1
|
Zhang G, Wang T, Lin Q, Liu K, Sun W, Chen D, Li L, Wang X, Bi X. A comparative study on the formation of nitrogen-containing organic compounds in cloud droplets and aerosol particles. J Environ Sci (China) 2025; 149:456-464. [PMID: 39181657 DOI: 10.1016/j.jes.2024.01.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 01/11/2024] [Accepted: 01/11/2024] [Indexed: 08/27/2024]
Abstract
Nitrogen-containing organic compounds (NOCs) may potentially contribute to aqueous secondary organic aerosols, yet the different formation of NOCs in aerosol particles and cloud droplets remains unclear. With the in-situ measurements performed at a mountain site (1690 m a.s.l.) in southern China, we investigated the formation of NOCs in the cloud droplets and the cloud-free particles, based on their mixing state information of NOCs-containing particles by single particle mass spectrometry. The relative abundance of NOCs in the cloud-free particles was significantly higher than those in cloud residual (cloud RES) particles. NOCs were highly correlated with carbonyl compounds (including glyoxalate and methylglyoxal) in the cloud-free particles, however, limited correlation was observed for cloud RES particles. Analysis of their mixing state and temporal variations highlights that NOCs was mainly formed from the carbonyl compounds and ammonium in the cloud-free particles, rather than in the cloud RES particles. The results support that the formation of NOCs from carbonyl compounds is facilitated in concentrated solutions in wet aerosols, rather than cloud droplets. In addition, we have identified the transport of biomass burning particles that facilitate the formation of NOCs, and that the observed NOCs is most likely contributed to the light absorption. These findings have implications for the evaluation of NOCs formation and their contribution to light absorption.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China.
| | - Tao Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qinhao Lin
- School of Environmental Science and Engineering, Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 510006, China
| | - Kun Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wei Sun
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring, Guangdong Environmental Monitoring Center, Guangzhou 510308, China
| | - Lei Li
- Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou 510632, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Provincial Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences (CAS), Guangzhou 510640, China; Guangdong-Hong Kong-Macao Joint Laboratory for Environmental Pollution and Control, Guangzhou Institute of Geochemistry, CAS, Guangzhou 510640, China
| |
Collapse
|
2
|
Lee JY, Peterson PK, Vear LR, Cook RD, Sullivan AP, Smith E, Hawkins LN, Olson NE, Hems R, Snyder PK, Pratt KA. Wildfire Smoke Influence on Cloud Water Chemical Composition at Whiteface Mountain, New York. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2022; 127:e2022JD037177. [PMID: 36590830 PMCID: PMC9787799 DOI: 10.1029/2022jd037177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/16/2022] [Accepted: 09/26/2022] [Indexed: 06/17/2023]
Abstract
Wildfires significantly impact air quality and climate, including through the production of aerosols that can nucleate cloud droplets and participate in aqueous-phase reactions. Cloud water was collected during the summer months (June-September) of 2010-2017 at Whiteface Mountain, New York and examined for biomass burning influence. Cloud water samples were classified by their smoke influence based on backward air mass trajectories and satellite-detected smoke. A total of 1,338 cloud water samples collected over 485 days were classified by their probability of smoke influence, with 49% of these days categorized as having moderate to high probability of smoke influence. Carbon monoxide and ozone levels were enhanced during smoke influenced days at the summit of Whiteface Mountain. Smoke-influenced cloud water samples were characterized by enhanced concentrations of potassium, sulfate, ammonium, and total organic carbon, compared to samples lacking identified influence. Five cloud water samples were examined further for the presence of dissolved organic compounds, insoluble particles, and light-absorbing components. The five selected cloud water samples contained the biomass burning tracer levoglucosan at 0.02-0.09 μM. Samples influenced by air masses that remained aloft, above the boundary layer during transport, had lower insoluble particle concentrations, larger insoluble particle diameters, and larger oxalate:sulfate ratios, suggesting cloud processing had occurred. These findings highlight the influence that local and long-range transported smoke have on cloud water composition.
Collapse
Affiliation(s)
- Jamy Y. Lee
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Peter K. Peterson
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Now at Department of ChemistryWhittier CollegeWhittierCAUSA
| | - Logan R. Vear
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Ryan D. Cook
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | - Amy P. Sullivan
- Department of Atmospheric ScienceColorado State UniversityFort CollinsCOUSA
| | - Ellie Smith
- Department of ChemistryHarvey Mudd CollegeClaremontCAUSA
| | | | | | - Rachel Hems
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
| | | | - Kerri A. Pratt
- Department of ChemistryUniversity of MichiganAnn ArborMIUSA
- Department of Earth and Environmental SciencesUniversity of MichiganAnn ArborMIUSA
| |
Collapse
|
3
|
Influence of Ambient Atmospheric Environments on the Mixing State and Source of Oxalate-Containing Particles at Coastal and Suburban Sites in North China. ATMOSPHERE 2022. [DOI: 10.3390/atmos13050647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Photodegradation is a key process impacting the lifetime of oxalate in the atmosphere, but few studies investigated this process in the field due to the complex mixing and sources of oxalate. Oxalate-containing particles were measured via single-particle aerosol mass spectrometry at coastal and suburban sites in Qingdao, a coastal city in North China in the summer of 2016. The mixing state and influence of different ambient conditions on the source and photodegradation of oxalate were investigated. Generally, 6.3% and 12.3% of the total particles (by number) contained oxalate at coastal and suburban sites, respectively. Twelve major types of oxalate-containing particles were identified, and they were classified into three groups. Biomass burning (BB)-related oxalate–K and oxalate–carbonaceous particles were the dominant groups, respectively, accounting for 68.9% and 13.6% at the coastal site and 72.0% and 16.8% at the suburban site. Oxalate–Heavy metals (HM)-related particles represented 14.6% and 9.3% of the oxalate particles at coastal and suburban sites, respectively, which were mainly from industrial emissions (Cu-rich, Fe-rich, Pb-rich), BB (Zn-rich), and residual fuel oil combustion (V-rich). The peak area of oxalate at the coastal site decreased immediately after sunrise, while it increased during the daytime at the suburban site. However, the oxalate peak area of Fe-rich particles at both sites decreased after sunrise, indicating that iron plays an important role in oxalate degradation in both environments. The decay rates (k) of Fe-rich and BB-Fe particles at the coastal site (−0.978 and −0.859 h−1, respectively), were greater than those at the suburban site (−0.512 and −0.178 h−1, respectively), owing to the high-water content of particles and fewer oxalate precursors. The estimated k values of oxalate peak area for different ambient conditions were in the same order of magnitude, which can help establish or validate the future atmospheric models.
Collapse
|
4
|
Hilario MRA, Crosbie E, Bañaga PA, Betito G, Braun RA, Cambaliza MO, Corral AF, Cruz MT, Dibb JE, Lorenzo GR, MacDonald AB, Robinson CE, Shook MA, Simpas JB, Stahl C, Winstead E, Ziemba LD, Sorooshian A. Particulate Oxalate-To-Sulfate Ratio as an Aqueous Processing Marker: Similarity Across Field Campaigns and Limitations. GEOPHYSICAL RESEARCH LETTERS 2021; 48:e2021GL096520. [PMID: 35136274 PMCID: PMC8819676 DOI: 10.1029/2021gl096520] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 11/20/2021] [Indexed: 06/14/2023]
Abstract
Leveraging aerosol data from multiple airborne and surface-based field campaigns encompassing diverse environmental conditions, we calculate statistics of the oxalate-sulfate mass ratio (median: 0.0217; 95% confidence interval: 0.0154-0.0296; R = 0.76; N = 2,948). Ground-based measurements of the oxalate-sulfate ratio fall within our 95% confidence interval, suggesting the range is robust within the mixed layer for the submicrometer particle size range. We demonstrate that dust and biomass burning emissions can separately bias this ratio toward higher values by at least one order of magnitude. In the absence of these confounding factors, the 95% confidence interval of the ratio may be used to estimate the relative extent of aqueous processing by comparing inferred oxalate concentrations between air masses, with the assumption that sulfate primarily originates from aqueous processing.
