1
|
Shang Y, Luo SN. Insights into the role of the H-abstraction reaction kinetics of amines in understanding their degeneration fates under atmospheric and combustion conditions. Phys Chem Chem Phys 2024. [PMID: 39028293 DOI: 10.1039/d4cp02187h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Amines, a class of prototypical volatile organic compounds, have garnered considerable interest within the context of atmospheric and combustion chemistry due to their substantial contributions to the formation of hazardous pollutants in the atmosphere. In the current energy landscape, the implementation of carbon-neutral energy and strategic initiatives leads to generation of new amine sources that cannot be overlooked in terms of the emission scale. To reduce the emission level of amines from their sources and mitigate their impact on the formation of harmful substances, a comprehensive understanding of the fundamental reaction kinetics during the degeneration process of amines is imperative. This perspective article first presents an overview of both traditional amine sources and emerging amine sources within the context of carbon peaking and carbon neutrality and then highlights the importance of H-abstraction reactions in understanding the atmospheric and combustion chemistry of amines from the perspective of reaction kinetics. Subsequently, the current experimental and theoretical techniques for investigating the H-abstraction reactions of amines are introduced, and a concise summary of research endeavors made in this field over the past few decades is provided. In order to provide accurate kinetic parameters of the H-abstraction reactions of amines, advanced kinetic calculations are performed using the multi-path canonical variational theory combined with the small-curvature tunneling and specific-reaction parameter methods. By comparing with the literature data, current kinetic calculations are comprehensively evaluated, and these validated data are valuable for the development of the reaction mechanism of amines.
Collapse
Affiliation(s)
- Yanlei Shang
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan, Shandong, 250014, P. R. China.
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| | - S N Luo
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, Sichuan, 610031, P. R. China
- Key Laboratory of Extreme Material Dynamics Technology, Chengdu, Sichuan 610031, P. R. China
| |
Collapse
|
2
|
Nguyen LT, Mai TVT, Vien HD, Nguyen TT, Huynh LK. Ab initio kinetics of the CH 3NH + NO 2 reaction: formation of nitramines and N-alkyl nitroxides. Phys Chem Chem Phys 2023; 25:31936-31947. [PMID: 37974519 DOI: 10.1039/d3cp03333c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
This study provides a detailed understanding of how the reaction between CH3NH, one of the primary products of the CH3NH2 + OH/Cl reactions, and NOx occurs in the atmosphere since the reaction is expected to be a dominant sink for the tropospheric CH3NH radical. First, we focus on the reaction of the aminyl radical CH3NH with NO2, complementing the known reaction between CH3NH and NO, to provide the overall picture of the CH3NH + NOx system. The reaction was meticulously examined across the extended range of temperature (298-2000 K) and pressure (0.76-76 000 torr) using quantum chemistry calculations and kinetic modeling based on the framework of the Rice-Ramsperger-Kassel-Marcus (RRKM)-based master equation. Highly correlated electronic structure calculations unveil that the intricate reaction mechanism of the CH3NH + NO2 reaction, which can proceed through O-addition or N-addition to form NO2, encompasses numerous steps, channels, and various intermediates and products. The temperature-/pressure-dependent kinetic behaviors and product distribution of the CH3NH + NO2 reaction are revealed under atmospheric and combustion conditions. The main products under atmospheric conditions are found to be CH3NHO and NO, as well as CH3NHNO2, while under combustion conditions, the primary products are only CH3NHO and NO. Given its stability under ambient conditions, CH3NHNO2, a nitramine, is believed to have the potential to induce DNA damage, which can ultimately result in severe cancers. Secondly, by building upon prior research on the CH3NH + NO system, this study shows that the reaction of CH3NH with NOx holds greater importance in urban areas with elevated NOx emissions than other oxidants like O2. Furthermore, this reaction occurs swiftly and results in the creation of various compounds, such as the carcinogenic nitrosamine (CH3NHNO), carcinogenic nitramine (CH3NHNO2), CH3NNOH, (CH3NN + H2O) and (CH3NHO + NO).
Collapse
Affiliation(s)
- Loc T Nguyen
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Tam V-T Mai
- Institute of Fundamental and Applied Sciences, Duy Tan University, 06 Tran Nhat Duat, Tan Dinh Ward, District 1, Ho Chi Minh City, Vietnam
- Faculty of Natural Sciences, Duy Tan University, Da Nang City, Vietnam
| | - Huy D Vien
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trang T Nguyen
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| | - Lam K Huynh
- School of Chemical and Environmental Engineering, International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City, Vietnam.
- Vietnam National University, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Pham TV, Trang HTT. Reactions of Methyl Radicals with Aniline Acting as Hydrogen Donors and as Methyl Radical Acceptors. ACS OMEGA 2023; 8:17005-17016. [PMID: 37214701 PMCID: PMC10193547 DOI: 10.1021/acsomega.3c01029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
The present investigation theoretically reports the comprehensive kinetic mechanism of the reaction between aniline and the methyl radical over a wide range of temperatures (300-2000 K) and pressures (76-76,000 Torr). The potential energy surface of the C6H5NH2 + CH3 reaction has been established at the CCSD(T)//M06-2X/6-311++G(3df,2p) level of theory. The conventional transition-state theory (TST) was utilized to calculate rate constants for the elementary reaction channels, while the stochastic RRKM-based master equation framework was applied for the T- and P-dependent rate-coefficient calculation of multiwell reaction paths. Hindered internal rotation and Eckart tunneling treatments were included. The H-abstraction from the -NH2 group of aniline (to form P1 (C6H5NH + CH4)) has been found to compete with the CH3-addition on the C atom at the ortho site of aniline (to form IS2) with the atmospheric rate expressions (in cm3 molecule-1 s-1) as ka1 = 7.5 × 10-23 T3.04 exp[(-40.63 ± 0.29 kJ·mol-1)/RT] and kb2 = 2.29 × 10-3 T-3.19 exp[(-56.94 ± 1.17 kJ·mol-1)/RT] for T = 300-2000 K and P = 760 Torr. Even though rate constants of several reaction channels decrease with increasing pressures, the total rate constant ktotal = 7.71 × 10-17 T1.20 exp[(-40.96 ± 2.18 kJ·mol-1)/RT] of the title reaction still increases as the pressure increases in the range of 76-76,000 Torr. The calculated enthalpy changes for some species are in good agreement with the available experimental data within their uncertainties (the maximum deviation between theory and experiment is ∼11 kJ·mol-1). The T1 diagnostic and spin contamination analysis for all species involved have also been observed. This work provides sound quality rate coefficients for the title reaction, which will be valuable for the development of detailed combustion reaction mechanisms for hydrocarbon fuels.
