1
|
Menz J, Götz ME, Gündel U, Gürtler R, Herrmann K, Hessel-Pras S, Kneuer C, Kolrep F, Nitzsche D, Pabel U, Sachse B, Schmeisser S, Schumacher DM, Schwerdtle T, Tralau T, Zellmer S, Schäfer B. Genotoxicity assessment: opportunities, challenges and perspectives for quantitative evaluations of dose-response data. Arch Toxicol 2023; 97:2303-2328. [PMID: 37402810 PMCID: PMC10404208 DOI: 10.1007/s00204-023-03553-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 06/21/2023] [Indexed: 07/06/2023]
Abstract
Genotoxicity data are mainly interpreted in a qualitative way, which typically results in a binary classification of chemical entities. For more than a decade, there has been a discussion about the need for a paradigm shift in this regard. Here, we review current opportunities, challenges and perspectives for a more quantitative approach to genotoxicity assessment. Currently discussed opportunities mainly include the determination of a reference point (e.g., a benchmark dose) from genetic toxicity dose-response data, followed by calculation of a margin of exposure (MOE) or derivation of a health-based guidance value (HBGV). In addition to new opportunities, major challenges emerge with the quantitative interpretation of genotoxicity data. These are mainly rooted in the limited capability of standard in vivo genotoxicity testing methods to detect different types of genetic damage in multiple target tissues and the unknown quantitative relationships between measurable genotoxic effects and the probability of experiencing an adverse health outcome. In addition, with respect to DNA-reactive mutagens, the question arises whether the widely accepted assumption of a non-threshold dose-response relationship is at all compatible with the derivation of a HBGV. Therefore, at present, any quantitative genotoxicity assessment approach remains to be evaluated case-by-case. The quantitative interpretation of in vivo genotoxicity data for prioritization purposes, e.g., in connection with the MOE approach, could be seen as a promising opportunity for routine application. However, additional research is needed to assess whether it is possible to define a genotoxicity-derived MOE that can be considered indicative of a low level of concern. To further advance quantitative genotoxicity assessment, priority should be given to the development of new experimental methods to provide a deeper mechanistic understanding and a more comprehensive basis for the analysis of dose-response relationships.
Collapse
Affiliation(s)
- Jakob Menz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany.
| | - Mario E Götz
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Gündel
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Rainer Gürtler
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Kristin Herrmann
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Stefanie Hessel-Pras
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Carsten Kneuer
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Franziska Kolrep
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Dana Nitzsche
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Ulrike Pabel
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Benjamin Sachse
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Schmeisser
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - David M Schumacher
- Department of Safety in the Food Chain, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tanja Schwerdtle
- German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Tewes Tralau
- Department of Pesticides Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Sebastian Zellmer
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Bernd Schäfer
- Department of Food Safety, German Federal Institute for Risk Assessment (BfR), Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| |
Collapse
|
2
|
Han M, Zhang Z, Liu S, Sheng Y, Waigi MG, Hu X, Qin C, Ling W. Genotoxicity of organic contaminants in the soil: A review based on bibliometric analysis and methodological progress. CHEMOSPHERE 2023; 313:137318. [PMID: 36410525 DOI: 10.1016/j.chemosphere.2022.137318] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/26/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Organic contaminants (OCs) are ubiquitous in the environment, posing severe threats to human health and ecological balance. In particular, OCs and their metabolites could interact with genetic materials to induce genotoxicity, which has attracted considerable attention. In this review, bibliometric analysis was executed to analyze the publications on the genotoxicity of OCs in soil from 1992 to 2021. The result indicated that significant contributions were made by China and the United States in this field and the research hotspots were biological risks, damage mechanisms, and testing methods. Based on this, in this review, we summarized the manifestations and influencing factors of genotoxicity of OCs to soil organisms, the main damage mechanisms, and the most commonly utilized testing methods. OCs can induce genotoxicity and the hierarchical response of soil organisms, which could be influenced by the physicochemical properties of OCs and the properties of soil. Specific mechanisms of genotoxicity can be classified into DNA damage, epigenetic toxicity, and chromosomal aberrations. OCs with different molecular weights lead to genetic material damage by inducing the generation of ROS or forming adducts with DNA, respectively. The micronucleus test and the comet test are the most commonly used testing methods. Moreover, this review also pointed out that future studies should focus on the relationships between bioaccessibilities and genotoxicities, transcriptional regulatory factors, and potential metabolites of OCs to elaborate on the biological risks and mechanisms of genotoxicity from an overall perspective.
Collapse
Affiliation(s)
- Miao Han
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Zaifeng Zhang
- Jiangsu Province Nantong Environmental Monitoring Center, Nantong 226006, PR China
| | - Si Liu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Youying Sheng
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Xiaojie Hu
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China.
| | - Chao Qin
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, PR China
| |
Collapse
|
3
|
Allemang A, Mahony C, Pfuhler S. The in vitro genotoxicity potency of mixtures of pyrrolizidine alkaloids can be explained by dose addition of the individual mixture components. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2022; 63:400-407. [PMID: 36258291 DOI: 10.1002/em.22512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 10/10/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Plant-based 1,2-unsaturated Pyrrolizidine Alkaloids (PAs) are responsible for liver genotoxicity/carcinogenicity following metabolic activation, making them a relevant concern for safety assessment. Due to 21st century toxicology approaches, risk of PAs can be better discerned though an understanding of differing toxic potencies, but it is often mixtures of PAs that are found as contaminants in foods, for example, herbal teas and honey, food supplements and herbal medicines. Our study investigated whether genotoxicity potency of PAs dosed individually or in mixtures differed when measured using micronuclei formation in vitro in HepaRG human liver cells, which we and others have shown to be suitable for observing genotoxic potency differences across different PA structural classes. When equipotent concentrations of up to six different PAs representing a wide range of potencies in vitro were tested as mixtures, the observed genotoxic potency aligned favorably with results for single PAs. Similarly, when the BMD confidence intervals of these equipotent mixtures were compared with the confidence intervals of the individual PAs, only minimal variation was observed. These data support a conclusion that for this class of plant impurities, all acting via the same DNA-reactive mode of action, genotoxic potency can be regarded as additive when assessing the risk of mixtures of PAs.