Collapse
Affiliation(s)
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | - Paola Angela Bañaga
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Grace Betito
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Now at: Healthy Urban Environments Initiative, Global Institute of Sustainability and Innovation, Arizona State University, Tempe, AZ, USA
| | - Maria Obiminda Cambaliza
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Andrea F Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Melliza Templonuevo Cruz
- Manila Observatory, Quezon City, Philippines
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, Philippines
| | - Jack E Dibb
- Earth Systems Research Center, Institute for the Study of Earth, Oceans, and Space, University of New Hampshire, Durham, NH, USA
| | - Genevieve Rose Lorenzo
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Claire E Robinson
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | - James Bernard Simpas
- Manila Observatory, Quezon City, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, Philippines
| | - Connor Stahl
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA, USA
- Science Systems and Applications, Inc., Hampton, VA, USA
| | | | - Armin Sorooshian
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
5
|
Gong H, Cheng C, Li M, Yang S, Zhou Q, Zhong QE, Zhang Y, Xie Y, Zhou Z. The enhanced mixing states of oxalate with metals in single particles in Guangzhou, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146962. [PMID: 33866183 DOI: 10.1016/j.scitotenv.2021.146962] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2021] [Revised: 04/01/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Recently, internal mixing states of oxalate with metals in single particles have been reported from field studies, yet the role of metals in the formation processes of oxalate remains unclear due to the diversity of chemical components and complex atmospheric environment. In this study, the mixing states of oxalate with five metals, including zinc (Zn), copper (Cu), lead (Pb), vanadium (V) and iron (Fe) were investigated in Guangzhou, China. It was found that 55% of oxalate-containing particles were internally mixed with these metals. The number fraction of oxalate in the metal-containing particles ranged from 5.4-26%, which is much higher than that in the total detected particles (4.0%), indicating significant enrichment of oxalate in the metal-containing particles. Enhanced oxalate production was found in the Fe- and V-containing particles based on distinctly higher relative peak area (RPA) ratios of oxalate to its precursors compared to the total particles, possibly due to enhanced aqueous phase reactions in the Fe- and V-containing particles. However, enrichment of oxalate in the Zn-, Pb-, and Cu-containing particles was possibly associated with complexation of gas phase oxalic acid with the metals, as indicated by the small increase in RPA ratios in these particles. On the other hand, the internal mixing of oxalate with metals was found to provide a way of efficient photolysis of oxalate-metal complexes, which led to a decrease in oxalate after sunrise in the metal-containing particles. In this study, the enhanced mixing states of oxalate with metals have revealed the important role of metals in the production and degradation of oxalate, providing insights for the evaluation of metals in the formation processes of organic aerosol in field studies, which is beneficial to the further study of air pollution in metal emission areas.
Collapse
Affiliation(s)
- Haifeng Gong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Chunlei Cheng
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Mei Li
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China.
| | - Suxia Yang
- Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China; Institute for Environment and Climate Research, Jinan University, Guangzhou 510632, China
| | - Qianni Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Qi En Zhong
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yao Zhang
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Yutong Xie
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| | - Zhen Zhou
- Institute of Mass Spectrometry and Atmospheric Environment, Guangdong Provincial Engineering Research Center for on-line source apportionment system of air pollution Jinan University, Guangzhou 510632, China; Guangdong-Hongkong-Macau Joint Laboratory of Collaborative Innovation for Environmental Quality, Guangzhou 510632, China
| |
Collapse
|
6
|
Boreddy SKR, Hegde P, Aswini AR. Geochemical characteristics of trace elements in size-resolved coastal urban aerosols associated with distinct air masses over tropical peninsular India: Size distributions and source apportionment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 763:142967. [PMID: 33143921 DOI: 10.1016/j.scitotenv.2020.142967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 09/17/2020] [Accepted: 10/05/2020] [Indexed: 06/11/2023]
Abstract
Trace elements in atmospheric particulate matter play a significant role in air quality, health and biogeochemical cycles. The present study reports on geochemical characteristics of size-resolved trace elements in PM10 aerosols collected under different air masses over a coastal urban location in peninsular India. A contrast in elemental distribution was observed for the particle size above 7.0 μm and below 1.1 μm under the influence of northeasterly air masses as characterized by Al > Fe > Zn and Fe > Al > Zn, respectively. The concentrations of the crustal elements (Al, Fe, Ti, P, Ba, Co) were high and illustrated by a unimodal size distribution with a peak in coarse mode (>2.0 μm) during northwesterly air masses. On the other hand, combustion-derived metals (Cu, Zn, Cd, Sb, and Pb) were maximized under northeasterly air masses, characterized by unimodal size distribution with a peak in fine mode (<2.0 μm). The enrichment factor (EF) analysis reveals the contribution of anthropogenic emissions to Cd, Sb, Pb, Zn, Cu, Cr, Ni, As, and Sn metals, particularly to the high enrichment of trace metals in fine mode. These results suggest that crustal emissions are major sources of trace metals in coarse mode aerosols; whereas combustion derived anthropogenic emissions contribute to the fine mode aerosols. The positive matrix factorization (PMF) analysis revealed that crustal sources (52-90%) were most abundant for particles >7.0 μm, whereas combustion related emissions such as vehicular and traffic sources are predominant for particles <1.1 μm. The present study demonstrates that trace metals in coastal urban aerosols are affected by changes in emission sources/strengths and regional transport of air masses originated from the northeasterly and northwesterly parts of the tropical Indian subcontinent.
Collapse
Affiliation(s)
- Suresh K R Boreddy
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India.
| | - Prashant Hegde
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India.
| | - A R Aswini
- Space Physics Laboratory, Vikram Sarabhai Space Centre, Thiruvananthapuram 695022, India.
| |
Collapse
|
7
|
Zhou Y, Zhang Y, Griffith SM, Wu G, Li L, Zhao Y, Li M, Zhou Z, Yu JZ. Field Evidence of Fe-Mediated Photochemical Degradation of Oxalate and Subsequent Sulfate Formation Observed by Single Particle Mass Spectrometry. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6562-6574. [PMID: 32339453 DOI: 10.1021/acs.est.0c00443] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
In this work, we deployed a single particle aerosol mass spectrometer (SPAMS) at a suburban coastal site in Hong Kong from February 04 to April 17, 2013 to study individual oxalate particles and a monitor for aerosols and gases in ambient air (MARGA) to track the bulk oxalate concentrations in particle matter smaller than 2.5 μm in diameter (PM2.5). A shallow dip in the bulk oxalate concentration was consistently observed before 10:00 am in the morning throughout the observation campaign, corresponding to a 20% decrease in the oxalate concentration on average during the decay process. Such a decrease in PM oxalate was found to be coincident with a decrease in Fe-containing oxalate particles, providing persuasive evidence of Fe-mediated photochemical degradation of oxalate. Oxalate mixed with Fe and Fe_NaK particles, from industry sources, were identified as the dominant factors for oxalate decay in the early morning. We further found an increase of sulfate intensity by a factor of 1.6 on these individual Fe-containing particles during the oxalate decomposition process, suggesting a facilitation of sulfur oxidation. This is the first report on the oxalate-Fe decomposition process with individual particle level information and provides unique evidence to advance our current understanding of oxalate and Fe cycling. The present work also indicates the importance of anthropogenic sourced iron in oxalate-Fe photochemical processing. In addition, V-containing oxalate particles, from ship emissions, also showed evidence of morning photodegradation and need further attention since current models rarely consider photochemical processing of oxalate_V particles.
