1
|
Yoon Y, Cho M. Detrimental impacts and QSAR baseline toxicity assessment of Japanese medaka embryos exposed to methylparaben and its halogenated byproducts. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171448. [PMID: 38453088 DOI: 10.1016/j.scitotenv.2024.171448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/29/2024] [Accepted: 03/01/2024] [Indexed: 03/09/2024]
Abstract
Despite the theoretical risk of forming halogenated methylparabens (halo-MePs) during water chlorination in the absence or presence of bromide ions, there remains a lack of in vivo toxicological assessments on vertebrate organisms for halo-MePs. This research addresses these gaps by investigating the lethal (assessed by embryo coagulation) or sub-lethal (assessed by hatching success/heartbeat rate) toxicity and teratogenicity (assessed by deformity rate) of MeP and its mono- and di-halogen derivatives (Cl- or Br-) using Japanese medaka embryos. In assessing selected apical endpoints to discern patterns in physiological or biochemical alterations, heightened toxic impacts were observed for halo-MePs compared to MeP. These include a higher incidence of embryo coagulation (4-36 fold), heartbeat rate decrement (11-36 fold), deformity rate increment (32-223 fold), hatching success decrement (11-59 fold), and an increase in Reactive Oxygen Species (ROS) level (1.2-7.4 fold)/Catalase (CAT) activity (1.7-2.8 fold). Experimentally determined LC50 values are correlated and predicted using a Quantitative Structure Activity Relationship (QSAR) based on the speciation-corrected liposome-water distribution ratio (Dlipw, pH 7.5). The QSAR baseline toxicity aligns well with (sub)lethal toxicity and teratogenicity, as evidenced by toxic ratio (TR) analysis showing TR < 10 for MeP exposure in all cases, while significant specific or reactive toxicity was found for halo-MeP exposure, with TR > 10 observed (excepting three values). Our extensive findings contribute novel insights into the intricate interplay of embryonic toxicity during the early-life-stage of Japanese medaka, with a specific focus on highlighting the potential hazards associated with halo-MePs compared to the parent compound MeP.
Collapse
Affiliation(s)
- Younggun Yoon
- Gyeongnam Department of Environmental Toxicology and Chemistry, Korea Institute of Toxicology (KIT), Gyeongsangnam-do, 52834, South Korea; Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| | - Min Cho
- Division of Biotechnology, SELS Center, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, Jeonbuk 54596, South Korea.
| |
Collapse
|
2
|
Zeng W, Ren J, Yang G, Jiang C, Dong L, Sun Q, Hu Y, Li W, He Q. Porcine Epidemic Diarrhea Virus and Its nsp14 Suppress ER Stress Induced GRP78. Int J Mol Sci 2023; 24:ijms24054936. [PMID: 36902365 PMCID: PMC10003387 DOI: 10.3390/ijms24054936] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/25/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Porcine epidemic diarrhea virus (PEDV), a member of the α-coronavirus genus, can cause vomiting, diarrhea, and dehydration in piglets. Neonatal piglets infected with PEDV have a mortality rate as high as 100%. PEDV has caused substantial economic losses to the pork industry. Endoplasmic reticulum (ER) stress, which can alleviate the accumulation of unfolded or misfolded proteins in ER, involves in coronavirus infection. Previous studies have indicated that ER stress could inhibit the replication of human coronaviruses, and some human coronaviruses in turn could suppress ER stress-related factors. In this study, we demonstrated that PEDV could interact with ER stress. We determined that ER stress could potently inhibit the replication of GⅠ, GⅡ-a, and GⅡ-b PEDV strains. Moreover, we found that these PEDV strains can dampen the expression of the 78 kDa glucose-regulated protein (GRP78), an ER stress marker, while GRP78 overexpression showed antiviral activity against PEDV. Among different PEDV proteins, PEDV non-structural protein 14 (nsp14) was revealed to play an essential role in the inhibition of GRP78 by PEDV, and its guanine-N7-methyltransferase domain is necessary for this role. Further studies show that both PEDV and its nsp14 negatively regulated host translation, which could account for their inhibitory effects against GRP78. In addition, we found that PEDV nsp14 could inhibit the activity of GRP78 promotor, helping suppress GRP78 transcription. Our results reveal that PEDV possesses the potential to antagonize ER stress, and suggest that ER stress and PEDV nsp14 could be the targets for developing anti-PEDV drugs.
Collapse
Affiliation(s)
- Wei Zeng
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jingping Ren
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Gan Yang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsheng Jiang
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Dong
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qi Sun
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaofang Hu
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Li
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Qigai He
- State Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China; (W.Z.); (J.R.); (G.Y.); (C.J.); (L.D.); (Q.S.); (Y.H.); (W.L.)
