1
|
Woo C, Lee G, Lim K, Kang J. Utilizing onion peel extract as photosensitizer combined with 405 nm blue light to control Salmonella Typhimurium on eggshells. J Food Sci 2025; 90:e70167. [PMID: 40145615 PMCID: PMC11948953 DOI: 10.1111/1750-3841.70167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/24/2025] [Accepted: 03/11/2025] [Indexed: 03/28/2025]
Abstract
The use of blue light within a range of 400-470 nm holds significant potential for sanitization purposes. However, due to an extended exposure duration needed for an antibacterial effect, the utilization of a photosensitizer (PS) to increase the efficacy of the treatment becomes essential. This study investigated prospective use of onion peel extract as a PS in combination with 405 nm blue light for the inactivation of Salmonella Typhimurium, a common foodborne pathogen on eggs. Extracts were obtained using 99% ethanol, 50% ethanol, and distilled water (DW). Their photosensitizing activities were then compared. The combination of 405 nm blue light and onion peel extract using 99% ethanol reduced bacterial populations more effectively than blue light treatment alone, while also increasing reactive oxygen species generation, cell membrane permeability, lipid peroxidation, and DNA damage levels. However, the antimicrobial effect of the 99% ethanol extract did not show a concentration dependence. Spraying DW extract on eggshell treated with 99% ethanol onion peel extract at 1 mg/mL and blue light further enhanced Salmonella reduction. Liquid chromatography was conducted for component separation. However, none of the separated fractions exhibited a significant antibacterial effect, suggesting that the active compounds responsible for antibacterial activity might work synergistically in the crude extract rather than individually. In contrast, the crude extract exhibited a significant antibacterial effect, suggesting that 99% ethanol-extracted onion peel can serve as a PS, particularly in its crude state without purification, and effectively inactivate Salmonella on eggshells. PRACTICAL APPLICATION: Antimicrobial blue light (aBL) in the range of 400-470 nm is a promising nonthermal technology with several advantages, including minimal impact on food quality and safety. This study optimized the concentration of onion peel extract to improve its effectiveness as a photosensitizer in aBL treatment against Salmonella Typhimurium on eggshells. These results may serve as a reference for further optimizing aBL treatments, offering a potentially sustainable and cost-effective photosensitizer for pathogen control.
Collapse
Affiliation(s)
- Chae‐Yeon Woo
- Department of Food Science and BiotechnologyDongguk University‐SeoulGoyang‐siRepublic of Korea
| | - Gi‐Hyeok Lee
- Department of Food Science and BiotechnologyDongguk University‐SeoulGoyang‐siRepublic of Korea
| | - Kyung‐Jik Lim
- Department of Food Science and BiotechnologyDongguk University‐SeoulGoyang‐siRepublic of Korea
| | - Jun‐Won Kang
- Department of Food Science and BiotechnologyDongguk University‐SeoulGoyang‐siRepublic of Korea
| |
Collapse
|
2
|
Ihalagedara HB, Xu Q, Greer A, Lyons AM. Singlet oxygen generation on a superhydrophobic surface: Effect of photosensitizer coating and incident wavelength on 1O 2 yields. Photochem Photobiol 2025; 101:167-179. [PMID: 38824412 PMCID: PMC11609375 DOI: 10.1111/php.13969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/02/2024] [Indexed: 06/03/2024]
Abstract
Photochemical generation of singlet oxygen (1O2) often relies on homogenous systems; however, a dissolved photosensitizer (PS) may be unsuitable for some applications because it is difficult to recover, expensive to replenish, and hazardous to the environment. Isolation of the PS onto a solid support can overcome these limitations, but implementation faces other challenges, including agglomeration of the solid PS, physical quenching of 1O2 by the support, photooxidation of the PS, and hypoxic environments. Here, we explore a superhydrophobic polydimethylsiloxane (SH-PDMS) support coated with the photosensitizer 5,10,15,20-tetrakis(pentafluorophenyl)-21H,23H-porphyrin (TFPP). This approach seeks to address the challenges of a heterogeneous system by using a support that exhibits low 1O2 physical quenching rates, a fluorinated PS that is chemically resistant to photooxidation, and a superhydrophobic surface that entraps a layer of air, thus preventing hypoxia. Absorbance and fluorescence spectroscopy reveal the monomeric arrangement of TFPP on SH-PDMS surfaces, a surprising but favorable characteristic for a solid-phase PS on 1O2 yields. We also investigated the effect of incident wavelength on 1O2 yields for TFPP in aqueous solution and immobilized on SH-PDMS and found overall yields to be dependent on the absorption coefficient, while the yield per absorbed photon exhibited wavelength independence, in accordance with Kasha-Vavilov's rule.
Collapse
Affiliation(s)
- Hasanuwan B. Ihalagedara
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
| | - Alexander Greer
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- SingletO2 Therapeutics LLC, VentureLink 524B, 211 Warren St., Newark, NJ 07103
| |
Collapse
|
3
|
Gonçalves ASC, Leitão MM, Fernandes JR, Saavedra MJ, Pereira C, Simões M, Borges A. Photodynamic activation of phytochemical-antibiotic combinations for combatting Staphylococcus aureus from acute wound infections. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2024; 258:112978. [PMID: 39002192 DOI: 10.1016/j.jphotobiol.2024.112978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/15/2024]
Abstract
Staphylococcus aureus is characterized by its high resistance to conventional antibiotics, particularly methicillin-resistant (MRSA) strains, making it a predominant pathogen in acute and chronic wound infections. The persistence of acute S. aureus wound infections poses a threat by increasing the incidence of their chronicity. This study investigated the potential of photodynamic activation using phytochemical-antibiotic combinations to eliminate S. aureus under conditions representative of acute wound infections, aiming to mitigate the risk of chronicity. The strategy applied takes advantage of the promising antibacterial and photosensitising properties of phytochemicals, and their ability to act as antibiotic adjuvants. The antibacterial activity of selected phytochemicals (berberine, curcumin, farnesol, gallic acid, and quercetin; 6.25-1000 μg/mL) and antibiotics (ciprofloxacin, tetracycline, fusidic acid, oxacillin, gentamicin, mupirocin, methicillin, and tobramycin; 0.0625-1024 μg/mL) was screened individually and in combination against two S. aureus clinical strains (methicillin-resistant and -susceptible-MRSA and MSSA). The photodynamic activity of the phytochemicals was assessed using a light-emitting diode (LED) system with blue (420 nm) or UV-A (365 nm) variants, at 30 mW/cm2 (light doses of 9, 18, 27 J/cm2) and 5.5 mW/cm2 (light doses of 1.5, 3.3 and 5.0 J/cm2), respectively. Notably, all phytochemicals restored antibiotic activity, with 9 and 13 combinations exhibiting potentiating effects on MSSA and MRSA, respectively. Photodynamic activation with blue light (420 nm) resulted in an 8- to 80-fold reduction in the bactericidal concentration of berberine against MSSA and MRSA, while curcumin caused 80-fold reduction for both strains at the light dose of 18 J/cm2. Berberine and curcumin-antibiotic combinations when subjected to photodynamic activation (420 nm light, 10 min, 18 J/cm2) reduced S. aureus culturability by ≈9 log CFU/mL. These combinations lowered the bactericidal concentration of antibiotics, achieving a 2048-fold reduction for gentamicin and 512-fold reduction for tobramycin. Overall, the dual approach involving antimicrobial photodynamic inactivation and selected phytochemical-antibiotic combinations demonstrated a synergistic effect, drastically reducing the culturability of S. aureus and restoring the activity of gentamicin and tobramycin.
