants in environment. It is expected that in the future, the accurate-mass full-spectra of transformation products recorded by HRMS will be the basic information needed to elucidate the transformation pathways of emerging halogenated contaminants in aquatic environment.
Collapse
Affiliation(s)
- Silviu-Laurentiu Badea
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania.
| | - Elisabeta-Irina Geana
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Violeta-Carolina Niculescu
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| | - Roxana-Elena Ionete
- National Research and Development Institute for Cryogenics and Isotopic Technologies, 4th Uzinei Street, 240050 Râmnicu Vâlcea, Romania
| |
Collapse
|
5
|
Wang S, Wang S, Shah S, Li L, Fang H, Hao C. A density functional theory/time-dependent density functional theory study of the structure-related photochemical properties of hydroxylated polybrominated diphenyl ethers and methoxylated polybrominated diphenyl ethers and metal ion effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9297-9306. [PMID: 31916157 DOI: 10.1007/s11356-019-07538-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/25/2019] [Indexed: 06/10/2023]
Abstract
As the derivatives and structural analogs of polybrominated diphenyl ethers (PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and methoxylated polybrominated diphenyl ethers (MeO-PBDEs) have attracted increasing concern. However, knowledge of the photochemical behaviors of OH-PBDEs and MeO-PBDEs in water is limited. Here, we used density functional theory and time-dependent density functional theory to examine the structure-related photochemical properties of OH-PBDEs and MeO-PBDEs in water and the effects of metal ions as environmental factors. Eight 6-OH-PBDEs with 1-8 bromine substituents and eight 6-MeO-PBDEs with 1-8 bromine substituents were selected for this study. The optimized geometries of the selected congeners and their complexes with metals in the lowest excited triplet state (T1) showed that one C-Br bond moderately or significantly elongated. The elongated C-Br bond in the T1 state was shown in the ortho-position for the 6-OH-PBDE congeners and the ortho-position or the meta-position for the 6-MeO-PBDE congeners. For the selected congeners, there were significant positive linear correlations between the number of bromine atoms (NBr) and the calculated average atomic charge of bromine and maximum electronic absorbance wavelength (λmax), and a negative linear correlation between the NBr and average bond dissociation energy of C-O bonds (BDEC-O). The photoreactivities of the 6-OH-PBDEs and 6-MeO-PBDEs increased with an increase in the bromination degree with or without metal ions. The calculated average atomic charge of bromine and BDEC-O of the complexes with Mg2+/Zn2+ was higher and lower than those of the corresponding monomers, respectively, indicating that the presence of Mg2+/Zn2+ increased the photoreactivity (debromination and dissociation of C-O bond) of the selected 6-OH-PBDEs and 6-MeO-PBDEs. The effects of the coordination of Mg2+/Zn2+ may be overestimated due to their missing explicit solvation shell. These results provide vital insight into the photochemical properties of OH-PBDEs and MeO-PBDEs in water.
Collapse
Affiliation(s)
- Se Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Shuwen Wang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shaheen Shah
- Department of Chemistry, Karakorum International University, Gilgit, Gilgit-Balitstan, 15100, Pakistan
| | - Longyan Li
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Hao Fang
- School of Environmental Science and Engineering, Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Jiangsu Key Laboratory of Atmospheric Environment Monitoring and Pollution Control, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Ce Hao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian, 116024, Liaoning, China
| |
Collapse
|
6
|
Zhong C, Zhao H, Cao H, Huang Q. Polymerization of micropollutants in natural aquatic environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133751. [PMID: 31462391 DOI: 10.1016/j.scitotenv.2019.133751] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/02/2019] [Indexed: 05/19/2023]
Abstract
Micropollutants with high ecotoxicological risks are frequently detected in aquatic environments, which has aroused great concern in recent years. Humification is one of the most important natural detoxification processes of aquatic micropollutants, and the core reactions of this process are polymerization and coupling. During humification, micropollutants are incorporated into the macrostructures of humic substances and precipitated from aqueous systems into sediments. However, the similarities and differences among the polymerization/coupling pathways of micropollutants in different oxidative systems have not been systematically summarized in a review. This article reviews the current knowledge on the weak oxidation-induced spontaneous polymerization/coupling transformation of micropollutants. First, four typical weak oxidative conditions for the initiation of micropollutant polymerization reactions in aquatic environments are compared: enzymatic catalysis, biomimetic catalysis, metal oxide oxidation, and photo-initiated oxidation. Second, three major subsequent spontaneous transformation pathways of micropollutants are elucidated: radical polymerization, nucleophilic addition/substitution and cyclization. Different solution conditions are also summarized. Furthermore, the importance of toxicity evolution during the weak oxidation-induced coupling/polymerization of micropollutants is particularly emphasized. This review provides a new perspective for the transformation mechanism and pathways of micropollutants from aquatic systems into sediments and the atmosphere and offers theoretical support for developing micropollutant control technologies.
Collapse
Affiliation(s)
- Chen Zhong
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China.
| | - Hongbin Cao
- National Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, China; Beijing Engineering Research Centre of Process Pollution Control, Institute of Process Engineering, Chinese Academy of Sciences, China
| | - Qingguo Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
7
|
Zhou Y, Liu J. Emissions, environmental levels, sources, formation pathways, and analysis of polybrominated dibenzo-p-dioxins and dibenzofurans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:33082-33102. [PMID: 30269281 DOI: 10.1007/s11356-018-3307-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
Polybrominated dibenzo-p-dioxins and dibenzofurans (PBDD/Fs) were labeled potential persistent organic pollutants by the Stockholm Convention and have structures and toxicities similar to those of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), which has caused considerable concern. This article reviews the current available literature on the status, sources, formation pathways, and analysis of PBDD/Fs. PBDD/Fs are widely generated in industrial thermal processes, such as those for brominated flame retardant (BFR) products, e-waste dismantling, metal smelting processes, and waste incineration. PBDD/Fs can form via the following routes: precursor formation, de novo formation, biosynthesis, and natural formation. The levels of PBDD/Fs in the environment and in organisms and humans have increased due to extensive consumption and the increasing inventory of BFRs; thus, the risk of human exposure to PBDD/Fs is expected to be high.
Collapse
Affiliation(s)
- Yanxiao Zhou
- Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, 310014, Zhejiang, China
| | - Jinsong Liu
- Zhejiang University of Technology, No.18 Chaowang Road, Hangzhou, 310014, Zhejiang, China.