Collapse
Affiliation(s)
- Yang Zhou
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| | - Yanjing Zhang
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Stephen M Griffith
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Atmospheric Sciences, National Central University, Taoyuan, Taiwan
| | - Guanru Wu
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Lei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Yunhui Zhao
- Physical Oceanography Laboratory/CIMST, Ocean University of China and Qingdao National Laboratory for Marine Science and Technology, Qingdao 266100, China
| | - Mei Li
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Zhen Zhou
- Institute of Atmospheric Environment Safety and Pollution Control, Jinan University, Guangdong 510632, China
| | - Jian Zhen Yu
- Institute of Environment, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Department of Chemistry, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
- Division of Environment, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong China
| |
Collapse
|
8
|
Zhang C, Yang C, Liu X, Cao F, Zhang YL. Insight into the photochemistry of atmospheric oxalate through hourly measurements in the northern suburbs of Nanjing, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 719:137416. [PMID: 32145492 DOI: 10.1016/j.scitotenv.2020.137416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 02/16/2020] [Accepted: 02/17/2020] [Indexed: 06/10/2023]
Abstract
Oxalate-iron is an integral part of the photochemical system in the atmosphere. Here, we combined high-resolution online observations and laboratory simulations to discuss the distribution of oxalate and oxalate-iron photochemical system in Nanjing atmosphere at the molecular level. The results show that the oxidation state of iron in the oxalate-iron photochemical system changes significantly and regularly. Among them, Fe (II)/Fe (III) is 3.82 during the day and 0.76 at night. At the same time, Cl- may accelerate the generation of hydroxyl radicals in the system and promote the photooxidation rate of oxalate. Oxalate can be converted into formate (C1) and acetate (C2) in the photochemical system, but <4% of degraded oxalate is converted, which means that the photochemical system may not be the main source of formate and acetate in the atmosphere. Besides, the ratio of C1/C2 < 1 in the conversion is opposite to the ratio of C1/C2 > 1 in the general secondary conversion, which means that not all ratio of C1/C2 in the photochemical pathway is >1. These results are beneficial for us to understand the effect of the oxalate-iron photochemical system on the distribution of oxalate in the atmosphere, and also help us to analyze the conversion of organics in the atmospheric aqueous phase.
Collapse
Affiliation(s)
- Chunyan Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chi Yang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Xiaoyan Liu
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Fang Cao
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yan-Lin Zhang
- Yale-NUIST Center on Atmospheric Environment, Joint International Research Laboratory of Climate and Environment Change (ILCEC), Nanjing University of Information Science and Technology, Nanjing 210044, China; Key Laboratory of Meteorological Disaster Ministry of Education (KLME), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| |
Collapse
|
9
|
Stahl C, Cruz MT, Bañaga PA, Betito G, Braun RA, Aghdam MA, Cambaliza MO, Lorenzo GR, MacDonald AB, Pabroa PC, Yee JR, Simpas JB, Sorooshian A. An annual time series of weekly size-resolved aerosol properties in the megacity of Metro Manila, Philippines. Sci Data 2020; 7:128. [PMID: 32350280 PMCID: PMC7190854 DOI: 10.1038/s41597-020-0466-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 03/30/2020] [Indexed: 11/09/2022] Open
Abstract
Size-resolved aerosol samples were collected in Metro Manila between July 2018 and October 2019. Two Micro-Orifice Uniform Deposit Impactors (MOUDI) were deployed at Manila Observatory in Quezon City, Metro Manila with samples collected on a weekly basis for water-soluble speciation and mass quantification. Additional sets were collected for gravimetric and black carbon analysis, including during special events such as holidays. The unique aspect of the presented data is a year-long record with weekly frequency of size-resolved aerosol composition in a highly populated megacity where there is a lack of measurements. The data are suitable for research to understand the sources, evolution, and fate of atmospheric aerosols, as well as studies focusing on phenomena such as aerosol-cloud-precipitation-meteorology interactions, regional climate, boundary layer processes, and health effects. The dataset can be used to initialize, validate, and/or improve models and remote sensing algorithms.
Collapse
Affiliation(s)
- Connor Stahl
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Melliza Templonuevo Cruz
- Manila Observatory, Quezon City, 1108, Philippines
- Institute of Environmental Science and Meteorology, University of the Philippines, Diliman, Quezon City, 1101, Philippines
| | - Paola Angela Bañaga
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Grace Betito
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Mojtaba Azadi Aghdam
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Maria Obiminda Cambaliza
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Genevieve Rose Lorenzo
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA
| | - Preciosa Corazon Pabroa
- Department of Science and Technology, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - John Robin Yee
- Department of Science and Technology, Philippine Nuclear Research Institute, Commonwealth Avenue, Diliman, Quezon City, 1101, Philippines
| | - James Bernard Simpas
- Manila Observatory, Quezon City, 1108, Philippines
- Department of Physics, School of Science and Engineering, Ateneo de Manila University, Quezon City, 1108, Philippines
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona, USA.
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona, USA.
| |
Collapse
|
10
|
Dadashazar H, Crosbie E, Majdi MS, Panahi M, Moghaddam MA, Behrangi A, Brunke M, Zeng X, Jonsson HH, Sorooshian A. Stratocumulus cloud clearings: statistics from satellites, reanalysis models, and airborne measurements. ATMOSPHERIC CHEMISTRY AND PHYSICS 2020; 20:4637-4665. [PMID: 33193752 PMCID: PMC7660233 DOI: 10.5194/acp-20-4637-2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study provides a detailed characterization of stratocumulus clearings off the US West Coast using remote sensing, reanalysis, and airborne in situ data. Ten years (2009-2018) of Geostationary Operational Environmental Satellite (GOES) imagery data are used to quantify the monthly frequency, growth rate of total area (GRArea), and dimensional characteristics of 306 total clearings. While there is interannual variability, the summer (winter) months experienced the most (least) clearing events, with the lowest cloud fractions being in close proximity to coastal topographical features along the central to northern coast of California, including especially just south of Cape Mendocino and Cape Blanco. From 09:00 to 18:00 (PST), the median length, width, and area of clearings increased from 680 to 1231, 193 to 443, and ~ 67000 to ~ 250000km2, respectively. Machine learning was applied to identify the most influential factors governing the GRArea of clearings between 09:00 and 12:00PST, which is the time frame of most rapid clearing expansion. The results from gradient-boosted regression tree (GBRT) modeling revealed that air temperature at 850 hPa (T 850), specific humidity at 950 hPa (q 950), sea surface temperature (SST), and anomaly in mean sea level pressure (MSLPanom) were probably most impactful in enhancing GRArea using two scoring schemes. Clearings have distinguishing features such as an enhanced Pacific high shifted more towards northern California, offshore air that is warm and dry, stronger coastal surface winds, enhanced lower-tropospheric static stability, and increased subsidence. Although clearings are associated obviously with reduced cloud fraction where they reside, the domain-averaged cloud albedo was actually slightly higher on clearing days as compared to non-clearing days. To validate speculated processes linking environmental parameters to clearing growth rates based on satellite and reanalysis data, airborne data from three case flights were examined. Measurements were compared on both sides of the clear-cloudy border of clearings at multiple altitudes in the boundary layer and free troposphere, with results helping to support links suggested by this study's model simulations. More specifically, airborne data revealed the influence of the coastal low-level jet and extensive horizontal shear at cloud-relevant altitudes that promoted mixing between clear and cloudy air. Vertical profile data provide support for warm and dry air in the free troposphere, additionally promoting expansion of clearings. Airborne data revealed greater evidence of sea salt in clouds on clearing days, pointing to a possible role for, or simply the presence of, this aerosol type in clearing areas coincident with stronger coastal winds.
