1
|
Wu S, Gaillard JF, Gray KA. The impacts of metal-based engineered nanomaterial mixtures on microbial systems: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 780:146496. [PMID: 34030287 DOI: 10.1016/j.scitotenv.2021.146496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 02/23/2021] [Accepted: 03/11/2021] [Indexed: 05/24/2023]
Abstract
The last decade has witnessed tremendous growth in the commercial use of metal-based engineered nanomaterials (ENMs) for a wide range of products and processes. Consequently, direct and indirect release into environmental systems may no longer be considered negligible or insignificant. Yet, there is an active debate as to whether there are real risks to human or ecological health with environmental exposure to ENMs. Previous research has focused primarily on the acute effects of individual ENMs using pure cultures under controlled laboratory environments, which may not accurately reveal the ecological impacts of ENMs under real environmental conditions. The goal of this review is to assess our current understanding of ENM effects as we move from exposure of single to multiple ENMs or microbial species. For instance, are ENMs' impacts on microbial communities predicted by their intrinsic physical or chemical characteristics or their effects on single microbial populations; how do chronic ENM interactions compare to acute toxicity; does behavior under simplified laboratory conditions reflect that in environmental media; finally, is biological stress modified by interactions in ENM mixtures relative to that of individual ENM? This review summarizes key findings and our evolving understanding of the ecological effects of ENMs under complex environmental conditions on microbial systems, identifies the gaps in our current knowledge, and indicates the direction of future research.
Collapse
Affiliation(s)
- Shushan Wu
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| | | | - Kimberly A Gray
- Department of Civil and Environmental Engineering, Northwestern University, USA.
| |
Collapse
|
2
|
Wang W, Nadagouda MN, Mukhopadhyay SM. Flexible reusable hierarchical hybrid catalyst for rapid and complete degradation of triclosan in water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:144109. [PMID: 33418263 DOI: 10.1016/j.scitotenv.2020.144109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/20/2020] [Accepted: 11/22/2020] [Indexed: 06/12/2023]
Abstract
A flexible, durable, and reusable nanocatalyst system was fabricated by anchoring palladium nanoparticles on carbon nanotube (CNT) carpets covalently attached to carbon cloth. These hierarchical hybrid materials were tested for catalytic degradation of triclosan (TCS), an emerging contaminant. Materials were characterized using scanning & transmission electron microscopy techniques (SEM and TEM), X-Ray Diffraction (XRD), and X-Ray Photoelectron Spectroscopy (XPS). The reaction kinetics was studied using HPLC and reaction pathways proposed based on LC-MS/GC-MS analyses. In the presence of hydrogen, complete step-wise chlorine removal was seen until complete dechlorination was accomplished. The pseudo-first-order rate constant was measured to be orders of magnitude higher than earlier reported values. Moreover, the same material was usable for multiple cycles in flowing water. This study demonstrates that robustness and reusability of larger structural materials can be combined with the ultra-high surface activity of nanocatalysts to provide practical and eco-friendly solutions for water sustainability.
Collapse
Affiliation(s)
- Wenhu Wang
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA; Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Mallikarjuna N Nadagouda
- Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| | - Sharmila M Mukhopadhyay
- Frontier Institute for Research in Sensor Technologies (FIRST), The University of Maine, Orono, ME 04469, USA; Department of Mechanical and Materials Engineering, Wright State University, 3640 Colonel Glenn Hwy, Dayton, OH 45435, USA.
| |
Collapse
|
3
|
Shultz LR, Hu L, Feng X, Jurca T. Using a Nitrophenol Cocktail Screen to Improve Catalyst Down-selection. Chemphyschem 2020; 21:1627-1631. [PMID: 32529796 DOI: 10.1002/cphc.202000400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 06/09/2020] [Indexed: 11/05/2022]
Abstract
The catalytic reduction of 4-nitrophenol (4NP) with excess NaBH4 is the benchmark model for quantifying catalytic activity of nanoparticles. Although broadly useful, the reaction can be very selective. This can lead to false positives and negatives when utilized for catalyst down-selection from a broader materials candidate pool. We report a multi-nitrophenol cocktail screening methodology incorporating 4NP and other amino-nitrophenols, utilizing Ag, Au, Pt, and Pd nanoparticles on carbon support. The reduction of the cocktail proceeds with no deleterious side reactions on the time-scale tested. The resulting kinetic rates provide an improved correlation of relative catalyst activity when compared to performance with other reducible moieties (e. g. azo bonds), or when compared to solely 4NP screening.
