1
|
Yang R, Ye C, Su Y, Yang J, Liu Q, Zheng C. Urchin-like Co 3O 4 microspheres-boosted catalytic oxidation: Environmentally-friendly CO 2 vapor generation for total organic carbon detection by microplasma optical emission spectrometry. Talanta 2025; 282:126974. [PMID: 39353218 DOI: 10.1016/j.talanta.2024.126974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 09/12/2024] [Accepted: 09/28/2024] [Indexed: 10/04/2024]
Abstract
Total organic carbon (TOC) is a crucial indicator of organic pollutants, widely used in environmental water quality monitoring and risk assessment. Conventional TOC detection methods often require high temperatures, complex equipment, and inefficient oxidation processes, limiting their field application due to time consumption, intricate operations, and limited sensitivity. Therefore, we developed a novel approach for TOC measurement using catalytic oxidation vapor generation coupled with miniaturized point discharge optical emission spectrometry (μPD-OES). This method employs urchin-like Co3O4 microspheres to convert organic pollutants to carbon dioxide during persulfate catalytic oxidation, followed by collection and quantification via carbon atomic emission line (λ = 193.0 nm). Standard or sample solutions were acidified with phosphoric acid and purged with Ar before quantification. Under optimal conditions, the proposed method achieved a detection limit of 0.01 mg L-1, offering precision (RSD, n = 11) better than 3.7 %. The feasibility of the system was tested using a certified reference material (GBW(E)082053) and environmental water samples, achieving satisfactory recoveries (98-102 %). This method provides high oxidation efficiency, sensitivity, and accuracy, while also reducing the demand for expensive and bulky instruments and minimizing energy consumption, making it suitable for rapid, sensitive field analysis of TOC.
Collapse
Affiliation(s)
- Rui Yang
- College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu, Sichuan, 610059, China
| | - Chen Ye
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Yubin Su
- School of Chemistry, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Jiahui Yang
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China
| | - Qinlei Liu
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| | - Chengbin Zheng
- Key Laboratory of Green Chemistry & Technology of MOE, College of Chemistry, Sichuan University, Chengdu, Sichuan, 610064, China.
| |
Collapse
|
2
|
Li F, Yuan C, Niu Y, Sheng J, Wang X, Shi Y, Jiang H. Cobalt/iron bimetallic oxide coated with graphitized nitrogen-doped carbon (Fe 2O 3-CoO@NC) derived from cobalt/iron solid complex as peroxymonosulfate (PMS) activator for efficient bensulfuron-methyl degradation. ENVIRONMENTAL RESEARCH 2024; 263:120249. [PMID: 39486683 DOI: 10.1016/j.envres.2024.120249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 10/23/2024] [Accepted: 10/26/2024] [Indexed: 11/04/2024]
Abstract
Cobalt/iron bimetallic oxide coated with graphitized nitrogen-doped carbon (Fe2O3-CoO@NC) was synthesized by convenient solid phase coordination combined with calcination method to activate PMS for the degradation of BSM. A series of Co/Fe bimetallic oxides with different metal ratios were designed and prepared to select the most efficient catalyst and Fe2O3-CoO@NC(Co:Fe = 1:1) demonstrated the highest catalytic activity and the lowest ions leaching. The reasons for high catalytic activity of Fe2O3-CoO@NC(Co:Fe = 1:1) were evaluated by a range of characterization techniques and the results showed it stemmed from higher mental content and larger current density. Complete (100%) degradation of 10 g L-1 BSM was achieved within 10 min under the conditions of 0.05 g L-1 catalyst and 0.3 mmol/L PMS dosage at 25 °C. Moreover, Fe2O3-CoO@NC(Co:Fe = 1:1) showed more excellent catalytic activity and lower ions leaching than Fe2O3, CoO and Fe2O3-CoO, indicating superior bimetallic synergy and carbon encapsulation effect. Furtherly, radical experiments and XPS analysis revealed the main active species and catalytic mechanism of the Fe2O3-CoO@NC/PMS system, respectively. Finally, the degradation pathway of BSM by Fe2O3-CoO@NC/PMS system was deduced by LC-TOF-MS. This paper is aimed to provide a new insight into the convenient preparation method for the construction of catalysts which could reach efficient removal of complex organic pollutants.