Collapse
Affiliation(s)
- Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Ewan Crosbie
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | - Mohammad S. Majdi
- Department of Electrical and Computer Engineering, University of Arizona, Tucson, AZ, USA
| | - Milad Panahi
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Mohammad A. Moghaddam
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Ali Behrangi
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Michael Brunke
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| | | | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
11
|
Sorooshian A, Corral AF, Braun RA, Cairns B, Crosbie E, Ferrare R, Hair J, Kleb MM, Mardi AH, Maring H, McComiskey A, Moore R, Painemal D, Jo Scarino A, Schlosser J, Shingler T, Shook M, Wang H, Zeng X, Ziemba L, Zuidema P. Atmospheric Research Over the Western North Atlantic Ocean Region and North American East Coast: A Review of Past Work and Challenges Ahead. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2020; 125:10.1029/2019jd031626. [PMID: 32699733 PMCID: PMC7375207 DOI: 10.1029/2019jd031626] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Accepted: 01/21/2020] [Indexed: 05/26/2023]
Abstract
Decades of atmospheric research have focused on the Western North Atlantic Ocean (WNAO) region because of its unique location that offers accessibility for airborne and ship measurements, gradients in important atmospheric parameters, and a range of meteorological regimes leading to diverse conditions that are poorly understood. This work reviews these scientific investigations for the WNAO region, including the East Coast of North America and the island of Bermuda. Over 50 field campaigns and long-term monitoring programs, in addition to 715 peer-reviewed publications between 1946 and 2019 have provided a firm foundation of knowledge for these areas. Of particular importance in this region has been extensive work at the island of Bermuda that is host to important time series records of oceanic and atmospheric variables. Our review categorizes WNAO atmospheric research into eight major categories, with some studies fitting into multiple categories (relative %): Aerosols (25%), Gases (24%), Development/Validation of Techniques, Models, and Retrievals (18%), Meteorology and Transport (9%), Air-Sea Interactions (8%), Clouds/Storms (8%), Atmospheric Deposition (7%), and Aerosol-Cloud Interactions (2%). Recommendations for future research are provided in the categories highlighted above.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | - Andrea F. Corral
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Rachel A. Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, NY
| | - Ewan Crosbie
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | | | | | | | - Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | | | - David Painemal
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Amy Jo Scarino
- NASA Langley Research Center, Hampton, VA
- Science Systems and Applications, Inc., Hampton, VA
| | - Joseph Schlosser
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ
| | | | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ
| | | | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, FL
| |
Collapse
|
12
|
Mardi AH, Dadashazar H, MacDonald AB, Crosbie E, Coggon MM, Aghdam MA, Woods RK, Jonsson HH, Flagan RC, Seinfeld JH, Sorooshian A. Effects of Biomass Burning on Stratocumulus Droplet Characteristics, Drizzle Rate, and Composition. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2019; 124:12301-12318. [PMID: 33274175 PMCID: PMC7709909 DOI: 10.1029/2019jd031159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Accepted: 10/29/2019] [Indexed: 05/30/2023]
Abstract
This study reports on airborne measurements of stratocumulus cloud properties under varying degrees of influence from biomass burning (BB) plumes off the California coast. Data are reported from five total airborne campaigns based in Marina, California, with two of them including influence from wildfires in different areas along the coast of the western United States. The results indicate that subcloud cloud condensation nuclei number concentration and mass concentrations of important aerosol species (organics, sulfate, nitrate) were better correlated with cloud droplet number concentration (N d) as compared to respective above-cloud aerosol data. Given that the majority of BB particles resided above cloud tops, this is an important consideration for future work in the region as the data indicate that the subcloud BB particles likely were entrained from the free troposphere. Lower cloud condensation nuclei activation fractions were observed for BB-impacted clouds as compared to non-BB clouds due, at least partly, to less hygroscopic aerosols. Relationships between N d and either droplet effective radius or drizzle rate are preserved regardless of BB influence, indicative of how parameterizations can exhibit consistent skill for varying degrees of BB influence as long as N d is known. Lastly, the composition of both droplet residual particles and cloud water changed significantly when clouds were impacted by BB plumes, with differences observed for different fire sources stemming largely from effects of plume aging time and dust influence.
Collapse
Affiliation(s)
- Ali Hossein Mardi
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Ewan Crosbie
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | - Matthew M Coggon
- Cooperative Institute for Research in Environmental Science and National Oceanic and Atmospheric Administration, Boulder, CO, USA
| | - Mojtaba Azadi Aghdam
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Roy K Woods
- Naval Postgraduate School, Monterey, CA, USA
| | | | - Richard C Flagan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John H Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
13
|
Sorooshian A, Anderson B, Bauer SE, Braun RA, Cairns B, Crosbie E, Dadashazar H, Diskin G, Ferrare R, Flagan RC, Hair J, Hostetler C, Jonsson HH, Kleb MM, Liu H, MacDonald AB, McComiskey A, Moore R, Painemal D, Russell LM, Seinfeld JH, Shook M, Smith WL, Thornhill K, Tselioudis G, Wang H, Zeng X, Zhang B, Ziemba L, Zuidema P. AEROSOL-CLOUD-METEOROLOGY INTERACTION AIRBORNE FIELD INVESTIGATIONS: Using Lessons Learned from the U.S. West Coast in the Design of ACTIVATE off the U.S. East Coast. BULLETIN OF THE AMERICAN METEOROLOGICAL SOCIETY 2019; 100:1511-1528. [PMID: 33204036 PMCID: PMC7668289 DOI: 10.1175/bams-d-18-0100.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
AbstractWe report on a multiyear set of airborne field campaigns (2005–16) off the California coast to examine aerosols, clouds, and meteorology, and how lessons learned tie into the upcoming NASA Earth Venture Suborbital (EVS-3) campaign: Aerosol Cloud meTeorology Interactions oVer the western ATlantic Experiment (ACTIVATE; 2019–23). The largest uncertainty in estimating global anthropogenic radiative forcing is associated with the interactions of aerosol particles with clouds, which stems from the variability of cloud systems and the multiple feedbacks that affect and hamper efforts to ascribe changes in cloud properties to aerosol perturbations. While past campaigns have been limited in flight hours and the ability to fly in and around clouds, efforts sponsored by the Office of Naval Research have resulted in 113 single aircraft flights (>500 flight hours) in a fixed region with warm marine boundary layer clouds. All flights used nearly the same payload of instruments on a Twin Otter to fly below, in, and above clouds, producing an unprecedented dataset. We provide here i) an overview of statistics of aerosol, cloud, and meteorological conditions encountered in those campaigns and ii) quantification of model-relevant metrics associated with aerosol–cloud interactions leveraging the high data volume and statistics. Based on lessons learned from those flights, we describe the pragmatic innovation in sampling strategy (dual-aircraft approach with combined in situ and remote sensing) that will be used in ACTIVATE to generate a dataset that can advance scientific understanding and improve physical parameterizations for Earth system and weather forecasting models, and for assessing next-generation remote sensing retrieval algorithms.