Collapse
Affiliation(s)
- Lorianne R Shultz
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA.,Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA
| | - Lin Hu
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,Department of Materials Science and Engineering, University of Central Florida, Orlando, Florida, 32816, USA
| | - Xiaofeng Feng
- Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,Department of Physics, University of Central Florida, Orlando, Florida, 32816, USA
| | - Titel Jurca
- Department of Chemistry, University of Central Florida, Orlando, Florida, 32816, USA.,Renewable Energy and Chemical Transformations Cluster, University of Central Florida, Orlando, Florida, 32816, USA.,NanoScience Technology Center, University of Central Florida, Orlando, Florida, 32826, USA
| |
Collapse
|
4
|
Dong B, Liu G, Zhou J, Wang J, Jin R, Zhang Y. Effects of reduced graphene oxide on humic acid-mediated transformation and environmental risks of silver ions. JOURNAL OF HAZARDOUS MATERIALS 2020; 385:121597. [PMID: 31727531 DOI: 10.1016/j.jhazmat.2019.121597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 10/23/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The reduction of Ag+ mediated by natural organic matters has been demonstrated to be an important process of Ag+ transformation and would influence the risks of Ag+ and Ag-containing materials in aquatic environment. Considering the large production of carbon nanomaterials (CNMs) and their inevitable release into the environment, the effects of CNMs on Ag transformation are of considerable interest. This study demonstrated that the humic acid-mediated reduction of Ag+ to free Ag nanoparticles (AgNPs) in aqueous phase was suppressed by coexisting reduced graphene oxide (rGO). A large amount of Ag+ was reduced on rGO surface, resulting in the generation of AgNPs-rGO composites. rGO at concentrations of 1-2 orders of magnitude lower than those of Ag+ would exhibit significant effects. The X-ray absorption fine structure spectroscopy study showed that Ag+ was first adsorbed on rGO surface cooperatively with humic acid and then rapidly reduced to AgNPs. The hydroxylic-OH on rGO could participate in the AgNPs formation and was oxidized to carbonyl during the reduction of Ag+. Additionally, the formed AgNPs-rGO had a relatively lower environmental risk compared to AgNPs or rGO alone. Overall, these results improve our understanding of the interaction between CNMs and Ag+ in aquatic systems.
Collapse
Affiliation(s)
- Bin Dong
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Guangfei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Jiti Zhou
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Jing Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ruofei Jin
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| | - Ying Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China
| |
Collapse
|
5
|
Zhang Q, Wang M, Gu C, Zhang C. Water disinfection processes change the cytotoxicity of C 60 fullerene: Reactions at the nano-bio interface. WATER RESEARCH 2019; 163:114867. [PMID: 31330401 DOI: 10.1016/j.watres.2019.114867] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/11/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
The environmental transformation of nanoparticles results in significant changes in their structure, properties, and toxicity, which are imperative for assessing their environmental impact and health risks. Little is known about the toxicity alteration of fullerene nanoparticles (C60) after water disinfection processes considering their potential application in antimicrobial control in water treatment ultimately ending in sewage treatment plants. We showed that C60 aggregates (nC60) were converted to more oxidized forms via commonly used water disinfection processes (i.e., phototransformation and photochlorination treatment). The light-irradiated nanoparticles (UV_nC60) exhibited mitigated cytotoxicity relative to nC60, whereas photochlorinated nC60 (UV/Cl_nC60) showed an exacerbated outcome. We revealed a distinct toxic mechanism occurring at the nano-bio interface, for which electrons were shuttled by C60 nanoparticles from membrane-bound NADPH oxidase to extracellular molecular oxygen, resulting in the production of various extracellular reactive oxygen species (ROS). UV/Cl_nC60 showed the highest electron-shuttling activity due to its high carbonyl content, and more than 2.4-fold higher level of extracellular hydroxyl radicals were detected relative to that in untreated cells. Although UV_nC60 possessed a somewhat higher carbonyl content than nC60, it showed a weaker adhesion to the cell membrane, which compromised the electron-transfer process. The intrinsic ROS generation/quenching capabilities and oxidative potentials of the various nanoparticles were also systematically compared. Overall, this report highlights the importance of understanding environmental transformations in risk assessment and uncovers an overlooked mechanism through which nC60/derivatives can modulate the electron transfer process at the nano-bio interface via acting as electron shuttles.