- The Cooperative Innovation Center for Sustainable Pig Production, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
- Correspondence:
| |
Collapse
|
3
|
Tanabe P, Schlenk D. Role of Aryl Hydrocarbon Receptor and Oxidative Stress in the Regioselective Toxicities of Hydroxychrysenes in Embryonic Japanese Medaka (Oryzias latipes). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:698-706. [PMID: 36636887 DOI: 10.1002/etc.5560] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 12/16/2022] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are environmental contaminants that can be created through oxidation of parent PAHs. Previous studies have found that 2-hydroxychrysene (2-OHCHR) caused anemia in embryonic Japanese medaka whereas 6-hydroxychrysene (6-OHCHR) did not, an example of regioselective toxicity. Anemia was prevented by cytochrome P450 (CYP) inhibition, which reduced the formation of the potential oxidatively active metabolite, 1,2-catechol, from 2-OHCHR. 2-OHCHR has also been found to be a four-fold more potent aryl hydrocarbon receptor (AhR) agonist compared with 6-OHCHR. These findings led us to hypothesize that AhR activation and/or oxidative stress play an important role in 2-OHCHR toxicity. Although treatments with the AhR agonists polychlorinated biphenyl (PCB)126 and 2-methoxychrysene (2-MeOCHR) did not cause significant toxicity, pretreatments with the AhR antagonist, CH-223191, reduced anemia by 97.2 ± 0.84% and mortality by 96.6 ± 0.69%. Aryl hydrocarbon receptor inhibition by the antagonist was confirmed by significant reductions (91.0 ± 9.94%) in induced ethoxyresorufin-O-deethylase activity. Thiobarbituric acid reactive substances concentrations were 32.9 ± 3.56% higher (p < 0.05) in 2-OHCHR treatments at 100 hours postfertilization compared with controls. Staining 2-OHCHR-treated embryos with the reactive oxygen species (ROS) scavenger 2',7'-dichlorofluorescin diacetate revealed 32.6 ± 2.69% of 2-OHCHR-treated embryos exhibiting high concentrations of ROS in caudal tissues, which is a site for embryonic hematopoiesis in medaka. Pretreatment with antioxidants, N-acetylcysteine (NAC) or vitamin E (Vit E) significantly reduced 2-OHCHR-induced anemia (NAC: 80.7 ± 1.12% and Vit E: 99.1 ± 0.43%) and mortality (NAC: 67.1 ± 1.69% and Vit E: 98.9 ± 0.66%). These results indicate that AhR may mediate 2-OHCHR toxicity through canonical signaling by up-regulating CYP1, enhancing the formation of reactive metabolites of 2-OHCHR that generate ROS within caudal hematopoietic tissues, potentially disrupting hematopoiesis, leading to anemia and subsequent mortality. Environ Toxicol Chem 2023;42:698-706. © 2023 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Philip Tanabe
- Environmental Toxicology Graduate Program, University of California, Riverside, California, USA
- Department of Environmental Sciences, University of California, Riverside, California, USA
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California, Riverside, California, USA
| |
Collapse
|
4
|
Attaran A, Salahinejad A, Naderi M, Crane AL, Niyogi S, Chivers DP. Effects of chronic exposure to selenomethionine on social learning outcomes in zebrafish (Danio rerio): serotonergic dysregulation and oxidative stress in the brain. CHEMOSPHERE 2020; 247:125898. [PMID: 31972490 DOI: 10.1016/j.chemosphere.2020.125898] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/06/2020] [Accepted: 01/10/2020] [Indexed: 06/10/2023]
Abstract
For many species, social learning is crucial for fitness-related activities, but human-induced environmental changes can impair such learning processes. For instance, mining can release the element, selenium (Se), that is vital for physiological functions but also has toxicological properties at elevated concentrations. In this study, we investigated the effects of chronic exposure to Se on social learning outcomes and potential underlying molecular mechanisms in adult zebrafish. After exposure to different levels of dietary selenomethionine (control, 3.6, 12.8, 34.1 μg Se/g dry weight) for 90 days, we examined the ability of observer fish to follow demonstrators (experienced individuals) in escaping an oncoming trawl. Social learning outcomes were then assessed in the absence of demonstrators. Our results indicated that fish in the highest exposure group (34.1 μg/g) displayed significantly slower escape responses compared to fish in the control and lower exposure groups (3.6 and 12.8 μg Se/g). This impaired behavior was associated with higher oxidative stress and dysregulation in genes that are key in the serotonergic pathway, indicating that oxidative stress and alteration in the serotonergic system lead to impairment of social learning.
Collapse
Affiliation(s)
- Anoosha Attaran
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada.
| | - Arash Salahinejad
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Department of Biology, York University, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Adam L Crane
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Department of Biology, Concordia University, 7141 Sherbrooke Street West, Montreal, Quebec, H4B 1R6, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, Saskatchewan, S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, Saskatchewan, S7N 5E2, Canada
| |
Collapse
|
5
|
Ni X, Wan L, Liang P, Zheng R, Lin Z, Chen R, Pei M, Shen Y. The acute toxic effects of hexavalent chromium on the liver of marine medaka (Oryzias melastigma). Comp Biochem Physiol C Toxicol Pharmacol 2020; 231:108734. [PMID: 32151776 DOI: 10.1016/j.cbpc.2020.108734] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 02/18/2020] [Accepted: 02/26/2020] [Indexed: 02/06/2023]
Abstract
Chromium is toxic to marine animals and can cause damage to many of their organs, including the liver. To test the toxicity of chromium on marine organisms, we exposed the liver of the marine medaka (Oryzias melastigma) with hexavalent chromium [Cr(VI)]. Our results show that Cr enrichment in the liver demonstrates a positive correlation to the exposure concentration. With the increase of Cr(VI) concentration, pathological changes including nuclear migration, cell vacuolization, blurred intercellular gap, nuclear condensation, become noticeable. To further study changes in gene expression in the liver after Cr(VI) exposure, we used RNA-seq to compare expression profiles before and after Cr(VI) exposure. After acute Cr(VI) exposure (2.61 mg/l) for 96 h, 5862 transcripts significantly changed. It is the first time that the PPAR pathway was found to respond sensitively to Cr(VI) exposure in fish. Finally, combined with other published study, we found that there may be some difference between Cr(VI) toxicity in seawater fish and freshwater fish, due to degree of oxidative stress, distribution patterns and detailed Cr(VI) toxicological mechanisms. Not only does our study explore the mechanisms of Cr(VI) toxicity on the livers of marine medaka, it also points out different Cr(VI) toxicity levels and potential mechanisms between seawater fish and freshwater fish.