Collapse
Affiliation(s)
- Armin Sorooshian
- Department of Chemical and Environmental Engineering, and Department of Hydrology and Atmospheric Sciences, The University of Arizona, Tucson, Arizona
| | | | - Susanne E Bauer
- NASA Goddard Institute for Space Studies, New York, New York
| | - Rachel A Braun
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | - Brian Cairns
- NASA Goddard Institute for Space Studies, New York, New York
| | - Ewan Crosbie
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | | | | | - Richard C Flagan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | | | - Mary M Kleb
- NASA Langley Research Center, Hampton, Virginia
| | - Hongyu Liu
- National Institute of Aerospace, Hampton, Virginia
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, Arizona
| | | | | | - David Painemal
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | - Lynn M Russell
- Scripps Institution of Oceanography, University of California, La Jolla, California
| | - John H Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena, California
| | | | | | - Kenneth Thornhill
- NASA Langley Research Center, and Science Systems and Applications, Inc., Hampton, Virginia
| | | | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, Washington
| | - Xubin Zeng
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, Arizona
| | - Bo Zhang
- National Institute of Aerospace, Hampton, Virginia
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, Virginia
| | - Paquita Zuidema
- Rosenstiel School of Marine and Atmospheric Science, University of Miami, Miami, Florida
| |
Collapse
|
14
|
Sources and Geographical Origins of PM10 in Metz (France) Using Oxalate as a Marker of Secondary Organic Aerosols by Positive Matrix Factorization Analysis. ATMOSPHERE 2019. [DOI: 10.3390/atmos10070370] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
An original source apportionment study was conducted on atmospheric particles (PM10) collected in Metz, one of the largest cities of Eastern France. A Positive matrix factorization (PMF) analysis was applied to a sampling filter-based chemical dataset obtained for the April 2015 to January 2017 period. Nine factors were clearly identified, showing mainly contributions from anthropogenic sources of primary PM (19.2% and 16.1% for traffic and biomass burning, respectively) as well as secondary aerosols (12.3%, 14.5%, 21.8% for sulfate-, nitrate-, and oxalate-rich factors, respectively). Wood-burning aerosols exhibited strong temporal variations and contributed up to 30% of the PM mass fraction during winter, while primary traffic concentrations remained relatively constant throughout the year. These two sources are also the main contributors during observed PM10 pollution episodes. Furthermore, the dominance of the oxalate-rich factor among other secondary aerosol factors underlines the role of atmospheric processing to secondary organic aerosol loadings which are still poorly characterized in this region. Finally, Concentration-Weighted Trajectory (CWT) analysis were performed to investigate the geographical origins of the apportioned sources, notably illustrating a significant transport of both nitrate-rich and sulfate-rich factors from Northeastern Europe but also from the Balkan region.
Collapse
|
15
|
Recent Advances in Quantifying Wet Scavenging Efficiency of Black Carbon Aerosol. ATMOSPHERE 2019. [DOI: 10.3390/atmos10040175] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Black carbon (BC) aerosol is of great importance not only for its strong potential in heating air and impacts on cloud, but also because of its hazards to human health. Wet deposition is regarded as the main sink of BC, constraining its lifetime and thus its impact on the environment and climate. However, substantial controversial and ambiguous issues in the wet scavenging processes of BC are apparent in current studies. Despite of its significance, there are only a small number of field studies that have investigated the incorporation of BC-containing particles into cloud droplets and influencing factors, in particular, the in-cloud scavenging, because it was simplicitly considered in many studies (as part of total wet scavenging). The mass scavenging efficiencies (MSEs) of BC were observed to be varied over the world, and the influencing factors were attributed to physical and chemical properties (e.g., size and chemical compositions) and meteorological conditions (cloud water content, temperature, etc.). In this review, we summarized the MSEs and potential factors that influence the in-cloud and below-cloud scavenging of BC. In general, MSEs of BC are lower at low-altitude regions (urban, suburban, and rural sites) and increase with the rising altitude, which serves as additional evidence that atmospheric aging plays an important role in the chemical modification of BC. Herein, higher altitude sites are more representative of free-tropospheric conditions, where BC is usually more aged. Despite of increasing knowledge of BC–cloud interaction, there are still challenges that need to be addressed to gain a better understanding of the wet scavenging of BC. We recommend that more comprehensive methods should be further estimated to obtain high time-resolved scavenging efficiency (SE) of BC, and to distinguish the impact of in-cloud and below-cloud scavenging on BC mass concentration, which is expected to be useful for constraining the gap between field observation and modeling simulation results.
Collapse
|
16
|
Zhang G, Lin Q, Peng L, Yang Y, Jiang F, Liu F, Song W, Chen D, Cai Z, Bi X, Miller M, Tang M, Huang W, Wang X, Peng P, Sheng G. Oxalate Formation Enhanced by Fe-Containing Particles and Environmental Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:1269-1277. [PMID: 30354091 DOI: 10.1021/acs.est.8b05280] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We used a single particle mass spectrometry to online detect chemical compositions of individual particles over four seasons in Guangzhou. Number fractions (Nfs) of all the measured particles that contained oxalate were 1.9%, 5.2%, 25.1%, and 15.5%, whereas the Nfs of Fe-containing particles that were internally mixed with oxalate were 8.7%, 23.1%, 45.2%, and 31.2% from spring to winter, respectively. The results provided the first direct field measurements for the enhanced formation of oxalate associated with Fe-containing particles. Other oxidized organic compounds including formate, acetate, methylglyoxal, glyoxylate, purivate, malonate, and succinate were also detected in the Fe-containing particles. It is likely that reactive oxidant species (ROS) via Fenton reactions enhanced the formation of these organic compounds and their oxidation product oxalate. Gas-particle partitioning of oxalic acid followed by coordination with Fe might also partly contribute to the enhanced oxalate. Aerosol water content likely played an important role in the enhanced oxalate formation when the relative humidity is >60%. Interactions with Fe drove the diurnal variation of oxalate in the Fe-containing particles. The study could provide a reference for model simulation to improve understanding on the formation and fate of oxalate, and the evolution and climate impacts of particulate Fe.
Collapse
Affiliation(s)
- Guohua Zhang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Qinhao Lin
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Long Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Yuxiang Yang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Feng Jiang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Fengxian Liu
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
- University of Chinese Academy of Sciences , Beijing 100039 , P. R. China
| | - Wei Song
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Duohong Chen
- State Environmental Protection Key Laboratory of Regional Air Quality Monitoring , Guangdong Environmental Monitoring Center , Guangzhou 510308 , PR China
| | - Zhang Cai
- John and Willie Leone Family Department of Energy and Mineral Engineering , The Pennsylvania State University , University Park , Pennsylvania 16802 , United States
| | - Xinhui Bi
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Mark Miller
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Mingjin Tang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Weilin Huang
- Department of Environmental Sciences , Rutgers, The State University of New Jersey , New Brunswick , New Jersey 08901 , United States
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Ping'an Peng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Resources Utilization and Protection , Guangzhou Institute of Geochemistry , Chinese Academy of Sciences, Guangzhou 510640 , P. R. China
| |
Collapse
|
17
|
Zhang C, Lu X, Zhai J, Chen H, Yang X, Zhang Q, Zhao Q, Fu Q, Sha F, Jin J. Insights into the formation of secondary organic carbon in the summertime in urban Shanghai. J Environ Sci (China) 2018; 72:118-132. [PMID: 30244738 DOI: 10.1016/j.jes.2017.12.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 12/14/2017] [Accepted: 12/20/2017] [Indexed: 06/08/2023]
Abstract
To investigate formation mechanisms of secondary organic carbon (SOC) in Eastern China, measurements were conducted in an urban site in Shanghai in the summer of 2015. A period of high O3 concentrations (daily peak > 120 ppb) was observed, during which daily maximum SOC concentrations exceeding 9.0 μg/(C·m3). Diurnal variations of SOC concentration and SOC/organic carbon (OC) ratio exhibited both daytime and nighttime peaks. The SOC concentrations correlated well with Ox (= O3 + NO2) and relative humidity in the daytime and nighttime, respectively, suggesting that secondary organic aerosol formation in Shanghai is driven by both photochemical production and aqueous phase reactions. Single particle mass spectrometry was used to examine the formation pathways of SOC. Along with the daytime increase of SOC, the number fraction of elemental carbon (EC) particles coated with OC quickly increased from 38.1% to 61.9% in the size range of 250-2000 nm, which was likely due to gas-to-particle partitioning of photochemically generated semi-volatile organic compounds onto EC particles. In the nighttime, particles rich in OC components were highly hygroscopic, and number fraction of these particles correlated well with relative humidity and SOC/OC nocturnal peaks. Meanwhile, as an aqueous-phase SOC tracer, particles that contained oxalate-Fe(III) complex also peaked at night. These observations suggested that aqueous-phase processes had an important contribution to the SOC nighttime formation. The influence of aerosol acidity on SOC formation was studied by both bulk and single particle level measurements, suggesting that the aqueous-phase formation of SOC was enhanced by particle acidity.