Collapse
Affiliation(s)
- Fan Li
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Chao Yuan
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Yifan Niu
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Jialing Sheng
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Xiaoyu Wang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Ying Shi
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China
| | - Hongmei Jiang
- College of Science, Nanjing Agricultural University, Weigang street 1#, Nan Jing, 210095, China.
| |
Collapse
|
3
|
Chang J, Yu B, Peng X, Zhang P, Xu X. Nanoconfined catalytic macrostructures for advanced water remediation: From basic understanding to future application strategies. WATER RESEARCH 2024; 272:122960. [PMID: 39674144 DOI: 10.1016/j.watres.2024.122960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/16/2024] [Accepted: 12/10/2024] [Indexed: 12/16/2024]
Abstract
In recent years, nanoconfined catalytic macrostructures applied to advanced oxidation processes (AOPs) have been rapidly developed, effectively solving the problems of traditional heterogeneous AOPs, such as mass transfer limitation, limited diffusion of short-lived reactive oxygen species (ROS), and aggregation/leaching of catalysts. Compared with the traditional heterogeneous AOPs systems, the nanoconfined catalytic macrostructures have unique interactions between the oxidants, catalysts, ROS and micropollutants, which could significantly increase the yield and mass transfer of ROS. At present, there is a lack of comprehensive reviews on the nanoconfined catalytic macrostructures from basic theory to application performances and future development strategies. This study reviewed the preparation routines of various nanoconfined catalytic macrostructures, assessed their structural differences, catalytic properties and nanoconfined catalytic mechanisms via integrated density functional theory (DFT) and molecular dynamics (MD) stimulations. We also proposed the future strategies for nanoconfined catalytic macrostructures in combination with the machine learning, which could provide key information on the feasibility of the technology and future research directions. This review aims to enhance scholarly interest in the application of nanoconfined macrostructures in the AOPs fields, anticipating significant technical feasibilities for scale-up AOPs application of nanoconfinement.
Collapse
Affiliation(s)
- Jiale Chang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Bingliang Yu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoming Peng
- School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang, 330013, China.
| | - Ping Zhang
- Key Laboratory of Poyang Lake Environment and Resource Utilization, School of Resources & Environment, Nanchang University, Nanchang 330031, China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; Shenzhen Research Institute of Shandong University, A301 Virtual University Park in South District of Shenzhen, China.
| |
Collapse
|
4
|
Zhang X, Li Y, Cao F, Sun X, Jin Z, Xue S, Wagner M, Zhi L. Sulfonated Covalent Organic Frameworks Anchoring Cobalt as High-Efficient and Stable Catalysts for Peroxymonosulfate Activation. Macromol Rapid Commun 2024; 45:e2400533. [PMID: 39465978 DOI: 10.1002/marc.202400533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 09/06/2024] [Indexed: 10/29/2024]
Abstract
Heterogeneous cobalt-based catalysts are highly effective in activing peroxymonosulfate (PMS) and produce free radicals to deal with recalcitrant organic pollutants in water. However, unfeasible recyclability and gradual performance degradation remain challenging due to the easy agglomeration and leaching of active cobalt species. Herein, a strategy is proposed to construct stably anchored and highly dispersed Co2+ sites on dual functional sulfonated covalent organic frameworks (COF-Co). The sulfonic acid groups are able to realize the targeted binding with cobalt ions through a two-step cation-exchange method, leading to strong combination with active Co2+ sites and utmost utilization efficiencies. Moreover, the super-hydrophility of sulfonic acid groups favors the rapid accessibility of organic molecules to the catalyst and accelerates the degradation. Remarkably, COF-Co exhibits high activity in PMS activation, effective oxidation for tetracycline degradation (92% within 30 min at 30 mg L-1) and other coloring contaminants, and excellent recycle stability. This work can guide the rational design of efficient and environmentally friendly PMS-activated catalyst with great potential for application in wastewater treatment.
Collapse
Affiliation(s)
- Xinke Zhang
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Yutong Li
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Fengliang Cao
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Xiaohui Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Zhihan Jin
- School of Materials Science and Engineering, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Song Xue
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| | - Manfred Wagner
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128, Mainz, Germany
| | - Linjie Zhi
- Research Center on Advanced Chemical Engineering and Energy Materials, China University of Petroleum (East China), Qingdao, 266580, P. R. China
| |
Collapse
|
5
|
Wang Y, Zhong M, Ma F, Wang C, Lu X. Shell-induced enhancement of Fenton-like catalytic performance towards advanced oxidation processes: Concept, mechanism, and properties. WATER RESEARCH 2024; 268:122655. [PMID: 39461218 DOI: 10.1016/j.watres.2024.122655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 10/29/2024]
Abstract
Fenton-like advanced oxidation processes (AOPs) are commonly used to eliminate recalcitrant organic pollutants as they produce highly reactive oxygen species through the reactions between the catalysts and oxidants. Recently, considerable attention has been directed towards shell-structured Fenton-like catalysts that offer high stability, maximum utilization of active sites, and exceptional catalytic performance. In this review, we have introduced the concept of several typical shell-forming architectures (e.g., hollow structure, core-shell structure, yolk-shell structure, particle-in-tube structure, and multi-shelled structure), elucidating their role in promoting Fenton-like reaction catalysis through the nanoconfinement mechanism. In each aspect, the correlation between the shell-induced effects and the Fenton-like catalytic performance is highlighted. Finally, future challenges and opportunities for the development of shell-structured Fenton-like catalysts towards AOPs are presented, offering bright practical application prospects.