Collapse
Affiliation(s)
- Ariana S C Gonçalves
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal
| | - Miguel M Leitão
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; CIQUP-IMS-Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre, 4169-007, Porto, Portugal
| | - José R Fernandes
- CQVR-Vila Real Chemistry Center, University of Trás-os-Montes e Alto Douro, Portugal; Physical Department, University of Trás-os-Montes and Alto Douro, Quinta dos Prados, 5000-801 Vila Real, Portugal
| | - Maria José Saavedra
- Antimicrobials, Biocides and Biofilms Unit (AB2Unit), Laboratory of Medical Microbiology, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Animal and Veterinary Research Center (CECAV)-Al4AnimalS, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal; Center Interdisciplinar of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208 Matosinhos, Portugal; Center for the Research and Technology of Agro-Environmental and Biological Sciences (CITAB)-Inov4Agro, University of Trás-os-Montes e Alto Douro, 5000-801 Vila Real, Portugal
| | - Cristiana Pereira
- Environmental Health Department, Portuguese National Health Institute Doutor Ricardo Jorge, Porto, Portugal; Environmental Hygiene and Human Biomonitoring Unit, Department of Health Protection, Laboratoire National de Santé, Luxembourg
| | - Manuel Simões
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal
| | - Anabela Borges
- LEPABE-Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALICE-Associate Laboratory for Innovation in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal; DEQ-Department of Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, s/n, 4200-465 Porto, Portugal.
| |
Collapse
|
4
|
Durantini AM, Lapoot L, Jabeen S, Ghosh G, Bipu J, Essang S, Singh BC, Greer A. Tuning the 1O 2 Oxidation of a Phenol at the Air/Solid Interface of a Nanoparticle: Hydrophobic Surface Increases Oxophilicity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023. [PMID: 37497839 DOI: 10.1021/acs.langmuir.3c01676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/28/2023]
Abstract
Although silica surfaces have been used in organic oxidations for the production of peroxides, studies of airborne singlet oxygen at interfaces are limited and have not found widespread advantages. Here, with prenyl phenol-coated silica and delivery of singlet oxygen (1O2) through the gas phase, we uncover significant selectivity for dihydrofuran formation over allylic hydroperoxide formation. The hydrophobic particle causes prenyl phenol to produce an iso-hydroperoxide intermediate with an internally protonated oxygen atom, which leads to dihydrofuran formation as well as O atom transfer. In contrast, hydrophilic particles cause prenyl phenol to produce allylic hydroperoxide, due to phenol OH hydrogen bonding with SiOH surface groups. Mechanistic insight is provided by air/nanoparticle interfaces coated with the prenyl phenol, in which product yield was 6-fold greater on the hydrophobic nanoparticles compared to the hydrophilic nanoparticles and total rate constants (ASI-kT) of 1O2 were 13-fold greater on the hydrophobic vs hydrophilic nanoparticles. A slope intersection method was also developed that uses the airborne 1O2 lifetime (τairborne) and surface-associated 1O2 lifetime (τsurf) to quantitate 1O2 transitioning from volatile to non-volatile and surface boundary (surface···1O2). Further mechanistic insights on the selectivity of the reaction of prenyl phenol with 1O2 was provided by density functional theory calculations.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nac. 36 Km 601, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Johirul Bipu
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
| | - Serah Essang
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Britney C Singh
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
- Ph.D. Program in Biochemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
5
|
Awad M, Barnes TJ, Thomas N, Joyce P, Prestidge CA. Gallium Protoporphyrin Liquid Crystalline Lipid Nanoparticles: A Third-Generation Photosensitizer against Pseudomonas aeruginosa Biofilms. Pharmaceutics 2022; 14:pharmaceutics14102124. [PMID: 36297559 PMCID: PMC9610264 DOI: 10.3390/pharmaceutics14102124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/07/2022] Open
Abstract
The looming antimicrobial resistance pandemic has encouraged the investigation of antimicrobial photodynamic therapy (aPDT) as a promising technology to combat recalcitrant bacterial infections caused by antibiotic resistant strains. Here, we report on the optimization and effective application of gallium protoporphyrin liquid crystalline lipid nanoparticles (GaPP-LCNP) as a photosensitizer for aPDT against the Gram-negative bacteria P. aeruginosa in both planktonic and biofilm modes of growth. LCNP significantly enhanced the performance of GaPP as photosensitizer by two-fold, which was correlated with higher antibacterial activity, reducing the viability of planktonic P. aeruginosa by 7 log10 using 0.8 µM GaPP-LCNP and a light dose of 17 J.cm−2. Importantly, GaPP-LCNP also reduced the viability of biofilms by 6 log10 at relatively low light dose of 34.2 J.cm−2 using only 3 µM GaPP-LCNP. The high antibiofilm activity of GaPP-LCNP at low GaPP-LCNP dose indicated the high efficiency and safety profile of GaPP-LCNP as a promising platform for photodynamic inactivation of recalcitrant infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia
| | - Timothy J. Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
| | - Clive A. Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia
- Correspondence:
| |
Collapse
|
6
|
Feng Y, Tonon CC, Hasan T. Dramatic destruction of methicillin-resistant Staphylococcus aureus infections with a simple combination of amoxicillin and light-activated methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 235:112563. [PMID: 36099788 DOI: 10.1016/j.jphotobiol.2022.112563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 08/26/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND Staphylococcus aureus is and continues to be a leading cause of bacterial infections throughout the world. Given the global dissemination of multi-drug resistant (MDR) S. aureus, particularly methicillin-resistant S. aureus (MRSA), novel solutions against S. aureus infections are urgently needed. In our study on the interactions between commonly used photosensitizers and antibiotics in the clinic, we discovered that MRSA can be dramatically destroyed by a simple combination of amoxicillin and light-activated methylene blue (MB). METHODS To guide the clinical application of this combination therapy, we quantitatively assessed the interaction between light-activated MB and amoxicillin against S. aureus and its treatment order, dosage, and time length dependence. Furthermore, we evaluated the efficacy of this combination therapy in treating and halting the progression of MRSA infections with the catheter biofilm infection model and the pig skin burn infection model. In the end, we disclosed the antimicrobial mechanisms of this combination therapy to further facilitate its clinical translation. RESULTS Amoxicillin and light-activated MB can mutually boost each other's uptake in S. aureus, producing up to 8 logs of reduction of MRSA infections when they are co-administrated. Such an anti-S. aureus synergy could be triggered with the currently used MB and amoxicillin clinical administration regimens. It is effective against S. aureus pathogens regardless of their antibiotic resistance backgrounds and does not create significant bacterial resistance with five days of continuous applications. It can lead to more than 99% of reduction of S. aureus infections established not only on the medical devices but also on the body surfaces. CONCLUSIONS Possessing a fusion of effectiveness, safety, sustainability, and broad applicability, this simple combination of light-activated MB and amoxicillin can ultimately reform our treatment against MDR S. aureus pathogens including MRSA, significantly alleviating the health and economic burden of S. aureus infections across the world.
Collapse
Affiliation(s)
- Yanfang Feng
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | | | - Tayyaba Hasan
- Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA; Harvard-MIT Health Sciences and Technology, Cambridge, MA, USA.
| |
Collapse
|
7
|
A Review of Sulfate Radical-Based and Singlet Oxygen-Based Advanced Oxidation Technologies: Recent Advances and Prospects. Catalysts 2022. [DOI: 10.3390/catal12101092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In recent years, advanced oxidation process (AOPs) based on sulfate radical (SO4●−) and singlet oxygen (1O2) has attracted a lot of attention because of its characteristics of rapid reaction, efficient treatment, safety and stability, and easy operation. SO4●− and 1O2 mainly comes from the activation reaction of peroxymonosulfate (PMS) or persulfate (PS), which represent the oxidation reactions involving radicals and non-radicals, respectively. The degradation effects of target pollutants will be different due to the type of oxidant, reaction system, activation methods, operating conditions, and other factors. In this paper, according to the characteristics of PMS and PS, the activation methods and mechanisms in these oxidation processes, respectively dominated by SO4●− and 1O2, are systematically introduced. The research progress of PMS and PS activation for the degradation of organic pollutants in recent years is reviewed, and the existing problems and future research directions are pointed out. It is expected to provide ideas for further research and practical application of advanced oxidation processes dominated by SO4●− and 1O2.