Collapse
Affiliation(s)
- Qiurong Zhang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Meiling Wang
- College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Chuanhui Gu
- School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Chengdong Zhang
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| |
Collapse
|
6
|
Zhang Y, Liang X. Understanding Organic Nonpoint-Source Pollution in Watersheds via Pollutant Indicators, Disinfection By-Product Precursor Predictors, and Composition of Dissolved Organic Matter. JOURNAL OF ENVIRONMENTAL QUALITY 2019; 48:102-116. [PMID: 30640343 DOI: 10.2134/jeq2018.06.0228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The analytical techniques and instrumentation used to assess agricultural and rural nonpoint-source organic pollution loading are usually complex and expensive. There has been a strong demand for alternative methodologies to determine the presence and composition of organic pollutants and to predict their levels. In the current work, we investigated a simple and inexpensive approach combining excitation-emission matrix and support vector machine that measures pollution and predicts the levels of precursors to disinfection by-products, which are organic pollutants derived from agricultural and rural nonpoint sources in small watersheds. Through parallel factor analysis, a four-component model was developed to explain the composition of dissolved organic matter in water impacted by nonpoint-source pollution. Support vector classification and support vector regression with model components can use fluorescence properties as proxy indicators for nonpoint-source pollution. When the model components are used as input variables, formation potential of disinfection by-products can be predicted. This method provides water utilities managers with tools to control pollution, supervise aquatic environments, and ensure the safety of drinking water.
Collapse
|
7
|
Lim JH, Bae D, Fong A. Titanium Dioxide in Food Products: Quantitative Analysis Using ICP-MS and Raman Spectroscopy. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13533-13540. [PMID: 30513207 DOI: 10.1021/acs.jafc.8b06571] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Titanium dioxide (TiO2) is commonly used as a color additive in food products. In this study, a total of 11 food products, such as a coffee cream, yogurt snack, hard candy, and chewy candy, that are widely consumed by adults or children were investigated. For characterization of particle size, size distribution, crystallinity, and concentration of TiO2, particles were first extracted using an acid digestion method from food, and various analytical techniques were applied. All products investigated in this study contained nanosized TiO2 particles (21.3-53.7%) in the anatase phase. The particle size of TiO2 was in the range of 26.9-463.2 nm. The concentration of TiO2 in the products ranged from 0.015% (150 ppm) to 0.462% (4620 ppm). These values obtained using inductively coupled plasma-mass spectrometry (ICP-MS) were considered as the reference and were compared with Raman results to evaluate the feasibility of using the Raman method to quantitate TiO2 in food products. The Raman method developed in this study proved to effectively analyze anatase TiO2 in food products at levels of several hundred parts per million or greater. Limitations of using the Raman method as a quick screening tool for determination of TiO2 are also discussed.
Collapse
Affiliation(s)
- Jin-Hee Lim
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| | - Dongryeoul Bae
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| | - Andrew Fong
- Office of Regulatory Affairs, Arkansas Laboratory , U.S. Food and Drug Administration , 3900 NCTR Road , Jefferson , Arkansas 72079 , United States
| |
Collapse
|
8
|
Bi X, Ma H, Westerhoff P. Dry Powder Assay Rapidly Detects Metallic Nanoparticles in Water by Measuring Surface Catalytic Reactivity. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13289-13297. [PMID: 30351045 DOI: 10.1021/acs.est.8b03915] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We designed the "catalytic reactivity to nanoparticle" assay (CRNP), which uses a dry powder containing methylene blue (MB) and sodium borohydride (NaBH4) to rapidly (2 min) detect metallic nanoparticles in water. Tested with gold (Au) NPs in water, the CRNP response was linearly and reproducibly correlated to the NP surface-area concentration and has a detection limit of 0.3 m2/m3 as the equivalent surface area of Au NPs. We described the heterogeneous catalytic mechanisms on the NP surface by treating the NPs as electrodes, which store and transfer electrons, and comprehensively simulated the kinetics of borohydride hydrolysis, MB reduction, and leuco methylene blue (LMB) oxidation. CRNP was able to assess the catalytic reactivity of multiple engineered NP species in water, including Au, silver, palladium, platinum, and copper oxide (CuO), and quantify them with pre-established calibration curves. In water samples containing known or unknown NP species, CRNP can be reported as an equivalent surface area of gold NPs per volume of solution and directly quantifies NP reactivity in response to electron mediated stimuli, which may become relevant to the environmental fate or safety of nanomaterials.