Collapse
Affiliation(s)
- Xiaomin Ni
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, Fujian 361005, China; Fudan University, Shanghai 200240, China.
| | - Lei Wan
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Bellastem Biotechnology Limited, Weifang, Shandong 261503, China
| | - Pingping Liang
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, Fujian 361005, China
| | - Ruping Zheng
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, Fujian 361005, China
| | - Zeyang Lin
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, Fujian 361005, China
| | - Ruichao Chen
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; College of Urban and Environmental Sciences, Peking University, Beijing 100089, China
| | - Mengke Pei
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; School of Environmental Science & Engineering, Shanghai Jiao Tong University, 200240, China
| | - Yingjia Shen
- Key Laboratory of the Coastal and Wetland Ecosystems (Xiamen University), Ministry of Education, Xiamen University, Xiamen, Fujian 361005, China; Fujian Key Laboratory of Coastal Pollution Prevention and Control, Xiamen, Fujian 361005, China.
| |
Collapse
|
6
|
Wang H, Chen H, Chernick M, Li D, Ying GG, Yang J, Zheng N, Xie L, Hinton DE, Dong W. Selenomethionine exposure affects chondrogenic differentiation and bone formation in Japanese medaka (Oryzias latipes). JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121720. [PMID: 31812480 DOI: 10.1016/j.jhazmat.2019.121720] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 11/07/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Excess selenium entering the aquatic environment from anthropogenic activities has been associated with developmental abnormalities in fish including skeletal deformities of the head and spine. However, mechanisms of this developmental toxicity have not been well-characterized. In this study, Japanese medaka (Oryzias latipes) embryos were exposed to seleno-l-methionine (Se-Met) in a range of concentrations. Gene expression was evaluated for sex-determining region Y (SRY)-related box (Sox9a and Sox9b), runt-related transcription factor 2 (Runx2), and melatonin receptor (Mtr). Alterations in the length of Meckel's cartilage, tail curvature, and decreased calcification were observed in skeletal stains at 10- and 22-days post-fertilization (dpf). Embryonic exposure of Osterix-mCherry transgenic medaka resulted in fewer teeth. Sox9a and Sox9b were up-regulated, while Runx2 and Mtr were down-regulated by Se-Met prior to hatch. Whole mount in situ hybridization (WISH) localized gene expression to areas observed to be affected in vivo. In addition, Se-Met exposures of a Mtr morpholino (Mtr-MO) as well as Luzindole exposed embryos developed similar skeletal malformations, supporting involvement of Mtr. These findings demonstrate that Se-Met modulates expression of key genes involved in chondrogenic differentiation and bone formation during development.
Collapse
Affiliation(s)
- Huan Wang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, 028000, China
| | - Hongxing Chen
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Melissa Chernick
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA
| | - Dan Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China
| | - Jingfeng Yang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, 028000, China
| | - Na Zheng
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA; Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agricultural Ecology, Chinese Academy of Sciences, Changchun, Jilin, 130012, China
| | - Lingtian Xie
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou, 510006, China; School of Environment, South China Normal University, University Town, Guangzhou, 510006, China.
| | - David E Hinton
- Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| | - Wu Dong
- College of Animal Science and Technology, Inner Mongolia University for Nationalities/Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, 028000, China; Nicholas School of the Environment, Duke University, Durham, NC, 27708, USA.
| |
Collapse
|
7
|
Liu Z, Chen B, Li X, Wang LA, Xiao H, Liu D. Toxicity assessment of artificially added zinc, selenium, and strontium in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 670:433-438. [PMID: 30904655 DOI: 10.1016/j.scitotenv.2019.03.259] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Revised: 03/11/2019] [Accepted: 03/17/2019] [Indexed: 05/24/2023]
Abstract
The present research was to study the toxicology of artificially added Zn, Se and Sr in water. Specifically, we investigated the mortality and liver toxicity in zebrafish (Danio rerio), caused by different water concentrations of zinc sulfate (ZnSO4), sodium selenite (Na2SeO3), and strontium chloride hexahydrate (6H2O·SrCl2). Adult and embryo-larval zebrafish were used in the experiment. Analysis was performed of mortality, liver area and impermeability, delayed absorption area of the yolk sac, and liver tissue structure. The concentration change of sodium selenite exerted the most significant effect on the mortality of adult zebrafish, followed by that of strontium chloride hexahydrate, and zinc sulfate. Elevated strontium chloride hexahydrate concentration was associated with liver toxicity in zebrafish in the preliminary experiment. However, embryo-larval zebrafish were observed to die when the concentration of Zn2+ or Se4+ increased to a certain extent, without obvious liver toxicity. Our results indicated strontium chloride hexahydrate was hepatotoxic to embryo-larval zebrafish, which was manifested mainly as hepatomegaly and delayed absorption of the yolk sac. In addition, the artificially added strontium chloride hexahydrate destroyed liver tissue structure, resulting in hepatocyte enlargement, cell nucleus enlargement, blurred cytoplasmic boundaries, and formation of a vacuolar liver. These findings suggest the amount of strontium chloride hexahydrate added in soft drinks should be limited to certain levels.