Collapse
|
8
|
Awad M, Barnes TJ, Joyce P, Thomas N, Prestidge CA. Liquid crystalline lipid nanoparticle promotes the photodynamic activity of gallium protoporphyrin against S. aureus biofilms. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY. B, BIOLOGY 2022; 232:112474. [PMID: 35644068 DOI: 10.1016/j.jphotobiol.2022.112474] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/04/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as an innovative strategy to combat antibiotic resistant microbes; yet aPDT efficacies against biofilms are sub-optimal due to inability of photosenstizers to reach microbes embedded in biofilm matrix. To overcome this challenge, liquid crystal lipid nanoparticles (LCNP) were employed in this study as a smart, biocompatible and triggerable delivery system for the new photosensitizer gallium protoporphyrin (GaPP), due to their capabilities in promoting efficient antimicrobial delivery to biofilms. The relationship between GaPP loading of LCNP, reactive oxygen species (ROS) production and the in vitro antibacterial activity against two antibiotic resistant Staphylococcus aureus strains was established. LCNP substantially improved the antibacterial activity of GaPP, completely eradicating S. aureus and MRSA planktonic cultures, using a GaPP concentration of 0.8 μM and light dose 1.9 J/cm2. At the same concentration and light dose, unformulated GaPP triggered only a 4 log10 and 2 log10 reduction in respective planktonic cultures. Most importantly, the activity of GaPP against biofilms was enhanced by 2-fold compared to unformulated GaPP, reducing the viability of S. aureus and MRSA biofilms by 8 log10 and 5 log10, respectively. The biosafety of photoactivated GaPP-LCNP was evaluated against human fibroblasts, which indicated a high safety profile of the treatment. Therefore, these findings encourage further investigations of GaPP-LCNP as a potential treatment for localized chronic infections.
Collapse
Affiliation(s)
- Muhammed Awad
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Timothy J Barnes
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Paul Joyce
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Nicky Thomas
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Clive A Prestidge
- Centre for Pharmaceutical Innovation, University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
9
|
Mgidlana S, Managa M, Nyokong T. Asymmetrical zinc(II) phthalocyanines conjugated to metal tungstate nanoparticles for photoinactivation of Staphylococcus aureus. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2090837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- Sithi Mgidlana
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| | - Muthumuni Managa
- Institute for Nanotechnology and Water Sustainability (iNanoWS), Florida Campus, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Rhodes University, Makhanda, South Africa
| |
Collapse
|
10
|
Malek B, Lu W, Mohapatra PP, Walalawela N, Jabeen S, Liu J, Greer A. Probing the Transition State-to-Intermediate Continuum: Mechanistic Distinction between a Dry versus Wet Perepoxide in the Singlet Oxygen "Ene" Reaction at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6036-6048. [PMID: 35506607 DOI: 10.1021/acs.langmuir.2c00279] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A mechanistic study is reported for the reactions of singlet oxygen (1O2) with alkene surfactants of tunable properties. Singlet oxygen was generated either top-down (photochemically) by delivery as a gas to an air-water interface or bottom-up (chemically) by transport to the air-water interface as a solvated species. In both cases, reactions were carried out in the presence of 7-carbon (7C), 9-carbon (9C), or 11-carbon (11C) prenylsurfactants [(CH3)2C═CH(CH2)nSO3- Na+ (n = 4, 6, 8)]. Higher "ene" hydroperoxide regioselectivities (secondary ROOH 2 to tertiary ROOH 3) were reached in delivering 1O2 top-down through air as compared to bottom-up via aqueous solution. In the photochemical reaction, ratios of 2:3 increased from 2.5:1 for 7C, to 2.8:1 for 9C, and to 3.2:1 for 11C. In contrast, in the bubbling system that generated 1O2 chemically, the selectivity was all but lost, ranging only from 1.3:1 to 1:1. The phase-dependent regioselectivities appear to be correlated with the "ene" reaction with photochemically generated, drier 1O2 at the air-water interface vs those with wetter 1O2 from the bubbling reactor. Density functional theory-calculated reaction potential energy surfaces (PESs) were used to help rationalize the reaction phase dependence. The reactions in the gas phase are mediated by perepoxide transition states with 32-41 kJ/mol binding energy for C═C(π)···1O2. The perepoxide species, however, evolve to well-defined stationary structures in the aqueous phase, with covalent C-O bonds and 85-88 kJ/mol binding energy. The combined experimental and computational evidence points to a unique mechanism for 1O2 "ene" tunability in a perepoxide continuum from a transition state to an intermediate.
Collapse
Affiliation(s)
- Belaid Malek
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| | - Wenchao Lu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Prabhu Prasad Mohapatra
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Niluksha Walalawela
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Shakeela Jabeen
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Jianbo Liu
- Department of Chemistry and Biochemistry, Queens College of the City University of New York, 65-30 Kissena Blvd., Queens, New York 11367, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
11
|
Awad M, Thomas N, Barnes TJ, Prestidge CA. Nanomaterials enabling clinical translation of antimicrobial photodynamic therapy. J Control Release 2022; 346:300-316. [PMID: 35483636 DOI: 10.1016/j.jconrel.2022.04.035] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 04/21/2022] [Accepted: 04/21/2022] [Indexed: 10/18/2022]
Abstract
Antimicrobial photodynamic therapy (aPDT) has emerged as a promising approach to aid the fight against looming antibiotic resistance. aPDT harnesses the energy of light through photosenstizers to generate highly reactive oxygen species that can inactivate bacteria and fungi with no resistance. To date aPDT has shown great efficacy against microbes causing localized infections in the skin and the oral cavity. However, its wide application in clinical settings has been limited due to both physicochemical and biological challenges. Over the past decade nanomaterials have contributed to promoting photosensitizer performance and aPDT efficiency, yet further developments are required to establish accredited treatment options. In this review we discuss the challenges facing the clinical application of aPDT and the opportunities that nanotechnology may offer to promote the safety and efficiency of aPDT.
Collapse
Affiliation(s)
- Muhammed Awad
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia; Basil Hetzel Institute for Translational Health Research, Woodville 5011, Australia.
| | - Nicky Thomas
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Timothy J Barnes
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| | - Clive A Prestidge
- University of South Australia, Clinical and Health Sciences, Adelaide 5000, Australia.
| |
Collapse
|
12
|
Baigorria E, Durantini JE, Martínez SR, Milanesio ME, Palacios YB, Durantini AM. Potentiation Effect of Iodine Species on the Antimicrobial Capability of Surfaces Coated with Electroactive Phthalocyanines. ACS APPLIED BIO MATERIALS 2021; 4:8559-8570. [PMID: 35005911 DOI: 10.1021/acsabm.1c01029] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The spreading of different infections can occur through direct contact with glass surfaces in commonly used areas. Incorporating the use of alternative therapies in these materials seems essential to reduce and also avoid bacterial resistance. In this work, the capability to kill microbes of glass surfaces coated with two electroactive metalated phthalocyanines (ZnPc-EDOT and CuPc-EDOT) is assessed. The results show that both of these materials are capable of producing reactive oxygen species; however, the polymer with Zn(II) (ZnPc-PEDOT) has a singlet oxygen quantum yield 8-fold higher than that of the Cu(II) containing analogue. This was reflected in the in vitro experiments where the effectiveness of the surfaces was tested in bacterial suspensions, monitoring single microbe inactivation upon attachment to the polymers, and eliminating mature biofilms. Furthermore, we evaluated the use of an inorganic salt (KI) to potentiate the photodynamic inactivation mediated by an electropolymerized surface. The addition of the salt improved the efficiency of phototherapy at least two times for both polymers; nevertheless, the material coated with ZnPc-PEDOT was the only one capable of eliminating >99.98% of the initial microbes loading under different circumstances.
Collapse
Affiliation(s)
- Estefanía Baigorria
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Javier E Durantini
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Sol R Martínez
- IITEMA-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - María E Milanesio
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Yohana B Palacios
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| | - Andrés M Durantini
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Ruta Nacional 36 Km 601, X5804BYA Río Cuarto, Córdoba, Argentina
| |
Collapse
|
13
|
Feng Y, Coradi Tonon C, Ashraf S, Hasan T. Photodynamic and antibiotic therapy in combination against bacterial infections: efficacy, determinants, mechanisms, and future perspectives. Adv Drug Deliv Rev 2021; 177:113941. [PMID: 34419503 DOI: 10.1016/j.addr.2021.113941] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/23/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Antibiotic treatment, the mainstay for the control of bacterial infections, is greatly hampered by the global prevalence of multidrug-resistant (MDR) bacteria. Photodynamic therapy (PDT) is effective against MDR infections, but PDT-induced bacterial inactivation is often incomplete, causing the relapse of infections. Combination of PDT and antibiotics is a promising strategy to overcome the limitation of both antibiotic treatment and PDT, exerting increased disinfection efficacy on MDR bacterial pathogens versus either of the monotherapies alone. In this review, we present an overview of the therapeutic effects of PDT/antibiotic combinations that have been developed. We further summarize the influencing factors and the governing molecular mechanisms of the therapeutic outcomes of PDT/antibiotic combinations. In the end, we provide concluding remarks on the strengths, limitations, and future research directions of PDT/antibiotic combination therapy to guide its appropriate usage and further development.