Collapse
Affiliation(s)
- Xiangyu Bi
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
| | - Hongfang Ma
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
- Department of Municipal Engineering, College of Civil Engineering , Huaqiao University , Xiamen 361021 , China
| | - Paul Westerhoff
- School of Sustainable Engineering and the Built Environment , Arizona State University , Tempe , Arizona 85287 , United States
| |
Collapse
|
9
|
Kidd JM, Hanigan D, Truong L, Hristovski K, Tanguay R, Westerhoff P. Developing and interpreting aqueous functional assays for comparative property-activity relationships of different nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 628-629:1609-1616. [PMID: 30045577 DOI: 10.1016/j.scitotenv.2018.02.107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
It is difficult to relate intrinsic nanomaterial properties to their functional behavior in the environment. Unlike frameworks for dissolved organic chemicals, there are few frameworks comparing multiple and inter-related properties of engineered nanomaterials (ENMs) to their fate, exposure, and hazard in environmental systems. We developed and evaluated reproducibility and inter-correlation of 12 physical, chemical, and biological functional assays in water for eight different engineered nanomaterials (ENMs) and interpreted results using activity-profiling radar plots. The functional assays were highly reproducible when run in triplicate (average coefficient of variation [CV]=6.6%). Radar plots showed that each nanomaterial exhibited unique activity profiles. Reactivity assays showed dissolution or aggregation potential for some ENMs. Surprisingly, multi-walled carbon nanotubes (MWCNTs) exhibited movement in a magnetic field. We found high inter-correlations between cloud point extraction (CPE) and distribution to sewage sludge (R2=0.99), dissolution at pH8 and pH4.9 (R2=0.98), and dissolution at pH8 and zebrafish mortality at 24hpf (R2=0.94). Additionally, most ENMs tend to distribute out of water and into other phases (i.e., soil surfaces, surfactant micelles, and sewage sludge). The activity-profiling radar plots provide a framework and estimations of likely ENM disposition in the environment.
Collapse
Affiliation(s)
- Justin M Kidd
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-3005, United States
| | - David Hanigan
- Department of Civil and Environmental Engineering, University of Nevada, Reno, Nevada 89557-0258, United States
| | - Lisa Truong
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331-7301, United States
| | - Kiril Hristovski
- The Polytechnic School, Fulton Schools of Engineering, Arizona State University, Mesa, AZ 85212, United States
| | - Robert Tanguay
- Department of Environmental and Molecular Toxicology, Environmental Health Sciences Center, Marine and Freshwater Biomedical Sciences Center, Oregon State University, Corvallis, OR 97331-7301, United States
| | - Paul Westerhoff
- Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Arizona State University, School of Sustainable Engineering and the Built Environment, Tempe, AZ 85287-3005, United States.
| |
Collapse
|
10
|
Khan AU, Yuan Q, Khan ZUH, Ahmad A, Khan FU, Tahir K, Shakeel M, Ullah S. An eco-benign synthesis of AgNPs using aqueous extract of Longan fruit peel: Antiproliferative response against human breast cancer cell line MCF-7, antioxidant and photocatalytic deprivation of methylene blue. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 183:367-373. [DOI: 10.1016/j.jphotobiol.2018.05.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/02/2018] [Accepted: 05/05/2018] [Indexed: 01/17/2023]
|
11
|
Zulkifli SN, Rahim HA, Lau WJ. Detection of contaminants in water supply: A review on state-of-the-art monitoring technologies and their applications. SENSORS AND ACTUATORS. B, CHEMICAL 2018; 255:2657-2689. [PMID: 32288249 PMCID: PMC7126548 DOI: 10.1016/j.snb.2017.09.078] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Revised: 08/22/2017] [Accepted: 09/13/2017] [Indexed: 05/12/2023]
Abstract
Water monitoring technologies are widely used for contaminants detection in wide variety of water ecology applications such as water treatment plant and water distribution system. A tremendous amount of research has been conducted over the past decades to develop robust and efficient techniques of contaminants detection with minimum operating cost and energy. Recent developments in spectroscopic techniques and biosensor approach have improved the detection sensitivities, quantitatively and qualitatively. The availability of in-situ measurements and multiple detection analyses has expanded the water monitoring applications in various advanced techniques including successful establishment in hand-held sensing devices which improves portability in real-time basis for the detection of contaminant, such as microorganisms, pesticides, heavy metal ions, inorganic and organic components. This paper intends to review the developments in water quality monitoring technologies for the detection of biological and chemical contaminants in accordance with instrumental limitations. Particularly, this review focuses on the most recently developed techniques for water contaminant detection applications. Several recommendations and prospective views on the developments in water quality assessments will also be included.