Collapse
Affiliation(s)
- Zhongchuang Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China.
| | - Boning Chen
- Fuling Environmental Monitoring Center, 3 Taibai Rd. Fuling New District of Chongqing, China
| | - Xiang Li
- International Policy, Faculty of Law and Economics, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba-shi, Chiba 263-8522, Japan
| | - Li-Ao Wang
- State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China; College of Resources and Environmental Science, Chongqing University, 174 Shazheng Street, Shapingba District, Chongqing, China
| | - Hongyan Xiao
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| | - Dongsheng Liu
- Green Intelligence Environmental School, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China; Chongqing Multiple-source Technology Engineering Research Center for Ecological Environment Monitoring, Yangtze Normal University, 16 Juxian Rd. Lidu, Fuling District of Chongqing, China
| |
Collapse
|
8
|
Jamwal A, Saibu Y, MacDonald TC, George GN, Niyogi S. The effects of dietary selenomethionine on tissue-specific accumulation and toxicity of dietary arsenite in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Metallomics 2019; 11:643-655. [DOI: 10.1039/c8mt00309b] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Selenomethionine facilitated arsenic deposition in the brain and likely in other tissues, possibly via bio-complexation. Elevated dietary selenomethionine can increase the tissue-specific accumulation and toxicity of As3+ in fish during chronic dietary exposure.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
| | - Yusuf Saibu
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
| | | | - Graham N. George
- Toxicology Centre
- University of Saskatchewan
- Saskatoon
- Canada
- Department of Geology
| | - Som Niyogi
- Department of Biology
- University of Saskatchewan
- Saskatoon
- Canada
- Toxicology Centre
| |
Collapse
|
9
|
Ma S, Zhou Y, Chen H, Hou L, Zhao J, Cao J, Geng S, Luo Y, Schlenk D, Xie L. Selenium accumulation and the effects on the liver of topmouth gudgeon Pseudorasbora parva exposed to dissolved inorganic selenium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 160:240-248. [PMID: 29843105 DOI: 10.1016/j.ecoenv.2018.05.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 05/06/2018] [Accepted: 05/20/2018] [Indexed: 06/08/2023]
Abstract
Selenite(IV) and selenate(VI) are the major forms of Se in aquatic ecosystem. In this study, Pseudorasbora parva were exposed to 10, 200 and 1000 μg L-1 selenite and selenate for 28 days. Selenium accumulation, antioxidant enzyme levels, glutathione concentrations, lipid peroxidation and histology were evaluated in livers following exposure. Our results showed that Se(IV) and Se(VI) caused different accumulation patterns in the liver, with a more rapid accumulation of Se with Se(IV) treatment. Both Se species increased hepatic lipid peroxidation after 14 and 28 d (~ 30%). Among the antioxidants examined, the activity of SOD (except day 28) and the cellular levels of GSH were induced by 72-137% at lower concentrations, while the activity of GST was at least 24% lower than that of the control at 200 and 1000 μg L-1 for both Se species at all sampling points. Both forms of Se reduced the hepatosomatic index at 1000 μg L-1 after 28 d. In addition, marked histopathological alterations (10-31%) were observed in the liver of P. parva after exposure to both Se species, with higher frequency in the Se(IV) exposed fish. Liver local necrosis was observed only in the liver of fish exposed to 1000 μg L-1 of Se(IV) (~ 20%). Our results suggest that the ecological impacts of dissolved Se in this freshwater species may also contribute to overall toxicity.
Collapse
Affiliation(s)
- Shanshan Ma
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Zhou
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Hongxing Chen
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Liping Hou
- School of life sciences, Guangzhou University, Guangzhou 510655, China
| | - Jianliang Zhao
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jinling Cao
- State Key Laboratory of Ecological Animal Husbandry and Environmental Veterinary Medicine, Shanxi Agricultural University, Taigu, Shanxi 030801, China
| | - Shicong Geng
- Key Laboratory of Pollution Ecology and Environmental Engineering, Institute of Applied Ecology, Chinese Academy of Sciences, 110016, China
| | - Yongju Luo
- Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China.
| | - Daniel Schlenk
- Department of Environmental Sciences, University of California Riverside, Riverside, CA 92521, USA
| | - Lingtian Xie
- The Environmental Research Institute, MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Jamwal A, Lemire D, Driessnack M, Naderi M, Niyogi S. Interactive effects of chronic dietary selenomethionine and cadmium exposure in rainbow trout (Oncorhynchus mykiss): A preliminary study. CHEMOSPHERE 2018; 197:550-559. [PMID: 29407817 DOI: 10.1016/j.chemosphere.2018.01.087] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Revised: 12/08/2017] [Accepted: 01/16/2018] [Indexed: 06/07/2023]
Abstract
The present study investigated the interactive effects of dietary cadmium (Cd) and selenium (Se) on the tissue-specific (liver, kidney, and muscle) accumulation of these two elements, hepatic oxidative stress response, and morphometrics in rainbow trout (Oncorhynchus mykiss) during chronic exposure. Fish were exposed to elevated dietary Cd (45 μg g-1 dry wt.), and medium (10 μg g-1 dry wt.) or high (45 μg g-1 dry wt.) dietary selenium (added as selenomethionine), both alone and in combination, for 30 days. Exposure to dietary Cd alone caused oxidative stress in fish as reflected by reduced thiol redox (GSH:GSSG), increased lipid peroxidation, and induction of anti-oxidative enzymes (catalase, superoxide dismutase, and glutathione peroxidase) in the liver. Also, an increase in tissue-specific Cd burden and impaired morphometrics (hepato-somatic index and condition factor) were also recorded in fish following exposure to dietary Cd. In contrast, the dietary co-exposure to Cd and Se (at both medium and high doses) resulted in a decrease in Cd burden in the liver and kidney of fish. However, co-exposure to medium, but not high, dose of dietary Se completely alleviated Cd-induced oxidative stress and impaired morphometrics in fish, indicating that the reduced Cd tissue burden might not have been the primary factor behind the amelioration of Cd toxicity by Se. Overall, our study demonstrated that the protective effect of Se against the chronic Cd toxicity in fish is mainly mediated by the anti-oxidative properties of Se, but this protective effect is dose-specific and occurs only at a moderate exposure dose.