Collapse
Affiliation(s)
- Yanfang Feng
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA; Health Sciences and Technology (Harvard-MIT), Cambridge, MA, USA.
| |
Collapse
|
14
|
Tonon CC, Ashraf S, Alburquerque JQ, de Souza Rastelli AN, Hasan T, Lyons AM, Greer A. Antimicrobial Photodynamic Inactivation Using Topical and Superhydrophobic Sensitizer Techniques: A Perspective from Diffusion in Biofilms †. Photochem Photobiol 2021; 97:1266-1277. [PMID: 34097752 PMCID: PMC10375486 DOI: 10.1111/php.13461] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 06/04/2021] [Indexed: 12/14/2022]
Abstract
This review describes nanoparticle and dye diffusion in bacterial biofilms in the context of antimicrobial photodynamic inactivation (aPDI). aPDI requires the diffusion of a photosensitizer (Sens) into the biofilm and subsequent photoactivation of oxygen for the generation of reactive oxygen species (ROS) that inactivate microbes. Molecular diffusion in biofilms has been long investigated, whereas this review is intended to draw a logical link between diffusion in biofilms and ROS, a combination that leads to the current state of aPDI and superhydrophobic aPDI (SH-aPDI). This review should be of interest to photochemists, photobiologists and researchers in material and antimicrobial sciences as is ties together conventional aPDI with the emerging subject of SH-aPDI.
Collapse
Affiliation(s)
- Caroline Coradi Tonon
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Shoaib Ashraf
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - José Quílez Alburquerque
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Organic Chemistry, Faculty of Chemistry, Complutense University of Madrid (UCM), Madrid, Spain
| | - Alessandra Nara de Souza Rastelli
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Restorative Dentistry, School of Dentistry, São Paulo State University-UNESP, Araraquara, SP, Brazil
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Division of Health Sciences and Technology, Harvard University and Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Alan M Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, NY, USA.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.,SingletO2 Therapeutics LLC, New York, NY, USA
| | - Alexander Greer
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY, USA.,SingletO2 Therapeutics LLC, New York, NY, USA.,Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, NY, USA
| |
Collapse
|
15
|
Pyszka I, Kucybała Z, Jędrzejewska B. Effective Singlet Oxygen Sensitizers Based on the Phenazine Skeleton as Efficient Light Absorbers in Dye Photoinitiating Systems for Radical Polymerization of Acrylates. MATERIALS (BASEL, SWITZERLAND) 2021; 14:3085. [PMID: 34200054 PMCID: PMC8200244 DOI: 10.3390/ma14113085] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/25/2021] [Accepted: 05/31/2021] [Indexed: 12/15/2022]
Abstract
A series of dyes based on the phenazine skeleton were synthesized. They differed in the number of conjugated double bonds, the arrangement of aromatic rings (linear and/or angular system), as well as the number and position of nitrogen atoms in the molecule. These compounds were investigated as potential singlet oxygen sensitizers and visible light absorbers in dye photoinitiating systems for radical polymerization. The quantum yield of the singlet oxygen formation was determined by the comparative method based on the 1H NMR spectra recorded for the tested dyes in the presence of 2,3-diphenyl-p-dioxene before and after irradiation. The quantum yield of the triplet state formation was estimated based on the transient absorption spectra recorded using the nanosecond flash photolysis technique. The effectiveness of the dye photoinitiating system was characterized by the initial rate of trimethylolpropane triacrylate (TMPTA) polymerization. In the investigated photoinitiating systems, the sensitizer was an electron acceptor, whereas the co-initiator was an electron donor. The effectiveness of TMPTA photoinitiated polymerization clearly depended on the arrangement of aromatic rings and the number of nitrogen atoms in the modified phenazine structure as well as the quantum yield of the triplet state formation of the photosensitizer in the visible light region.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| | | | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, UTP University of Science and Technology, 85-326 Bydgoszcz, Poland;
| |
Collapse
|
16
|
Durantini AM, Greer A. Interparticle Delivery and Detection of Volatile Singlet Oxygen at Air/Solid Interfaces. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3559-3567. [PMID: 33660980 DOI: 10.1021/acs.est.0c07922] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
An interparticle system has been devised, allowing airborne singlet oxygen to transfer between particle surfaces. Singlet oxygen is photogenerated on a sensitizer particle, where it then travels through air to a second particle bearing an oxidizable compound-a particulate-based approach with some similarities to reactive oxygen quenching in the atmosphere. In atmospheric photochemistry, singlet oxygen is generated by natural particulate matter, but its formation and quenching between particles has until now not been determined. Determining how singlet oxygen reacts on a second surface is useful and was developed by a three-phase system (particle-air-particle) interparticulate photoreaction with tunable quenching properties. We identify singlet oxygen quenching directly by near-IR phosphorescence in the airborne state and at the air/particle interface for total quenching rate constants (kT) of adsorbed anthracene trapping agents. The air/solid interface kT of singlet oxygen by anthracene-coated particles was (2.8 ± 0.8) × 107 g mol-1 s-1 for 9,10-dimethylanthracene and (2.1 ± 0.9) × 107 g mol-1 s-1 for 9,10-anthracene dipropionate dianion, and the lifetime of airborne singlet oxygen was measured to be 550 μs. These real-time interactions and particle-induced quenching steps open up new opportunities for singlet oxygen research of atmospheric and particulate processes.
Collapse
Affiliation(s)
- Andrés M Durantini
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, New York 10016, United States
| |
Collapse
|
17
|
Peddinti BST, Morales-Gagnon N, Pourdeyhimi B, Scholle F, Spontak RJ, Ghiladi RA. Photodynamic Coatings on Polymer Microfibers for Pathogen Inactivation: Effects of Application Method and Composition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:155-163. [PMID: 33356100 DOI: 10.1021/acsami.0c16953] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
A substantial increase in the risk of hospital-acquired infections (HAIs) has greatly impacted the global healthcare industry. Harmful pathogens adhere to a variety of surfaces and infect personnel on contact, thereby promoting transmission to new hosts. This is particularly worrisome in the case of antibiotic-resistant pathogens, which constitute a growing threat to human health worldwide and require new preventative routes of disinfection. In this study, we have incorporated different loading levels of a porphyrin photosensitizer capable of generating reactive singlet oxygen in the presence of O2 and visible light in a water-soluble, photo-cross-linkable polymer coating, which was subsequently deposited on polymer microfibers. Two different application methods are considered, and the morphological and chemical characteristics of these coated fibers are analyzed to detect the presence of the coating and photosensitizer. To discern the efficacy of the fibers against pathogenic bacteria, photodynamic inactivation has been performed on two different bacterial strains, Staphylococcus aureus and antibiotic-resistant Escherichia coli, with population reductions of >99.9999 and 99.6%, respectively, after exposure to visible light for 1 h. In response to the current COVID-19 pandemic, we also confirm that these coated fibers can inactivate a human common cold coronavirus serving as a surrogate for the SARS-CoV-2 virus.
Collapse
|
18
|
Alternative methods of photodynamic therapy and oxygen consumption measurements-A review. Biomed Pharmacother 2020; 134:111095. [PMID: 33341048 DOI: 10.1016/j.biopha.2020.111095] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 11/14/2020] [Accepted: 11/20/2020] [Indexed: 12/21/2022] Open
Abstract
Photooxidation generates reactive oxygen species (ROS) through the interaction of dyes or surfaces with light radiation of appropriate wavelength. The reaction is of wide utility and is highly effective in photodynamic therapy (PDT) of various types of cancer and skin disease. Understanding generation of singlet oxygen has contributed to the development of PDT and its subsequent use in vivo. However, this therapy has some limitations that prevent its use in the treatment of cancers located deep within the body. The limited depth of light penetration through biological tissue limits initiation of PDT action in deep tissue. Measurement of oxygen photo consumption is critical due to tumor hypoxia, and use of magnetic resonance imaging (MRI) is particularly attractive since it is non-invasive. This article presents bioluminescence (BL) and chemiluminescence (CL) phenomena based on publications from the last 20 years, and preliminary results from our lab in the use of MRI to measure oxygen concentration in water. Current work is aimed at improving the effectiveness of singlet oxygen delivery to deep tissue cancer.
