1
|
Kuznetsova A, McKenzie D, Ytrehus B, Utaaker KS, Aiken JM. Movement of Chronic Wasting Disease Prions in Prairie, Boreal and Alpine Soils. Pathogens 2023; 12:269. [PMID: 36839541 PMCID: PMC9965917 DOI: 10.3390/pathogens12020269] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 01/31/2023] [Accepted: 02/03/2023] [Indexed: 02/11/2023] Open
Abstract
Chronic wasting disease (CWD) is a transmissible spongiform encephalopathy negatively impacting cervids on three continents. Soil can serve as a reservoir for horizontal transmission of CWD by interaction with the infectious prion protein (PrPCWD) shed by diseased individuals and from infected carcasses. We investigated the pathways for PrPCWD migration in soil profiles using lab-scale soil columns, comparing PrPCWD migration through pure soil minerals (quartz, illite and montmorillonite), and diverse soils from boreal (Luvisol, Brunisol) and prairie (Chernozem) regions. We analyzed the leachate of the soil columns by immunoblot and protein misfolding cyclic amplification (PMCA) and detected PrP in the leachates of columns composed of quartz, illite, Luvisol and Brunisol. Animal bioassay confirmed the presence of CWD infectivity in the leachates from quartz, illite and Luvisol columns. Leachates from columns with montmorillonite and prairie Chernozems did not contain PrP detectable by immunoblotting or PMCA; bioassay confirmed that the Chernozemic leachate was not infectious. Analysis of the solid phase of the columns confirmed the migration of PrP to lower layers in the illite column, while the strongest signal in the montmorillonite column remained close to the surface. Montmorillonite, the prevalent clay mineral in prairie soils, has the strongest prion binding ability; by contrast, illite, the main clay mineral in northern boreal and tundra soils, does not bind prions significantly. This suggests that in soils of North American CWD-endemic regions (Chernozems), PrPCWD would remain on the soil surface due to avid binding to montmorillonite. In boreal Luvisols and mountain Brunisols, prions that pass through the leaf litter will continue to move through the soil mineral horizon, becoming less bioavailable. In light-textured soils where quartz is a dominant mineral, the majority of the infectious prions will move through the soil profile. Local soil properties may consequently determine the efficiency of environmental transmission of CWD.
Collapse
Affiliation(s)
- Alsu Kuznetsova
- Department of Renewable Resources, University of Alberta, Edmonton, AB T6G 2G8, Canada
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Debbie McKenzie
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2M8, Canada
| | - Bjørnar Ytrehus
- Norwegian Institute for Nature Research (NINA), 7034 Trondheim, Norway
- Department of Biomedicine and Veterinary Public Health Sciences, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| | - Kjersti Selstad Utaaker
- Norwegian Institute for Nature Research (NINA), 7034 Trondheim, Norway
- Faculty of Biosciences and Aquaculture, Nord University, 8026 Bodø, Norway
| | - Judd M. Aiken
- Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, AB T6G 2M8, Canada
- Department of Agricultural, Food and Nutritional Sciences, University of Alberta, Edmonton, AB T6G 2M8, Canada
| |
Collapse
|
2
|
Zhao Y, Pogue AI, Alexandrov PN, Butler LG, Li W, Jaber VR, Lukiw WJ. Alteration of Biomolecular Conformation by Aluminum-Implications for Protein Misfolding Disease. Molecules 2022; 27:5123. [PMID: 36014365 PMCID: PMC9412470 DOI: 10.3390/molecules27165123] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
The natural element aluminum possesses a number of unique biochemical and biophysical properties that make this highly neurotoxic species deleterious towards the structural integrity, conformation, reactivity and stability of several important biomolecules. These include aluminum's (i) small ionic size and highly electrophilic nature, having the highest charge density of any metallic cation with a Z2/r of 18 (ionic charge +3, radius 0.5 nm); (ii) inclination to form extremely stable electrostatic bonds with a tendency towards covalency; (iii) ability to interact irreversibly and/or significantly slow down the exchange-rates of complex aluminum-biomolecular interactions; (iv) extremely dense electropositive charge with one of the highest known affinities for oxygen-donor