Collapse
Affiliation(s)
- Tien V. Pham
- School
of Chemical Engineering, Hanoi University
of Science and Technology, Hanoi 100000, Vietnam
| | - Hoang T. T. Trang
- Department
of Chemistry, Hanoi Architectural University, Hanoi 100000, Vietnam
| |
Collapse
|
4
|
Wang X, Tang B, Bao L, Zhang H, He M, Yuan S. Degradation evaluation of acrylamide in advanced oxidation processes based on theoretical method: Mechanisms, kinetics, toxicity evaluation and the role of soil particles. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127592. [PMID: 34736216 DOI: 10.1016/j.jhazmat.2021.127592] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 10/12/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Acrylamide (AA) is now recognized as an imminent hazardous chemical in the aqueous environment, causing a potential threat to human health. As a neo-formed contaminant (NFC), the degradation measure of AA is largely lacking. In this work, we used quantum chemistry and experimental methods to identify the main degradation mechanism of AA in the UV/H2O2 advanced oxidation process (AOP) for the first time. Radical addition reactions dominate the •OH-initiated AA reaction, resulting in few toxic nitrosamines formation. The interaction between AA and the surface model of soil particles (SixOy(OH)z) is weak, and AA can rapidly migrate down to groundwater via seepage. However, the total rate constants of AA and COMADS2-AA with •OH are 2.75 × 109 and 2.09 × 109 M-1 s-1, and the removal of AA from aqueous and heterogeneous systems reaches 62.30% and 62.05% within 2 h. Whether in the aqueous-phase or on the surface of soil particles, •OH initiated AA reaction is an efficient way to remove AA. Furthermore, the toxicity of the main by-products of AA show less harmful to three aquatic organisms and rats than AA. UV/H2O2 AOP is evaluated as an efficient method to degrade AA while decreasing harm.
Collapse
Affiliation(s)
- Xueyu Wang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Bo Tang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Lei Bao
- School of Chemical Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Heng Zhang
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China
| | - Maoxia He
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Shiling Yuan
- Key Lab of Colloid and Interface Chemistry, Shandong University, Jinan 250100, China.
| |
Collapse
|
5
|
Zhao H, Lu C, Tang Y, Zhang Y, Sun J. A theoretical investigation on the degradation reactions of CH 3CH 2CH 2NH and (CH 3CH 2CH 2) 2N radicals in the presence of NO, NO 2 and O 2. CHEMOSPHERE 2022; 287:131946. [PMID: 34438212 DOI: 10.1016/j.chemosphere.2021.131946] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 08/02/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
The degradation reactions of propylamino and dipropylamino radicals in the presence of NO, NO2 and O2 were investigated at the CCSD(T)/6-311++G (2d, 2p)//B3LYP/6-311++G (d,p) levels of theory. Result indicates that nitrosamines, nitramines, nitroso-oxy compounds and imines can be formed at atmosphere. Time dependent density functional theory (TDDFT) calculation shows that nitrosamines and nitroso-oxy compounds can photolyze under sunlight, while nitramines cannot undergo photolysis in the daytime. Moreover, the ecotoxicity assessment result implies that the degradation of propyl-substituted amines by OH radicals, NO and NO2 will reduce their toxicity to fish, daphnia and green algae in the aquatic environment.
Collapse
Affiliation(s)
- Hui Zhao
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, PR China
| | - Chenggang Lu
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, PR China
| | - Yizhen Tang
- School of Environmental and Municipal Engineering, Qingdao University of Technology, Fushun Road 11, Qingdao, Shandong, 266033, PR China.