Collapse
Affiliation(s)
- Ci Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Xiaohui Lu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Jinghao Zhai
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Hong Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Xin Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China.
| | - Qi Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Department of Environmental Toxicology, University of California, Davis, CA 95616, United States
| | - Qianbiao Zhao
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Qingyan Fu
- Shanghai Environmental Monitoring Center, Shanghai 200235, China
| | - Fei Sha
- Environment Management Bureau of Shanghai Pudong New Area, Shanghai 200125, China
| | - Jing Jin
- Environment Management Bureau of Shanghai Pudong New Area, Shanghai 200125, China
| |
Collapse
|
18
|
Crosbie E, Brown MD, Shook M, Ziemba L, Moore RH, Shingler T, Winstead E, Lee Thornhill K, Robinson C, MacDonald AB, Dadashazar H, Sorooshian A, Beyersdorf A, Eugene A, Collett J, Straub D, Anderson B. Development and characterization of a high-efficiency, aircraft-based axial cyclone cloud water collector. ATMOSPHERIC MEASUREMENT TECHNIQUES 2018; 11:5025-5048. [PMID: 33868504 PMCID: PMC8051007 DOI: 10.5194/amt-11-5025-2018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
A new aircraft-mounted probe for collecting samples of cloud water has been designed, fabricated, and extensively tested. Following previous designs, the probe uses inertial separation to remove cloud droplets from the airstream, which are subsequently collected and stored for offline analysis. We report details of the design, operation, and modelled and measured probe performance. Computational fluid dynamics (CFD) was used to understand the flow patterns around the complex interior geometrical features that were optimized to ensure efficient droplet capture. CFD simulations coupled with particle tracking and multiphase surface transport modelling provide detailed estimates of the probe performance across the entire range of flight operating conditions and sampling scenarios. Physical operation of the probe was tested on a Lockheed C-130 Hercules (fuselage mounted) and de Havilland Twin Otter (wing pylon mounted) during three airborne field campaigns. During C-130 flights on the final field campaign, the probe reflected the most developed version of the design and a median cloud water collection rate of 4.5 mL min-1 was achieved. This allowed samples to be collected over 1-2 min under optimal cloud conditions. Flights on the Twin Otter featured an inter-comparison of the new probe with a slotted-rod collector, which has an extensive airborne campaign legacy. Comparison of trace species concentrations showed good agreement between collection techniques, with absolute concentrations of most major ions agreeing within 30 %, over a range of several orders of magnitude.
Collapse
Affiliation(s)
- Ewan Crosbie
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Matthew D. Brown
- NASA Langley Research Center, Hampton, VA 23666, USA
- Universities Space Research Association, Columbia, MD 21046, USA
| | - Michael Shook
- NASA Langley Research Center, Hampton, VA 23666, USA
| | - Luke Ziemba
- NASA Langley Research Center, Hampton, VA 23666, USA
| | | | - Taylor Shingler
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Edward Winstead
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - K. Lee Thornhill
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Claire Robinson
- NASA Langley Research Center, Hampton, VA 23666, USA
- Science Systems and Applications, Inc. Hampton, VA 23666, USA
| | - Alexander B. MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ 85721, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Andreas Beyersdorf
- Department of Chemistry and Biochemistry, California State University, San Bernardino, CA 92407, USA
| | - Alexis Eugene
- Department of Chemistry, University of Kentucky, Lexington, KY 40506, USA
| | - Jeffrey Collett
- Atmospheric Science Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Derek Straub
- Department of Earth and Environmental Sciences, Susquehanna University, Selinsgrove, PA 17870, USA
| | | |
Collapse
|
19
|
MacDonald AB, Dadashazar H, Chuang PY, Crosbie E, Wang H, Wang Z, Jonsson HH, Flagan RC, Seinfeld JH, Sorooshian A. Characteristic Vertical Profiles of Cloud Water Composition in Marine Stratocumulus Clouds and Relationships With Precipitation. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2018; 123:3704-3723. [PMID: 32025449 PMCID: PMC7002026 DOI: 10.1002/2017jd027900] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 02/13/2018] [Indexed: 06/01/2023]
Abstract
This study uses airborne cloud water composition measurements to characterize the vertical structure of air-equivalent mass concentrations of water-soluble species in marine stratocumulus clouds off the California coast. A total of 385 cloud water samples were collected in the months of July and August between 2011 and 2016 and analyzed for water-soluble ionic and elemental composition. Three characteristic profiles emerge: (i) a reduction of concentration with in-cloud altitude for particulate species directly emitted from sources below cloud without in-cloud sources (e.g., Cl- and Na+), (ii) an increase of concentration with in-cloud altitude (e.g., NO2 - and formate), and (iii) species exhibiting a peak in concentration in the middle of cloud (e.g., non-sea-salt SO4 2-, NO3 -, and organic acids). Vertical profiles of rainout parameters such as loss frequency, lifetime, and change in concentration with respect to time show that the scavenging efficiency throughout the cloud depth depends strongly on the thickness of the cloud. Thin clouds exhibit a greater scavenging loss frequency at cloud top, while thick clouds have a greater scavenging loss frequency at cloud base. The implications of these results for treatment of wet scavenging in models are discussed.
Collapse
Affiliation(s)
- Alexander B MacDonald
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Patrick Y Chuang
- Earth and Planetary Sciences, University of California, Santa Cruz, CA, USA
| | - Ewan Crosbie
- Science Systems and Applications, Inc., Hampton, VA, USA
- NASA Langley Research Center, Hampton, VA, USA
| | - Hailong Wang
- Atmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, WA, USA
| | - Zhen Wang
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
| | - Haflidi H Jonsson
- Department of Meteorology, Naval Postgraduate School, Monterey, CA, USA
| | - Richard C Flagan
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - John H Seinfeld
- Department of Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, USA
- Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA
| |
Collapse
|
20
|
Weiss-Penzias P, Sorooshian A, Coale K, Heim W, Crosbie E, Dadashazar H, MacDonald AB, Wang Z, Jonsson H. Aircraft Measurements of Total Mercury and Monomethyl Mercury in Summertime Marine Stratus Cloudwater from Coastal California, USA. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:2527-2537. [PMID: 29401398 DOI: 10.1021/acs.est.7b05395] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Water samples from marine stratus clouds were collected during 16 aircraft flights above the Pacific Ocean near the Central California coast during the summer of 2016. These samples were analyzed for total mercury (THg), monomethyl mercury (MMHg), and 32 other chemical species in addition to aerosol physical parameters. The mean concentrations of THg and MMHg in the cloudwater samples were 9.2 ± 6.0 ng L-1 (2.3-33.8 ng L-1) ( N = 97) and 0.87 ± 0.66 ng L-1 (0.17-2.9 ng L-1) ( N = 22), respectively. This corresponds to 9.5% (3-21%) MMHg as a fraction of THg. Low and high nonsea salt calcium ion (nss-Ca2+) concentrations in cloudwater were used to classify flights as "marine" and "continental", respectively. Mean [MMHg]marine was significantly higher ( p < 0.05) than [MMHg]continental consistent with an ocean source of dimethyl Hg (DMHg) to the atmosphere. Mean THg in cloudwater was not significantly different between the two categories, indicating multiple emissions sources. Mean [THg]continental was correlated with pH, CO, NO3-, NH4+, and other trace metals, whereas [THg]marine was correlated with MMHg and Na+. THg concentrations were negatively correlated with altitude, consistent with ocean and land emissions, coupled with removal at the cloud-top due to drizzle formation.