Collapse
|
19
|
Sunday MO, Sakugawa H. A simple, inexpensive method for gas-phase singlet oxygen generation from sensitizer-impregnated filters: Potential application to bacteria/virus inactivation and pollutant degradation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141186. [PMID: 32745862 PMCID: PMC7377787 DOI: 10.1016/j.scitotenv.2020.141186] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/26/2020] [Accepted: 07/21/2020] [Indexed: 05/23/2023]
Abstract
Airborne infectious diseases such as the new Coronavirus 2019 (COVID-19) pose serious threat to human health. Indoor air pollution is a problem of global environmental concern as well. Singlet oxygen (1O2) is a reactive oxygen species that plays important role in bacteria/virus inactivation and pollutant degradation. In this study, we found that commercially available filters typically deployed in air purifier and air conditioning units, when impregnated with Rose Bengal (RB) as a 1O2 sensitizer, can be used for heterogeneous gas-phase generation of 1O2. It was confirmed that irradiation of the RB filter under oxygen gas stream produced 1O2, which was measured using furfuryl alcohol trapping method followed by HPLC analysis. It was also observed that the amount of 1O2 generated increases as the light intensity increased. Similarly, the sensitizer loading also positively influenced the 1O2 generation. The heterogeneous gas-phase generation of 1O2 can find potential applications in air purifier and air conditioning units for the purpose of bacteria/virus inactivation and/or pollutant degradation thereby improving indoor air quality.
Collapse
Affiliation(s)
- Michael Oluwatoyin Sunday
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521, Japan; Department of Chemistry, Federal University of Technology, P.M.B. 704, Akure, Ondo State, Nigeria
| | - Hiroshi Sakugawa
- Graduate School of Biosphere Science, Hiroshima University, 1-7-1, Kagamiyama, Higashi-Hiroshima 739-8521, Japan.
| |
Collapse
|
20
|
Mapukata S, Britton J, Osifeko OL, Nyokong T. The improved antibacterial efficiency of a zinc phthalocyanine when embedded on silver nanoparticle modified silica nanofibers. Photodiagnosis Photodyn Ther 2020; 33:102100. [PMID: 33212269 DOI: 10.1016/j.pdpdt.2020.102100] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 11/03/2020] [Accepted: 11/13/2020] [Indexed: 12/12/2022]
Abstract
This work reports on the fabrication and modification of electrospun polymer free silica nanofibers (SiO2 NFs) with the aim of creating heterogeneous antibacterial catalysts. The optical and photophysical properties of the obtained NFs i.e. bare SiO2, Ag-SiO2, Pc-SiO2 and Pc@Ag-SiO2 NFs (Pc = phthalocyanine) were compared and reported. The singlet oxygen quantum yields of the Pc-SiO2 and Pc@Ag-SiO2 NFs were also quantified and found to be 0.08 and 0.12, respectively, in water. All the modified SiO2 NFs were found to possess photoactivity against S. aureus with the most effective being the Pc@Ag-SiO2 NFs due to the synergy between the Pc and Ag nanoparticles. The bare SiO2 NFs do not exhibit any antibacterial activity while the Ag-SiO2 and Pc@Ag-SiO2 NFs were found to also exhibit dark toxicity. The generated photocatalysts are attractive because they are active against bacteria and they are easily retrievable post-application. The nanocatalysts reported herein are therefore feasible candidates for real-life antibacterial applications.
Collapse
Affiliation(s)
- Sivuyisiwe Mapukata
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Jonathan Britton
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Olawale L Osifeko
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa
| | - Tebello Nyokong
- Institute for Nanotechnology Innovation, Department of Chemistry, Rhodes University, Makhanda, 6140, South Africa.
| |
Collapse
|
21
|
Jabeen S, Farag M, Malek B, Choudhury R, Greer A. A Singlet Oxygen Priming Mechanism: Disentangling of Photooxidative and Downstream Dark Effects. J Org Chem 2020; 85:12505-12513. [PMID: 32885660 DOI: 10.1021/acs.joc.0c01712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Airborne singlet oxygen obtained from photosensitization of triplet dioxygen is shown to react with an alkene surfactant (8-methylnon-7-ene-1 sulfonate) leading to "ene" hydroperoxides that in the dark inactivate planktonic Escherichia coli (E. coli). The "ene" hydroperoxide photoproducts are not toxic on their own, but they become toxic after the bacteria are pretreated with singlet oxygen. The total quenching rate constant (kT) of singlet oxygen of the alkene surfactant was measured to be 1.1 × 106 M-1 s-1 at the air/liquid interface. Through a new mechanism called singlet oxygen priming (SOP), the singlet oxygen leads to hydroperoxides then to peroxyl radicals, tetraoxides, and decomposition products, which also promote disinfection, and therefore offer a "one-two" punch. This offers a strong secondary toxic effect in an otherwise indiscernible dark reaction. The results provide an insight into assisted killing by an exogenous alkene with dark toxicity effects following exposure to singlet oxygen.
Collapse
Affiliation(s)
- Shakeela Jabeen
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Maria Farag
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| | - Belaid Malek
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States
| | - Rajib Choudhury
- Department of Chemistry, Arkansas Tech University, Russellville, Arkansas 72801, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, New York 11210, United States.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
22
|
Sheng S, Liu F, Lin L, Yan N, Wang Y, Xu C, Tian H, Chen X. Nanozyme-mediated cascade reaction based on metal-organic framework for synergetic chemo-photodynamic tumor therapy. J Control Release 2020; 328:631-639. [PMID: 32950593 DOI: 10.1016/j.jconrel.2020.09.029] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/11/2020] [Accepted: 09/14/2020] [Indexed: 01/09/2023]
Abstract
Numerous biological enzymes are considered promising for tumor therapy. However, the remote control of enzymatic activity in vivo to achieve a satisfactory therapeutic effect remains challenge. Herein, we loaded chlorin e6 (Ce6) to the peroxidase-mimic metal-organic framework (MOF) MIL-100 (Ce6@MIL-100) to develop cascade-reaction nanoparticles shielded with hyaluronic acid (CMH NPs). CMH NPs and the highly expressed H2O2 in the tumor site underwent Fenton reaction to generate hydroxyl radical (·OH) and O2. The produced ·OH and O2 were used for chemodynamic therapy and alleviating hypoxia, respectively. Under near-infrared light irradiation, the Ce6-mediated photochemical effect not only generated cytotoxic singlet oxygen (1O2) for enhanced photodynamic therapy with additional oxygen supply, but also produced H2O2 to amplify the Fenton reaction. Therefore, the CMH NPs exhibited a virtuous cycle of cascade reactions. Furthermore, comprehensive experiments demonstrated that combined therapy could effectively ablate tumors. Thus, the nanozyme based on MOF realized potent chemo-photodynamic therapeutic efficacy. Overall, the nanoplatform displayed an exciting biomedical application of MOF-derived nanozyme as a versatile therapeutic agent.
Collapse
Affiliation(s)
- Shu Sheng
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Feng Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Lin Lin
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Nan Yan
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China
| | - Yanbing Wang
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| | - Caina Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China.
| | - Huayu Tian
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China.
| | - Xuesi Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; University of Chinese Academy of Sciences, Beijing 100049, China; Jilin Biomedical Polymers Engineering Laboratory, Changchun 130022, China; University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
23
|
Sun H, He F, Choi W. Production of Reactive Oxygen Species by the Reaction of Periodate and Hydroxylamine for Rapid Removal of Organic Pollutants and Waterborne Bacteria. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6427-6437. [PMID: 32298086 DOI: 10.1021/acs.est.0c00817] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Periodate (PI, IO4-) can be activated by hydroxylamine (HA), resulting in the rapid removal of organic pollutants within seconds. While the previous studies on PI-based advanced oxidation processes (AOPs) have proposed iodate radical (•IO3) as the major reactive species, no evidence of •IO3 production was found in the present PI/HA system. Reactive oxygen species (ROS) including •OH, HO2•, and 1O2 are proposed to be the main oxidants of the PI/HA system, which is supported by various tests employing the scavengers, chemical probes, and spin-trapping electron paramagnetic resonance (EPR) technique. To minimize the risk of toxic iodinated byproduct formation caused by reactive iodine species such as HOI and I2, the molar ratio of HA/PI was optimized at 0.6 to achieve the stoichiometric conversion of IO4- to iodate (IO3-), a preferred nontoxic sink of iodine species. The PI/HA system also efficiently inactivated both Gram-positive and -negative bacteria with producing 1O2 as the dominant disinfectant. The mechanism of ROS production was also investigated and is discussed in detail. This work offers a simple and highly efficient option for PI activation and ROS production which might find useful applications where urgent and rapid removal of toxic pollutants is needed.