Collapse
Affiliation(s)
| | - Herlina Abdul Rahim
- Faculty of Electrical Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| | - Woei-Jye Lau
- Advanced Membrane Technology Research Centre (AMTEC), Faculty of Chemical and Energy Engineering, Universiti Teknologi Malaysia, 81310 Skudai, Johor, Malaysia
| |
Collapse
|
12
|
Jain A, Ranjan S, Dasgupta N, Ramalingam C. Nanomaterials in food and agriculture: An overview on their safety concerns and regulatory issues. Crit Rev Food Sci Nutr 2017; 58:297-317. [DOI: 10.1080/10408398.2016.1160363] [Citation(s) in RCA: 112] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Aditi Jain
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, Uttar Pradesh, India
| | - Shivendu Ranjan
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
- Research Wing, Veer Kunwar Singh Memorial Trust, Chapra, Bihar, India
- Xpert Arena Technological Services Pvt. Ltd., Chapra, Bihar, India
| | - Nandita Dasgupta
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| | - Chidambaram Ramalingam
- Nano-Food Research Group, Instrumental and Food Analysis Laboratory, Division of Industrial Biotechnology, School of Bio Sciences and Technology, VIT University, Vellore, Tamil Nadu, India
| |
Collapse
|
13
|
Popli S, Patel UD. Mechanistic aspects of electro-catalytic reduction of Reactive Black 5 dye in a divided cell in the presence of silver nano-particles. Sep Purif Technol 2017. [DOI: 10.1016/j.seppur.2017.02.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Othman A, Andreescu D, Karunaratne DP, Babu SV, Andreescu S. Functional Paper-Based Platform for Rapid Capture and Detection of CeO 2 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2017; 9:12893-12905. [PMID: 28340293 DOI: 10.1021/acsami.7b02823] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Development of systems for capture, sequestration, and tracking of nanoparticles (NPs) is becoming a significant focus in many aspects of nanotechnology and environmental research. These systems enable a broad range of applications for evaluating concentration, distribution, and effects of NPs for environmental, clinical, epidemiological, and occupational exposure studies. Herein, we describe the first example of a ligand-graft multifunctional platform for capture and detection of cerium oxide (CeO2 or ceria) NPs. The approach involves the use of redox-active ligands containing o-dihydroxy functionality, enabling multivalent binding, surface retention, and formation of charge transfer complexes between the grafted ligand and the NPs. Using this strategy, paper-based and microarray-printed platforms with NP-capture ability involving either catechol or ascorbic acid as ligands were successfully fabricated. Surface modification was determined by infrared spectroscopy, electron microscopy, X-ray spectroscopy, and thermogravimetric analysis. Functionality was demonstrated for the rapid assessment of NPs in chemical mechanical planarization (CMP) slurries and CMP wastewaters. This novel approach can enable further development of devices and separation technologies including platforms for retention and separation of NPs and measurement tools for detection of NPs in various environments.