ligands such as phosphate; (v) presence as the most abundant metal in the Earth's biosphere and general bioavailability in drinking water, food, medicines, consumer products, groundwater and atmospheric dust; and (vi) abundance as one of the most commonly encountered intracellular and extracellular metallotoxins. Despite aluminum's prevalence and abundance in the biosphere it is remarkably well-tolerated by all plant and animal species; no organism is known to utilize aluminum metabolically; however, a biological role for aluminum has been assigned in the compaction of chromatin. In this Communication, several examples are given where aluminum has been shown to irreversibly perturb and/or stabilize the natural conformation of biomolecules known to be important in energy metabolism, gene expression, cellular homeostasis and pathological signaling in neurological disease. Several neurodegenerative disorders that include the tauopathies, Alzheimer's disease and multiple prion disorders involve the altered conformation of naturally occurring cellular proteins. Based on the data currently available we speculate that one way aluminum contributes to neurological disease is to induce the misfolding of naturally occurring proteins into altered pathological configurations that contribute to the neurodegenerative disease process.
Collapse
Affiliation(s)
- Yuhai Zhao
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Department of Cell Biology & Anatomy, LSU Health Science Center, New Orleans, LA 70112, USA
| | | | | | - Leslie G. Butler
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Wenhong Li
- Department of Pharmacology, Jiangxi University of TCM, Nanchang 330004, China
| | - Vivian R. Jaber
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
| | - Walter J. Lukiw
- LSU Neuroscience Center, Louisiana State University Health Science Center, New Orleans, LA 70112, USA
- Alchem Biotek Research, Toronto, ON M5S 1A8, Canada
- Russian Academy of Medical Sciences, 113152 Moscow, Russian
- Department of Ophthalmology, LSU Health Science Center, New Orleans, LA 70112, USA
- Department Neurology, LSU Health Science Center, New Orleans, LA 70112, USA
| |
Collapse
|
3
|
Li Y, Wang M, Zhang Y, Koopal LK, Tan W. Goethite effects on transport and activity of lysozyme with humic acid in quartz sand. Colloids Surf A Physicochem Eng Asp 2020. [DOI: 10.1016/j.colsurfa.2020.125319] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
4
|
Eraña H, Pérez-Castro MÁ, García-Martínez S, Charco JM, López-Moreno R, Díaz-Dominguez CM, Barrio T, González-Miranda E, Castilla J. A Novel, Reliable and Highly Versatile Method to Evaluate Different Prion Decontamination Procedures. Front Bioeng Biotechnol 2020; 8:589182. [PMID: 33195153 PMCID: PMC7658626 DOI: 10.3389/fbioe.2020.589182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/14/2020] [Indexed: 01/16/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a group of invariably fatal neurodegenerative disorders. The causal agent is an aberrantly folded isoform (PrPSc or prion) of the endogenous prion protein (PrPC) which is neurotoxic and amyloidogenic and induces misfolding of its physiological counterpart. The intrinsic physical characteristics of these infectious proteinaceous pathogens makes them highly resistant to the vast majority of physicochemical decontamination procedures used typically for standard disinfection. This means prions are highly persistent in contaminated tissues, the environment (surfaces) and, of great concern, on medical and surgical instruments. Traditionally, decontamination procedures for prions are tested on natural isolates coming from the brain of infected individuals with an associated high heterogeneity resulting in highly variable results. Using our novel ability to produce highly infectious recombinant prions in vitro we adapted the system to enable recovery of infectious prions from contaminated materials. This method is easy to perform and, importantly, results in highly reproducible propagation in vitro. It exploits the adherence of infectious prion protein to beads of different materials allowing accurate and repeatable assessment of the efficacy of disinfectants of differing physicochemical natures to eliminate infectious prions. This method is technically easy, requires only a small shaker and a standard biochemical technique and could be performed in any laboratory.