Collapse
Affiliation(s)
- Ankur Jamwal
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada.
| | - Danielle Lemire
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Melissa Driessnack
- Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| | - Mohammad Naderi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, 112 Science Place, Saskatoon, SK, Canada; Toxicology Centre, University of Saskatchewan, 44 Campus Drive, Saskatoon, SK, Canada
| |
Collapse
|
11
|
Lazard M, Dauplais M, Blanquet S, Plateau P. Recent advances in the mechanism of selenoamino acids toxicity in eukaryotic cells. Biomol Concepts 2018; 8:93-104. [PMID: 28574376 DOI: 10.1515/bmc-2017-0007] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Accepted: 05/03/2017] [Indexed: 12/31/2022] Open
Abstract
Selenium is an essential trace element due to its incorporation into selenoproteins with important biological functions. However, at high doses it is toxic. Selenium toxicity is generally attributed to the induction of oxidative stress. However, it has become apparent that the mode of action of seleno-compounds varies, depending on its chemical form and speciation. Recent studies in various eukaryotic systems, in particular the model organism Saccharomyces cerevisiae, provide new insights on the cytotoxic mechanisms of selenomethionine and selenocysteine. This review first summarizes current knowledge on reactive oxygen species (ROS)-induced genotoxicity of inorganic selenium species. Then, we discuss recent advances on our understanding of the molecular mechanisms of selenocysteine and selenomethionine cytotoxicity. We present evidences indicating that both oxidative stress and ROS-independent mechanisms contribute to selenoamino acids cytotoxicity. These latter mechanisms include disruption of protein homeostasis by selenocysteine misincorporation in proteins and/or reaction of selenols with protein thiols.
Collapse
|
12
|
Sharma VK, McDonald TJ, Sohn M, Anquandah GAK, Pettine M, Zboril R. Assessment of toxicity of selenium and cadmium selenium quantum dots: A review. CHEMOSPHERE 2017; 188:403-413. [PMID: 28892773 DOI: 10.1016/j.chemosphere.2017.08.130] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/27/2017] [Accepted: 08/24/2017] [Indexed: 05/10/2023]
Abstract
This paper reviews the current understanding of the toxicity of selenium (Se) to terrestrial mammalian and aquatic organisms. Adverse biological effects occur in the case of Se deficiencies, associated with this element having essential biological functions and a narrow window between essentiality and toxicity. Several inorganic species of Se (-2, 0, +4, and +6) and organic species (monomethylated and dimethylated) have been reported in aquatic systems. The toxicity of Se in any given sample depends not only on its speciation and concentration, but also on the concomitant presence of other compounds that may have synergistic or antagonistic effects, affecting the target organism as well, usually spanning 2 or 3 orders of magnitude for inorganic Se species. In aquatic ecosystems, indirect toxic effects, linked to the trophic transfer of excess Se, are usually of much more concern than direct Se toxicity. Studies on the toxicity of selenium nanoparticles indicate the greater toxicity of chemically generated selenium nanoparticles relative to selenium oxyanions for fish and fish embryos while oxyanions of selenium have been found to be more highly toxic to rats as compared to nano-Se. Studies on polymer coated Cd/Se quantum dots suggest significant differences in toxicity of weathered vs. non-weathered QD's as well as a significant role for cadmium with respect to toxicity.
Collapse
Affiliation(s)
- Virender K Sharma
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA; Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic.