Collapse
Affiliation(s)
- Ali Othman
- Department of Chemistry and Biomolecular Science, ‡Department of Chemical and Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University , Potsdam, New York 13699, United States
| | - Daniel Andreescu
- Department of Chemistry and Biomolecular Science, ‡Department of Chemical and Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University , Potsdam, New York 13699, United States
| | - Dinusha P Karunaratne
- Department of Chemistry and Biomolecular Science, ‡Department of Chemical and Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University , Potsdam, New York 13699, United States
| | - S V Babu
- Department of Chemistry and Biomolecular Science, ‡Department of Chemical and Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University , Potsdam, New York 13699, United States
| | - Silvana Andreescu
- Department of Chemistry and Biomolecular Science, ‡Department of Chemical and Biomolecular Engineering, and §Center for Advanced Materials Processing, Clarkson University , Potsdam, New York 13699, United States
| |
Collapse
|
15
|
Pan F, Zhong X, Xia D, Yin X, Li F, Zhao D, Ji H, Liu W. Nanoscale zero-valent iron/persulfate enhanced upflow anaerobic sludge blanket reactor for dye removal: Insight into microbial metabolism and microbial community. Sci Rep 2017; 7:44626. [PMID: 28300176 PMCID: PMC5353662 DOI: 10.1038/srep44626] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 02/10/2017] [Indexed: 12/13/2022] Open
Abstract
This study investigated the efficiency of nanoscale zero-valent iron combined with persulfate (NZVI/PS) for enhanced degradation of brilliant red X-3B in an upflow anaerobic sludge blanket (UASB) reactor, and examined the effects of NZVI/PS on anaerobic microbial communities during the treatment process. The addition of NZVI (0.5 g/L) greatly enhanced the decolourization rate of X-3B from 63.8% to 98.4%. The Biolog EcoPlateTM technique was utilized to examine microbial metabolism in the reactor, and the Illumina MiSeq high-throughput sequencing revealed 22 phyla and 88 genera of the bacteria. The largest genera (Lactococcus) decreased from 33.03% to 7.94%, while the Akkermansia genera increased from 1.69% to 20.23% according to the abundance in the presence of 0.2 g/L NZVI during the biological treatment process. Meanwhile, three strains were isolated from the sludge in the UASB reactors and identified by 16 S rRNA analysis. The distribution of three strains was consistent with the results from the Illumina MiSeq high throughput sequencing. The X-ray photoelectron spectroscopy results indicated that Fe(0) was transformed into Fe(II)/Fe(III) during the treatment process, which are beneficial for the microorganism growth, and thus promoting their metabolic processes and microbial community.
Collapse
Affiliation(s)
- Fei Pan
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P.R. China.,Engineering Research Centre for Clean Production of Textile Dyeing and Printing, Ministry of Education, Wuhan, 430073, P.R. China
| | - Xiaohan Zhong
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P.R. China
| | - Dongsheng Xia
- School of Environmental Engineering, Wuhan Textile University, Wuhan, 430073, P.R. China
| | - Xianze Yin
- School of Materials Science and Engineering, Wuhan Textile University, Wuhan 430073, P.R. China
| | - Fan Li
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Dongye Zhao
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Haodong Ji
- Environmental Engineering Program, Department of Civil Engineering, Auburn University, Auburn, AL 36849, USA
| | - Wen Liu
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA 30332, USA
| |
Collapse
|
16
|
Quantitative assay for the detection, screening and reactivity evaluation of nanoceria particles. Talanta 2017; 164:668-676. [DOI: 10.1016/j.talanta.2016.10.104] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 10/28/2016] [Accepted: 10/31/2016] [Indexed: 11/18/2022]
|
17
|
Electrosteric stabilization of colloidal TiO2 nanoparticles with DNA and polyethylene glycol for selective enhancement of UV detection sensitivity in capillary electrophoresis analysis. Anal Bioanal Chem 2016; 409:1857-1868. [DOI: 10.1007/s00216-016-0130-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/25/2016] [Accepted: 12/02/2016] [Indexed: 11/26/2022]
|
18
|
Gorka DE, Liu J. Effect of Direct Contact on the Phytotoxicity of Silver Nanomaterials. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:10370-10376. [PMID: 27580021 DOI: 10.1021/acs.est.6b02434] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
The increasing use of silver nanomaterials (AgNMs) in consumer products will result in an increased amount entering the environment, where AgNMs were recently found to cause phytotoxicity in the model plant Lolium multiflorum. To better understand the causes of the phytotoxicity, we have designed a new set of experiments to study the effect of AgNM dissolution. Dissolution of AgNMs was measured over a 1-month period to determine if dissolution alone caused phytotoxicity. Very little dissolution was observed over the testing period, suggesting a different mechanism caused the majority of the toxicity. To further confirm this hypothesis, AgNMs were physically separated from the seeds and plants by a dialysis membrane. Toxicity was ameliorated in AgNM-exposed plants, showing that direct contact between AgNMs and plant seeds/roots is a required condition for the observed phytotoxicity in plant models. Probing further, a surface reactivity assay showed increased surface reactivity of silver nanoparticles (AgNPs) and silver nanocubes (AgNCs) corresponded to increased toxicity compared to silver nanowires (AgNWs). The work here can help build the knowledge base regarding shape control of nanomaterials and reducing unintended side effects.