Collapse
Affiliation(s)
- Hongwei Sun
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, Institute of Environmental & Applied Chemistry, College of Chemistry, Central China Normal University, Wuhan 430079, People's Republic of China
| | - Fei He
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| | - Wonyong Choi
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea
| |
Collapse
|
24
|
Aebisher D, Bartusik-Aebisher D, Belh SJ, Ghosh G, Durantini AM, Liu Y, Xu Q, Lyons AM, Greer A. Superhydrophobic Surfaces as a Source of Airborne Singlet Oxygen through Free Space for Photodynamic Therapy. ACS APPLIED BIO MATERIALS 2020; 3:2370-2377. [DOI: 10.1021/acsabm.0c00114] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- David Aebisher
- Faculty of Medicine, University of Rzeszów, 35-310 Rzeszów, Poland
| | | | - Sarah J. Belh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| | - Andrés M. Durantini
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- IDAS-CONICET, Departamento de Química, Facultad de Ciencias Exactas, Físico-Químicas y Naturales, Universidad Nacional de Río Cuarto, Río Cuarto, Córdoba X5804BYA, Argentina
| | - Yang Liu
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - QianFeng Xu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alan M. Lyons
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 10314, United States
- Ph.D. Program in Chemistry, Graduate Center of City University of New York, New York, New York 10016, United States
| |
Collapse
|
25
|
Ghosh G, Yin H, Monro SMA, Sainuddin T, Lapoot L, Greer A, McFarland SA. Synthesis and Characterization of Ru(II) Complexes with π-Expansive Imidazophen Ligands for the Photokilling of Human Melanoma Cells. Photochem Photobiol 2020; 96:349-357. [PMID: 31730278 DOI: 10.1111/php.13177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 10/16/2019] [Indexed: 12/14/2022]
Abstract
Ru(II) complexes were synthesized with π-expanding (phenyl, fluorenyl, phenanthrenyl, naphthalen-1-yl, naphthalene-2-yl, anthryl and pyrenyl groups) attached at a 1H-imidazo[4,5-f][1,10]phenanthroline ligand and 4,4'-dimethyl-2,2'-bipyridine (4,4'-dmb) coligands. These Ru(II) complexes were characterized by 1D and 2D NMR, and mass spectroscopy, and studied for visible light and dark toxicity to human malignant melanoma SK-MEL-28 cells. In the SK-MEL-28 cells, the Ru(II) complexes are highly phototoxic (EC50 = 0.2-0.5 µm) and have low dark toxicity (EC50 = 58-230 µm). The highest phototherapeutic index (PI) of the series was found with the Ru(II) complex bearing the 2-(pyren-1-yl)-1H-imidazo[4,5-f][1,10]phenanthroline ligand. This high PI is in part attributed to the π-rich character added by the pyrenyl group, and a possible low-lying and longer-lived 3 IL state due to equilibration with the 3 MLCT state. While this pyrenyl Ru(II) complex possessed a relatively high quantum yield for singlet oxygen formation (Φ∆ = 0.84), contributions from type-I processes (oxygen radicals and radical ions) are competitive with the type-II (1 O2 ) process based on effects of added sodium azide and solvent deuteration.
Collapse
Affiliation(s)
- Goutam Ghosh
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY
| | - Huimin Yin
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Susan M A Monro
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Tariq Sainuddin
- Department of Chemistry, Acadia University, Wolfville, NS, Canada
| | - Lloyd Lapoot
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Alexander Greer
- Department of Chemistry, Brooklyn College of the City University of New York, Brooklyn, NY.,Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, New York, NY
| | - Sherri A McFarland
- Department of Chemistry, Acadia University, Wolfville, NS, Canada.,Department of Chemistry and Biochemistry, The University of North Carolina at Greensboro, Greensboro, TX.,Department of Chemistry and Biochemistry, The University of Texas at Arlington, Arlington, NC
| |
Collapse
|
26
|
DeHaven BA, Liberatore HK, Greer A, Richardson SD, Shimizu LS. Probing the Formation of Reactive Oxygen Species by a Porous Self-Assembled Benzophenone Bis-Urea Host. ACS OMEGA 2019; 4:8290-8298. [PMID: 31459915 PMCID: PMC6648088 DOI: 10.1021/acsomega.9b00831] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 04/25/2019] [Indexed: 06/10/2023]
Abstract
Herein, we examine the photochemical formation of reactive oxygen species (ROS) by a porous benzophenone-containing bis-urea host (1) to investigate the mechanism of photooxidations that occur within the confines of its nanochannels. UV irradiation of the self-assembled host in the presence of molecular oxygen generates both singlet oxygen and superoxide when suspended in solution. The efficiency of ROS generation by the host is lower than that of benzophenone (BP), which could be beneficial for reactions carried out catalytically, as ROS species react quickly and often unselectively. Superoxide formation was detected through reaction with 5,5-dimethyl-1-pyrroline N-oxide in the presence of methanol. However, it is not detected in CHCl3, as it reacts rapidly with the solvent to generate methaneperoxy and chloride anions, similar to BP. The lifetime of airborne singlet oxygen (τΔairborne) was examined at the air-solid outer surface of the host and host·quencher complexes and suggests that quenching is a surface phenomenon. The efficiency of the host and BP as catalysts was compared for the photooxidation of 1-methyl-1-cyclohexene in solution. Both the host and BP mediate the photooxidation in CHCl3, benzene, and benzene-d 6, producing primarily epoxide-derived products with low selectivity likely by both type I and type II photooxidation processes. Interestingly, in CHCl3, two chlorohydrins were also formed, reflecting the formation of chloride in this solvent. In contrast, UV irradiation of the host·guest crystals in an oxygen atmosphere produced no epoxide and appeared to favor mainly the type II processes. Photolysis afforded high conversion to only three products: an enone, a tertiary allylic alcohol, and a diol, which demonstrates the accessibility of the encapsulated reactants to oxygen and the influence of confinement on the reaction pathway.
Collapse
Affiliation(s)
- Baillie A. DeHaven
- Department of Chemistry
and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Hannah K. Liberatore
- Department of Chemistry
and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, Graduate Center
of City University of New York, New York, New York 10016, United States
| | - Susan D. Richardson
- Department of Chemistry
and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Linda S. Shimizu
- Department of Chemistry
and Biochemistry, University of South Carolina, Columbia, South Carolina 29208, United States
| |
Collapse
|
27
|
Peddinti BST, Scholle F, Ghiladi RA, Spontak RJ. Photodynamic Polymers as Comprehensive Anti-Infective Materials: Staying Ahead of a Growing Global Threat. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25955-25959. [PMID: 30044089 DOI: 10.1021/acsami.8b09139] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
To combat the global threat posed by surface-adhering pathogens that are becoming increasingly drug-resistant, we explore the anti-infective efficacy of bulk thermoplastic elastomer films containing ∼1 wt % zinc-tetra(4- N-methylpyridyl)porphine (ZnTMPyP4+), a photoactive antimicrobial that utilizes visible light to generate singlet oxygen. This photodynamic polymer is capable of inactivating five bacterial strains and two viruses with at least 99.89% and 99.95% success, respectively, after exposure to noncoherent light for 60 min. Unlike other anti-infective methodologies commonly requiring oxidizing chemicals, carcinogenic radiation, or toxic nanoparticles, our approach is nonspecific and safe/nontoxic, and sustainably relies on the availability of just oxygen and visible light.