| | - Thomas J McDonald
- Department of Environmental and Occupational Health, School of Public Health, Texas A&M University, 1266 TAMU, College Station, TX, 77843, USA
| | - Mary Sohn
- Department of Chemistry, Florida Institute of Technology, 150 West University, Boulevard, Melbourne, FL, 32901, USA
| | - George A K Anquandah
- Department of Chemistry and Biochemistry, St Mary's University, 1 Camino Santa Maria, San Antonio, TX, 78228, USA
| | - Maurizio Pettine
- Istituto di Ricerca sulle Acque (IRSA)/Water Research Institute (IRSA), Consiglio Nazionale delle Ricerche (CNR)/National Research Council, Via Salaria km 29,300 C.P. 10, 00015, Monterotondo, RM, Italy
| | - Radek Zboril
- Regional Centre of Advanced Technologies and Materials, Department of Physical Chemistry, Faculty of Science, Palacky University in Olomouc, 771 46, Olomouc, Czech Republic
| |
Collapse
|
13
|
Mahabir S, Gerlai R. The Importance of Holding Water: Salinity and Chemosensory Cues Affect Zebrafish Behavior. Zebrafish 2017; 14:444-458. [DOI: 10.1089/zeb.2017.1472] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Samantha Mahabir
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Robert Gerlai
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, Canada
| |
Collapse
|
14
|
Kupsco A, Schlenk D. Molecular mechanisms of selenium-Induced spinal deformities in fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 179:143-150. [PMID: 27611865 DOI: 10.1016/j.aquatox.2016.09.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/30/2016] [Accepted: 09/01/2016] [Indexed: 06/06/2023]
Abstract
Selenium toxicity to oviparous vertebrates is often attributed to selenomethionine (SeMet), which can biomagnify through maternal transfer. Although oxidative stress is implicated in SeMet toxicity, knowledge gaps remain in how SeMet causes characteristic spinal deformities. In the present study, we use the Japanese medaka (Oryzias latipes) model to investigate the role of oxidative stress, cell death, and the unfolded protein response (UPR) on skeletal gene expression and SeMet toxicity, linking localization of cellular effects to observed abnormalities. Medaka embryos were treated with 2.5μM or 5μM SeMet for 24h at stage 25 (48h post fertilization). Post treatment, embryos were separated into normal, deformed (mild, moderate or severe), or dead categories. Dichlorofluorescein staining demonstrated oxidative stress in tails of embryos with observable spinal malformations. Furthermore, acridine orange staining for apoptosis identified significantly more dead cells in tails of treated embryos. Gene expression studies for the UPR suggest a potential role for CHOP (c/ebp homologous protein) induced apoptosis deformed embryos after 5μM SeMet, accompanied by a significant decrease in PDIA4 (protein disulfide isomerase A4) and no change in Dnajb9 (ER DNA J Domain-Containing Protein 4). This expression was distinct from the UPR induced by well-studied ER stress inducer, tunicamycin, which robustly activated CHOP, PDIA4 and Dnajb9. Finally, SeMet treatment significantly decreased transcripts of cartilage development, Sox9 (SRY box 9), while increasing Runx2 in deformed embryos, without altering Twist or Collagen 2a1. Results suggest that oxidative stress, the UPR and cell death play key roles in SeMet induced deformities and altered skeletal development factors.
Collapse
Affiliation(s)
- Allison Kupsco
- Environmental Toxicology Program and Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States.
| | - Daniel Schlenk
- Environmental Toxicology Program and Department of Environmental Sciences, University of California-Riverside, Riverside, CA, United States
| |
Collapse
|
15
|
KUPSCO ALLISON, SCHLENK DANIEL. Stage susceptibility of Japanese medaka (Oryzias latipes) to selenomethionine and hypersaline developmental toxicity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:1247-1256. [PMID: 26442765 PMCID: PMC5425095 DOI: 10.1002/etc.3268] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/16/2015] [Accepted: 10/04/2015] [Indexed: 06/05/2023]
Abstract
Anthropogenic disturbance of seleniferous soils can lead to selenium contamination of waterways. Although selenium is an essential micronutrient, bioaccumulation and maternal transfer of proteinaceous selenomethionine (SeMet) can result in embryo toxicity. Furthermore, as the climate changes, the salinity of spawning grounds in water-restrained estuaries is increasing. Although a small increase in salinity may not directly impact adult fish, it may alter the detoxification strategies of developing organisms. Previous research indicates that hypersalinity may potentiate SeMet embryo toxicity at an early developmental stage. However, embryonic development is a complex, spatiotemporal process with a constantly shifting cellular microenvironment. To generate thresholds and an adverse outcome pathway for the interactions between selenium and salinity, we sought to identify windows of susceptibility for lethality and deformities in the Japanese medaka (Oryzias latipes). Embryos were treated in freshwater or saltwater for 24 h with 0.5 µM, 5 µM, and 50 µM SeMet at 6 different developmental stages (9, 17, 25, 29, 34, and 38). Survival, hatch, deformities (total, type, and severity), and days to hatch were quantified. Selenium embryo tissue measurements were performed. Selenomethionine exposures of 5 µM and 50 µM significantly decreased survival and hatch at all stages. However, SeMet uptake was stage-dependent and increased with stage. Stage 17 (early neurulation) was identified as the most susceptible stage for lethality and deformities. Selenomethionine in saltwater caused significantly greater toxicity than freshwater at stage 25 (early organogenesis), suggesting a role for liver and osmoregulatory organogenesis in toxicity.