| | - Yunju Zhang
- College of Chemistry and Chemical Engineering, Mianyang Normal University, Mianyang, 621000, PR China
| | - Jingyu Sun
- College of Chemistry and Environmental Engineering, Hubei Normal University, Cihu Road 11, Huangshi, Hubei, 435002, PR China
| |
Collapse
|
6
|
Tan W, Zhu L, Mikoviny T, Nielsen CJ, Tang Y, Wisthaler A, Eichler P, Müller M, D'Anna B, Farren NJ, Hamilton JF, Pettersson JBC, Hallquist M, Antonsen S, Stenstrøm Y. Atmospheric Chemistry of 2-Amino-2-methyl-1-propanol: A Theoretical and Experimental Study of the OH-Initiated Degradation under Simulated Atmospheric Conditions. J Phys Chem A 2021; 125:7502-7519. [PMID: 34424704 PMCID: PMC8419843 DOI: 10.1021/acs.jpca.1c04898] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
The OH-initiated
degradation of 2-amino-2-methyl-1-propanol [CH3C(NH2)(CH3)CH2OH, AMP] was
investigated in a large atmospheric simulation chamber, employing
time-resolved online high-resolution proton-transfer reaction-time-of-flight
mass spectrometry (PTR-ToF-MS) and chemical analysis of aerosol online
PTR-ToF-MS (CHARON-PTR-ToF-MS) instrumentation, and by theoretical
calculations based on M06-2X/aug-cc-pVTZ quantum chemistry results
and master equation modeling of the pivotal reaction steps. The quantum
chemistry calculations reproduce the experimental rate coefficient
of the AMP + OH reaction, aligning k(T) = 5.2 × 10–12 × exp (505/T) cm3 molecule–1 s–1 to the experimental value kexp,300K =
2.8 × 10–11 cm3 molecule–1 s–1. The theoretical calculations predict that
the AMP + OH reaction proceeds via hydrogen abstraction from the −CH3 groups (5–10%), −CH2– group,
(>70%) and −NH2 group (5–20%), whereas
hydrogen
abstraction from the −OH group can be disregarded under atmospheric
conditions. A detailed mechanism for atmospheric AMP degradation was
obtained as part of the theoretical study. The photo-oxidation experiments
show 2-amino-2-methylpropanal [CH3C(NH2)(CH3)CHO] as the major gas-phase product and propan-2-imine [(CH3)2C=NH], 2-iminopropanol [(CH3)(CH2OH)C=NH], acetamide [CH3C(O)NH2], formaldehyde (CH2O), and nitramine 2-methyl-2-(nitroamino)-1-propanol
[AMPNO2, CH3C(CH3)(NHNO2)CH2OH] as minor primary products; there is no experimental
evidence of nitrosamine formation. The branching in the initial H
abstraction by OH radicals was derived in analyses of the temporal
gas-phase product profiles to be BCH3/BCH2/BNH2 = 6:70:24. Secondary photo-oxidation products
and products resulting from particle and surface processing of the
primary gas-phase products were also observed and quantified. All
the photo-oxidation experiments were accompanied by extensive particle
formation that was initiated by the reaction of AMP with nitric acid
and that mainly consisted of this salt. Minor amounts of the gas-phase
photo-oxidation products, including AMPNO2, were detected
in the particles by CHARON-PTR-ToF-MS and GC×GC-NCD. Volatility
measurements of laboratory-generated AMP nitrate nanoparticles gave
ΔvapH = 80 ± 16 kJ mol–1 and an estimated vapor pressure of (1.3 ± 0.3)
× 10–5 Pa at 298 K. The atmospheric chemistry
of AMP is evaluated and a validated chemistry model for implementation
in dispersion models is presented.
Collapse
Affiliation(s)
- Wen Tan
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Liang Zhu
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Tomáš Mikoviny
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Claus J Nielsen
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Yizhen Tang
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway
| | - Armin Wisthaler
- Section for Environmental Sciences, Department of Chemistry, University of Oslo, P.O. Box 1033, Blindern, NO-0315 Oslo, Norway.,Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Philipp Eichler
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Markus Müller
- Institute for Ion Physics and Applied Physics, University of Innsbruck, 6020 Innsbruck, Austria
| | - Barbara D'Anna
- Aix Marseille Université, CNRS, LCE, UMR 7376, 13331 Marseille, France
| | - Naomi J Farren
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jacqueline F Hamilton
- Wolfson Atmospheric Chemistry Laboratories, Department of Chemistry, University of York, York YO10 5DD, U.K
| | - Jan B C Pettersson
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Mattias Hallquist
- Atmospheric Science, Department of Chemistry and Molecular Biology, University of Gothenburg, 41296 Gothenburg, Sweden
| | - Simen Antonsen
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| | - Yngve Stenstrøm
- Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences, P.O. Box 5003, N-1432 Ås, Norway
| |
Collapse
|
7
|
Mai TVT, Nguyen TTD, Nguyen HT, Nguyen TT, Huynh LK. New Mechanistic Insights into Atmospheric Oxidation of Aniline Initiated by OH Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7858-7868. [PMID: 34043323 DOI: 10.1021/acs.est.1c01865] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This study theoretically reports the comprehensive kinetic mechanism of the aniline + OH reaction in the range of 200-2000 K and 0.76-7600 Torr. The temperature- and pressure-dependent behaviors, including time-resolved species profiles and rate coefficients, were studied within the stochastic RRKM-based master equation framework with the reaction energy profile, together with molecular properties of the species involved, characterized at the M06-2X/aug-cc-pVTZ level. Hindered internal rotation and Eckart tunneling treatments were included. The H-abstraction from the -NH2 moiety (to form C6H5NH (P1)) is found to prevail over the OH-addition on the C atom at the ortho site of aniline (to form 6-hydroxy-1-methylcyclohexa-2,4-dien-1-yl (I2)) with the atmospheric rate expressions (in cm3/molecule/s) as kabstraction(P1) = 3.41 × 101 × T-4.56 × exp (-255.2 K/T) for 200-2000 K and kaddition(I2) = 3.68 × 109 × T-7.39 × exp (-1163.9 K/T) for 200-800 K. The U-shaped temperature-dependent characteristics and weakly positive pressure dependence at low temperatures (e.g., T ≤ 800 K and P = 760 Torr) of ktotal(T) are also observed. The disagreement in ktotal(T) between the previous calculations and experimental studies is also resolved, and atmospheric aniline is found to be primarily removed by OH radicals (τOH ∼ 1.1 h) in the daytime. Also, via TD-DFT simulations, it is recommended to include P1 and I2 in any atmospheric photolysis-related model.