Collapse
Affiliation(s)
- Ashley Allemang
- Global Product Stewardship, Human Safety, The Procter & Gamble Company, Mason, USA
| | - Catherine Mahony
- Global Product Stewardship, Human Safety, Procter & Gamble Technical Center Ltd., Reading, UK
| | - Stefan Pfuhler
- Global Product Stewardship, Human Safety, The Procter & Gamble Company, Mason, USA
| |
Collapse
|
4
|
Rivera BN, Ghetu CC, Chang Y, Truong L, Tanguay RL, Anderson KA, Tilton SC. Leveraging Multiple Data Streams for Prioritization of Mixtures for Hazard Characterization. TOXICS 2022; 10:651. [PMID: 36355943 PMCID: PMC9699527 DOI: 10.3390/toxics10110651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 06/16/2023]
Abstract
There is a growing need to establish alternative approaches for mixture safety assessment of polycyclic aromatic hydrocarbons (PAHs). Due to limitations with current component-based approaches, and the lack of established methods for using whole mixtures, a promising alternative is to use sufficiently similar mixtures; although, an established framework is lacking. In this study, several approaches are explored to form sufficiently similar mixtures. Multiple data streams including environmental concentrations and empirically and predicted toxicity data for cancer and non-cancer endpoints were used to prioritize chemical components for mixture formations. Air samplers were analyzed for unsubstituted and alkylated PAHs. A synthetic mixture of identified PAHs was created (Creosote-Fire Mix). Existing toxicity values and chemical concentrations were incorporated to identify hazardous components in the Creosote-Fire Mix. Sufficiently similar mixtures of the Creosote-Fire Mix were formed based on (1) relative abundance; (2) toxicity values; and (3) a combination approach incorporating toxicity and abundance. Hazard characterization of these mixtures was performed using high-throughput screening in primary normal human bronchial epithelium (NHBE) and zebrafish. Differences in chemical composition and potency were observed between mixture formation approaches. The toxicity-based approach (Tox Mix) was the most potent mixture in both models. The combination approach (Weighted-Tox Mix) was determined to be the ideal approach due its ability to prioritize chemicals with high exposure and hazard potential.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Susan C. Tilton
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, USA
| |
Collapse
|
5
|
Chen C, Min Y, Li X, Chen D, Shen J, Zhang D, Sun H, Bian Q, Yuan H, Wang SL. Mutagenicity risk prediction of PAH and derivative mixtures by in silico simulations oriented from CYP compound I-mediated metabolic activation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 787:147596. [PMID: 33991922 DOI: 10.1016/j.scitotenv.2021.147596] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 04/26/2021] [Accepted: 05/01/2021] [Indexed: 06/12/2023]
Abstract
PAHs and their derivatives are the main sources of mutagenicity and carcinogenicity in airborne particular matter and cause serious public health and environmental problems. Risk assessment is challenging due to the mixed nature and deficiency of toxicity data of most PAHs and their derivatives. Cytochrome P450 enzymes (CYPs) play important roles in PAH-induced carcinogenicity via metabolic activation, and CYP conformations with compound I structures strongly influence metabolic sites and metabolite species. In this study, complexes of BaP with CYP1A1, CYP1B1 or CYP2C19 compound I were successfully simulated by QM/MM methods and verified by metabolic clearance, and the mutagenicity of chemicals was then predicted by the BaP-7,8-epoxide-related metabolic conformation fitness (MCF) approach, which was validated by Ames tests, showing satisfying accuracy (R2 = 0.46-0.66). Furthermore, a prediction model of the mutagenicity risk of PAH and derivative mixtures was established based on the relative potential factor (RPF) approach and the RPF calculated from the mathematical relationship between the minimum MCF (MCFmin) and RPF, which was successfully validated by the mutagenesis of PAH and derivative mixture mimic-simulating PM2.5 samples collected in eastern China. This study provides fast reliable tools for assessing risk of the complex components of environmental PAHs and their derivatives.
Collapse
Affiliation(s)
- Chao Chen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Yue Min
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Xuxu Li
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Dongyin Chen
- School of Pharmacy, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Jiemiao Shen
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Di Zhang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China
| | - Hong Sun
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Rd., Nanjing 210009, PR China
| | - Qian Bian
- Jiangsu Provincial Center for Disease Control and Prevention, 172 Jiangsu Rd., Nanjing 210009, PR China
| | - Haoliang Yuan
- State Key Laboratory of Natural Medicines and Center of Drug Discovery, China Pharmaceutical University, 639 Longmian Avenue, Nanjing 211198, PR China
| | - Shou-Lin Wang
- Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; State Key Laboratory of Reproductive Medicine, Institute of Toxicology, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China; School of Nursing, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, PR China.
| |
Collapse
|
6
|
Zhang R, Han M, Yu K, Kang Y, Wang Y, Huang X, Li J, Yang Y. Distribution, fate and sources of polycyclic aromatic hydrocarbons (PAHs) in atmosphere and surface water of multiple coral reef regions from the South China Sea: A case study in spring-summer. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125214. [PMID: 33529835 DOI: 10.1016/j.jhazmat.2021.125214] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 06/12/2023]
Abstract
Our previous study revealed PAHs' wide occurrence in corals from multiple coral reef regions (CRRs) in the South China Sea. However, little is known about their occurrence, distribution, fate, and sources in the ambient environment of these CRRs. This study aimed to resolve these research gaps. The results showed ∑15PAHs (total concentrations of 15 US EPA priority controlled PAHs exclude naphthalene) in the atmosphere (gas-phase: 0.31-49.6 ng m-3; particle-phase: 2.6-649 pg m-3) were mainly influenced by air mass origins. Southwesterly wind caused higher ∑15PAHs than the southeasterly wind. The ∑15PAHs in seawater from the nearshore (462 ± 244 ng L-1) was higher than that from offshore Zhongsha Islands (80.5 ± 72.1 ng L-1) because of the effect of terrigenous pollution and ocean current. Source apportionment indicated that the mixed sources of spilled oil and combustion from neighboring countries were the main contributors to PAHs in these CRRs. The total deposition fluxes showed that PAHs tended to migrate from the atmosphere to seawater. Global warming may inhibit this process, but PAHs still have a migration pattern of atmosphere-ocean-corals, which will further increase the environmental pressure on coral reef ecology.