- Zhejiang Environmental Monitoring Center, Hangzhou, 310012, Zhejiang, China.
| |
Collapse
|
8
|
Blum KM, Andersson PL, Ahrens L, Wiberg K, Haglund P. Persistence, mobility and bioavailability of emerging organic contaminants discharged from sewage treatment plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 612:1532-1542. [PMID: 28915547 DOI: 10.1016/j.scitotenv.2017.09.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 09/01/2017] [Accepted: 09/01/2017] [Indexed: 05/06/2023]
Abstract
Little is known about the impact of emissions of micropollutants from small and large-scale sewage treatment plants (STPs) on drinking water source areas. We investigated a populated catchment that drains into Lake Mälaren, which is the drinking water source for around 2 million people including the inhabitants of Stockholm, Sweden. To assess the persistence, mobility, bioavailability and bioaccumulation of 32 structurally diverse emerging organic contaminants, sediment, integrated passive and grab water samples were collected along the catchment of the River Fyris, Sweden. The samples were complemented with STP effluent and fish samples from one sampling event. Contaminants identified as persistent, mobile, and bioavailable were 4,6,6,7,8,8-hexamethyl-1,3,4,7-tetrahydrocyclopenta[g]isochromene (galaxolide), 2,4,7,9-tetramethyl-5-decyn-4,7-diol, tris(2-chloro-ethyl) phosphate, tris(1,3-dichloro-2-propyl) phosphate, and tris(1-chloro-2-propyl) phosphate. Galaxolide and 2,4,7,9-tetramethyl-5-decyn-4,7-diol were additionally found to be bioaccumulative, whereas n-butylbenzenesulfonamide was found to be only persistent and mobile. The total median mass flux of the persistent and mobile target analytes from Lake Ekoln into the drinking water source area of Lake Mälaren was estimated to be 27kg per year. Additionally, 10 contaminants were tentatively identified by non-target screening using NIST library searches and manual review. Two of those were confirmed by reference standards and further two contaminants, propylene glycol and rose acetate, were discharged from STPs and travelled far from the source. Attenuation of mass fluxes was highest in the summer and autumn seasons, suggesting the importance of biological degradation and photodegradation for the persistence of the studied compounds.
Collapse
Affiliation(s)
- Kristin M Blum
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | | | - Lutz Ahrens
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, Uppsala, Sweden
| | - Karin Wiberg
- Dept. of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), Box 7050, Uppsala, Sweden
| | - Peter Haglund
- Dept. of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
9
|
Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T. Spatio-temporal trends of polybrominated dibenzo-p-dioxins and dibenzofurans in archived sediments from Tokyo Bay, Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:340-347. [PMID: 28478363 DOI: 10.1016/j.scitotenv.2017.04.166] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/21/2017] [Accepted: 04/21/2017] [Indexed: 06/07/2023]
Abstract
The present study examined the occurrence and potential sources of mono- to octa-brominated dibenzo-p-dioxins/dibenzofurans (Mo-OBDD/Fs) in Tokyo Bay, Japan, using surface sediments and 210Pb-dated sediment cores (covering the period 1895-2000) collected in 2002. The results showed a clear difference in the spatio-temporal trend between PBDFs and PBDDs. The spatial distribution of PBDF concentrations in the surface sediments showed a decreasing trend from the head to the mouth of the bay, which was similar to that of polybrominated diphenyl ethers (PBDEs) reported previously for the same sediment samples. In the sediment cores, PBDF and PBDE concentrations increased drastically after the 1960s and reached the highest levels in the late 1990s. In addition, a significant positive correlation was observed between the concentrations of their predominant congeners, 1,2,3,4,6,7,8-HpBDF and BDE-209. These results indicate that main contamination sources of PBDFs were technical PBDE formulations, especially DecaBDE. In contrast, total PBDDs in the surface sediments were rather uniform in the whole area of the bay. Furthermore, in the sediment cores, PBDD levels showed marginal fluctuation over the past century, with the predominance of 2,7-/2,8-DiBDDs and 1,3,7-/1,3,8-TrBDDs in all the sediment layers. It is noteworthy that these PBDD congeners were also found in the sediment layers corresponding to the pre-industrial era, supporting their natural formation in the coastal environment.
Collapse
Affiliation(s)
- Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masayuki Someya
- Tokyo Metropolitan Research Institute for Environmental Protection, 1-7-5 Shinsuna Koto, Tokyo 136-0075, Japan
| | - Tomohiko Isobe
- Integrated Health Risk Assessment Section, National Institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan; Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University, 3-5-7 Tarumi, Matsuyama, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| |
Collapse
|
10
|
Goto A, Tue NM, Someya M, Isobe T, Takahashi S, Tanabe S, Kunisue T. Occurrence of Natural Mixed Halogenated Dibenzo-p-Dioxins: Specific Distribution and Profiles in Mussels from Seto Inland Sea, Japan. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:11771-11779. [PMID: 28925692 DOI: 10.1021/acs.est.7b03738] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In addition to unintentional formation of polychlorinated (PCDD/Fs), polybrominated (PBDD/Fs), and mixed halogenated (PXDD/Fs) dibenzo-p-dioxins/dibenzofurans during industrial activities, recent studies have shown that several PBDD and PXDD congeners can be produced by marine algal species from the coastal environment. However, multiple exposure status of anthropogenic and naturally derived dioxins in marine organisms remains unclear. The present study examined the occurrence, geographical distribution, and potential sources of PCDD/Fs, PBDD/Fs, and PXDD/Fs using mussels and brown algae collected in 2012 from Seto Inland Sea, Japan. The results showed the widespread occurrence of not only PCDD/Fs but also PBDDs and PXDDs in Seto Inland Sea. The geographical distribution pattern of PBDDs was similar to that of PXDDs, which were obviously different from that of PCDDs and PCDFs, and a significant positive correlation was observed between the levels of their predominant congeners, i.e., 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs. Interestingly, potential precursors of 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs, hydroxylated tetrabrominated diphenyl ethers (6-HO-BDE-47 and 2'-HO-BDE-68) and their mixed halogenated analogue (HO-TrBMoCDE), were also identified in the mussel and brown alga samples collected at the same site, by comprehensive two-dimensional gas chromatography with time-of-flight mass spectrometry (GC × GC-ToFMS) analyses. It is noteworthy that residue levels of 1,3,7-/1,3,8-TrBDDs and DiBMoCDDs in the mussel were 30 times higher than those in the brown alga, suggesting the bioaccumulation of these natural dioxins.