Collapse
Affiliation(s)
- Hasier Eraña
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Miguel Ángel Pérez-Castro
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Sandra García-Martínez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Jorge M Charco
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Rafael López-Moreno
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Carlos M Díaz-Dominguez
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Tomás Barrio
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain
| | - Ezequiel González-Miranda
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,Atlas Molecular Pharma S. L., Bizkaia Technology Park, Derio, Spain
| | - Joaquín Castilla
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Bizkaia Technology Park, Derio, Spain.,IKERBASQUE, Basque Foundation for Science, Bilbao, Spain
| |
Collapse
|
5
|
Li Y, Koopal LK, Xiong J, Wang M, Yang C, Tan W. Influence of humic acid on transport, deposition and activity of lysozyme in quartz sand. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:298-306. [PMID: 29990937 DOI: 10.1016/j.envpol.2018.06.096] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/24/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
Interaction with natural organic matter (NOM) is hypothesized to impact the fate and bioavailability of enzymes and some hazardous proteins in terrestrial and aquatic environments. By using saturated column transport experiments the transport and deposition of the model enzyme lysozyme (LSZ), in the absence and presence of purified Aldrich humic acid (PAHA), was investigated at a series of mass ratios PAHA/LSZ at pH 5 and 8 and two ionic strength values (0.5 mM and 50 mM KCl solution). PAHA decreased LSZ transport under all conditions. The shapes of breakthrough curves (BTCs) and retention profiles (RPs) during cotransport of both colloids evolved from symmetrical to blocking with time and from flat to hyper-exponential with depth, respectively, in response to increases in mass ratio PAHA/LSZ. The results indicated that the "size-selective retention" and concurrent homo- and hetero-aggregation induced straining, which resulted in preferential retention of relatively large PAHA-LSZ aggregates in the column and elution of relatively small ones. Due to differences in aggregate size, in general, the enzyme activity of LSZ in the effluent was larger and that of the retained LSZ was smaller than that of the influent. Therefore, protein transport process could partially increase the enzyme activity and bring potential environmental hazards.
Collapse
Affiliation(s)
- Yan Li
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Luuk K Koopal
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China; Laboratory of Physical Chemistry and Soft Matter, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Juan Xiong
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Mingxia Wang
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Chenfeng Yang
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China
| | - Wenfeng Tan
- Key Laboratory of Horticultural Plant Biology, The Ministry of Education, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, PR China.
| |
Collapse
|
6
|
Giachin G, Nepravishta R, Mandaliti W, Melino S, Margon A, Scaini D, Mazzei P, Piccolo A, Legname G, Paci M, Leita L. The mechanisms of humic substances self-assembly with biological molecules: The case study of the prion protein. PLoS One 2017; 12:e0188308. [PMID: 29161325 PMCID: PMC5697873 DOI: 10.1371/journal.pone.0188308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/04/2017] [Indexed: 12/17/2022] Open
Abstract
Humic substances (HS) are the largest constituent of soil organic matter and are considered as a key component of the terrestrial ecosystem. HS may facilitate the transport of organic and inorganic molecules, as well as the sorption interactions with environmentally relevant proteins such as prions. Prions enter the environment through shedding from live hosts, facilitating a sustained incidence of animal prion diseases such as Chronic Wasting Disease and scrapie in cervid and ovine populations, respectively. Changes in prion structure upon environmental exposure may be significant as they can affect prion infectivity and disease pathology. Despite its relevance, the mechanisms of prion interaction with HS are still not completely understood. The goal of this work is to advance a structural-level picture of the encapsulation of recombinant, non-infectious, prion protein (PrP) into different natural HS. We observed that PrP precipitation upon addition of HS is mainly driven by a mechanism of "salting-out" whereby PrP molecules are rapidly removed from the solution and aggregate in insoluble adducts with humic molecules. Importantly, this process does not alter the protein folding since insoluble PrP retains its α-helical content when in complex with HS. The observed ability of HS to promote PrP insolubilization without altering its secondary structure may have potential relevance in the context of "prion ecology". These results suggest that soil organic matter interacts with prions possibly without altering the protein structures. This may facilitate prions preservation from biotic and abiotic degradation leading to their accumulation in the environment.