Collapse
Affiliation(s)
- Ruijie Zhang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Minwei Han
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Kefu Yu
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China.
| | - Yaru Kang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Yinghui Wang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Xueyong Huang
- Guangxi Laboratory on the Study of Coral Reefs in the South China Sea; Coral Reef Research Center of China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Jun Li
- Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ying Yang
- School of Marine Sciences, SunYat-SenUniversity, Guangzhou 510006, China
| |
Collapse
|
7
|
Keir JLA, Cakmak S, Blais JM, White PA. The influence of demographic and lifestyle factors on urinary levels of PAH metabolites-empirical analyses of Cycle 2 (2009-2011) CHMS data. JOURNAL OF EXPOSURE SCIENCE & ENVIRONMENTAL EPIDEMIOLOGY 2021; 31:386-397. [PMID: 32066882 DOI: 10.1038/s41370-020-0208-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 11/26/2019] [Accepted: 12/23/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds formed during the incomplete combustion of organic matter. Several are mutagenic carcinogens; the magnitude of exposure can be assessed by examining urinary levels of PAH metabolites. Data from biomonitoring studies that record urinary PAH metabolite levels, as well as demographic and lifestyle information, can be used to investigate relationships between PAH exposure and variables, such as smoking status, workplace smoking restrictions, age, sex, household income, home age, and occupation. This study analysed creatinine-adjusted urinary PAH metabolite concentrations and questionnaire data from ~1200 individuals aged 16 years and older surveyed in Cycle 2 of the Canadian Health Measures Survey (CHMS). Statistical analyses revealed that smoking status, age, and sex are associated with urinary concentrations of a pyrene metabolite (1-OHP), phenanthrene metabolites (ΣOH-Phen), fluorene metabolites (ΣOH-Flu) and naphthalene metabolites (ΣOH-Nap). More specifically, smoking status, age and sex can collectively account for 30, 24, 52, and 34% of the observed variations in 1-OHP, ΣOH-Phen, ΣOH-Flu and ΣOH-Nap metabolites, respectively (p < 0.001). Analyses of non-smokers revealed weak but significant effects of age, sex, home age, and occupation on urinary levels of selected PAH metabolites (i.e., <7% of observed variation, p < 0.05). The unexplained variation in PAH metabolite levels is most likely related to diet, which was not examined. Although the results revealed significant relationships between urinary PAH metabolite levels and several lifestyle and/or demographic variables, robust examinations of selected effects (e.g., sex, home age, occupation) will require datasets that are balanced with respect to the other highlighted variables. The results can be used to identify remedial measures to reduce exposure and concomitant risk, and/or design follow-up studies to test hypotheses regarding the causes of exposure differences empirically related to sex, age, home age, and occupation.
Collapse
Affiliation(s)
- Jennifer L A Keir
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Sabit Cakmak
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Paul A White
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
- Environmental Health Science and Research Bureau, Health Canada, 251 Sir Frederick Banting Driveway, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
8
|
Honda M, Mukai K, Nagato E, Uno S, Oshima Y. Correlation between Polycyclic Aromatic Hydrocarbons in Wharf Roach ( Ligia spp.) and Environmental Components of the Intertidal and Supralittoral Zone along the Japanese Coast. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:E630. [PMID: 33451067 PMCID: PMC7828494 DOI: 10.3390/ijerph18020630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/29/2020] [Accepted: 01/05/2021] [Indexed: 11/26/2022]
Abstract
Polycyclic aromatic hydrocarbon (PAH) concentrations in wharf roach (Ligia spp.), as an environmental indicator, and in environmental components of the intertidal and supralittoral zones were determined, and the PAH exposure pathways in wharf roach were estimated. Wharf roaches, mussels, and environmental media (water, soil and sand, and drifting seaweed) were collected from 12 sites in Japan along coastal areas of the Sea of Japan. PAH concentrations in wharf roaches were higher than those in mussels (median total of 15 PAHs: 48.5 and 39.9 ng/g-dry weight (dw), respectively) except for samples from Ishikawa (wharf roach: 47.9 ng/g-dw; mussel: 132 ng/g-dw). The highest total PAH concentration in wharf roach was from Akita (96.0 ng/g-dw), followed by a sample from Niigata (85.2 ng/g-dw). Diagnostic ratio analysis showed that nearly all PAHs in soil and sand were of petrogenic origin. Based on a correlation analysis of PAH concentrations between wharf roach and the environmental components, wharf roach exposure to three- and four-ring PAHs was likely from food (drifting seaweed) and from soil and sand, whereas exposure to four- and five-ring PAHs was from several environmental components. These findings suggest that the wharf roach can be used to monitor PAH pollution in the supralittoral zone and in the intertidal zone.
Collapse
Affiliation(s)
- Masato Honda
- Botanical Garden, Institute of Nature and Environmental Technology, Kanazawa University, Kakuma, Kanazawa, Ishikawa 920-1192, Japan
| | - Koki Mukai
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (K.M.); (Y.O.)