Collapse
Affiliation(s)
- Akitoshi Goto
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Masayuki Someya
- Tokyo Metropolitan Research Institute for Environmental Protection , 1-7-5 Shinsuna, Koto-ku, Tokyo 136-0075, Japan
| | - Tomohiko Isobe
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies (NIES) , 16-2 Onogawa, Tsukuba, Ibaraki 305-8506, Japan
| | - Shin Takahashi
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
- Center of Advanced Technology for the Environment, Agricultural Faculty, Ehime University , 3-5-7 Tarumi, Matsuyama, Ehime 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University , 2-5 Bunkyo-cho, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
11
|
Bidleman TF, Brorström-Lundén E, Hansson K, Laudon H, Nygren O, Tysklind M. Atmospheric Transport and Deposition of Bromoanisoles Along a Temperate to Arctic Gradient. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10974-10982. [PMID: 28885011 DOI: 10.1021/acs.est.7b03218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Bromoanisoles (BAs) arise from O-methylation of bromophenols, produced by marine algae and invertebrates. BAs undergo sea-air exchange and are transported over the oceans. Here we report 2,4-DiBA and 2,4,6-TriBA in air and deposition on the Swedish west coast (Råö) and the interior of arctic Finland (Pallas). Results are discussed in perspective with previous measurements in the northern Baltic region in 2011-2013. BAs in air decreased from south to north in the order Råö > northern Baltic > Pallas. Geometric mean concentrations at Pallas increased significantly (p < 0.05) between 2002 and 2015 for 2,4-DiBA but not for 2,4,6-TriBA. The logarithm of BA partial pressures correlated significantly to reciprocal air temperature at the coastal station Råö and over the Baltic, but only weakly (2,4-DiBA) or not significantly (2,4,6-TriBA) at inland Pallas. Deposition fluxes of BAs were similar at both sites despite lower air concentrations at Pallas, due to greater precipitation scavenging at lower temperatures. Proportions of the two BAs in air and deposition were related to Henry's law partitioning and source regions. Precipitation concentrations were 10-40% of those in surface water of Bothnian Bay, northern Baltic Sea. BAs deposited in the bay catchment likely enter rivers and provide an unexpected source to northern estuaries. BAs may be precursors to higher molecular weight compounds identified by others in Swedish inland lakes.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| | - Eva Brorström-Lundén
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Katarina Hansson
- Swedish Environmental Research Institute (IVL) , Aschebergsgatan 44, SE-411 33 Gothenburg, Sweden
| | - Hjalmar Laudon
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences (SLU) , SE-901 83 Umeå, Sweden
| | - Olle Nygren
- Building Office, Umeå University , SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University , SE-901 87 Umeå, Sweden
| |
Collapse
|
12
|
Xu P, Tao B, Zhou Z, Fan S, Zhang T, Liu A, Dong S, Yuan J, Li H, Chen J, Huang Y. Occurrence, composition, source, and regional distribution of halogenated flame retardants and polybrominated dibenzo-p-dioxin/dibenzofuran in the soils of Guiyu, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 228:61-71. [PMID: 28511039 DOI: 10.1016/j.envpol.2017.05.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 05/08/2017] [Indexed: 06/07/2023]
Abstract
Guiyu, China, is well-known for the crude disposal of electronic waste (EW) and severe persistent organic pollutants (POPs). Therefore, in this study, the occurrence, composition, and source of polybrominated diphenyl ethers (PBDEs), 2,2',4,4',5,5'-hexabromobiphenyl (BB153), some novel brominated flame retardants (NBFRs), Dechlorane Plus (DP) and polybrominated dibenzo-p-dioxins/dibenzofurans (PBDD/Fs) in farmland soils covering Guiyu were studied. In EW disposal area soils, PBDEs were the most abundant FRs, with concentrations of 13-1014 ng g-1. The primary PBDE sources were technical Penta- and Deca-BDE mixtures in northern and southern Guiyu, respectively. The levels of BB153 were relatively low, possibly because it has been banned in the 1970s. The concentrations of hexabromobenzene (HBB) were 0.048-3.3 ng g-1, while pentabromoethylbenzene (PBEB) was almost not detected in the soils. Two alternatives to commercial PBDEs, decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), were the primary NBFRs, with concentrations of 1.8-153 ng g-1 and 0.43-15 ng g-1, respectively. DP was another primary FR, with concentrations of 0.57-146 ng g-1. Moreover, syn-DP and anti-DP isomers were not stereoselectively decomposed during the EW disposal process and were therefore present in their original fractions in the soils. The levels of PBDD/Fs in EW disposal area soils were 2.5-17 pg TEQ g-1. 1,2,3,4,6,7,8-HpBDF and OBDF were the dominant congeners, mainly derived from processing, pyrolysis and combustion of BFRs. The regional distribution of pollutants was shown to be related to the disposal manner of EW, with their open thermal disposal tending to release more highly brominated compounds such as BDE209, DBDPE, and 1,2,3,4,6,7,8-HpBDF. Additionally, some riverbank sites were heavily polluted because of nearby point sources, downwind Simapu (SMP) town without EW disposal activity was also contaminated by these pollutants.
Collapse
Affiliation(s)
- Pengjun Xu
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China; Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou District, Dalian 116023, China; University of Chinese Academy of Sciences, 19 A Yuquan Road, Shijingshan District, Beijing 100049, China; Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Bu Tao
- Hebei Agricultural University, 289 Lingyusi Street, Baoding 071001, China
| | - Zhiguang Zhou
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Shuang Fan
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Ting Zhang
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Aimin Liu
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Shuping Dong
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China
| | - Jingli Yuan
- Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
| | - Hong Li
- Beijing Chaoyang District Environmental Protection Monitoring Center, 5 South Nongzhan Road, Chaoyang District, Beijing 100125, China
| | - Jiping Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Shahekou District, Dalian 116023, China.
| | - Yeru Huang
- National Research Center for Environmental Analysis and Measurement, 1 South Yuhui Road, Chaoyang District, Beijing 100029, China.
| |
Collapse
|
13
|
Xu B, Wu M, Pan C, Sun Y, Yuan D, Tang L, Xu G. Aquatic photolysis of hydroxylated polybromodiphenyl ethers under direct UV irradiation: a case study of 2'-HO-BDE-68. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:14409-14416. [PMID: 28432629 DOI: 10.1007/s11356-017-8726-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 02/28/2017] [Indexed: 06/07/2023]
Abstract
Hydroxylated polyhalodiphenyl ethers (HO-PXDEs) have attracted considerable scientific interest as examples of emerging aquatic pollutants. However, a comprehensive assessment of disposal methods for this particular pollutant was seldom investigated. This study examined the UV light degradation of HO-PXDEs, using 2'-HO-2, 3', 4, 5'-tetrabromodiphenyl ether (2'-HO-BDE-68) as a case study. The results showed that UV light was superior to visible light and electron beam irradiation for producing a high degradation rate of 2'-HO-BDE-68. At low concentrations of HO-BDE, the degradation rate was not obviously improved with decreasing initial concentration. The degradation efficiency was also found to be better in alkaline solutions. In a UV/H2O2 system, the hydroxyl radical provided by H2O2 was shown to enhance the degradation efficiency. The main photolysis products of 2'-HO-BDE-68 were identified, and the possible photodegradation pathways were proposed. 1, 3, 8-Tribromodibenzo-p-dioxin was one of the photoproducts, which indicates that secondary pollution must also be considered with the UV photolysis process.
Collapse
Affiliation(s)
- Bentuo Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Minghong Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Chenyuan Pan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Yan Sun
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Debao Yuan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Liang Tang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China
| | - Gang Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
- Institute of Applied Radiation, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, People's Republic of China.