Collapse
Affiliation(s)
- Danielle E Gorka
- Center for the Environmental Implications of NanoTechnology (CEINT) and ‡Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| | - Jie Liu
- Center for the Environmental Implications of NanoTechnology (CEINT) and ‡Department of Chemistry, Duke University , Durham, North Carolina 27708, United States
| |
Collapse
|
19
|
Ultra-efficient photocatalytic deprivation of methylene blue and biological activities of biogenic silver nanoparticles. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2016; 159:49-58. [DOI: 10.1016/j.jphotobiol.2016.03.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/03/2016] [Accepted: 03/14/2016] [Indexed: 11/19/2022]
|
20
|
Kuroda A, Alexandrov M, Nishimura T, Ishida T. Rapid on-site detection of airborne asbestos fibers and potentially hazardous nanomaterials using fluorescence microscopy-based biosensing. Biotechnol J 2016; 11:757-67. [DOI: 10.1002/biot.201500438] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Akio Kuroda
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Maxym Alexandrov
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Tomoki Nishimura
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| | - Takenori Ishida
- Department of Molecular Biotechnology; Hiroshima University; Higashi-Hiroshima, Hiroshima Japan
| |
Collapse
|
21
|
Gilbertson LM, Albalghiti EM, Fishman ZS, Perreault F, Corredor C, Posner JD, Elimelech M, Pfefferle LD, Zimmerman JB. Shape-Dependent Surface Reactivity and Antimicrobial Activity of Nano-Cupric Oxide. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:3975-3984. [PMID: 26943499 DOI: 10.1021/acs.est.5b05734] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Shape of engineered nanomaterials (ENMs) can be used as a design handle to achieve controlled manipulation of physicochemical properties. This tailored material property approach necessitates the establishment of relationships between specific ENM properties that result from such manipulations (e.g., surface area, reactivity, or charge) and the observed trend in behavior, from both a functional performance and hazard perspective. In this study, these structure-property-function (SPF) and structure-property-hazard (SPH) relationships are established for nano-cupric oxide (n-CuO) as a function of shape, including nanospheres and nanosheets. In addition to comparing these shapes at the nanoscale, bulk CuO is studied to compare across length scales. The results from comprehensive material characterization revealed correlations between CuO surface reactivity and bacterial toxicity with CuO nanosheets having the highest surface reactivity, electrochemical activity, and antimicrobial activity. While less active than the nanosheets, CuO nanoparticles (sphere-like shape) demonstrated enhanced reactivity compared to the bulk CuO. This is in agreement with previous studies investigating differences across length-scales. To elucidate the underlying mechanisms of action to further explain the shape-dependent behavior, kinetic models applied to the toxicity data. In addition to revealing different CuO material kinetics, trends in observed response cannot be explained by surface area alone. The compiled results contribute to further elucidate pathways toward controlled design of ENMs.