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Edward Nagato
- Graduate School of Life and Environmental Sciences, Shimane University, 1060 Nishitsugawa-machi, Matsue, Shimane 690-8504, Japan;
| | - Seiichi Uno
- Education and Research Center for Marine Resources and Environment, Faculty of Fisheries, Kagoshima University, 4-50-20 Shimoarata, Kagoshima 890-0056, Japan;
| | - Yuji Oshima
- Faculty of Agriculture, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan; (K.M.); (Y.O.)
| |
Collapse
|
9
|
McCarrick S, Cunha V, Zapletal O, Vondráček J, Dreij K. In vitro and in vivo genotoxicity of oxygenated polycyclic aromatic hydrocarbons. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:678-687. [PMID: 30616058 DOI: 10.1016/j.envpol.2018.12.092] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 11/19/2018] [Accepted: 12/28/2018] [Indexed: 05/23/2023]
Abstract
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are a group of environmental pollutants found in complex mixtures together with PAHs. In contrast to the extensively studied PAHs, which have been established to have mutagenic and carcinogenic properties, much less is known about the effects of oxy-PAHs. The present work aimed to investigate the genotoxic potency of a set of environmentally relevant oxy-PAHs along with environmental soil samples in human bronchial epithelial cells (HBEC). We found that all oxy-PAHs tested induced DNA strand breaks in a dose-dependent manner and some of the oxy-PAHs further induced micronuclei formation. Our results showed weak effects in response to the oxy-PAH containing subfraction of the soil sample. The genotoxic potency was confirmed in both HBEC and HepG2 cells following exposure to oxy-PAHs by an increased level of phospho-Chk1, a biomarker used to estimate the carcinogenic potency of PAHs in vitro. We further exposed zebrafish embryos to single oxy-PAHs or a binary mixture with PAH benzo[a]pyrene (B[a]P) and found the mixture to induce comparable or greater effects on the induction of DNA strand breaks compared to the sum of that induced by B[a]P and oxy-PAHs alone. In conclusion, oxy-PAHs were found to elicit genotoxic effects at similar or higher levels to that of B[a]P which indicates that oxy-PAHs may contribute significantly to the total carcinogenic potency of environmental PAH mixtures. This emphasizes further investigations of these compounds as well as the need to include oxy-PAHs in environmental monitoring programs in order to improve health risk assessment.
Collapse
Affiliation(s)
- Sarah McCarrick
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Virginia Cunha
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden
| | - Ondřej Zapletal
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden; Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic; Department of Experimental Biology, Faculty of Science, Masaryk University, 61137, Brno, Czech Republic
| | - Jan Vondráček
- Department of Cytokinetics, Institute of Biophysics of the Czech Academy of Sciences, Královopolská 135, 61265, Brno, Czech Republic
| | - Kristian Dreij
- Unit of Biochemical Toxicology, Institute of Environmental Medicine, Karolinska Institutet, Box 210, SE-171 77, Stockholm, Sweden.
| |
Collapse
|
10
|
Idowu O, Semple KT, Ramadass K, O'Connor W, Hansbro P, Thavamani P. Beyond the obvious: Environmental health implications of polar polycyclic aromatic hydrocarbons. ENVIRONMENT INTERNATIONAL 2019; 123:543-557. [PMID: 30622079 DOI: 10.1016/j.envint.2018.12.051] [Citation(s) in RCA: 210] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/02/2018] [Accepted: 12/21/2018] [Indexed: 05/07/2023]
Abstract
The genotoxic, mutagenic and carcinogenic effects of polar polycyclic aromatic hydrocarbons (polar PAHs) are believed to surpass those of their parent PAHs; however, their environmental and human health implications have been largely unexplored. Oxygenated PAHs (oxy-PAHs) is a critical class of polar PAHs associated with carcinogenic effects without enzymatic activation. They also cause an upsurge in reactive oxygen species (ROS) in living cells. This results in oxidative stress and other consequences, such as abnormal gene expressions, altered protein activities, mutagenesis, and carcinogenesis. Similarly, some nitrated PAHs (N-PAHs) are probable human carcinogens as classified by the International Agency for Research on Cancer (IARC). Heterocyclic PAHs (polar PAHs containing nitrogen, sulphur and oxygen atoms within the aromatic rings) have been shown to be potent endocrine disruptors, primarily through their estrogenic activities. Despite the high toxicity and enhanced environmental mobility of many polar PAHs, they have attracted only a little attention in risk assessment of contaminated sites. This may lead to underestimation of potential risks, and remediation end points. In this review, the toxicity of polar PAHs and their associated mechanisms of action, including their role in mutagenic, carcinogenic, developmental and teratogenic effects are critically discussed. This review suggests that polar PAHs could have serious toxicological effects on human health and should be considered during risk assessment of PAH-contaminated sites. The implications of not doing so were argued and critical knowledge gaps and future research requirements discussed.
Collapse
Affiliation(s)
- Oluyoye Idowu
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Kirk T Semple
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, United Kingdom
| | - Kavitha Ramadass
- Global Innovative Centre for Advanced Nanomaterials (GICAN), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Wayne O'Connor
- Port Stephens Fisheries Institute, NSW Department of Primary Industries, Port Stephens, Australia
| | - Phil Hansbro
- Centre for Inflammation, Centenary Institute, Sydney, NSW 2050, Australia; University of Technology Sydney, Faculty of Science, Ultimo, NSW 2007, Australia
| | - Palanisami Thavamani
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia.
| |
Collapse
|
11
|
Genotoxicity evaluation of multi-component mixtures of polyaromatic hydrocarbons (PAHs), arsenic, cadmium, and lead using flow cytometry based micronucleus test in HepG2 cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2018; 827:9-18. [DOI: 10.1016/j.mrgentox.2018.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Revised: 12/16/2017] [Accepted: 01/09/2018] [Indexed: 01/09/2023]
|
12
|
Tian Z, Vila J, Yu M, Bodnar W, Aitken MD. Tracing the Biotransformation of Polycyclic Aromatic Hydrocarbons in Contaminated Soil Using Stable Isotope-Assisted Metabolomics. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2018; 5:103-109. [PMID: 31572742 PMCID: PMC6767928 DOI: 10.1021/acs.estlett.7b00554] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Biotransformation of organic pollutants may result in the formation of oxidation products more toxic than the parent contaminants. However, to trace and identify those products, and the metabolic pathways involved in their formation, is still challenging within complex environmental samples. We applied stable isotope-assisted metabolomics (SIAM) to PAH-contaminated soil collected from a wood treatment facility. Soil samples were separately spiked with uniformly 13C-labeled fluoranthene, pyrene, or benzo[a]anthracene at a level below that of the native contaminant, and incubated for 1 or 2 weeks under aerobic biostimulated conditions. Combining high-resolution mass spectrometry and automated SIAM workflows, chemical structures of metabolites and metabolic pathways in the soil were proposed. Ring-cleavage products, including previously unreported intermediates such as C11H10O6 and C15H12O5, were detected originating from fluoranthene and benzo[a]anthracene, respectively. Sulfate conjugates of dihydroxy compounds were found as major metabolites of pyrene and benzo[a]anthracene, suggesting the potential role of fungi in their biotransformation in soils. A series of unknown N-containing metabolites were identified from pyrene, but their structural elucidation requires further investigation. Our results suggest that SIAM can be successfully applied to understand the fate of organic pollutants in environmental samples, opening lines of evidence for novel mechanisms of microbial transformation within such complex matrices.