| |
Collapse
|
14
|
Bramwell L, Mortimer D, Rose M, Fernandes A, Harrad S, Pless-Mulloli T. UK dietary exposure to PCDD/Fs, PCBs, PBDD/Fs, PBBs and PBDEs: comparison of results from 24-h duplicate diets and total diet studies. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2016; 34:65-77. [DOI: 10.1080/19440049.2016.1258493] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Lindsay Bramwell
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| | | | | | | | - Stuart Harrad
- School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Tanja Pless-Mulloli
- Institute of Health and Society, Newcastle University, Newcastle upon Tyne, UK
| |
Collapse
|
15
|
Bidleman TF, Agosta K, Andersson A, Haglund P, Liljelind P, Hegmans A, Jantunen LM, Nygren O, Poole J, Ripszam M, Tysklind M. Sea-air exchange of bromoanisoles and methoxylated bromodiphenyl ethers in the Northern Baltic. MARINE POLLUTION BULLETIN 2016; 112:58-64. [PMID: 27575397 DOI: 10.1016/j.marpolbul.2016.08.042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Revised: 08/11/2016] [Accepted: 08/18/2016] [Indexed: 06/06/2023]
Abstract
Halogenated natural products in biota of the Baltic Sea include bromoanisoles (BAs) and methoxylated bromodiphenyl ethers (MeO-BDEs). We identified biogenic 6-MeO-BDE47 and 2'-MeO-BDE68 in Baltic water and air for the first time using gas chromatography - high resolution mass spectrometry. Partial pressures in air were related to temperature by: log p/Pa=m/T(K)+b. We determined Henry's law constants (HLCs) of 2,4-dibromoanisole (2,4-DiBA) and 2,4,6-tribromoanisole (2,4,6-TriBA) from 5 to 30°C and revised our assessment of gas exchange in the northern Baltic. The new water/air fugacity ratios (FRs) were lower, but still indicated net volatilization in May-June for 2,4-DiBA and May - September for 2,4,6-TriBA. The net flux (negative) of BAs from Bothnian Bay (38,000km2) between May - September was revised from -1319 to -532kg. FRs of MeO-BDEs were >1, suggesting volatilization, although this is tentative due to uncertainties in their HLCs and binding to dissolved organic carbon.
Collapse
Affiliation(s)
- Terry F Bidleman
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden.
| | - Kathleen Agosta
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Agneta Andersson
- Department of Ecology and Environmental Science, Umeå University, SE-901 87 Umeå, Sweden
| | - Peter Haglund
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Per Liljelind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Alyse Hegmans
- Department of Environmental Science, Royal Roads University, Victoria, BC, V9B 5Y2, Canada
| | - Liisa M Jantunen
- Air Quality Processes Research Section, Environment and Climate Change Canada, 6248 Eighth Line, Egbert, ON L0L 1N0, Canada
| | - Olle Nygren
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Justen Poole
- Department of Chemistry, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Matyas Ripszam
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| | - Mats Tysklind
- Department of Chemistry, Umeå University, SE-901 87 Umeå, Sweden
| |
Collapse
|
16
|
Zhang YN, Xie Q, Sun G, Yang K, Song S, Chen J, Zhou C, Li Y. Effects of dissolved organic matter on phototransformation rates and dioxin products of triclosan and 2'-HO-BDE-28 in estuarine water. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2016; 18:1177-1184. [PMID: 27383795 DOI: 10.1039/c6em00122j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Photochemical transformation of hydroxylated polyhalodiphenyl ethers (HO-PXDEs) has attracted much attention for their ubiquitous presence and the photochemical formation of highly toxic dioxins. Dissolved organic matter (DOM) plays an important role in the environmental photochemical transformation of organic pollutants. However, the effects of DOM on the photolysis kinetics and dioxin formation of HO-PXDEs are still not fully understood. Herein, the effects of Suwannee River natural organic matter (SRNOM) on the phototransformation of 2'-HO-2,4,4'-trichlorodiphenyl ether (triclosan) and 2'-HO-2,4,4'-tribromodiphenyl ether (2'-HO-BDE-28) were investigated in artificial estuarine water (AEW). The results showed that although SRNOM induced indirect photolysis of triclosan and 2'-HO-BDE-28, it decreased the observed photolytic rate constants due to light screening, static quenching and dynamic quenching effects. The above effects were quantified firstly. Direct photolysis is more important than indirect photolysis in the transformation of the target compounds and the production of dioxins. SRNOM increased the dioxin yields of the two HO-PXDEs. It was also found that SRNOM decreased the formation rate constant (kp) of 2,8-dichlorodibenzo-p-dioxin (2,8-DCDD) from triclosan and showed no obvious influence on the kp of 2,8-dibromodibenzo-p-dioxin (2,8-DBDD) from 2'-HO-BDE-28. SRNOM showed no obvious influence on the degradation of 2,8-DCDD, while it increased the degradation rate constant of 2,8-DBDD. The promoting effect on the degradation of 2,8-DBDD was attributed to the formation of chloride radicals with the concurrence of SRNOM and Cl(-) in AEW. This study revealed the roles of SRNOM in the photochemical transformation of HO-PXDEs and the photochemical formation and degradation of dioxins, which is important for elucidating the transformation fate of HO-PXDEs in aquatic environments.
Collapse
Affiliation(s)
- Ya-Nan Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Fu Z, Wang Y, Chen J, Wang Z, Wang X. How PBDEs Are Transformed into Dihydroxylated and Dioxin Metabolites Catalyzed by the Active Center of Cytochrome P450s: A DFT Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:8155-8163. [PMID: 27363260 DOI: 10.1021/acs.est.6b00524] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Predicting metabolism of chemicals and potential toxicities of relevant metabolites remains a vital and difficult task in risk assessment. Recent findings suggested that polybrominated diphenyl ethers (PBDEs) can be transformed into dihydroxylated and dioxin metabolites catalyzed by cytochrome P450 enzymes (CYPs), whereas the mechanisms pertinent to these transformations remain largely unknown. Here, by means of density functional theory (DFT) calculations, we probed the metabolic pathways of 2,2',4,4'-tetraBDE (BDE-47) using the active center model of CYPs (Compound I). Results show that BDE-47 is first oxidized to monohydroxylated products (HO-BDEs), wherein a keto-enol tautomerism is identified for rearrangement of the cyclohexenone intermediate. Dihydroxylation with HO-BDEs as precursors, has a unique phenolic H-abstraction and hydroxyl rebound pathway that is distinct from that for monohydroxylation, which accounts for the absence of epoxides in in vitro studies. Furthermore, we found only dihydroxylated PBDEs with heterophenyl -OH substituents ortho- and meta- to the ether bond serve as precursors for dioxins, which are evolved from aryl biradical coupling of diketone intermediates that are produced from dehydrogenation of the dihydroxylated PBDEs by Compound I. This study may enlighten the development of computational models that afford mechanism-based prediction of the xenobiotic biotransformation catalyzed by CYPs.
Collapse
Affiliation(s)
- Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yong Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences , Lanzhou 730000, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Zhongyu Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Xingbao Wang
- State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
18
|
Hwang JH, Park JY, Park HJ, Bak SM, Hirano M, Iwata H, Park YS, Kim EY. Ecological factors drive natural selection pressure of avian aryl hydrocarbon receptor 1 genotypes. Sci Rep 2016; 6:27526. [PMID: 27283192 PMCID: PMC4901312 DOI: 10.1038/srep27526] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Accepted: 05/20/2016] [Indexed: 01/26/2023] Open
Abstract
The aryl hydrocarbon receptor (AHR) mediates dioxin toxicities. Several studies have suggested that two amino acid residues corresponding to the 324th and 380th positions in the ligand binding domain (LBD) of the chicken AHR1 (Ile_Ser as high sensitivity, Ile_Ala as moderate sensitivity, and Val_Ala as low sensitivity), could be an important factor determining dioxin sensitivity in avian species. Here, we analyzed the association between ecological factors and AHR1 LBD genotypes of 113 avian species. Cluster analyses showed that 2 major clusters and sub-clusters of the cluster 3 were associated with specific AHR1 genotypes depending on the food, habitat, and migration of the animal. The majority of the species with Ile_Ala type were the Passeriformes, which are omnivorous or herbivorous feeders in the terrestrial environment. The species with Val_Ala type was primarily composed of raptors and waterbirds, which have been exposed to naturally occurring dioxins. An in vitro reporter gene assay revealed that the sensitivity to a natural dioxin, 1,3,7-tribromodibenzo-p-dioxin was in the order of Ile_Ser > Ile_Ala > Val_Ala. These results suggest that ecological factors related to the exposure of natural dioxins contribute to natural selection of the avian AHR1 genotype, which consequently leads to different sensitivity to man-made dioxins.