Collapse
Affiliation(s)
- Gabriele Giachin
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- * E-mail: (GG); (LL)
| | - Ridvan Nepravishta
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
- School of Pharmacy, East Anglia University, Norwich, United Kingdom
| | - Walter Mandaliti
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Sonia Melino
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Alja Margon
- CREA Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Council for Agricultural Research and Economics), Gorizia, Italy
| | - Denis Scaini
- Life Science Department, University of Trieste, Trieste, Italy
- ELETTRA Synchrotron Light Source, Trieste, Italy
| | - Pierluigi Mazzei
- Interdepartmental Research Centre (CERMANU), University of Naples Federico II, Napoli, Italy
| | - Alessandro Piccolo
- Interdepartmental Research Centre (CERMANU), University of Naples Federico II, Napoli, Italy
| | - Giuseppe Legname
- Department of Neurosciences, Scuola Internazionale Superiore di Studi Avanzati (SISSA), Trieste, Italy
- ELETTRA Synchrotron Light Source, Trieste, Italy
| | - Maurizio Paci
- Department of Chemical Sciences and Technologies, University of Rome “Tor Vergata”, Rome, Italy
| | - Liviana Leita
- CREA Consiglio per la ricerca in agricoltura e l’analisi dell’economia agraria (Council for Agricultural Research and Economics), Gorizia, Italy
- * E-mail: (GG); (LL)
| |
Collapse
|
7
|
Huang R, Yi P, Tang Y. Probing the interactions of organic molecules, nanomaterials, and microbes with solid surfaces using quartz crystal microbalances: methodology, advantages, and limitations. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:793-811. [PMID: 28488712 DOI: 10.1039/c6em00628k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Quartz crystal microbalances (QCMs) provide a new analytical opportunity and prospect to characterize many environmental processes at solid/liquid interfaces, thanks to their almost real-time measurement of physicochemical changes on their quartz sensor. This work reviews the applications of QCMs in probing the interactions of organic molecules, nanomaterials (NMs) and microbes with solid surfaces. These interfacial interactions are relevant to critical environmental processes such as biofilm formation, fate and transport of NMs, fouling in engineering systems and antifouling practices. The high sensitivity, real-time monitoring, and simultaneous frequency and dissipation measurements make QCM-D a unique technique that helps reveal the interaction mechanisms for the abovementioned processes (e.g., driving forces, affinity, kinetics, and the interplay between surface chemistry and solution chemistry). On the other hand, QCM measurement is nonselective and spatially-dependent. Thus, caution should be taken during data analysis and interpretation, and it is necessary to cross-validate the results using complementary information from other techniques for more quantitative and accurate interpretation. This review summarizes the general methodologies for collecting and analyzing raw QCM data, as well as for evaluating the associated uncertainties. It serves to help researchers gain deeper insights into the fundamentals and applications of QCMs, and provides new perspectives on future research directions.
Collapse
Affiliation(s)
- Rixiang Huang
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 311 Ferst Dr, Atlanta, Georgia 30324-0340, USA.