Collapse
Affiliation(s)
- Tam V-T Mai
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
- University of Science, 227 Nguyen Van Cu, Ward 4, District 5, Ho Chi Minh City 700000, Vietnam
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Thi T-D Nguyen
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Hieu T Nguyen
- Institute for Computational Science and Technology, SBI Building, Quang Trung Software City, Tan Chanh Hiep Ward, District 12, Ho Chi Minh City 700000, Vietnam
| | - Trang T Nguyen
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| | - Lam K Huynh
- Vietnam National University, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
- International University, Quarter 6, Linh Trung Ward, Thu Duc City, Ho Chi Minh City 700000, Vietnam
| |
Collapse
|
8
|
Ma F, Xie HB, Li M, Wang S, Zhang R, Chen J. Autoxidation mechanism for atmospheric oxidation of tertiary amines: Implications for secondary organic aerosol formation. CHEMOSPHERE 2021; 273:129207. [PMID: 33349467 DOI: 10.1016/j.chemosphere.2020.129207] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/30/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
Tertiary amines are one kind of identified amines in the atmosphere. Here, the atmospheric oxidation mechanism and kinetics of tertiary amines were investigated by using computational methods. As proxies of these amines, trimethylamine (TMA) and triethylamine (TEA) have been selected. Results indicate that N-containing peroxy radicals (NRO2⋅), which are key intermediates in ⋅OH initiated oxidation of TMA and TEA, can follow a so-called autoxidation mechanism (a chain reaction of H-shift followed by O2 addition) even on the condition of high NO/HO2⋅ concentration. Such unique mechanism can be ascribed to the ability of N-atom in facilitating the unimolecular H-shift of NRO2⋅ and the absence of H-atoms on N-atom. However, different from TMA reaction system, the pathway dissociating into fragmental products can compete with the autoxidation pathway for TEA system. More importantly, TEA reaction system cannot lead to the formation of products with high O/C ratio due to the autoxidation pathway terminated by the release of fragmental molecules. Such difference can be corroborated by previously observing lower secondary organic aerosol yield of TEA oxidation than that of TMA oxidation. The unveiled mechanism enhances current understanding on atmospheric fate of amines and autoxidation mechanism.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China; Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Mingxue Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Sainan Wang
- State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of Environmental Protection and Resources Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Renyi Zhang
- Department of Atmospheric Sciences, Texas A&M University, College Station, TX, 77843, United States
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| |
Collapse
|
9
|
Glarborg P, Andreasen CS, Hashemi H, Qian R, Marshall P. Oxidation of methylamine. INT J CHEM KINET 2020. [DOI: 10.1002/kin.21408] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Peter Glarborg
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
| | - Charlotte S. Andreasen
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
| | - Hamid Hashemi
- Department of Chemical and Biochemical Engineering Technical University of Denmark Lyngby Denmark
| | - Rachel Qian
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling University of North Texas Denton Texas
| | - Paul Marshall
- Department of Chemistry and Center for Advanced Scientific Computing and Modeling University of North Texas Denton Texas
| |
Collapse
|
10
|
Antonsen SG, Bunkan AJC, Mikoviny T, Nielsen CJ, Stenstrøm Y, Wisthaler A, Zardin E. Atmospheric chemistry of diazomethane – an experimental and theoretical study. Mol Phys 2020. [DOI: 10.1080/00268976.2020.1718227] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
| | | | - Tomas Mikoviny
- Department of Chemistry, University of Oslo, Oslo, Norway
| | | | - Yngve Stenstrøm
- Department of Chemistry, Biotechnology and Food Science, Aas, Norway
| | | | - Erika Zardin
- Department of Chemistry, University of Oslo, Oslo, Norway
| |
Collapse
|
11
|
Wang Q, Li Q, Wei D, Su G, Wu M, Li C, Sun B, Dai L. Photochemical reactions of 1,3-butadiene with nitrogen oxide in different matrices: Kinetic behavior, humidity effect, product and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137747. [PMID: 32179348 DOI: 10.1016/j.scitotenv.2020.137747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Revised: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 06/10/2023]
Abstract
Understanding the photochemical reaction process between VOCs and co-pollutants in the troposphere is crucial for controlling the haze. The photochemical reactions of 1,3-butadiene (1,3-BD) with NO were carried out at 308 K for up to 96 h in clean air with various relative humidity (RH) values, and actual haze atmosphere. In the haze, the representative pseudo-first-order kinetic rate constants of the 1,3-BD-NO system was 1.53 time higher than those in dry clean air. The effect of the RH (0%-80%) on the conversion behavior of the 1,3-BD-NO system in clean air was studied, revealing that increasing RH promoted the photochemical reaction in the low range of 0%-40% but retarded it in the high range of 40%-80%. Interestingly, OH radicals were directly detected under different RH values, and the strongest OH signal was obtained at an RH of 40%. Multiple macromolecular products with carbon numbers of 10-36 were identified. Unexpectedly, richer products and extended unsaturation range were detected at an RH of 40% than 0%. The photochemical products were also analyzed using ion chromatography. A reaction mechanism was proposed from the detected NO2, O3, OH, HNO2, HNO3, organic acids and macromolecular products.