Collapse
Affiliation(s)
- Ji-Hee Hwang
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Jin-Young Park
- Nature Conservation Research Division, National Institute of Environmental Research, Hwangyoungro 42, Seo-Gu, Incheon 404-708, Korea
| | - Hae-Jeong Park
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Su-Min Bak
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, 790-8577, Japan
| | - Young-Suk Park
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| | - Eun-Young Kim
- Department of Life and Nanopharmaceutical Science and Department of Biology, Kyung Hee University, Hoegi-Dong, Dongdaemun-Gu, Seoul 130-701, Korea
| |
Collapse
|
19
|
Santos MSF, Alves A, Madeira LM. Chemical and photochemical degradation of polybrominated diphenyl ethers in liquid systems - A review. WATER RESEARCH 2016; 88:39-59. [PMID: 26465809 DOI: 10.1016/j.watres.2015.09.044] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/24/2015] [Accepted: 09/27/2015] [Indexed: 06/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants which have received a great deal of attention due to their persistence, potential to bioaccumulate and possible toxic effects. PBDEs have been globally detected in humans, wildlife and environment, highlighting the urgency of looking for effective removal technologies to mitigate their spread and accumulation in the environment. Among all environmental compartments, the water has raised particular attention. This paper aims to provide information about the suitability of the main degradation processes investigated to date (photolysis, zerovalent iron and TiO2 photocatalysis) for the degradation of PBDEs in water matrices. The most relevant criteria behind the design of a system for such purpose are discussed in detail for each individual process. The comparative analysis suggests that the oxidative degradation by TiO2 is the most appropriated technology to treat waters contaminated with PBDEs because higher debromination and mineralization degrees are achieved, preventing the formation/accumulation of lower brominated PBDE congeners and promoting the cracking of aromatic cores.
Collapse
Affiliation(s)
- Mónica S F Santos
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| | - Arminda Alves
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Luis M Madeira
- LEPABE - Laboratory for Process, Environmental, Biotechnology and Energy Engineering, Faculty of Engineering, University of Porto, R. Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
20
|
Roszko M, Szymczyk K, Jędrzejczak R. Photochemistry of tetra- through hexa-brominated dioxins/furans, hydroxylated and native BDEs in different media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18381-18393. [PMID: 26257117 PMCID: PMC4669378 DOI: 10.1007/s11356-015-5065-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 07/10/2015] [Indexed: 06/04/2023]
Abstract
The aim of this study was to investigate (i) the behavior of native PBDEs during UV irradiation in different media, (ii) the possibility of their transformation into hydroxylated PBDEs in aqueous media, and (iii) the photochemistry/levels of brominated dioxins/furans formed from hydroxylated PBDEs. Debromination leading to the formation of a wide range of low-brominated congeners was the main path of photocatalyzed transformations of PBDEs. In organic solvents other than toluene, BDEs degraded in line with the pseudo first order kinetics (10-20 min half-life, depending on congener type and reaction medium). Irradiated BDE 209 congener behaved quite differently than lower-brominated BDEs: detectable amounts of various bromo-benzenes were found. That suggests that UV irradiation of BDE 209 leads to cleavage of the ether bound between the congener's aromatic rings. Formation of bromophenyl bromo-methyl-biphenyl ethers or benzyl-bromophenoxybenzenes was observed in irradiated PBDE toluene-based solutions. The total concentration of OH-BDEs found in the reaction medium did not exceed 0.2% of the initial precursor mass. Moreover, lower-brominated congeners detected in the reaction medium indicate subsequent debromination of OH-BDEs or hydro-debromination of the degraded congeners. Brominated dioxins and low levels of furans were observed in samples containing OH-BDEs. The total mass of dioxins did not exceed 3.5% of the initial precursor mass.
Collapse
Affiliation(s)
- Marek Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland
| | - Renata Jędrzejczak
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532, Warsaw, Poland
| |
Collapse
|
21
|
Xue W, Chen J, Xie Q, Zhao H. Direct photolysis of MeO-PBDEs in water and methanol: focusing on cyclization product MeO-PBDFs. CHEMOSPHERE 2015; 139:518-524. [PMID: 26298690 DOI: 10.1016/j.chemosphere.2015.07.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Revised: 07/02/2015] [Accepted: 07/17/2015] [Indexed: 06/04/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) and hydroxylated PBDEs can transform into polybrominated dibenzofurans (PBDFs) via photocyclization. However, it is unclear whether methoxylated PBDEs (MeO-PBDEs) can photocyclize to form MeO-PBDFs. In this study, 5-MeO-BDE-47, 5'-MeO-BDE-99 and 6-MeO-BDE-85 were selected as models to investigate their direct photolysis, especially photocyclization in two solvent environments (water and methanol) using simulated photochemical experiments and density functional theory (DFT) calculations. The experimental results showed that MeO-PBDEs had faster direct photolysis reactions and higher quantum yields in methanol, and MeO-PBDFs could only be formed in a methanol solution of 5-MeO-BDE-47. The DFT results indicated that the lowest excited triplet state MeO-PBDEs can form dibenzofurans via direct cyclization pathways. Intra-annular H-elimination was found to be the rate-determining step for most cyclization pathways with high reaction barriers (⩾19.7kcal/mol), while 5-MeO-BDE-47 was found to have a distinct pathway for which the rate-determining step is ring closure with a low barrier (13.8kcal/mol) in a methanol environment. For this pathway, H-elimination assisted by Br cleaved from an ortho-C-Br bond was observed with a 2.0kcal/mol barrier. Thus, the DFT results reasonably explained the experimental findings, and the photocyclization of MeO-PBDEs depended on the specific Br-substitution patterns and specific effects of the environmental media.