Collapse
Affiliation(s)
- ALLISON KUPSCO
- Environmental Toxicology Program, University of California–Riverside, Riverside, California, USA
| | - DANIEL SCHLENK
- Department of Environmental Sciences, University of California–Riverside, Riverside, California, USA
| |
Collapse
|
16
|
Jiang WD, Hu K, Liu Y, Jiang J, Wu P, Zhao J, Zhang YA, Zhou XQ, Feng L. Dietary myo-inositol modulates immunity through antioxidant activity and the Nrf2 and E2F4/cyclin signalling factors in the head kidney and spleen following infection of juvenile fish with Aeromonas hydrophila. FISH & SHELLFISH IMMUNOLOGY 2016; 49:374-386. [PMID: 26702562 DOI: 10.1016/j.fsi.2015.12.017] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 12/06/2015] [Accepted: 12/12/2015] [Indexed: 06/05/2023]
Abstract
This study was conducted to investigate the effects of the dietary vitamin myo-inositol (MI), on the immunity and structural integrity of the head kidney and spleen following infection of fish with the major freshwater pathogen bacterial Aeromonas hydrophila. The results demonstrated for the first time that MI deficiency depressed the lysozyme and acid phosphatase (ACP) activities and the complement 3 (C3) and C4 contents in the head kidney and spleen compared with the optimal MI levels, indicating that MI deficiency decreased the immunity of these important fish immune organs. The depression in immunity due to MI deficiency was partially related to oxidative damage [indicated by increases in the malondialdehyde (MDA) and protein carbonyl (PC) contents] that was in turn partially due to the decreased glutathione (GSH) content and the disturbances in antioxidant enzyme activities [total superoxide dismutase (T-SOD), CuZnSOD, MnSOD, catalase (CAT), glutathione peroxidase (GPx) and glutathione reductase (GR)]. MI deficiency inhibited the antioxidant-related gene transcription [CuZnSOD, MnSOD, CAT, GPx1a, GR and NF-E2-related factor 2 (Nrf2)] in the head kidney and spleen following infection of the fish with A. hydrophila. The oxidative damage due to MI deficiency also resulted in the inhibition of proliferation-associated signalling (cyclin D1, cyclin A, cyclin E and E2F4). Thus, MI deficiency partially inhibited damage repair. Excessive MI exhibited negative effects that were similar to MI deficiency, whereas the optimal MI content reversed those indicators. These observations indicated that an MI deficiency or excess could cause depression of the immune system that might be partially related to oxidative damage, antioxidant disturbances, and the inhibition of the proliferation-associated signalling in the head kidney and spleen following infection of fish with A. hydrophila. Finally, the optimal MI levels were 660.7 (based on ACP) and 736.8 mg kg(-1) diet (based on MDA) in the head kidney and 770.5 (based on ACP) and 766.9 mg kg(-1) diet (based on MDA) in the spleen of juvenile Jian carp.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Kai Hu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Department of Animal and Veterinary Science, Chengdu Agricultural College, Chengdu 611130, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Juan Zhao
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|
17
|
Brun NR, Wehrli B, Fent K. Ecotoxicological assessment of solar cell leachates: Copper indium gallium selenide (CIGS) cells show higher activity than organic photovoltaic (OPV) cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 543:703-714. [PMID: 26615488 DOI: 10.1016/j.scitotenv.2015.11.074] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 11/14/2015] [Accepted: 11/14/2015] [Indexed: 06/05/2023]
Abstract
Despite the increasing use of photovoltaics their potential environmental risks are poorly understood. Here, we compared ecotoxicological effects of two thin-film photovoltaics: established copper indium gallium selenide (CIGS) and organic photovoltaic (OPV) cells. Leachates were produced by exposing photovoltaics to UV light, physical damage, and exposure to environmentally relevant model waters, representing mesotrophic lake water, acidic rain, and seawater. CIGS cell leachates contained 583 μg L(-1) molybdenum at lake water, whereas at acidic rain and seawater conditions, iron, copper, zinc, molybdenum, cadmium, silver, and tin were present up to 7219 μg L(-1). From OPV, copper (14 μg L(-1)), zinc (87 μg L(-1)) and silver (78 μg L(-1)) leached. Zebrafish embryos were exposed until 120 h post-fertilization to these extracts. CIGS leachates produced under acidic rain, as well as CIGS and OPV leachates produced under seawater conditions resulted in a marked hatching delay and increase in heart edema. Depending on model water and solar cell, transcriptional alterations occurred in genes involved in oxidative stress (cat), hormonal activity (vtg1, ar), metallothionein (mt2), ER stress (bip, chop), and apoptosis (casp9). The effects were dependent on the concentrations of cationic metals in leachates. Addition of ethylenediaminetetraacetic acid protected zebrafish embryos from morphological and molecular effects. Our study suggests that metals leaching from damaged CIGS cells, may pose a potential environmental risk.
Collapse
Affiliation(s)
- Nadja Rebecca Brun
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Bernhard Wehrli
- Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland
| | - Karl Fent
- University of Applied Sciences and Arts Northwestern Switzerland, School of Life Sciences, Gründenstrasse 40, CH-4132 Muttenz, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zurich, Universitätsstrasse 16, CH-8092 Zürich, Switzerland.
| |
Collapse
|
18
|
Arnold MC, Forte JE, Osterberg JS, Di Giulio RT. Antioxidant Rescue of Selenomethionine-Induced Teratogenesis in Zebrafish Embryos. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2016; 70:311-20. [PMID: 26498942 PMCID: PMC4842345 DOI: 10.1007/s00244-015-0235-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Accepted: 10/07/2015] [Indexed: 05/23/2023]
Abstract
Selenium (Se) is an essential micronutrient that can be found at toxic concentrations in surface waters contaminated by runoff from agriculture and coal mining. Zebrafish (Danio rerio) embryos were exposed to aqueous Se in the form of selenate, selenite, and l-selenomethionine (SeMet) in an attempt to determine if oxidative stress plays a role in selenium embryo toxicity. Selenate and selenite exposure did not induce embryo deformities (lordosis and craniofacial malformation). l-selenomethionine, however, induced significantly higher deformity rates at 100 µg/L compared with controls. SeMet exposure induced a dose-dependent increase in the catalytic subunit of glutamate-cysteine ligase (gclc) and reached an 11.7-fold increase at 100 µg/L. SeMet exposure also reduced concentrations of TGSH, RGSH, and the TGSH:GSSG ratio. Pretreatment with 100 µM N-acetylcysteine significantly reduced deformities in the zebrafish embryos secondarily treated with 400 µg/L SeMet from approximately 50–10 % as well as rescued all three of the significant glutathione level differences seen with SeMet alone. Selenite exposure induced a 6.6-fold increase in expression of the glutathione-S-transferase pi class 2 (gstp2) gene, which is involved in xenobiotic transformation and possibly oxidative stress. These results suggest that aqueous exposure to SeMet can induce significant embryonic teratogenesis in zebrafish that are at least partially attributed to oxidative stress.