Collapse
Affiliation(s)
- Qingliang Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qianqian Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Da Wei
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guijin Su
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Mingge Wu
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chuanqi Li
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bohua Sun
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lingwen Dai
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, P.O. Box 2871, Beijing 100085, China; College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
12
|
Liu C, Ma F, Elm J, Fu Z, Tang W, Chen J, Xie HB. Mechanism and predictive model development of reaction rate constants for N-center radicals with O 2. CHEMOSPHERE 2019; 237:124411. [PMID: 31549633 DOI: 10.1016/j.chemosphere.2019.124411] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 07/18/2019] [Accepted: 07/19/2019] [Indexed: 06/10/2023]
Abstract
Atmospheric oxidation of NHx-containing (x = 1, 2) compounds can produce N-center radicals, a precursor of toxic nitrosamines. The reaction rate constant (kO2) with O2 has been considered as an important parameter to determine the nitrosamines yield in the subsequent reactions of N-center radicals. However, available kO2 values of N-center radicals are limited. Here, a three-step scheme including mechanistic analysis and kinetics calculation of the reactions of 28 various N-center radicals with O2, and model development was taken to solve the kO2 data shortage. Mainly employed tools include highly cost-expensive coupled-cluster theory (CCSD(T)), kinetic model and statistics. The results indicate that the direct H-abstraction pathway is the most favorable for the reactions of all considered N-center radicals with O2. The specific molecular conformation and the C-H bond energy of the N-center radicals are two important factors to determine kO2 values. Based on the mechanistic understanding of kO2 values, a quantitative structure-activity relationship (QSAR) model of kO2 values was developed. The model has satisfactory goodness-of-fit, robustness and predictive ability. The determined kO2 values and the in silico methods provide a scientific base for assessing formation risk of toxic nitrosamines in the atmosphere.
Collapse
Affiliation(s)
- Cong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jonas Elm
- Department of Chemistry and iClimate, Aarhus University, Aarhus, 8000, Denmark
| | - Zihao Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Weihao Tang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Linggong Road 2, Dalian, 116024, China.
| |
Collapse
|
13
|
Ma F, Xie HB, Elm J, Shen J, Chen J, Vehkamäki H. Piperazine Enhancing Sulfuric Acid-Based New Particle Formation: Implications for the Atmospheric Fate of Piperazine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:8785-8795. [PMID: 31287292 DOI: 10.1021/acs.est.9b02117] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Piperazine (PZ), a cyclic diamine, is one of 160 detected atmospheric amines and an alternative solvent to the widely used monoethanolamine in post-combustion CO2 capture. Participating in H2SO4 (sulfuric acid, SA)-based new particle formation (NPF) could be an important removal pathway for PZ. Here, we employed quantum chemical calculations and kinetics modeling to evaluate the enhancing potential of PZ on SA-based NPF by examining the formation of PZ-SA clusters. The results indicate that PZ behaves more like a monoamine in stabilizing SA and can enhance SA-based NPF at the parts per trillion (ppt) level. The enhancing potential of PZ is less than that of the chainlike diamine putrescine and greater than that of dimethylamine, which is one of the strongest enhancing agents confirmed by ambient observations and experiments. After the initial formation of the (PZ)1(SA)1 cluster, the cluster mainly grows by gradual addition of SA or PZ monomer, followed by addition of (PZ)1(SA)1 cluster. We find that the ratio of PZ removal by NPF to that by the combination of NPF and oxidations is 0.5-0.97 at 278.15 K. As a result, we conclude that participation in the NPF pathway could significantly alter the environmental impact of PZ compared to only considering oxidation pathways.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and iClimate , Aarhus University , Langelandsgade 140 , DK- 8000 Aarhus C , Denmark
| | - Jiewen Shen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Hanna Vehkamäki
- Institute for Atmospheric and Earth System Research/Physics , University of Helsinki , P.O. Box 64, Gustaf Hällströmin katu 2a , FI-00014 Helsinki , Finland
| |
Collapse
|
14
|
Alam MA, Ren Z, da Silva G. Nitramine and nitrosamine formation is a minor pathway in the atmospheric oxidation of methylamine: A theoretical kinetic study of the CH
3
NH + O
2
reaction. INT J CHEM KINET 2019. [DOI: 10.1002/kin.21303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
| | - Zhonghua Ren
- Department of Chemical Engineering The University of Melbourne Parkville Australia
| | - Gabriel da Silva
- Department of Chemical Engineering The University of Melbourne Parkville Australia
| |
Collapse
|
15
|
Bai FY, Ni S, Tang YZ, Pan XM, Zhao Z. New insights into 3M3M1B: the role of water in ˙OH-initiated degradation and aerosol formation in the presence of NOX (X = 1, 2) and an alkali. Phys Chem Chem Phys 2019; 21:17378-17392. [DOI: 10.1039/c9cp02793a] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Metal-free catalysis of the ˙OH-initiated degradation of 3M3M1B, nitrate aerosol formation, and peroxynitrate decomposition.
Collapse
Affiliation(s)
- Feng-Yang Bai
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| | - Shuang Ni
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Yi-Zhen Tang
- School of Environmental and Municipal Engineering
- Qingdao Technological University
- Qingdao 266033
- People's Republic of China
| | - Xiu-Mei Pan
- National & Local United Engineering Lab for Power Battery
- Faculty of Chemistry
- Northeast Normal University
- Changchun 130024
- People's Republic of China
| | - Zhen Zhao
- Institute of Catalysis for Energy and Environment
- College of Chemistry and Chemical Engineering
- Shenyang Normal University
- Shenyang
- People's Republic of China
| |
Collapse
|
16
|
Ma F, Ding Z, Elm J, Xie HB, Yu Q, Liu C, Li C, Fu Z, Zhang L, Chen J. Atmospheric Oxidation of Piperazine Initiated by ·Cl: Unexpected High Nitrosamine Yield. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:9801-9809. [PMID: 30063348 DOI: 10.1021/acs.est.8b02510] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chlorine radicals (·Cl) initiated amine oxidation plays an important role for the formation of carcinogenic nitrosamine in the atmosphere. Piperazine (PZ) is considered as a potential atmospheric pollutant since it is an alternative solvent to monoethanolamine (MEA), a benchmark solvent in a leading CO2 capture technology. Here, we employed quantum chemical methods and kinetics modeling to investigate ·Cl-initiated atmospheric oxidation of PZ, particularly concerning the potential of PZ to form nitrosamine compared to MEA. Results showed that the ·Cl-initiated PZ reaction exclusively leads to N-center radicals (PZ-N) that mainly react with NO to produce nitrosamine in their further reaction with O2/NO. Together with the PZ + ·OH reaction, the PZ-N yield from PZ oxidation is still lower than that of the corresponding MEA reactions. However, the nitrosamine yield of PZ is higher than the reported value for MEA when [NO] is <5 ppb, a concentration commonly encountered in a polluted urban atmosphere. The unexpected high nitrosamine yield from PZ compared to MEA results from a more favorable reaction of N-center radicals with NO compared to O2. These findings show that the yield of N-center radicals cannot directly be used as a metric for the yield of the corresponding carcinogenic nitrosamine.