Collapse
Affiliation(s)
- Zhenyu Tian
- Department of Environmental Sciences and
Engineering, Gillings School of Global Public Health, University of North Carolina
at Chapel Hill, CB 7431, Chapel Hill, NC 27599-7431 USA
| | - Joaquim Vila
- Department of Environmental Sciences and
Engineering, Gillings School of Global Public Health, University of North Carolina
at Chapel Hill, CB 7431, Chapel Hill, NC 27599-7431 USA
| | - Miao Yu
- Department of Chemistry, University of Waterloo,
Waterloo, Ontario, Canada N2L 3G1
| | - Wanda Bodnar
- Department of Environmental Sciences and
Engineering, Gillings School of Global Public Health, University of North Carolina
at Chapel Hill, CB 7431, Chapel Hill, NC 27599-7431 USA
| | - Michael D. Aitken
- Department of Environmental Sciences and
Engineering, Gillings School of Global Public Health, University of North Carolina
at Chapel Hill, CB 7431, Chapel Hill, NC 27599-7431 USA
| |
Collapse
|
13
|
Chibwe L, Davie-Martin CL, Aitken MD, Hoh E, Massey Simonich SL. Identification of polar transformation products and high molecular weight polycyclic aromatic hydrocarbons (PAHs) in contaminated soil following bioremediation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:1099-1107. [PMID: 28511355 DOI: 10.1016/j.scitotenv.2017.04.190] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 06/07/2023]
Abstract
Bioremediation is a technique commonly used to reduce the toxicity associated with polycyclic aromatic hydrocarbons (PAHs) in contaminated soils. However, the efficacy of bioremedial applications is evaluated based on the removal of a subset of parent (or unsubstituted) PAHs and does not incorporate toxic polar transformation products or the more mutagenic high molecular weight PAHs (MW≥302amu or MW302-PAHs). Previously, an effects-directed analysis approach was used to assess the effect of bioremediation on the toxicity of a coal tar-contaminated soil. Increased genotoxicity and developmental toxicity was measured postbioremedation in the more polar soil extract fractions, as compared to the less polar fractions where the targeted PAHs eluted, and could not be attributed to the 88 target PAHs analyzed for (including selected oxygen-containing PAHs). In this study, comprehensive two-dimensional gas chromatography time-of-flight and liquid chromatography quadrupole time-of-flight mass spectrometry were used to characterize transformation products in the soil extract fractions identified as toxic, previously. Additionally, the degradation of 12MW302-PAHs, picene (MW=278) and coronene (MW=300) were evaluated following bioremediation. Non-targeted analysis resulted in the tentative identification of 10 peaks with increased intensity postbioremediation (based on mass spectral library matching and fragmentation patterns from >5000 candidate peaks in the soil extracts). Several of these compounds contained oxygen, suggesting they would be relatively polar. MW302-PAHs were not significantly degraded during bioremediation, suggesting that the carcinogenic potential associated with these PAHs might remain unchanged. The results of this study suggest that polar transformation products, and MW302-PAHs, should be considered for realistic risk assessment of bioremediated soils.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States
| | - Cleo L Davie-Martin
- Department of Microbiology, Oregon State University, Corvallis, Oregon 97331, United States; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States
| | - Michael D Aitken
- Department of Environmental Sciences and Engineering, Gillings School of Global Public Health, University of North Carolina Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Eunha Hoh
- Graduate School of Public Health, San Diego State University, San Diego, California 92182, United States
| | - Staci L Massey Simonich
- Department of Chemistry, Oregon State University, Corvallis, Oregon 97331, United States; Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, Oregon 97331, United States.
| |
Collapse
|
14
|
Maertens RM, Long AS, White PA. Performance of the in vitro transgene mutation assay in MutaMouse FE1 cells: Evaluation of nine misleading ("False") positive chemicals. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2017; 58:582-591. [PMID: 28843037 DOI: 10.1002/em.22125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/20/2017] [Accepted: 07/20/2017] [Indexed: 06/07/2023]
Abstract
The screening of chemicals for the protection of human health and the environment requires the assessment of genetic toxicity. However, existing, internationally-accepted in vitro mammalian genotoxicity tests have been criticized for their low specificity (i.e. high frequency of "false" or "misleading" positive results for compounds that are negative in vivo). An in vitro transgene mutation assay has been established that uses a metabolically competent cell line derived from MutaMouse lung (i.e. FE1 cells). Mutation scoring employs the well-characterized lacZ positive selection system, and the assay is proposed as an alternative in vitro assessment tool. In this study, the performance of the FE1 cell assay was evaluated by examining responses to nine non-DNA-reactive chemicals that previously elicited misleading positive results in other mammalian cell genotoxicity assays. FE1 cells were exposed to concentrations up to approximately 10 mM and/or concentrations that yielded approximately 80-90% cytotoxicity (as measured by relative increase in cell count). The assay demonstrated excellent specificity; exposures to the chemicals examined did not yield any positive responses even when tested in the presence of an exogenous metabolic activation system (i.e. S9) or with an extended sampling time. These results indicate that the FE1 cell mutagenicity assay is an effective and practical alternative to traditional mammalian cell gene mutation assays. The development and validation of effective in vitro tools such as the MutaMouse FE1 cell assay will contribute to international efforts to reduce, refine, and replace experimental animals for toxicity assessment. Environ. Mol. Mutagen. 58:582-591, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rebecca M Maertens
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Alexandra S Long
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| |
Collapse
|
15
|
Tommasi S, Bates SE, Behar RZ, Talbot P, Besaratinia A. Limited mutagenicity of electronic cigarettes in mouse or human cells in vitro. Lung Cancer 2017; 112:41-46. [PMID: 29191599 DOI: 10.1016/j.lungcan.2017.07.035] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Revised: 07/25/2017] [Accepted: 07/30/2017] [Indexed: 10/19/2022]
Abstract
OBJECTIVES Electronic cigarettes (e-cig), which are promoted as safe alternatives to tobacco cigarettes or as aides to smoking cessation, are becoming increasingly popular among adult chronic smokers and adolescents experimenting with tobacco products. Despite the known presence of toxicants and carcinogens in e-cig liquid and vapor, the possible carcinogenic effects of e-cig use in humans are unknown. MATERIALS AND METHODS We have utilized two validated in vitro model systems to investigate whether e-cig vapor induces mutation in mouse or human cells. We have exposed transgenic mouse fibroblasts in vitro to e-cig vapor extracts prepared from three popular brands, and determined the induction of mutagenesis in a reporter gene, the cII transgene. Furthermore, we have treated the pSP189 plasmid with e-cig vapor extract, transfected human fibroblast cells with the e-cig-treated plasmid, and screened for the induced mutations in the supF gene. RESULTS AND CONCLUSION We observed no statistically significant increases in relative mutant frequency in the cII transgene or supF gene in the e-cig treated mouse or human cells, respectively. Our data indicate that e-cig vapor extracts from the selected brands and at concentrations tested in this study have limited mutagenicity in both mouse and human cells in vitro.