Collapse
|
28
|
Pushalkar S, Ghosh G, Xu Q, Liu Y, Ghogare AA, Atem C, Greer A, Saxena D, Lyons AM. Superhydrophobic Photosensitizers: Airborne 1O 2 Killing of an in Vitro Oral Biofilm at the Plastron Interface. ACS APPLIED MATERIALS & INTERFACES 2018; 10:25819-25829. [PMID: 29972022 PMCID: PMC6698391 DOI: 10.1021/acsami.8b09439] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Singlet oxygen is a potent agent for the selective killing of a wide range of harmful cells; however, current delivery methods pose significant obstacles to its widespread use as a treatment agent. Limitations include the need for photosensitizer proximity to tissue because of the short (3.5 μs) lifetime of singlet oxygen in contact with water; the strong optical absorption of the photosensitizer, which limits the penetration depth; and hypoxic environments that restrict the concentration of available oxygen. In this article, we describe a novel superhydrophobic singlet oxygen delivery device for the selective inactivation of bacterial biofilms. The device addresses the current limitations by: immobilizing photosensitizer molecules onto inert silica particles; embedding the photosensitizer-containing particles into the plastron (i.e. the fluid-free space within a superhydrophobic surface between the solid substrate and fluid layer); distributing the particles along an optically transparent substrate such that they can be uniformly illuminated; enabling the penetration of oxygen via the contiguous vapor space defined by the plastron; and stabilizing the superhydrophobic state while avoiding the direct contact of the sensitizer to biomaterials. In this way, singlet oxygen generated on the sensitizer-containing particles can diffuse across the plastron and kill bacteria even deep within the hypoxic periodontal pockets. For the first time, we demonstrate complete biofilm inactivation (>5 log killing) of Porphyromonas gingivalis, a bacterium implicated in periodontal disease using the superhydrophobic singlet oxygen delivery device. The biofilms were cultured on hydroxyapatite disks and exposed to active and control surfaces to assess the killing efficiency as monitored by colony counting and confocal microscopy. Two sensitizer particle types, a silicon phthalocyanine sol-gel and a chlorin e6 derivative covalently bound to fluorinated silica, were evaluated; the biofilm killing efficiency was found to correlate with the amount of singlet oxygen detected in separate trapping studies. Finally, we discuss the applications of such devices in the treatment of periodontitis.
Collapse
Affiliation(s)
- Smruti Pushalkar
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Goutam Ghosh
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
| | - QianFeng Xu
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Yang Liu
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Ashwini A. Ghogare
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Cecilia Atem
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alexander Greer
- Department of Chemistry, Brooklyn College, City University of New York, Brooklyn, New York 11210, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| | - Deepak Saxena
- Department of Basic Sciences and Craniofacial Biology, New York University College of Dentistry, New York 10010, United States
| | - Alan M. Lyons
- Department of Chemistry, College of Staten Island, City University of New York, Staten Island, New York 10314, United States
- Ph.D. Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
- SingletO2 Therapeutics LLC, 215 W 125 St., 4 Floor, New York, NY 10027, United States
| |
Collapse
|
29
|
Pibiri I, Buscemi S, Palumbo Piccionello A, Pace A. Photochemically Produced Singlet Oxygen: Applications and Perspectives. CHEMPHOTOCHEM 2018. [DOI: 10.1002/cptc.201800076] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche Chimiche e Farmaceutiche - STEBICEF; Università degli Studi di Palermo; Viale delle Scienze, Edificio 17 - 90128 Palermo Italy
- Dipartimento di Scienze per l'Innovazione Tecnologica; Istituto EuroMediterraneo di Scienza e Tecnologia - IEMEST; Via Michele Miraglia, 20 - 90139 - Palermo Italy
| |
Collapse
|
30
|
Xia D, An T, Li G, Wang W, Zhao H, Wong PK. Synergistic photocatalytic inactivation mechanisms of bacteria by graphene sheets grafted plasmonic AgAgX (X = Cl, Br, I) composite photocatalyst under visible light irradiation. WATER RESEARCH 2016; 99:149-161. [PMID: 27155987 DOI: 10.1016/j.watres.2016.04.055] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Revised: 04/21/2016] [Accepted: 04/21/2016] [Indexed: 05/24/2023]
Abstract
By coupling graphene sheet and plasmonic photocatalysis technologies, a series of AgAgX/RGOs (X = Cl, Br, I; RGO = reduced graphene oxide) composites were prepared and found to be efficient antimicrobial agents for water disinfection upon visible light. Attributed to the efficient charge transfer by RGO sheets, the optimum AgAgBr/0.5% RGO could completely inactivate 2 × 10(7) cfu mL(-1) of Escherichia coli within 8 min, much faster than bare AgAgBr within 35 min. The synergistic antimicrobial mechanism of AgAgBr/0.5% RGO was studied by Ag(+) ions release evaluation, radical scavengers study, and radical determination. The enhanced photocatalytic activity of irradiated AgAgBr/0.5% RGO originated from the synergistic activities of its three components including Ag, AgBr and RGO, and the proposed mechanisms contained enhanced attraction by RGO followed by two pathways: primary oxidative stress caused by plasma induced reactive species like H2O2 and bactericidal effect of released Ag(+) ions. Furthermore, characterization of E. coli cells using SEM, fluorescent microscopy, and cytoplasmic substance leakage illustrated that VL irradiated AgAgBr/0.5% RGO could not only cause metabolic dysfunction but also destroy the cell envelope and biomolecular, while irradiated Ag(+) ions play a differential bactericidal action with a limited metabolic injury and no cell-membrane damage. The present work provides an efficient water disinfection technology and also opens a new idea in studying the antimicrobial mechanism of plasmonic photocatalyst.
Collapse
Affiliation(s)
- Dehua Xia
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Taicheng An
- Institute of Environmental Health and Pollution Control and School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China.
| | - Guiying Li
- Institute of Environmental Health and Pollution Control and School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou 510006, China
| | - Wanjun Wang
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region
| | - Huijun Zhao
- Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222, Australia
| | - Po Keung Wong
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong Special Administrative Region.
| |
Collapse
|
31
|
Affiliation(s)
- Ashwini A. Ghogare
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| | - Alexander Greer
- Department
of Chemistry, Brooklyn College, 2900 Bedford Avenue, Brooklyn, New York 11210, United States
- Ph.D.
Program in Chemistry, The Graduate Center of the City University of New York, 365 Fifth Avenue, New York, New York 10016, United States
| |
Collapse
|
32
|
Malek B, Ghogare AA, Choudhury R, Greer A. Air-Water Interface Effects on the Regioselectivity of Singlet Oxygenations of a Trisubstituted Alkene. Tetrahedron Lett 2015; 56:4505-4508. [PMID: 27092011 PMCID: PMC4832427 DOI: 10.1016/j.tetlet.2015.05.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The regioselective synthesis of allylic hydroperoxide sulfonates by singlet oxygenation at the air-water interface has been found to depend on the concentration of the alkene sulfonate and added calcium salt. The regioselectivity is proposed to originate from an orthogonal alkene relative to the water surface for preferential methyl hydrogen abstraction by airborne singlet oxygen in an ene reaction. The findings hint that the air-water interface is a locale for synthetic reactions.
Collapse
Affiliation(s)
- Belaid Malek
- Department of Chemistry and Graduate Center, City University of New York–Brooklyn College, Brooklyn, New York 11210, United States
| | - Ashwini A. Ghogare
- Department of Chemistry and Graduate Center, City University of New York–Brooklyn College, Brooklyn, New York 11210, United States
| | - Rajib Choudhury
- Department of Chemistry and Graduate Center, City University of New York–Brooklyn College, Brooklyn, New York 11210, United States
| | - Alexander Greer
- Department of Chemistry and Graduate Center, City University of New York–Brooklyn College, Brooklyn, New York 11210, United States
| |
Collapse
|
33
|
Xia D, Shen Z, Huang G, Wang W, Yu JC, Wong PK. Red Phosphorus: An Earth-Abundant Elemental Photocatalyst for "Green" Bacterial Inactivation under Visible Light. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:6264-73. [PMID: 25894494 DOI: 10.1021/acs.est.5b00531] [Citation(s) in RCA: 125] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Earth-abundant red phosphorus was found to exhibit remarkable efficiency to inactivate Escherichia coli K-12 under the full spectrum of visible light and even sunlight. The reactive oxygen species (•OH, •O2(-), H2O2), which were measured and identified to derive mainly from photogenerated electrons in the conduction band using fluorescent probes and scavengers, collectively contributed to the good performance of red phosphorus. Especially, the inactivated-membrane function enzymes were found to be associated with great loss of respiratory and ATP synthesis activity, the kinetics of which paralleled cell death and occurred much earlier than those of cytoplasmic proteins and chromosomal DNA. This indicated that the cell membrane was a vital first target for reactive oxygen species oxidation. The increased permeability of the cell membrane consequently accelerated intracellular protein carboxylation and DNA degradation to cause definite bacterial death. Microscopic analyses further confirmed the cell destruction process starting with the cell envelope and extending to the intracellular components. The red phosphorus still maintained good performance even after recycling through five reaction cycles. This work offers new insight into the exploration and use of an elemental photocatalyst for "green" environmental applications.