Collapse
Affiliation(s)
- Weifeng Xue
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (MOE), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
22
|
Dahlgren E, Enhus C, Lindqvist D, Eklund B, Asplund L. Induced production of brominated aromatic compounds in the alga Ceramium tenuicorne. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:18107-18114. [PMID: 26178826 DOI: 10.1007/s11356-015-4907-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Accepted: 06/16/2015] [Indexed: 06/04/2023]
Abstract
In the Baltic Sea, high concentrations of toxic brominated aromatic compounds have been detected in all compartments of the marine food web. A growing body of evidence points towards filamentous algae as a natural producer of these chemicals. However, little is known about the effects of environmental factors and life history on algal production of brominated compounds. In this study, several congeners of methoxylated polybrominated diphenyl ethers (MeO-PBDEs), hydroxylated polybrominated diphenyl ethers (OH-PBDEs) and brominated phenols (BPs) were identified in a naturally growing filamentous red algal species (Ceramium tenuicorne) in the Baltic Sea. The identified substances displayed large seasonal variations in the alga with a concentration peak in July. Production of MeO-/OH-PBDEs and BPs by C. tenuicorne was also established in isolated clonal material grown in a controlled laboratory setting. Based on three replicates, herbivory, as well as elevated levels of light and salinity in the culture medium, significantly increased the production of 2,4,6-tribromophenol (2,4,6-TBP). Investigation of differences in production between the isomorphic female, male and diploid clonal life stages of the alga grown in the laboratory revealed a significantly higher production of 2,4,6-TBP in the brackish water female gametophytes, compared to the corresponding marine gametophytes. Even higher concentrations of 2,4,6-TBP were produced by marine male gametophytes and sporophytes.
Collapse
Affiliation(s)
- Elin Dahlgren
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| | | | - Dennis Lindqvist
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Britta Eklund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden
| | - Lillemor Asplund
- Department of Environmental Science and Analytical Chemistry, Stockholm University, Stockholm, Sweden.
| |
Collapse
|
23
|
Simultaneous separation of chlorinated/brominated dioxins, polychlorinated biphenyls, polybrominated diphenyl ethers and their methoxylated derivatives from hydroxylated analogues on molecularly imprinted polymers prior to gas/liquid chromatography and mass spectrometry. Talanta 2015; 144:171-83. [DOI: 10.1016/j.talanta.2015.04.070] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/21/2015] [Accepted: 04/23/2015] [Indexed: 01/07/2023]
|
24
|
Kerrigan JF, Engstrom DR, Yee D, Sueper C, Erickson PR, Grandbois M, McNeill K, Arnold WA. Quantification of Hydroxylated Polybrominated Diphenyl Ethers (OH-BDEs), Triclosan, and Related Compounds in Freshwater and Coastal Systems. PLoS One 2015; 10:e0138805. [PMID: 26466159 PMCID: PMC4605494 DOI: 10.1371/journal.pone.0138805] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022] Open
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-BDEs) are a new class of contaminants of emerging concern, but the relative roles of natural and anthropogenic sources remain uncertain. Polybrominated diphenyl ethers (PBDEs) are used as brominated flame retardants, and they are a potential source of OH-BDEs via oxidative transformations. OH-BDEs are also natural products in marine systems. In this study, OH-BDEs were measured in water and sediment of freshwater and coastal systems along with the anthropogenic wastewater-marker compound triclosan and its photoproduct dioxin, 2,8-dichlorodibenzo-p-dioxin. The 6-OH-BDE 47 congener and its brominated dioxin (1,3,7-tribromodibenzo-p-dioxin) photoproduct were the only OH-BDE and brominated dioxin detected in surface sediments from San Francisco Bay, the anthropogenically impacted coastal site, where levels increased along a north-south gradient. Triclosan, 6-OH-BDE 47, 6-OH-BDE 90, 6-OH-BDE 99, and (only once) 6’-OH-BDE 100 were detected in two sediment cores from San Francisco Bay. The occurrence of 6-OH-BDE 47 and 1,3,7-tribromodibenzo-p-dioxin sediments in Point Reyes National Seashore, a marine system with limited anthropogenic impact, was generally lower than in San Francisco Bay surface sediments. OH-BDEs were not detected in freshwater lakes. The spatial and temporal trends of triclosan, 2,8-dichlorodibenzo-p-dioxin, OH-BDEs, and brominated dioxins observed in this study suggest that the dominant source of OH-BDEs in these systems is likely natural production, but their occurrence may be enhanced in San Francisco Bay by anthropogenic activities.
Collapse
Affiliation(s)
- Jill F. Kerrigan
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Daniel R. Engstrom
- St. Croix Watershed Research Station, Science Museum of Minnesota, Marine on St. Croix, Minnesota, United States of America
| | - Donald Yee
- San Francisco Estuary Institute, Oakland, California, United States of America
| | - Charles Sueper
- Pace Analytical Services Inc., Minneapolis, Minnesota, United States of America
| | - Paul R. Erickson
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - Matthew Grandbois
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kristopher McNeill
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, Zurich, Switzerland
| | - William A. Arnold
- Department of Civil, Environmental, and Geo- Engineering, University of Minnesota, Minneapolis, Minnesota, United States of America
- * E-mail:
| |
Collapse
|
25
|
Kim UJ, Jo H, Lee IS, Joo GJ, Oh JE. Investigation of bioaccumulation and biotransformation of polybrominated diphenyl ethers, hydroxylated and methoxylated derivatives in varying trophic level freshwater fishes. CHEMOSPHERE 2015; 137:108-114. [PMID: 26092317 DOI: 10.1016/j.chemosphere.2015.05.104] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2015] [Revised: 05/29/2015] [Accepted: 05/31/2015] [Indexed: 06/04/2023]
Abstract
The concentrations and distributions of polybrominated diphenyl ethers (PBDEs) and their hydroxylated and methoxylated derivatives (OH- and MeO-BDEs) were determined in seven representative fish species from a river in the Republic of Korea. The PBDEs and their derivatives were found to be accumulated in the internal organs of the fish to different extents. PBDEs were preferentially accumulated in the internal organs rather than muscle tissue, and especially, showed increasing accumulation tendencies with increasing bromination level in liver. The OH-BDEs and MeO-BDEs were preferentially accumulated in the liver and gastrointestinal tract, respectively. MeO-BDE concentrations were found to increase according to relative trophic level, suggesting that the PBDE derivatives can be biomagnified to a greater extent than the parent PBDEs in freshwater food webs. In a comparison with the dissolved analyte concentrations in the water that were measured by using semi-permeable membrane devices, the greater uptake of non-ortho substituted MeO-BDEs by fish was observed.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea; Center for Environment, Health and Welfare Research, Korea Institute Science and Technology (KIST), 39-1, Hawolgok-dong, Seongbuk-gu, Seoul 136-791, Republic of Korea
| | - Hyunbin Jo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - In-Seok Lee
- National Fisheries Research & Development Institute (NFRDI), 216, Gijanghaeanro, Gijang-Eup, Gijang-Gun, Busan 619-705, Republic of Korea
| | - Gea-Jae Joo
- Department of Biological Sciences, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea
| | - Jeong-Eun Oh
- Department of Civil and Environmental Engineering, Pusan National University, San 30, Jangjeon-dong, Geumjeong-gu, Busan 609-735, Republic of Korea.
| |
Collapse
|
26
|
Roszko M, Szymczyk K, Rzepkowska M, Jędrzejczak R. Preliminary study on brominated dioxins/furans and hydroxylated/methoxylated PBDEs in Baltic cod (Gadus morhua) liver. Comparison to the levels of analogue chlorinated co-occurring pollutants. MARINE POLLUTION BULLETIN 2015; 96:165-175. [PMID: 26002098 DOI: 10.1016/j.marpolbul.2015.05.032] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 05/12/2015] [Indexed: 06/04/2023]
Abstract
Low pg levels of PBDD/Fs in 0.8-38.9 pg g(-1) (fat) range (mean 14.2 pg g(-1)) observed in the tested cod liver samples were significantly lower than levels of their chlorinated analogues (25.1-95.9 range, 37.7 mean pg g(-1) fat). Brominated furans dominated the congener profile. Elevated levels of OH-/MeO-BDE were however observed with mean concentrations at 2769±1319 and 5441±2918 pg g(-1) (fat) respectively. The observed congener profiles with the predominance of 6-OH-BDE 47 and the relatively high proportion between the native and hydroxylated compounds indicate on natural origin of those compounds or at least presence of various exposure sources. A large fraction of studied samples did not comply with the currently standing EU regulations concerning PCBs and chlorinated dioxins (11%), especially as regards non-dioxin like PCBs (88%).