| | | | | |
Collapse
|
8
|
Jacobson KH, Gunsolus IL, Kuech TR, Troiano JM, Melby ES, Lohse SE, Hu D, Chrisler WB, Murphy CJ, Orr G, Geiger FM, Haynes CL, Pedersen JA. Lipopolysaccharide Density and Structure Govern the Extent and Distance of Nanoparticle Interaction with Actual and Model Bacterial Outer Membranes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:10642-10650. [PMID: 26207769 PMCID: PMC4643684 DOI: 10.1021/acs.est.5b01841] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
Design of nanomedicines and nanoparticle-based antimicrobial and antifouling formulations and assessment of the potential implications of nanoparticle release into the environment requires understanding nanoparticle interaction with bacterial surfaces. Here we demonstrate the electrostatically driven association of functionalized nanoparticles with lipopolysaccharides of Gram-negative bacterial outer membranes and find that lipopolysaccharide structure influences the extent and location of binding relative to the outer leaflet-solution interface. By manipulating the lipopolysaccharide content in Shewanella oneidensis outer membranes, we observed the electrostatically driven interaction of cationic gold nanoparticles with the lipopolysaccharide-containing leaflet. We probed this interaction by quartz crystal microbalance with dissipation monitoring (QCM-D) and second harmonic generation (SHG) using solid-supported lipopolysaccharide-containing bilayers. The association of cationic nanoparticles increased with lipopolysaccharide content, while no association of anionic nanoparticles was observed. The harmonic-dependence of QCM-D measurements suggested that a population of the cationic nanoparticles was held at a distance from the outer leaflet-solution interface of bilayers containing smooth lipopolysaccharides (those bearing a long O-polysaccharide). Additionally, smooth lipopolysaccharides held the bulk of the associated cationic particles outside of the interfacial zone probed by SHG. Our results demonstrate that positively charged nanoparticles are more likely to interact with Gram-negative bacteria than are negatively charged particles, and this interaction occurs primarily through lipopolysaccharides.
Collapse
Affiliation(s)
- Kurt H. Jacobson
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Ian L. Gunsolus
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
| | - Thomas R. Kuech
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Julianne M. Troiano
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Eric S. Melby
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Samuel E. Lohse
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Dehong Hu
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - William B. Chrisler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Catherine J. Murphy
- Department of Chemistry, University of Illinois at Urbana–Champaign, Urbana, Illinois 61801, United States
| | - Galya Orr
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington 99352, United States
| | - Franz M. Geiger
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Christy L. Haynes
- Department of Chemistry, University of Minnesota, Minneapolis, Minnesota 55455, United States
- Corresponding Authors: Phone: 608-263-4971; . Phone: 612-626-1096,
| | - Joel A. Pedersen
- Department of Civil and Environmental Engineering, University of Wisconsin, Madison, Wisconsin 53706, United States
- Environmental Chemistry and Technology Program, University of Wisconsin, Madison, Wisconsin 53706, United States
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
- Corresponding Authors: Phone: 608-263-4971; . Phone: 612-626-1096,
| |
Collapse
|
9
|
Kuznetsova A, McKenzie D, Banser P, Siddique T, Aiken JM. Potential role of soil properties in the spread of CWD in western Canada. Prion 2015; 8:92-9. [PMID: 24618673 DOI: 10.4161/pri.28467] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Chronic wasting disease (CWD) is a horizontally transmissible prion disease of free ranging deer, elk and moose. Recent experimental transmission studies indicate caribou are also susceptible to the disease. CWD is present in southeast Alberta and southern Saskatchewan. This CWD-endemic region is expanding, threatening Manitoba and areas of northern Alberta and Saskatchewan, home to caribou. Soil can serve as a stable reservoir for infectious prion proteins; prions bound to soil particles remain infectious in the soils for many years. Soils of western Canada are very diverse and the ability of CWD prions to bind different soils and the impact of this interaction on infectivity is not known. In general, clay-rich soils may bind prions avidly and enhance their infectivity comparable to pure clay mineral montmorillonite. Organic components of soils are also diverse and not well characterized, yet can impact prion-soil interaction. Other important contributing factors include soil pH, composition of soil solution and amount of metals (metal oxides). In this review, properties of soils of the CWD-endemic region in western Canada with its surrounding terrestrial environment are described and used to predict bioavailability and, thus, potential spread of CWD. The major soils in the CWD-endemic region of Alberta and Saskatchewan are Chernozems, present in 60% of the total area; they are generally similar in texture, clay mineralogy and soil organic matter content, and can be characterized as clay loamy, montmorillonite (smectite) soils with 6-10% organic carbon. The greatest risk of CWD spread in western Canada relates to clay loamy, montmorillonite soils with humus horizon. Such soils are predominant in the southern region of Alberta, Saskatchewan and Manitoba, but are less common in northern regions of the provinces where quartz-illite sandy soils with low amount of humus prevail.