Collapse
Affiliation(s)
- Dehua Xia
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zhurui Shen
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- §Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
- ∥Key Laboratory for Advanced Ceramics and Machining Technology of Ministry of Education, School of Material Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guocheng Huang
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Wanjun Wang
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Jimmy C Yu
- ‡Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- §Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, China
| | - Po Keung Wong
- †School of Life Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| |
Collapse
|
34
|
Zhao Y, Liu Y, Xu Q, Barahman M, Bartusik D, Greer A, Lyons AM. Singlet oxygen generation on porous superhydrophobic surfaces: effect of gas flow and sensitizer wetting on trapping efficiency. J Phys Chem A 2014; 118:10364-71. [PMID: 24885074 PMCID: PMC4234451 DOI: 10.1021/jp503149x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We describe physical-organic studies of singlet oxygen generation and transport into an aqueous solution supported on superhydrophobic surfaces on which silicon-phthalocyanine (Pc) particles are immobilized. Singlet oxygen ((1)O2) was trapped by a water-soluble anthracene compound and monitored in situ using a UV-vis spectrometer. When oxygen flows through the porous superhydrophobic surface, singlet oxygen generated in the plastron (i.e., the gas layer beneath the liquid) is transported into the solution within gas bubbles, thereby increasing the liquid-gas surface area over which singlet oxygen can be trapped. Higher photooxidation rates were achieved in flowing oxygen, as compared to when the gas in the plastron was static. Superhydrophobic surfaces were also synthesized so that the Pc particles were located in contact with, or isolated from, the aqueous solution to evaluate the relative effectiveness of singlet oxygen generated in solution and the gas phase, respectively; singlet oxygen generated on particles wetted by the solution was trapped more efficiently than singlet oxygen generated in the plastron, even in the presence of flowing oxygen gas. A mechanism is proposed that explains how Pc particle wetting, plastron gas composition and flow rate as well as gas saturation of the aqueous solution affect singlet oxygen trapping efficiency. These stable superhydrophobic surfaces, which can physically isolate the photosensitizer particles from the solution may be of practical importance for delivering singlet oxygen for water purification and medical devices.
Collapse
Affiliation(s)
- Yuanyuan Zhao
- Department of Chemistry, College of Staten Island, City University of New York , Staten Island, New York 10314, United States
| | | | | | | | | | | | | |
Collapse
|
35
|
Aebisher D, Bartusik D, Liu Y, Zhao Y, Barahman M, Xu Q, Lyons AM, Greer A. Superhydrophobic photosensitizers. Mechanistic studies of (1)O2 generation in the plastron and solid/liquid droplet interface. J Am Chem Soc 2013; 135:18990-8. [PMID: 24295210 DOI: 10.1021/ja410529q] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
We describe here a physical-organic study of the first triphasic superhydrophobic sensitizer for photooxidations in water droplets. Control of synthetic parameters enables the mechanistic study of "borderline" two- and three-phase superhydrophobic sensitizer surfaces where (1)O2 is generated in compartments that are wetted, partially wetted, or remain dry in the plastron (i.e., air layer beneath the droplet). The superhydrophobic surface is synthesized by partially embedding silicon phthalocyanine (Pc) sensitizing particles to specific locations on polydimethylsiloxane (PDMS) posts printed in a square array (1 mm tall posts on 0.5 mm pitch). In the presence of red light and oxygen, singlet oxygen is formed on the superhydrophobic surface and reacts with 9,10-anthracene dipropionate dianion (1) within a freestanding water droplet to produce an endoperoxide in 54-72% yields. Control of the (1)O2 chemistry was achieved by the synthesis of superhydrophobic surfaces enriched with Pc particles either at the PDMS end-tips or at PDMS post bases. Much of the (1)O2 that reacts with anthracene 1 in the droplets was generated by the sensitizer "wetted" at the Pc particle/water droplet interface and gave the highest endoperoxide yields. About 20% of the (1)O2 can be introduced into the droplet from the plastron. The results indicate that the superhydrophobic sensitizer surface offers a unique system to study (1)O2 transfer routes where a balance of gas and liquid contributions of (1)O2 is tunable within the same superhydrophobic surface.
Collapse
Affiliation(s)
- David Aebisher
- Department of Natural Sciences, Shorter University , Rome, Georgia 30165, United States
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Bartusik D, Aebisher D, Ghogare A, Ghosh G, Abramova I, Hasan T, Greer A. A fiberoptic (photodynamic therapy type) device with a photosensitizer and singlet oxygen delivery probe tip for ovarian cancer cell killing. Photochem Photobiol 2013; 89:936-41. [PMID: 23495787 DOI: 10.1111/php.12072] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Accepted: 03/08/2013] [Indexed: 01/18/2023]
Abstract
A portable "fiber optic-based sensitizer delivery" (FOSD) device has been developed and studied. Before there might be success in photodynamic therapy (PDT) and antibacterial ambitions, an understanding of basic factors on device performance was needed. Thus, the device was examined for the localized delivery of sensitizer molecules in ovarian cancer cells and production of high concentrations of singlet oxygen for their eradication in vitro. The device tip releases stored pheophorbide by attack of singlet oxygen from sensitized oxygen gas delivered through the hollow fiber using 669 nm laser light. The performance of the device was enhanced when configured with a fluorosilane tip by virtue of its Teflon-like property compared with a conventional glass tip (greater sensitizer quantities were photoreleased and laterally diffused, and greater amounts of ovarian OVCAR-5 cancer cells were killed). No cell damage was observed at 2.2 N of force applied by the probe tip itself, an amount used for many of the experiments described here.
Collapse
Affiliation(s)
- Dorota Bartusik
- Department of Chemistry, Graduate Center, City University of New York Brooklyn College, Brooklyn, NY, USA
| | | | | | | | | | | | | |
Collapse
|
37
|
Jaffee MB, Imperiali B. Optimized protocol for expression and purification of membrane-bound PglB, a bacterial oligosaccharyl transferase. Protein Expr Purif 2013; 89:241-50. [PMID: 23583934 DOI: 10.1016/j.pep.2013.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 04/03/2013] [Accepted: 04/04/2013] [Indexed: 11/26/2022]
Abstract
Asparagine-linked glycosylation (NLG) plays a significant role in a diverse range of cellular processes, including protein signaling and trafficking, the immunologic response, and immune system evasion by pathogens. A major impediment to NLG-related research is an incomplete understanding of the central enzyme in the biosynthetic pathway, the oligosaccharyl transferase (OTase). Characterization of the OTase is critical for developing ways to inhibit, engineer, and otherwise manipulate the enzyme for research and therapeutic purposes. The minimal understanding of this enzyme can be attributed to its complex, transmembrane structure, and the resulting instability and resistance to overexpression and purification. The following article describes an optimized procedure for recombinant expression and purification of PglB, a bacterial OTase, in a stably active form. The conditions screened at each step, the order of screening, and the method of comparing conditions are described. Ultimately, the following approach increased expression levels from tens of micrograms to several milligrams of active protein per liter of Escherichia coli culture, and increased stability from several hours to greater than six months post-purification. This represents the first detailed procedure for attaining a pure, active, and stable OTase in milligram quantities. In addition to presenting an optimized protocol for expression and purification of PglB, these results present a general guide for the systematic optimization of the expression, purification, and stability of a large, transmembrane protein.
Collapse
Affiliation(s)
- Marcie B Jaffee
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | | |
Collapse
|