Collapse
Affiliation(s)
- Marek Roszko
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland.
| | - Krystyna Szymczyk
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| | - Małgorzata Rzepkowska
- Department of Ichthyobiology and Fisheries, Faculty of Animal Sciences, Warsaw University of Life Sciences, Ciszewskiego 8, 02-776 Warsaw, Poland
| | - Renata Jędrzejczak
- Department of Food Analysis, Institute of Agricultural and Food Biotechnology, Rakowiecka 36, 02-532 Warsaw, Poland
| |
Collapse
|
27
|
Xie Q, Chen J, Zhao H, Wang X, Xie HB. Distinct photoproducts of hydroxylated polybromodiphenyl ethers from different photodegradation pathways: a case study of 2'-HO-BDE-68. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2015; 17:351-357. [PMID: 25569145 DOI: 10.1039/c4em00395k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Hydroxylated polyhalodiphenyl ethers (HO-PXDEs) are emerging aquatic pollutants. Previous studies have shown that HO-PXDEs can photogenerate dioxins and phenolic compounds. However, it is unclear which photochemical pathways are responsible for the various photoproducts. This study investigates the direct photolysis and photooxidation initiated by (1)O2 and ˙OH that can be formed by photosensitization, taking 2'-HO-2,3',4,5'-tetrabromodiphenyl ether (2'-HO-BDE-68) as a case study. The results show that 1,3,8-tribromodibenzo-p-dioxin can only be produced during direct photolysis. By mass spectrum analysis, four dihydroxylated polybromodiphenyl ethers, generated from both direct and indirect photodegradation were confirmed. Among them, di-HO-tribromodiphenyl ether (di-HO-TBDE) was the main product generated from direct photohydrolysis. Most probably, the di-HO-TBDE is 2',5'-HO-2,3',4-tribromodiphenyl ether, as was suggested by density functional theory calculations. Ether bond cleavage is a dominant pathway for the direct photolysis and photooxidation reactions leading to 2,4-dibromophenol as the dominant product. The yields of the products, which are irrespective of reaction time and can be employed to compare the ability of different HO-PXDEs to photogenerate a given product, were reported. This study indicates that for accurate ecological risk assessment of HO-PXDEs, their different photodegradation pathways that may lead to different photoproducts should be considered.
Collapse
Affiliation(s)
- Qing Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | | | | | | | | |
Collapse
|
28
|
Kim UJ, Yen NTH, Oh JE. Hydroxylated, methoxylated, and parent polybrominated diphenyl ethers (PBDEs) in the inland environment, Korea, and potential OH- and MeO-BDE source. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:7245-7253. [PMID: 24911666 DOI: 10.1021/es5006972] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The concentrations, congener profiles, and phase-specific distribution profiles of 27 polybrominated diphenyl ethers and 10 hydroxylated and 18 methoxylated brominated diphenyl ethers (OH- and MeO-BDEs; later called structural analogues of PBDEs) were determined in surface soil, water, air, and vegetation from the southeastern city of Busan, Korea for 2010-2011. The total PBDE concentrations were 0.18-7.7 ng/g in soil, 6.3-87 pg/L [corrected] in water, 5.3-16 pg/m(3) in air, and 0.06-0.22 ng/g in vegetation. The OH- and MeO-BDE concentrations were lower than the parent PBDE concentrations in soil samples but OH-BDEs were much greater in the water samples and MeO-BDEs were much greater in the air samples. The relative concentrations of the PBDEs and their structural analogues varied depending on the type and homologue of the degradation product, the substituent position, and the characteristics of the environmental medium. In particular, the OH-BDEs were not found in air samples and the OH-penta BDEs were not detected in any of the matrices. The dominance of the ortho-substituted structural analogues found in water and vegetation suggested that they may have natural sources, but different substituent patterns were found in the air and soil samples, suggesting that the structural analogues had different formation mechanisms in these media.
Collapse
Affiliation(s)
- Un-Jung Kim
- Department of Civil and Environmental Engineering, Pusan National University , Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 609-735, Republic of Korea
| | | | | |
Collapse
|
29
|
Petropoulou SSE, Duong W, Petreas M, Park JS. Fast liquid chromatographic-tandem mass spectrometric method using mixed-mode phase chromatography and solid phase extraction for the determination of 12 mono-hydroxylated brominated diphenyl ethers in human serum. J Chromatogr A 2014; 1356:138-47. [PMID: 25001336 DOI: 10.1016/j.chroma.2014.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 06/12/2014] [Accepted: 06/16/2014] [Indexed: 01/02/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) are formed from the oxidative metabolism of polybrominated diphenyl ethers (PBDEs) in humans, rats and mice, but their quantitation in human blood and other matrices with liquid chromatography-mass spectrometric techniques has been a challenge. In this study, a novel analytical method was developed and validated using only 250 μL of human serum for the quantitation of twelve OH-PBDEs, fully chromatographically separated in a 15 min analytical run. This method includes two novel approaches: an enzymatic hydrolysis procedure and a chromatographic separation using a mixed mode chromatography column. The enzymatic hydrolysis (EH) was found critical for 4'-OH-BDE17, which was not detectable without it. For the sample clean up, a solid phase extraction protocol was developed and validated for the extraction of the 12 congeners from human serum. In addition, for the first time baseline resolution of two components was achieved that correspond to a single peak previously identified as 6'-OH-BDE99. The method was validated for linearity, accuracy, precision, matrix effects, limit of quantification, limit of detection, sample stability and overall efficiency. Recoveries (absolute and relative) ranged from 66 to 130% with relative standard deviations <21% for all analytes. Limit of detection and quantitation ranged from 4 to 90 pg mL(-1) and 6-120 pg mL(-1), respectively, with no carry over effects. This method was applied in ten commercially available human serum samples from the general US population. The mean values of the congeners detected in all samples are 4'-OH-BDE17 (34.2 pg mL(-1)), 4-OH-BDE42 (33.9 pg mL(-1)), 5-OH-BDE47 (17.5 pg mL(-1)) and 4'-OH-BDE49 (12.4 pg mL(-1)).