Collapse
Affiliation(s)
- Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Zhezheng Ding
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jonas Elm
- Department of Chemistry and Climate , Aarhus University , Aarhus 8000 , Denmark
| | - Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Cong Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Chao Li
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment , Northeast Normal University , Changchun 130117 , China
| | - Zhiqiang Fu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Lili Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology , Dalian University of Technology , Dalian 116024 , China
| |
Collapse
|
17
|
Akbar Ali M, M. B, Lin KC. Catalytic effect of a single water molecule on the OH + CH2NH reaction. Phys Chem Chem Phys 2018; 20:4297-4307. [DOI: 10.1039/c7cp07091h] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Effect of water molecule on atmospheric oxidation of imines.
Collapse
Affiliation(s)
| | - Balaganesh M.
- Department of Chemistry
- National Taiwan University
- Taiwan
| | - K. C. Lin
- Department of Chemistry
- National Taiwan University
- Taiwan
| |
Collapse
|
18
|
Xie HB, Ma F, Yu Q, He N, Chen J. Computational Study of the Reactions of Chlorine Radicals with Atmospheric Organic Compounds Featuring NHx–π-Bond (x = 1, 2) Structures. J Phys Chem A 2017; 121:1657-1665. [DOI: 10.1021/acs.jpca.6b11418] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Qi Yu
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Ning He
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory
of Industrial Ecology and Environmental Engineering (Ministry of Education),
School of Environmental Science and Technology and ‡State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
19
|
Borduas N, Abbatt JPD, Murphy JG, So S, da Silva G. Gas-Phase Mechanisms of the Reactions of Reduced Organic Nitrogen Compounds with OH Radicals. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:11723-11734. [PMID: 27690404 DOI: 10.1021/acs.est.6b03797] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Research on the fate of reduced organic nitrogen compounds in the atmosphere has gained momentum since the identification of their crucial role in particle nucleation and the scale up of carbon capture and storage technology which employs amine-based solvents. Reduced organic nitrogen compounds have strikingly different lifetimes against OH radicals, from hours for amines to days for amides to years for isocyanates, highlighting unique functional group reactivity. In this work, we use ab initio methods to investigate the gas-phase mechanisms governing the reactions of amines, amides, isocyanates and carbamates with OH radicals. We determine that N-H abstraction is only a viable mechanistic pathway for amines and we identify a reactive pathway in amides, the formyl C-H abstraction, not currently considered in structure-activity relationship (SAR) models. We then use our acquired mechanistic knowledge and tabulated literature experimental rate coefficients to calculate SAR factors for reduced organic nitrogen compounds. These proposed SAR factors are an improvement over existing SAR models because they predict the experimental rate coefficients of amines, amides, isocyanates, isothiocyanates, carbamates and thiocarbamates with OH radicals within a factor of 2, but more importantly because they are based on a sound fundamental mechanistic understanding of their reactivity.
Collapse
Affiliation(s)
- Nadine Borduas
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jonathan P D Abbatt
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Jennifer G Murphy
- Department of Chemistry, University of Toronto , 80 St. George Street, Toronto, Ontario M5S 3H6, Canada
| | - Sui So
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| | - Gabriel da Silva
- Chemical and Biomolecular Engineering, University of Melbourne , Victoria 3010, Australia
| |
Collapse
|
20
|
Xie HB, Ma F, Wang Y, He N, Yu Q, Chen J. Quantum Chemical Study on ·Cl-Initiated Atmospheric Degradation of Monoethanolamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:13246-55. [PMID: 26495768 DOI: 10.1021/acs.est.5b03324] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Recent findings on the formation of ·Cl in continental urban areas necessitate the consideration of ·Cl initiated degradation when assessing the fate of volatile organic pollutants. Monoethanolamine (MEA) is considered as a potential atmospheric pollutant since it is a benchmark and widely utilized solvent in a leading CO2 capture technology. Especially, ·Cl may have specific interactions with the N atom of MEA, which could make the MEA + ·Cl reaction have different pathways and products from those of the MEA + ·OH reaction. Hence, ·Cl initiated reactions with MEA were investigated by a quantum chemical method [CCSD(T)/aug-cc-pVTZ//MP2/6-31+G(3df,2p)] and kinetics modeling. Results show that the overall rate constant for ·Cl initiated H-abstraction of MEA is 5 times faster than that initiated by ·OH, and the tropospheric lifetimes of MEA will be overestimated by 6-46% when assuming that [·Cl]/[·OH] = 1-10% if the role of ·Cl is ignored. The MEA + ·Cl reaction exclusively produces MEA-N that finally transforms into several products including mutagenic nitramine and carcinogenic nitrosamine via further reactions with O2/NOx, and the contribution of ·Cl to their formation is about 25-250% of that of ·OH. Thus, it is necessary to consider ·Cl initiated tropospheric degradation of MEA for its risk assessment.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Fangfang Ma