Collapse
Affiliation(s)
- Peter Weiss-Penzias
- Department of Microbiology and Environmental Toxicology , University of California at Santa Cruz , Santa Cruz , California 95064 , United States
| | - Armin Sorooshian
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721 , United States
- Department of Hydrology and Atmospheric Sciences , University of Arizona , Tucson , Arizona 85721 , United States
| | - Kenneth Coale
- Moss Landing Marine Laboratories , Moss Landing , California 95039 , United States
| | - Wesley Heim
- Moss Landing Marine Laboratories , Moss Landing , California 95039 , United States
| | - Ewan Crosbie
- NASA Langley Research Center , Hampton , Virginia 23666 , United States
| | - Hossein Dadashazar
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721 , United States
| | - Alexander B MacDonald
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721 , United States
| | - Zhen Wang
- Department of Chemical and Environmental Engineering , University of Arizona , Tucson , Arizona 85721 , United States
| | - Haflidi Jonsson
- Naval Postgraduate School , Monterey , California 93943 , United States
| |
Collapse
|
21
|
A multi-year data set on aerosol-cloud-precipitation-meteorology interactions for marine stratocumulus clouds. Sci Data 2018; 5:180026. [PMID: 29485627 PMCID: PMC5827690 DOI: 10.1038/sdata.2018.26] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 01/04/2018] [Indexed: 11/25/2022] Open
Abstract
Airborne measurements of meteorological, aerosol, and stratocumulus cloud properties have been harmonized from six field campaigns during July-August months between 2005 and 2016 off the California coast. A consistent set of core instruments was deployed on the Center for Interdisciplinary Remotely-Piloted Aircraft Studies Twin Otter for 113 flight days, amounting to 514 flight hours. A unique aspect of the compiled data set is detailed measurements of aerosol microphysical properties (size distribution, composition, bioaerosol detection, hygroscopicity, optical), cloud water composition, and different sampling inlets to distinguish between clear air aerosol, interstitial in-cloud aerosol, and droplet residual particles in cloud. Measurements and data analysis follow documented methods for quality assurance. The data set is suitable for studies associated with aerosol-cloud-precipitation-meteorology-radiation interactions, especially owing to sharp aerosol perturbations from ship traffic and biomass burning. The data set can be used for model initialization and synergistic application with meteorological models and remote sensing data to improve understanding of the very interactions that comprise the largest uncertainty in the effect of anthropogenic emissions on radiative forcing.
Collapse
|
22
|
Characterization of Atmospheric Iron Speciation and Acid Processing at Metropolitan Newark on the US East Coast. ATMOSPHERE 2017. [DOI: 10.3390/atmos8040066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
23
|
Thomas DA, Coggon MM, Lignell H, Schilling KA, Zhang X, Schwantes RH, Flagan RC, Seinfeld JH, Beauchamp JL. Real-Time Studies of Iron Oxalate-Mediated Oxidation of Glycolaldehyde as a Model for Photochemical Aging of Aqueous Tropospheric Aerosols. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:12241-12249. [PMID: 27731989 DOI: 10.1021/acs.est.6b03588] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The complexation of iron(III) with oxalic acid in aqueous solution yields a strongly absorbing chromophore that undergoes efficient photodissociation to give iron(II) and the carbon dioxide anion radical. Importantly, iron(III) oxalate complexes absorb near-UV radiation (λ > 350 nm), providing a potentially powerful source of oxidants in aqueous tropospheric chemistry. Although this photochemical system has been studied extensively, the mechanistic details associated with its role in the oxidation of dissolved organic matter within aqueous aerosol remain largely unknown. This study utilizes glycolaldehyde as a model organic species to examine the oxidation pathways and evolution of organic aerosol initiated by the photodissociation of aqueous iron(III) oxalate complexes. Hanging droplets (radius 1 mm) containing iron(III), oxalic acid, glycolaldehyde, and ammonium sulfate (pH ∼3) are exposed to irradiation at 365 nm and sampled at discrete time points utilizing field-induced droplet ionization mass spectrometry (FIDI-MS). Glycolaldehyde is found to undergo rapid oxidation to form glyoxal, glycolic acid, and glyoxylic acid, but the formation of high molecular weight oligomers is not observed. For comparison, particle-phase experiments conducted in a laboratory chamber explore the reactive uptake of gas-phase glycolaldehyde onto aqueous seed aerosol containing iron and oxalic acid. The presence of iron oxalate in seed aerosol is found to inhibit aerosol growth. These results suggest that photodissociation of iron(III) oxalate can lead to the formation of volatile oxidation products in tropospheric aqueous aerosols.
Collapse
Affiliation(s)
- Daniel A Thomas
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, United States
| | - Matthew M Coggon
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Hanna Lignell
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
- Environmental Science and Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Katherine A Schilling
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Xuan Zhang
- Environmental Science and Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Rebecca H Schwantes
- Environmental Science and Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - Richard C Flagan
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
- Environmental Science and Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - John H Seinfeld
- Division of Chemistry and Chemical Engineering, California Institute of Technology , Pasadena, California 91125, United States
- Environmental Science and Engineering, California Institute of Technology , Pasadena, California 91125, United States
| | - J L Beauchamp
- Arthur Amos Noyes Laboratory of Chemical Physics, California Institute of Technology , Pasadena, California 91125, United States
| |
Collapse
|
24
|
Enrichment of 13C in diacids and related compounds during photochemical processing of aqueous aerosols: New proxy for organic aerosols aging. Sci Rep 2016; 6:36467. [PMID: 27811980 PMCID: PMC5095555 DOI: 10.1038/srep36467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 10/17/2016] [Indexed: 11/17/2022] Open
Abstract
To investigate the applicability of compound specific stable carbon isotope ratios (δ13C) of organics in assessment of their photochemical aging in the atmosphere, batch UV irradiation experiments were conducted on two ambient (anthropogenic and biogenic) aerosol samples in aqueous phase for 0.5–120 h. The irradiated samples were analyzed for δ13C of diacids, glyoxylic acid (ωC2) and glyoxal. δ13C of diacids and related compounds became larger with irradiation time (i.e., aging), except for few cases. In general, δ13C of C2-C4 diacids showed an increasing trend with decreasing chain length. Based on δ13C of diacids and related compounds and their relations to their concentrations, we found that C2 and C3 are enriched with 13C during the photochemical decomposition and production from their higher homologues and oxoacids. Photochemical breakdown of higher (≥C3) to lower diacids is also important in the enrichment of 13C in C3-C9 diacids whereas their production from primary precursors causes depletion of 13C. In case of ωC2 and glyoxal, their photochemical production and further oxidation to highly oxygenated compounds both cause the enrichment of 13C. This study reveals that δ13C of diacids and related compounds can be used as a proxy to trace the aging of organic aerosols during long-range atmospheric transport.
Collapse
|
25
|
Carbon kinetic isotope effects at natural abundances during iron-catalyzed photolytic cleavage of C C bonds in aqueous phase α,ω-dicarboxylic acids. Chem Phys Lett 2016. [DOI: 10.1016/j.cplett.2016.08.051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Morillas H, Marcaida I, Maguregui M, Carrero JA, Madariaga JM. The influence of rainwater composition on the conservation state of cementitious building materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 542:716-727. [PMID: 26546767 DOI: 10.1016/j.scitotenv.2015.10.041] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 10/07/2015] [Accepted: 10/08/2015] [Indexed: 06/05/2023]
Abstract
Rainwater is one of the main pollution tracers around the world. There are many reasons that can explain the presence of high concentrations of certain hazardous elements (HEs) in the rainwater (traffic, marine port activities, industry, etc.). In this work, rainwater samples were collected at six different locations in the Metropolitan Bilbao (Basque Country, north of Spain) during November 2014. HE concentrations were determined by means of inductively coupled plasma mass spectrometry (ICP-MS) and anions by ion chromatography. The pH and redox potential values on these samples were also assessed. According to the obtained results, different trends along the estuary of Bilbao have been observed. To corroborate some hypothesis, thermodynamic simulations and correlation analyses were also carried out using quantitative data. These trends are closely related to the surrounding pollution and marine influence. Finally, in order to ascertain the influence of the Metropolitan Bilbao rainwater on buildings materials, a recent construction was characterized. Using techniques such as Scanning Electron Microscopy coupled with Energy Dispersive X-Ray Spectroscopy (SEM–EDS) and Raman Spectroscopy, different types of sulfates and nitrates were observed.