Collapse
|
10
|
Prion protein interaction with soil humic substances: environmental implications. PLoS One 2014; 9:e100016. [PMID: 24937266 PMCID: PMC4061048 DOI: 10.1371/journal.pone.0100016] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Accepted: 05/21/2014] [Indexed: 02/06/2023] Open
Abstract
Transmissible spongiform encephalopathies (TSE) are fatal neurodegenerative disorders caused by prions. Animal TSE include scrapie in sheep and goats, and chronic wasting disease (CWD) in cervids. Effective management of scrapie in many parts of the world, and of CWD in North American deer population is complicated by the persistence of prions in the environment. After shedding from diseased animals, prions persist in soil, withstanding biotic and abiotic degradation. As soil is a complex, multi-component system of both mineral and organic components, it is important to understand which soil compounds may interact with prions and thus contribute to disease transmission. Several studies have investigated the role of different soil minerals in prion adsorption and infectivity; we focused our attention on the interaction of soil organic components, the humic substances (HS), with recombinant prion protein (recPrP) material. We evaluated the kinetics of recPrP adsorption, providing a structural and biochemical characterization of chemical adducts using different experimental approaches. Here we show that HS act as potent anti-prion agents in prion infected neuronal cells and in the amyloid seeding assays: HS adsorb both recPrP and prions, thus sequestering them from the prion replication process. We interpreted our findings as highly relevant from an environmental point of view, as the adsorption of prions in HS may affect their availability and consequently hinder the environmental transmission of prion diseases in ruminants.
Collapse
|
11
|
Zeng T, Wilson CJ, Mitch WA. Effect of chemical oxidation on the sorption tendency of dissolved organic matter to a model hydrophobic surface. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5118-5126. [PMID: 24697505 DOI: 10.1021/es405257b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The application of chemical oxidants may alter the sorption properties of dissolved organic matter (DOM), such as humic and fulvic acids, proteins, polysaccharides, and lipids, affecting their fate in water treatment processes, including attachment to other organic components, activated carbon, and membranes (e.g., organic fouling). Similar reactions with chlorine (HOCl) and bromine (HOBr) produced at inflammatory sites in vivo affect the fate of biomolecules (e.g., protein aggregation). In this study, quartz crystal microbalance with dissipation monitoring (QCM-D) was used to evaluate changes in the noncovalent interactions of proteins, polysaccharides, fatty acids, and humic and fulvic acids with a model hydrophobic surface as a function of increasing doses of HOCl, HOBr, and ozone (O3). All three oxidants enhanced the sorption tendency of proteins to the hydrophobic surface at low doses but reduced their sorption tendency at high doses. All three oxidants reduced the sorption tendency of polysaccharides and fatty acids to the hydrophobic surface. HOCl and HOBr increased the sorption tendency of humic and fulvic acids to the hydrophobic surface with maxima at moderate doses, while O3 decreased their sorption tendency. The behavior observed with two water samples was similar to that observed with humic and fulvic acids, pointing to the importance of these constituents. For chlorination, the highest sorption tendency to the hydrophobic surface was observed within the range of doses typically applied during water treatment. These results suggest that ozone pretreatment would minimize membrane fouling by DOM, while chlorine pretreatment would promote DOM removal by activated carbon.
Collapse
Affiliation(s)
- Teng Zeng
- Department of Chemical and Environmental Engineering, Yale University , 9 Hillhouse Avenue, New Haven, Connecticut 06520, United States
| | | | | |
Collapse
|