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Yuanfang Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Ning He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology , Dalian 116024, China
| | - Qi Yu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | - Jingwen Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| |
Collapse
|
21
|
So S, Wille U, da Silva G. A Theoretical Study of the Photoisomerization of Glycolaldehyde and Subsequent OH Radical-Initiated Oxidation of 1,2-Ethenediol. J Phys Chem A 2015; 119:9812-20. [PMID: 26335928 DOI: 10.1021/acs.jpca.5b06854] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
It has recently been discovered that carbonyl compounds can undergo UV-induced isomerization to their enol counterparts under atmospheric conditions. This study investigates the photoisomerization of glycolaldehyde (HOCH2CHO) to 1,2-ethenediol (HOCH═CHOH) and the subsequent (•)OH-initiated oxidation chemistry of the latter using quantum chemical calculations and stochastic master equation simulations. The keto-enol tautomerization of glycolaldehyde to 1,2-ethenediol is associated with a barrier of 66 kcal mol(-1) and involves a double-hydrogen shift mechanism to give the lower-energy Z isomer. This barrier lies below the energy of the UV/vis absorption band of glycolaldehyde and is also considerably below the energy of the products resulting from photolytic decomposition. The subsequent atmospheric oxidation of 1,2-ethenediol by (•)OH is initiated by addition of the radical to the π system to give the (•)CH(OH)CH(OH)2 radical, which is subsequently trapped by O2 to form the peroxyl radical (•)O2CH(OH)CH(OH)2. According to kinetic simulations, collisional deactivation of the latter is negligible and cannot compete with rapid fragmentation reactions, which lead to (i) formation of glyoxal hydrate [CH(OH)2CHO] and HO2(•) through an α-hydroxyl mechanism (96%) and (ii) two molecules of formic acid with release of (•)OH through a β-hydroxyl pathway (4%). Phenomenological rate coefficients for these two reaction channels were obtained for use in atmospheric chemical modeling. At tropospheric (•)OH concentrations, the lifetime of 1,2-ethenediol toward reaction with (•)OH is calculated to be 68 h.
Collapse
Affiliation(s)
- Sui So
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Uta Wille
- School of Chemistry and Bio21 Institute, The University of Melbourne , Melbourne, Victoria 3010, Australia
| | - Gabriel da Silva
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Melbourne, Victoria 3010, Australia
| |
Collapse
|
22
|
Onel L, Blitz MA, Breen J, Rickard AR, Seakins PW. Branching ratios for the reactions of OH with ethanol amines used in carbon capture and the potential impact on carcinogen formation in the emission plume from a carbon capture plant. Phys Chem Chem Phys 2015; 17:25342-53. [DOI: 10.1039/c5cp04083c] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Branching ratios for the OH reaction with ethanol amines and potential risk of carcinogenic formation in the carbon capture plume.
Collapse
Affiliation(s)
- L. Onel
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - M. A. Blitz
- School of Chemistry
- University of Leeds
- Leeds
- UK
- National Centre for Atmospheric Science (NCAS)
| | - J. Breen
- School of Chemistry
- University of Leeds
- Leeds
- UK
| | - A. R. Rickard
- Wolfson Atmospheric Chemistry Laboratories
- Department of Chemistry
- University of York
- York
- UK
| | - P. W. Seakins
- School of Chemistry
- University of Leeds
- Leeds
- UK
- National Centre for Atmospheric Science (NCAS)
| |
Collapse
|
23
|
Onel L, Blitz M, Dryden M, Thonger L, Seakins P. Branching ratios in reactions of OH radicals with methylamine, dimethylamine, and ethylamine. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:9935-9942. [PMID: 25072999 DOI: 10.1021/es502398r] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The branching ratios for the reaction of the OH radical with the primary and secondary alkylamines: methylamine (MA), dimethylamine (DMA), and ethylamine (EA), have been determined using the technique of pulsed laser photolysis-laser-induced fluorescence. Titration of the carbon-centered radical, formed following the initial OH abstraction, with oxygen to give HO2 and an imine, followed by conversion of HO2 to OH by reaction with NO, resulted in biexponential OH decay traces on a millisecond time scale. Analysis of the biexponential curves gave the HO2 yield, which equaled the branching ratio for abstraction at αC-H position, r(αC-H). The technique was validated by reproducing known branching ratios for OH abstraction for methanol and ethanol. For the amines studied in this work (all at 298 K): r(αC-H,MA) = 0.76 ± 0.08, r(αC-H,DMA) = 0.59 ± 0.07, and r(αC-H,EA) = 0.49 ± 0.06 where the errors are a combination in quadrature of statistical errors at the 2σ level and an estimated 10% systematic error. The branching ratios r(αC-H) for OH reacting with (CH3)2NH and CH3CH2NH2 are in agreement with those obtained for the OD reaction with (CH3)2ND (d-DMA) and CH3CH2ND2 (d-EA): r(αC-H,d-DMA) = 0.71 ± 0.12 and r(αC-H,d-EA) = 0.54 ± 0.07. A master equation analysis (using the MESMER package) based on potential energy surfaces from G4 theory was used to demonstrate that the experimental determinations are unaffected by formation of stabilized peroxy radicals and to estimate atmospheric pressure yields. The branching ratio for imine formation through the reaction of O2 with α carbon-centered radicals at 1 atm of N2 are estimated as r(CH2NH2) = 0.79 ± 0.15, r(CH2NHCH3) = 0.72 ± 0.19, and r(CH3CHNH2) = 0.50 ± 0.18. The implications of this work on the potential formation of nitrosamines and nitramines are briefly discussed.