Collapse
Affiliation(s)
- Leanne M Gilbertson
- Department of Civil and Environmental Engineering, University of Pittsburgh , Pittsburgh, Pennsylvania 15261, United States
| | | | | | - François Perreault
- School of Sustainable Engineering and the Built Environment, Arizona State University , Tempe, Arizona 85287, United States
| | | | | | | | | | | |
Collapse
|
22
|
Zhang X, Deng J, Xue Y, Shi G, Zhou T. Stimulus Response of Au-NPs@GMP-Tb Core-Shell Nanoparticles: Toward Colorimetric and Fluorescent Dual-Mode Sensing of Alkaline Phosphatase Activity in Algal Blooms of a Freshwater Lake. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:847-855. [PMID: 26677868 DOI: 10.1021/acs.est.5b04600] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
In this study, we demonstrate a colorimetric and fluorescent dual-mode method for alkaline phosphatase activity (APA) sensing in freshwater lake with stimuli-responsive gold nanoparticles@terbium-guanosine monophosphate (Au-NPs@GMP-Tb) core-shell nanoparticles. Initially, the core-shell nanoparticles were fabricated based on Au-NPs decorated with a fluorescent GMP-Tb shell. Upon being excited at 290 nm, the as-formed Au-NPs@GMP-Tb core-shell nanoparticles emit green fluorescence, and the decorated GMP-Tb shell causes the aggregation of Au-NPs. However, the addition of ALP destroys GMP-Tb shell, resulting in the release of Au-NPs from the shell into the solvent. As a consequence, the aggregated Au-NPs solubilizes with the changes in the UV-vis spectrum of the dispersion, and in the meantime, the fluorescence of GMP-Tb shell turns off, which constitutes a new mechanism for colorimetric and fluorescent dual-mode sensing of APA. With the method developed here, we could monitor the dynamic change of APA during an algal bloom of a freshwater lake, both by the naked eye and further confirmed by fluorometric determination. This study not only offers a new method for on-site visible detection of APA but also provides a strategy for dual-mode sensing mechanisms by the rational design of the excellent optical properties of Au-NPs and the adaptive inclusion properties of the luminescent infinite coordination polymers.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Jingjing Deng
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Yumeng Xue
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Guoyue Shi
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| | - Tianshu Zhou
- School of Ecological and Environmental Sciences and ‡Department of Chemistry, East China Normal University , 500 Dongchuan Road, Shanghai 200241, China
| |
Collapse
|
23
|
Ferreira P, Fonte E, Soares ME, Carvalho F, Guilhermino L. Effects of multi-stressors on juveniles of the marine fish Pomatoschistus microps: Gold nanoparticles, microplastics and temperature. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 170:89-103. [PMID: 26642093 DOI: 10.1016/j.aquatox.2015.11.011] [Citation(s) in RCA: 181] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2015] [Revised: 11/10/2015] [Accepted: 11/11/2015] [Indexed: 06/05/2023]
Abstract
Knowledge on multi-stressors effects required for environmental and human risk assessments is still limited. This study investigated the combined effects of gold nanoparticles (Au-NP), microplastics (MP) and temperature increase on Pomatoschistus microps, an important prey for several higher level predators, including some species edible to humans. Four null hypotheses were tested: H01: P. microps juveniles do not take up Au-NP through the water; H02: Au-NP (ppb range) are not toxic to juveniles; H03: the presence of MP do not influence the effects of Au-NP on juveniles; H04: temperature increase (20-25°C) does not change the effects of the tested chemicals on juveniles. Wild juveniles were acclimated to laboratory conditions. Then, they were exposed to Au-NP (≈5nm diameter) and MP (polyethylene spheres, 1-5μm diameter), alone and in mixture, at 20°C and 25°C, in semi-static conditions. After 96h of exposure to Au-NP, fish had gold in their body (0.129-0.546μg/g w.w.) leading to H01 refusal. Exposure to Au-NP alone caused a predatory performance decrease (≈-39%, p<0.05) leading to H02 refusal. MP did not change the Au-NP toxicity leading to H03 acceptance. Temperature rise significantly increased the concentration of gold in fish exposed to Au-NP (≈2.3 fold), and interacted with chemical effects (e.g. glutathione S-transferases activity) leading to H04 refusal. Thus, the results of this study highlight the importance of further investigating the effects of multi-stressors on marine fish, particularly the effects of temperature on the uptake, biotransformation, elimination and effects of nanoparticles and microplastics, either alone or in mixture. This knowledge is most important to improve the basis for environmental and human risk assessments of these environmental contaminants of high concern.
Collapse
Affiliation(s)
- Pedro Ferreira
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA-Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| | - Elsa Fonte
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA-Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal; UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - M Elisa Soares
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Felix Carvalho
- UCIBIO-REQUIMTE, Laboratory of Toxicology, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira n° 228, 4050-313 Porto, Portugal.
| | - Lúcia Guilhermino
- ICBAS-Institute of Biomedical Sciences Abel Salazar, University of Porto, Department of Population Studies, Laboratory of Ecotoxicology, Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto, Portugal; CIIMAR/CIMAR-LA-Interdisciplinary Centre of Marine and Environmental Research, Research Group of Ecotoxicology, Stress Ecology and Environmental Health, University of Porto, Rua dos Bragas, 289, 4050-123 Porto, Portugal.
| |
Collapse
|