Collapse
Affiliation(s)
- Stella Tommasi
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA
| | - Steven E Bates
- Department of Cancer Biology, Beckman Research Institute at City of Hope , Duarte, CA, 91010, USA
| | - Rachel Z Behar
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Prue Talbot
- Department of Cell Biology and Neuroscience, University of California, Riverside, CA 92521, USA
| | - Ahmad Besaratinia
- Department of Preventive Medicine, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA.
| |
Collapse
|
16
|
Long AS, Lemieux CL, Gagné R, Lambert IB, White PA. Genetic Toxicity of Complex Mixtures of Polycyclic Aromatic Hydrocarbons: Evaluating Dose-Additivity in a Transgenic Mouse Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:8138-8148. [PMID: 28587452 DOI: 10.1021/acs.est.7b00985] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
This study evaluates the risk assessment approach currently employed for polycyclic aromatic hydrocarbon (PAH)-contaminated media, wherein carcinogenic hazards are evaluated using a dose-addition model that employs potency equivalency factors (PEFs) for targeted carcinogenic PAHs. Here, MutaMouse mice were subchronically exposed to PAH mixtures (p.o.), and mutagenic potency (MP) values were determined for five tissues. Predicted dose-additive mixture MPs were generated by summing the products of the concentrations and MPs of the individual targeted PAHs; values were compared to the experimental MPs of the mixtures to evaluate dose-additivity. Additionally, the PEF-determined BaP-equivalent concentrations were compared to those determined using a bioassay-derived method (BDM) (i.e., an additivity-independent approach). In bone marrow, mixture mutagenicity was less than dose-additive and the PEF-method provided higher estimates of BaP-equivalents than the BDM. Conversely, mixture mutagenicity in site-of-contact tissues (e.g., small intestine) was generally more than dose-additive and the PEF-method provided lower estimates of BaP-equivalents than the BDM. Overall, this study demonstrates that dose-additive predictions of mixture mutagenic potency based on the concentrations and potencies of a small number of targeted PAHs results in values that are surprisingly close to those determined experimentally, providing support for the dose-additive assumption employed for human health risk assessment of PAH mixtures.
Collapse
Affiliation(s)
- Alexandra S Long
- Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Christine L Lemieux
- New Substances Assessment and Control Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Rémi Gagné
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| | - Iain B Lambert
- Department of Biology, Carleton University , Ottawa, Ontario K1S 5B6, Canada
| | - Paul A White
- Department of Biology, University of Ottawa , Ottawa, Ontario K1N 6N5, Canada
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada , Ottawa, Ontario K1A 0K9, Canada
| |
Collapse
|
17
|
Labib S, Williams A, Kuo B, Yauk CL, White PA, Halappanavar S. A framework for the use of single-chemical transcriptomics data in predicting the hazards associated with complex mixtures of polycyclic aromatic hydrocarbons. Arch Toxicol 2016; 91:2599-2616. [PMID: 27858113 PMCID: PMC5489644 DOI: 10.1007/s00204-016-1891-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 11/07/2016] [Indexed: 01/22/2023]
Abstract
The assumption of additivity applied in the risk assessment of environmental mixtures containing carcinogenic polycyclic aromatic hydrocarbons (PAHs) was investigated using transcriptomics. MutaTMMouse were gavaged for 28 days with three doses of eight individual PAHs, two defined mixtures of PAHs, or coal tar, an environmentally ubiquitous complex mixture of PAHs. Microarrays were used to identify differentially expressed genes (DEGs) in lung tissue collected 3 days post-exposure. Cancer-related pathways perturbed by the individual or mixtures of PAHs were identified, and dose–response modeling of the DEGs was conducted to calculate gene/pathway benchmark doses (BMDs). Individual PAH-induced pathway perturbations (the median gene expression changes for all genes in a pathway relative to controls) and pathway BMDs were applied to models of additivity [i.e., concentration addition (CA), generalized concentration addition (GCA), and independent action (IA)] to generate predicted pathway-specific dose–response curves for each PAH mixture. The predicted and observed pathway dose–response curves were compared to assess the sensitivity of different additivity models. Transcriptomics-based additivity calculation showed that IA accurately predicted the pathway perturbations induced by all mixtures of PAHs. CA did not support the additivity assumption for the defined mixtures; however, GCA improved the CA predictions. Moreover, pathway BMDs derived for coal tar were comparable to BMDs derived from previously published coal tar-induced mouse lung tumor incidence data. These results suggest that in the absence of tumor incidence data, individual chemical-induced transcriptomics changes associated with cancer can be used to investigate the assumption of additivity and to predict the carcinogenic potential of a mixture.