Collapse
Affiliation(s)
- M C Arnold
- Nicholas School of the Environment, Duke University, Box 90328, Durham, NC 27708, USA.
| | | | | | | |
Collapse
|
19
|
Lee JW, Won EJ, Raisuddin S, Lee JS. Significance of adverse outcome pathways in biomarker-based environmental risk assessment in aquatic organisms. J Environ Sci (China) 2015; 35:115-127. [PMID: 26354700 DOI: 10.1016/j.jes.2015.05.002] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 05/22/2015] [Accepted: 05/28/2015] [Indexed: 06/05/2023]
Abstract
In environmental risk assessments (ERA), biomarkers have been widely used as an early warning signal of environmental contamination. However, biomarker responses have limitation due to its low relevance to adverse outcomes (e.g., fluctuations in community structure, decreases in population size, and other similar ecobiologically relevant indicators of community structure and function). To mitigate these limitations, the concept of adverse outcome pathways (AOPs) was developed. An AOP is an analytical, sequentially progressive pathway that links a molecular initiating event (MIE) to an adverse outcome. Recently, AOPs have been recognized as a potential informational tool by which the implications of molecular biomarkers in ERA can be better understood. To demonstrate the utility of AOPs in biomarker-based ERA, here we discuss a series of three different biological repercussions caused by exposure to benzo(a)pyrene (BaP), silver nanoparticles (AgNPs), and selenium (Se). Using mainly aquatic invertebrates and selected vertebrates as model species, we focus on the development of the AOP concept. Aquatic organisms are suitable bioindicator species whose entire lifespans can be observed over a short period; moreover, these species can be studied on the molecular and population levels. Also, interspecific differences between aquatic organisms are important to consider in an AOP framework, since these differences are an integral part of the natural environment. The development of an environmental pollutant-mediated AOP may enable a better understanding of the effects of environmental pollutants in different scenarios in the diverse community of an ecosystem.
Collapse
Affiliation(s)
- Jin Wuk Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Eun-Ji Won
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea
| | - Sheikh Raisuddin
- Department of Medical Elementology and Toxicology, Hamdard University, New Delhi 110062, India
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 440-746, South Korea.
| |
Collapse
|
20
|
Jiang WD, Liu Y, Jiang J, Wu P, Feng L, Zhou XQ. Copper exposure induces toxicity to the antioxidant system via the destruction of Nrf2/ARE signaling and caspase-3-regulated DNA damage in fish muscle: amelioration by myo-inositol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 159:245-255. [PMID: 25562835 DOI: 10.1016/j.aquatox.2014.12.020] [Citation(s) in RCA: 110] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Revised: 12/22/2014] [Accepted: 12/24/2014] [Indexed: 06/04/2023]
Abstract
The muscle is the main portion of fish that is consumed by humans. Copper (Cu) can induce oxidative damage in fish muscle. However, the effects of Cu exposure on the muscle antioxidant system and molecular patterns and preventive measures against these effects remain unclear. In this study, ROS production, enzymatic and mRNA levels of antioxidant enzymes and NF-E2-related factor 2 (Nrf2) signaling-related molecules, antioxidant response element (ARE) binding ability, DNA fragmentation and caspase-3 activities were analyzed in fish muscle following Cu exposure or myo-inositol (MI) pre-administration. The results indicated that contamination due to copper exposure caused an approximately three-fold increase in ROS production, induced lipid peroxidation and protein oxidation, and resulted in depletion of the glutathione (GSH) content of fish muscle. Moreover, Cu exposure caused decreases in the activities of total superoxide dismutase (T-SOD), CuZnSOD, and glutathione peroxidase (GPx) that were accompanied by decreases in CuZnSOD, GPx1a, GPx1b and signaling factor protein kinase C delta mRNA levels. The decreases in the antioxidant enzyme gene mRNA levels were confirmed to be partly due to the reduced nuclear Nrf2 protein levels, poor ARE binding ability and increased caspase-3 signaling-modulated DNA fragmentation in the fish muscle. Interestingly, MI pre-treatment prevented fish muscle from Cu-induced oxidative damages mainly through increasing the GSH content, and increasing the CuZnSOD and GPx activities and corresponding mRNA levels and ARE binding ability. Taken together, our results show for the first time that Cu exposure caused oxidative damage to the muscle by decreasing the antioxidant enzyme activities via the down-regulation of the expression of genes related to the disruption of the Nrf2/ARE signaling, and this down-regulation was partially caused by caspase-3-regulated DNA fragmentation. Finally, MI protects fish against Cu toxicity.
Collapse
Affiliation(s)
- Wei-Dan Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Yang Liu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Jun Jiang
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Pei Wu
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China
| | - Lin Feng
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| | - Xiao-Qiu Zhou
- Animal Nutrition Institute, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Fish Nutrition and Safety Production University Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, Sichuan, China; Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Sichuan Agricultural University, Chengdu 611130, Sichuan, China.
| |
Collapse
|