Collapse
Affiliation(s)
- Lavinia Onel
- School of Chemistry, University of Leeds , Leeds, LS2 9JT, U.K
| | | | | | | | | |
Collapse
|
24
|
So S, Wille U, da Silva G. Atmospheric chemistry of enols: a theoretical study of the vinyl alcohol + OH + O(2) reaction mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:6694-6701. [PMID: 24844308 DOI: 10.1021/es500319q] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Enols are emerging as trace atmospheric components that may play a significant role in the formation of organic acids in the atmosphere. We have investigated the hydroxyl radical ((•)OH) initiated oxidation chemistry of the simplest enol, vinyl alcohol (ethenol, CH2═CHOH), using quantum chemical calculations and energy-grained master equation simulations. A lifetime of around 4 h was determined for vinyl alcohol in the presence of tropospheric levels of (•)OH. The reaction proceeds by (•)OH addition at both the α (66%) and β (33%) carbons of the π-system, yielding the C-centered radicals (•)CH2CH(OH)2, and HOCH2C(•)HOH, respectively. Subsequent trapping by O2 leads to the respective peroxyl radicals. About 90% of the chemically activated population of the major peroxyl radical adduct (•)O2CH2CH(OH)2 is predicted to undergo fragmentation to produce formic acid and formaldehyde, with regeneration of (•)OH. The minor peroxyl radical HOCH2C(OO(•))HOH is even less stable and undergoes almost exclusive HO2(•) elimination to form glycolaldehyde (HOCH2CHO). Formation of the latter has not been proposed before in the oxidation of vinyl alcohol. A kinetic mechanism for use in atmospheric modeling is provided, featuring phenomenological rate coefficients for formation of the three main product channels ((•)O2CH2CH(OH)2 [8%]; HC(O)OH + HCHO + (•)OH [56%]; HOCH2CHO + HO2(•) [37%]). Our study supports previous findings that vinyl alcohol should be rapidly removed from the atmosphere by reaction with (•)OH and O2 with glycolaldehyde being identified as a previously unconsidered product. Most importantly, it is shown that direct chemically activated reactions can lead to (•)OH and HO2(•) (HOx) recycling.
Collapse
Affiliation(s)
- Sui So
- Department of Chemical and Biomolecular Engineering, The University of Melbourne , Victoria 3010, Australia
| | | | | |
Collapse
|
25
|
Maguta MM, Aursnes M, Bunkan AJC, Edelen K, Mikoviny T, Nielsen CJ, Stenstrøm Y, Tang Y, Wisthaler A. Atmospheric Fate of Nitramines: An Experimental and Theoretical Study of the OH Reactions with CH3NHNO2 and (CH3)2NNO2. J Phys Chem A 2014; 118:3450-62. [DOI: 10.1021/jp500305w] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Mihayo Musabila Maguta
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Marius Aursnes
- Norwegian
University of Life Sciences, IKBM, P.O. Box 5003, NO-1432 Aas, Norway
| | - Arne Joakim Coldevin Bunkan
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Katie Edelen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Tomáš Mikoviny
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Claus Jørgen Nielsen
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| | - Yngve Stenstrøm
- Norwegian
University of Life Sciences, IKBM, P.O. Box 5003, NO-1432 Aas, Norway
| | - Yizhen Tang
- School
of Environmental and Municipal Engineering, Qingdao Technological University, Fushun Road 11, 266033 Qingdao, Shandong P.R. China
| | - Armin Wisthaler
- Centre
for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, P.
O. Box 1033, Blindern, 0315 Oslo, Norway
| |
Collapse
|
26
|
Xie HB, Li C, He N, Wang C, Zhang S, Chen J. Atmospheric chemical reactions of monoethanolamine initiated by OH radical: mechanistic and kinetic study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1700-6. [PMID: 24438015 DOI: 10.1021/es405110t] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Monoethanolamine (MEA) is a benchmark and widely utilized solvent in amine-based postcombustion CO2 capture (PCCC), a leading technology for reducing CO2 emission from fossil fuel power plants. The large-scale implementation of PCCC would lead to inevitable discharges of amines to the atmosphere. Therefore, understanding the kinetics and mechanisms of the transformation of representative amine MEA in the atmosphere is of great significance for risk assessment of the amine-based PCCC. In this study, the H-abstraction reaction of MEA with ·OH, and ensuing reactions of produced MEA-radicals, including isomerization, dissociation, and bimolecular reaction MEA-radicals+O2, were investigated by quantum chemical calculation [M06-2X/aug-cc-pVTZ//M06-2X/6-311++G(d,p)] and kinetic modeling. The calculated overall rate constant [(7.27 × 10(-11)) cm(3) molecule(-1) s(-1)] for H-abstraction is in excellent agreement with the experimental value [(7.02 ± 0.46) × 10(-11) cm(3) molecule(-1) s(-1)]. The results show that the product branching ratio of NH2CH2 · CHOH (MEA-β) (43%) is higher than that of NH2 · CHCH2OH (MEA-α) (39%), clarifying that MEA-α is not an exclusive product. On the basis of the unveiled reaction mechanisms of MEA-radicals + O2, the proton transfer reaction mass spectrometry signal (m/z 60.044), not recognized in the experiment, was identified.
Collapse
Affiliation(s)
- Hong-Bin Xie
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology , Dalian 116024, China
| | | | | | | | | | | |
Collapse
|