Collapse
Affiliation(s)
- Sarah Labib
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Byron Kuo
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Carole L Yauk
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Paul A White
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, K1A 0K9, Canada.
| |
Collapse
|
18
|
Long AS, Watson M, Arlt VM, White PA. Oral exposure to commercially available coal tar-based pavement sealcoat induces murine genetic damage and mutations. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2016; 57:535-45. [PMID: 27473530 PMCID: PMC4979669 DOI: 10.1002/em.22032] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 06/20/2016] [Accepted: 06/21/2016] [Indexed: 05/12/2023]
Abstract
Coal tar (CT) is a thick black liquid produced as a by-product of coal carbonization to produce coke or manufactured gas. It is comprised a complex mixture of polycyclic aromatic compounds, including a wide range of polycyclic aromatic hydrocarbons (PAHs), many of which are genotoxic and carcinogenic. CT is used in some pavement sealants (also known as sealcoat), which are applied to pavement in order to seal and beautify the surface. Human exposure is known to occur not only during application, but also as a result of the weathering process, as elevated levels of PAHs have been found in settled house dust in residences adjacent to CT-sealed surfaces. In this study we examined the genotoxicity of an extract of a commercially available CT-based sealcoat in the transgenic Muta™Mouse model. Mice were orally exposed to 3 doses of sealcoat extract daily for 28 days. We evaluated genotoxicity by examining: (1) stable DNA adducts and (2) lacZ mutations in bone marrow, liver, lung, small intestine, and glandular stomach, as well as (3) micronucleated red blood cells. Significant increases were seen for each endpoint and in all tissues. The potency of the response differed across tissues, with the highest frequency of adducts occurring in liver and lung, and the highest frequency of mutations occurring in small intestine. The results of this study are the first demonstration of mammalian genotoxicity following exposure to CT-containing pavement sealcoat. This work provides in vivo evidence to support the contention that there may be adverse health effects in mammals, and potentially in humans, from exposure to coal tar. Environ. Mol. Mutagen. 57:535-545, 2016. © 2016 Her Majesty the Queen in Right of Canada.
Collapse
Affiliation(s)
- Alexandra S. Long
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Margaret Watson
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| | - Volker M. Arlt
- Analytical and Environmental Sciences DivisionMRC‐PHE Centre for Environment and Health, King's College LondonLondonUnited Kingdom
| | - Paul A. White
- Department of BiologyUniversity of OttawaOttawaOntarioCanada
- Mechanistic Studies DivisionEnvironmental Health Science and Research Bureau, Environmental and Radiation Health Sciences Directorate, HECSB, Health CanadaOttawaOntarioCanada
| |
Collapse
|
19
|
Wincent E, Le Bihanic F, Dreij K. Induction and inhibition of human cytochrome P4501 by oxygenated polycyclic aromatic hydrocarbons. Toxicol Res (Camb) 2016; 5:788-799. [PMID: 30090389 PMCID: PMC6062249 DOI: 10.1039/c6tx00004e] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Accepted: 03/03/2016] [Indexed: 11/25/2022] Open
Abstract
Our data represent the first demonstration that oxy-PAHs can be potent inhibitors of CYP1 expression and function.
Oxygenated polycyclic aromatic hydrocarbons (oxy-PAHs) are found in the environment together with PAHs. However, less is known concerning their biological activity including their impact on aryl hydrocarbon receptor (AHR) signalling and the subsequent modulation of the cytochrome P450 monooxygenases (CYP). In this study, the effects of 15 environmentally relevant oxy-PAHs on the induction and activity of the CYP1 enzymes were determined in vitro by measuring gene expression levels and enzyme activity. We found that nine of the tested oxy-PAHs significantly induced CYP1A1 and CYP1B1 gene expression in human keratinocytes (HaCaT cells) while only five of these also were potent inducers of CYP1-dependent ethoxyresorufin-O-deethylase (EROD) activity suggesting that some of the oxy-PAHs are both activators of AHR signalling and inhibitors of CYP1 function. Using a recombinant human CYP1A1 enzyme we showed that eleven of the oxy-PAHs potently inhibited enzyme activity with benz[a]anthracene-7,12-quinone (7,12-BAQ) and benzo[a]fluorenone (BFLO) being the most potent inhibitors (IC50 = 0.037 and 0.061 μM, respectively). We further exposed HaCaT cells to binary mixtures of oxy-PAHs and the model AHR agonist 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) to investigate potential interaction effects. The results showed that oxy-PAHs can interfere with the TCDD-mediated effects leading to reduced CYP1A1 and 1B1 expression and EROD activity. These data represent the first demonstration that oxy-PAHs can be potent inhibitors of CYP1 expression and function and make important contributions towards understanding the mechanisms through which oxy-PAHs can contribute to the overall risk of polycyclic aromatic compounds.
Collapse
Affiliation(s)
- Emma Wincent
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden . .,Swedish Toxicology Sciences Research Center (Swetox) , 151 36 Södertälje , Sweden
| | - Florane Le Bihanic
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden .
| | - Kristian Dreij
- Institute of Environmental Medicine , Karolinska Institutet , 171 77 Stockholm , Sweden .