Collapse
Affiliation(s)
- Syrago-Styliani E Petropoulou
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States.
| | - Wendy Duong
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| | - Myrto Petreas
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| | - June-Soo Park
- Environmental Chemistry Laboratory, Department of Toxic Substances Control, 700 Heinz Av, Suite 100, Berkeley, CA 94710, United States
| |
Collapse
|
30
|
Zhao H, Zhang G, Liu S, Qu B, Wang Y, Hu D, Jiang J, Quan X, Chen J. Bioaccumulation and elimination kinetics of hydroxylated polybrominated diphenyl ethers (2'-OH-BDE68 and 4-OH-BDE90) and their distribution pattern in common carp (Cyprinus carpio). JOURNAL OF HAZARDOUS MATERIALS 2014; 274:16-23. [PMID: 24759434 DOI: 10.1016/j.jhazmat.2014.03.058] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 03/11/2014] [Accepted: 03/26/2014] [Indexed: 06/03/2023]
Abstract
Hydroxylated polybrominated diphenyl ethers (OH-PBDEs) have attracted wide concerns due to their toxicities and universal presence in wildlife and humans. The relatively high Kow values of OH-PBDEs imply these compounds may have a significant bioaccumulation potential, but so far, the existing data provide little information regarding the kinetics of uptake and depuration in any organisms. Here we exposed common carps separately to two OH-PBDEs, 2'-OH-BDE68 and 4-OH-BDE90, for 30 days (d) in a flow-through system, followed by a 60-d depuration period in clean water to investigate compound-specific bioaccumulation and tissue distribution. Two OH-PBDEs could accumulate in common carp, and the high concentration was observed in liver or kidney. The uptake rates (k1) of two OH-PBDEs ranged from 0.15 to 21.3 d(-1) in fish, and the elimination rates (k2) ranged from 0.027 to 0.075 d(-1), which leaded to their BCF values in 4.8-299.2 ranges. Half-lives ranged from 9.2 d to 25.6 d. The exposure concentration significantly affected BCF values but didn't change their relative compositions in liver, kidney and muscle after a long exposure time. To our knowledge, this is the first study to systematically assess uptake, depuration kinetics and tissue distribution for OH-PBDEs via a controlled experimental animal model.
Collapse
Affiliation(s)
- Hongxia Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Guolong Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Sisi Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Baocheng Qu
- Dalian Institute of Product Quality Supervision & Inspection, Dalian 116021, China
| | - Yanli Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Dingfei Hu
- Department of Civil and Environmental Engineering, 4105 Seamans Center, University of Iowa, Iowa City, IA 52242, USA
| | - Jingqiu Jiang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
31
|
Cao H, He M, Han D, Li J, Li M, Wang W, Yao S. OH-initiated oxidation mechanisms and kinetics of 2,4,4'-Tribrominated diphenyl ether. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8238-8247. [PMID: 23855483 DOI: 10.1021/es400088v] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
2,4,4'-Tribromodiphenyl ether (BDE-28) was selected as a typical congener of polybrominated diphenyl ethers (PBDEs) to examine its fate both in the atmosphere and in water solution. All the calculations were obtained at the ground state. The mechanism result shows that the oxidations between BDE-28 and OH radicals are highly feasible especially at the less-brominated phenyl ring. Hydroxylated dibrominated diphenyl ethers (OH-PBDEs) are formed through direct bromine-substitution reactions (P1∼P3) or secondary reactions of OH-adducts (P4∼P8). Polybrominated dibenzo-p-dioxins (PBDDs) resulting from o-OH-PBDEs are favored products compared with polybrominated dibenzofurans (PBDFs) generated by bromophenols and their radicals. The complete degradation of OH adducts in the presence of O2/NO, which generates unsaturated ketones and aldehydes, is less feasible compared with the H-abstraction pathways by O2. Aqueous solution reduces the feasibility between BDE-28 and the OH radical. The rate constant of BDE-28 and the OH radical is determined to be 1.79 × 10(-12) cm(3) molecule(-1) s(-1) with an atmospheric lifetime of 6.7 days.
Collapse
Affiliation(s)
- Haijie Cao
- Environment Research Institute, Shandong University, Jinan 250100, PR China
| | | | | | | | | | | | | |
Collapse
|
32
|
Kliegman S, Eustis SN, Arnold WA, McNeill K. Experimental and theoretical insights into the involvement of radicals in triclosan phototransformation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6756-6763. [PMID: 23282071 DOI: 10.1021/es3041797] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
The phototransformation of triclosan has been a matter of longstanding interest due to both its prevalence in the environment and the discovery of 2,8-dichlorodibenzodioxin as a photoproduct. In this study, photolysis of triclosan resulted in several primary photoproducts including the following: 2,8-dichlorodibenzodioxin (4%), 4,5'-dichloro-[1,1'-biphenyl]-2,2'-diol (10%), 5-chloro-2-(4-chlorophenoxy)phenol (0.5%), and 2,4-dichlorophenol (7%). Trapping studies using d8-isopropanol showed deuterium incorporation in 5-chloro-2-(4-chlorophenoxy)phenol, providing strong evidence for the involvement of organic radicals in this reaction. Density functional calculations of the excited states of triclosan support the involvement of a radical intermediate in the mechanisms responsible for the dioxin, biphenyl, and phenoxyphenol photoproducts. The pathways for C-Cl bond cleavage and cyclization reactions are discussed.
Collapse
Affiliation(s)
- Sarah Kliegman
- Institute for Biogeochemistry and Pollutant Dynamics, ETH Zurich, 8092 Zurich, Switzerland
| | | | | | | |
Collapse
|
33
|
S Haglund P, Löfstrand K, Siek K, Asplund L. Powerful GC-TOF-MS Techniques for Screening, Identification and Quantification of Halogenated Natural Products. Mass Spectrom (Tokyo) 2013; 2:S0018. [PMID: 24349937 DOI: 10.5702/massspectrometry.s0018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Accepted: 01/15/2013] [Indexed: 11/23/2022] Open
Abstract
Comprehensive two-dimensional gas chromatography/time-of-flight mass spectrometry (GC×GC TOFMS) and gas chromatography/high-resolution time-of-flight mass spectrometry (GC-HRT) were used to detect and identify halogenated natural products (HNPs) in tissue homogenate, in this case brominated analytes present in a marine snail. Two classes of brominated anthropogenic compounds, polybrominated diphenyl ethers (PBDEs) and brominated dibenzofurans, were analyzed for comparison. Following conventional preparation, the sample was analyzed using GC×GC-TOF-MS. Isotope ratio scripts were used to compile a list of putatively brominated analytes from amongst the thousands of features resolved in the two-dimensional chromatogram. The structured nature of the chromatogram was exploited to propose identifications for several classes of brominated compounds, and include additional candidates that fell marginally outside the script tolerances. The sample was subsequently analyzed by GC-HRT. The high-resolution mass spectral data confirmed many formula assignments, facilitated confident assignment of an alternate formula when an original proposal did not hold, and enabled unknown identification. Identified HNPs include hydroxylated and methoxylated PBDE analogs, polybrominated dibenzo-p-dioxins (PBDDs) and hydroxyl-PBDDs, permitting the environmental occurrence and fate of such compounds to be studied.
Collapse
Affiliation(s)
| | - Karin Löfstrand
- Department of Applied Environmental Science, Stockholm University
| | | | - Lillemor Asplund
- Department of Materials and Environmental Chemistry, Stockholm University
| |
Collapse
|