Collapse
Affiliation(s)
- Héctor Morillas
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain.
| | - Iker Marcaida
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Maite Maguregui
- Department of Analytical Chemistry, Faculty of Pharmacy, University of the Basque Country UPV/EHU, P.O. Box 450, 01080 Vitoria-Gasteiz, Basque Country, Spain
| | - Jose Antonio Carrero
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| | - Juan Manuel Madariaga
- Department of Analytical Chemistry, Faculty of Science and Technology, University of the Basque Country UPV/EHU, P.O. Box 644, 48080 Bilbao, Basque Country, Spain
| |
Collapse
|
27
|
Daumit KE, Carrasquillo AJ, Sugrue RA, Kroll JH. Effects of Condensed-Phase Oxidants on Secondary Organic Aerosol Formation. J Phys Chem A 2015; 120:1386-94. [DOI: 10.1021/acs.jpca.5b06160] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kelly E. Daumit
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Anthony J. Carrasquillo
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Rebecca A. Sugrue
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| | - Jesse H. Kroll
- Department
of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
- Department
of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, United States
| |
Collapse
|
28
|
CCN Properties of Organic Aerosol Collected Below and within Marine Stratocumulus Clouds near Monterey, California. ATMOSPHERE 2015. [DOI: 10.3390/atmos6111590] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Sorooshian A, Crosbie E, Maudlin LC, Youn JS, Wang Z, Shingler T, Ortega AM, Hersey S, Woods RK. Surface and Airborne Measurements of Organosulfur and Methanesulfonate Over the Western United States and Coastal Areas. JOURNAL OF GEOPHYSICAL RESEARCH. ATMOSPHERES : JGR 2015; 120:8535-8548. [PMID: 26413434 PMCID: PMC4581448 DOI: 10.1002/2015jd023822] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
This study reports on ambient measurements of organosulfur (OS) and methanesulfonate (MSA) over the western United States and coastal areas. Particulate OS levels are highest in summertime, and generally increase as a function of sulfate (a precursor) and sodium (a marine tracer) with peak levels at coastal sites. The ratio of OS to total sulfur (TS) is also highest at coastal sites, with increasing values as a function of Normalized Difference Vegetation Index (NDVI) and the ratio of organic carbon to elemental carbon. Correlative analysis points to significant relationships between OS and biogenic emissions from marine and continental sources, factors that coincide with secondary production, and vanadium due to a suspected catalytic role. A major OS species, methanesulfonate (MSA), was examined with intensive field measurements and the resulting data support the case for vanadium's catalytic influence. Mass size distributions reveal a dominant MSA peak between aerodynamic diameters of 0.32-0.56 μm at a desert and coastal site with nearly all MSA mass (≥ 84%) in sub-micrometer sizes; MSA:non-sea salt sulfate ratios vary widely as a function of particle size and proximity to the ocean. Airborne data indicate that relative to the marine boundary layer, particulate MSA levels are enhanced in urban and agricultural areas, and also the free troposphere when impacted by biomass burning. Some combination of fires and marine-derived emissions leads to higher MSA levels than either source alone. Finally, MSA differences in cloud water and out-of-cloud aerosol are discussed.
Collapse
Affiliation(s)
- Armin Sorooshian
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
- Atmospheric Sciences, University of Arizona, Tucson, AZ, United States
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Ewan Crosbie
- Atmospheric Sciences, University of Arizona, Tucson, AZ, United States
| | | | - Jong-Sang Youn
- Mel and Enid Zuckerman College of Public Health, University of Arizona, Tucson, AZ, United States
| | - Zhen Wang
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Taylor Shingler
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Amber M. Ortega
- Chemical and Environmental Engineering, University of Arizona, Tucson, AZ, United States
| | - Scott Hersey
- Olin College of Engineering, Needham, MA, United States
| | - Roy K. Woods
- Center for Interdisciplinary Remotely Piloted Aircraft Studies, Naval Postgraduate School, Monterey, CA, United States
| |
Collapse
|
30
|
Ervens B. Modeling the processing of aerosol and trace gases in clouds and fogs. Chem Rev 2015; 115:4157-98. [PMID: 25898144 DOI: 10.1021/cr5005887] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Barbara Ervens
- Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80302, United States.,Chemical Sciences Division, NOAA Earth System Research Laboratory, Boulder, Colorado 80305, United States
| |
Collapse
|
31
|
Weller C, Tilgner A, Bräuer P, Herrmann H. Modeling the impact of iron-carboxylate photochemistry on radical budget and carboxylate degradation in cloud droplets and particles. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:5652-5659. [PMID: 24678692 DOI: 10.1021/es4056643] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
To quantify the effects of an advanced iron photochemistry scheme, the chemical aqueous-phase radical mechanism (CAPRAM 3.0i) has been updated with several new Fe(III)-carboxylate complex photolysis reactions. Newly introduced ligands are malonate, succinate, tartrate, tartronate, pyruvate, and glyoxalate. Model simulations show that more than 50% of the total Fe(III) is coordinated by oxalate and up to 20% of total Fe(III) is bound in the newly implemented 1:1 complexes with tartronate, malonate, and pyruvate. Up to 20% of the total Fe(III) is found in hydroxo and sulfato complexes. The fraction of [Fe(oxalate)2](-) and [Fe(pyruvate)](2+) is significantly higher during nighttime than during daytime, which points toward a strong influence of photochemistry on these species. Fe(III) complex photolysis is an important additional sink for tartronate, pyruvate, and oxalate, with a complex photolysis contribution to overall degradation of 46, 40, and 99%, respectively, compared to all possible sink reactions with atmospheric aqueous-phase radicals, such as (•)OH, NO3(•), and SO4(•) (-). Simulated aerosol particles have a much lower liquid water content than cloud droplets, thus leading to high concentrations of species and, consequently, an enhancement of the photolysis sink reactions in the aerosol particles. The simulations showed that Fe(III) photochemistry should not be neglected when considering the fate of carboxylic acids, which constitute a major part of aqueous secondary organic aerosol (aqSOA) in tropospheric cloud droplets and aqueous particles. Failure to consider this loss pathway has the potential to result in a significant overestimate of aqSOA production.
Collapse
Affiliation(s)
- Christian Weller
- Leibniz-Institut für Troposphärenforschung , Permoserstraße 15, 04318 Leipzig, Germany
| | | | | | | |
Collapse
|
32
|
Polkowska Ż, Błaś M, Lech D, Namieśnik J. Study of Cloud Water Samples Collected over Northern Poland. JOURNAL OF ENVIRONMENTAL QUALITY 2014; 43:328-37. [PMID: 25602567 DOI: 10.2134/jeq2013.05.0172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The paper gives the results of the first studies on the chemistry of cloud water collected during 3 mo (Aug.-Oct. 2010) in the free atmosphere over the area to the south of the Tri-City (Gdansk-Sopot-Gdynia) conurbation on the Gulf of Gdansk, Poland. Taken from cumulus, stratus, and stratocumulus clouds by means of an aircraft-mounted collector, the water samples were analyzed for the following contaminants: anions (chlorides, fluorides, nitrates, sulfates, and phosphates), cations (lithium, sodium, potassium, ammonium, calcium, and magnesium), and trace metals. In addition, pH values were measured, and the type and composition of suspended particulate matter was determined. We discuss the relationship between the concentration of inorganic ions and the type of cloud from which water was sampled. The chemistry is also likely related to the circulation pattern and inflow of clean air masses from the Baltic Sea. Moreover, a relationship was found between the composition of the samples examined and the location of pollutant emission sources.
Collapse
|