| |
Collapse
|
20
|
Witter AE, Nguyen MH. Determination of oxygen, nitrogen, and sulfur-containing polycyclic aromatic hydrocarbons (PAHs) in urban stream sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 209:186-96. [PMID: 26646479 DOI: 10.1016/j.envpol.2015.10.037] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Revised: 10/19/2015] [Accepted: 10/21/2015] [Indexed: 05/10/2023]
Abstract
Recent studies indicate that PAH transformation products such as ketone or quinone-substituted PAHs (OPAHs) are potent aryl hydrocarbon receptor (AhR) activators that elicit toxicological effects independent of those observed for PAHs. Here, we measured eight OPAHs, two sulfur-containing (SPAH), one oxygen-containing (DBF), and one nitrogen-containing (CARB) heterocyclic PAHs (i.e. ΣONS-PAHs = OPAH8 + SPAH + DBF + CARB) in 35 stream sediments collected from a small (∼1303 km(2)) urban watershed located in south-central Pennsylvania, USA. Combined ΣONS-PAH concentrations ranged from 59 to 1897 μg kg(-1) (mean = 568 μg kg(-1); median = 425 μg kg(-1)) and were 2.4 times higher in urban versus rural areas, suggesting that activities taking place on urban land serve as a source of ΣONS-PAHs to sediments. To evaluate urban land use metrics that might explain these data, Spearman rank correlation analyses was used to evaluate the degree of association between ΣONS-PAH concentrations and urban land-use/land-cover metrics along an urban-rural transect at two spatial scales (500-m and 1000-m upstream). Combined ΣONS-PAH concentrations showed highly significant (p < 0.0001) correlations with ΣPAH19, residential and commercial/industrial land use (RESCI), and combined state and local road miles (MILES), suggesting that ΣONS-PAHs originate from similar sources as PAHs. To evaluate OPAH sources, a subset of ΣONS-PAHs for which reference assemblages exist, an average OPAH fractional assemblage for urban sediments was derived using agglomerative hierarchal cluster (AHC) analysis, and compared to published OPAH source profiles. Urban sediments from the Condoguinet Creek (n = 21) showed highly significant correlations with urban particulate matter (X(2) = 0.05, r = 0.91, p = 0.0047), suggesting that urban particulate matter is an important OPAH source to sediments in this watershed. Results suggest the inclusion of ΣONS-PAH measurements adds value to traditional PAH analyses, and may help elucidate and refine pollutant source identification in urban watersheds.
Collapse
Affiliation(s)
- Amy E Witter
- Department of Chemistry, Dickinson College, PO Box 1773, Carlisle, PA 17013, USA.
| | - Minh H Nguyen
- Department of Chemistry, Dickinson College, PO Box 1773, Carlisle, PA 17013, USA
| |
Collapse
|
21
|
Long AS, Lemieux CL, Arlt VM, White PA. Tissue-specific in vivo genetic toxicity of nine polycyclic aromatic hydrocarbons assessed using the Muta™Mouse transgenic rodent assay. Toxicol Appl Pharmacol 2016; 290:31-42. [PMID: 26603514 PMCID: PMC4712826 DOI: 10.1016/j.taap.2015.11.010] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 11/09/2015] [Accepted: 11/17/2015] [Indexed: 11/20/2022]
Abstract
Test batteries to screen chemicals for mutagenic hazard include several endpoints regarded as effective for detecting genotoxic carcinogens. Traditional in vivo methods primarily examine clastogenic endpoints in haematopoietic tissues. Although this approach is effective for identifying systemically distributed clastogens, some mutagens may not induce clastogenic effects; moreover, genotoxic effects may be restricted to the site of contact and/or related tissues. An OECD test guideline for transgenic rodent (TGR) gene mutation assays was released in 2011, and the TGR assays permit assessment of mutagenicity in any tissue. This study assessed the responses of two genotoxicity endpoints following sub-chronic oral exposures of male Muta™Mouse to 9 carcinogenic polycyclic aromatic hydrocarbons (PAHs). Clastogenicity was assessed via induction of micronuclei in peripheral blood, and mutagenicity via induction of lacZ transgene mutations in bone marrow, glandular stomach, small intestine, liver, and lung. Additionally, the presence of bulky PAH-DNA adducts was examined. Five of the 9 PAHs elicited positive results across all endpoints in at least one tissue, and no PAHs were negative or equivocal across all endpoints. All PAHs were positive for lacZ mutations in at least one tissue (sensitivity=100%), and for 8 PAHs, one or more initial sites of chemical contact (i.e., glandular stomach, liver, small intestine) yielded a greater response than bone marrow. Five PAHs were positive in the micronucleus assay (sensitivity=56%). Furthermore, all PAHs produced DNA adducts in at least one tissue. The results demonstrate the utility of the TGR assay for mutagenicity assessment, especially for compounds that may not be systemically distributed.
Collapse
Affiliation(s)
- Alexandra S Long
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada.
| | - Christine L Lemieux
- Air Health Science Division, Water and Air Quality Bureau, Health Canada, Ottawa, ON, Canada
| | - Volker M Arlt
- Analytical and Environmental Sciences Division, MRC-PHE Centre for Environment and Health, King's College London, London, UK
| | - Paul A White
- Faculty of Graduate and Postdoctoral Studies, Department of Biology, University of Ottawa, Ottawa, ON, Canada; Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, ON, Canada
| |
Collapse
|
22
|
Lemieux CL, Long AS, Lambert IB, Lundstedt S, Tysklind M, White PA. In vitro mammalian mutagenicity of complex polycyclic aromatic hydrocarbon mixtures in contaminated soils. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:1787-1796. [PMID: 25419852 DOI: 10.1021/es504465f] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
This study employed an in vitro version of the lacZ transgenic rodent mutation assay to assess the mutagenicity of nonpolar neutral and semipolar aromatic soil fractions from 10 PAH-contaminated sites, and evaluated the assumption of dose additivity that is routinely employed to calculate the risk posed by PAH mixtures. Significant mutagenic activity was detected in all nonpolar neutral fractions, and 8 of 10 semipolar aromatic fractions (nonpolar > semipolar). Mutagenic activity of synthetic PAH mixtures that mimic the PAH content of the soils (i.e., 5-PAH or 16-PAH mix) were greater than that of the PAH-containing soil fractions, with 5-PAH mix >16-PAH-mix. Predictions of mutagenic activity, calculated as the sum of the contributions from the mutagenic mixture components, were all within 2-fold of the observed activity of the nonpolar neutral fractions, with one exception. Observed differences in mutagenic activity are likely the result of dynamic metabolic processes, involving a complex interplay of AhR agonsim and saturation of metabolic machinery by competitive inhibition of mixture components. The presence of hitherto unidentified polar compounds present in PAH-contaminated soils may also contribute to overall hazard; however, these compounds are generally not included in current contaminated site risk assessment protocols.
Collapse
Affiliation(s)
- Christine L Lemieux
- Mechanistic Studies Division, Environmental Health Science and Research Bureau, Health Canada, 50 Columbine Driveway, Tunney's Pasture 0803A, Ottawa, Ontario Canada , K1A 0K9
| | | | | | | | | | | |
Collapse
|