Collapse
Affiliation(s)
- Yuezhu Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Mengxiao Zhong
- State Key Laboratory of Integrated Optoelectronics, Key Laboratory of Advanced Gas Sensors, Jilin Province, College of Electronic Science and Engineering, Jilin University, 2699 Qianjin Street, Changchun 130012 China.
| | - Fuqiu Ma
- Yantai Research Institute, Harbin Engineering University, Yantai 264006, China.
| | - Ce Wang
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China
| | - Xiaofeng Lu
- Alan G. MacDiarmid Institute, College of Chemistry, Jilin University, Changchun 130012, China.
| |
Collapse
|
6
|
Tian Q, Jiang Y, Duan X, Li Q, Gao Y, Xu X. Low-peroxide-consumption fenton-like systems: The future of advanced oxidation processes. WATER RESEARCH 2024; 268:122621. [PMID: 39426044 DOI: 10.1016/j.watres.2024.122621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/07/2024] [Accepted: 10/10/2024] [Indexed: 10/21/2024]
Abstract
Conventional heterogeneous Fenton-like systems employing different peroxides have been developed for water/wastewater remediation. However, a large population of peroxides consumed during various Fenton-like systems with low utilization efficiency and associated secondary contamination have become the bottlenecks for their actual applications. Recent strategies for lowering the peroxide consumptions to develop economic Fenton-like systems are primarily devoted to the effective radical generation and subsequent high-efficiency radical utilization through catalysts/systems engineering, leveraging emerging nonradical oxidation pathways with higher selectivity and longer life of the reactive intermediate, as well as reactor designs for promoting the mass transfer and peroxides decomposition to improve the yield of radicals/nonradicals. However, a comparative review summarizing the mechanisms and pathways of these strategies has not yet been published. In this review, we endeavor to showcase the designated systems achieving the reduction of peroxides while ensuring high catalytic activity from the perspective of the above strategic mechanisms. An in-depth understanding of these aspects will help elucidate the key mechanisms for achieving economic peroxide consumption. Finally, the existing problems of these strategies are put forward, and new ideas and research directions for lowering peroxide consumption are proposed to promote the application of various Fenton-like systems in actual wastewater purification.
Collapse
Affiliation(s)
- Qingbai Tian
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Jiang
- Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, PR China.
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA 5005, Australia.
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Yue Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, PR China.
| |
Collapse
|
7
|
Wei X, Zhu N, Li F, Li X, Wu P. Efficient low-strength diclofenac elimination via adsorption-concentration and peroxydisulfate activation mineralization by distinct pretreated biocarbon composites. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 369:122393. [PMID: 39226810 DOI: 10.1016/j.jenvman.2024.122393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/21/2024] [Accepted: 08/31/2024] [Indexed: 09/05/2024]
Abstract
Sodium diclofenac (DCF) widely exists in actual water matrices, which can negatively impact ecosystems and aquatic environments even at low-strength. Herein, the adsorption-concentration-mineralization process was innovatively constructed for low-strength DCF elimination by freeze-dried biocarbon and oven-dried biocarbon coupled with cobalt oxide composites derived from the same waste biomass. Surprisingly, low-strength DCF of 0.5 mg/L was adsorbed rapidly and enriched to high-strength DCF under light with a concentration efficiency of 99.67 % by freeze-dried biocarbon. Subsequently, the concentrated DCF was economically mineralized by bifunctional oven-dried biocarbon coupled with cobalt oxide composites for peroxydisulfate (PDS) activation with full PDS activation and 76.11 % mineralization efficiency. Compared with direct low-strength DCF oxidation, adsorption-concentration-mineralization consumed less energy and none PDS residues. Mechanisms confirmed that DCF was adsorbed by freeze-dried biocarbon through hydrogen bonds and π-π stacking interactions, which were switched on due to electron-induced effect by light in DCF desorption-concentration. Furthermore, nonradical pathway (electron transfer) and radical pathway (SO4•-) were involved in efficient PDS activation by oven-dried biocarbon coupled with cobalt oxide composites for concentrated DCF mineralization, and the former was more prominent, in which graphitic carbon, cobalt redox cycle and carboxy groups were the main active sites. Overall, an energy-efficient strategy was proposed for elimination of low-strength DCF in real water matrices.
Collapse
Affiliation(s)
- Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China.
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China.
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Xinyu Li
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Cluster, Ministry of Education, Guangzhou, 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou, 510006, PR China
| |
Collapse
|
8
|
Yao X, Su X, Wang X, Hu X, Hong X. Encapsulating stable perovskite catalysts in hollow nanoreactors for enhanced pollutants degradation. J Colloid Interface Sci 2024; 669:657-666. [PMID: 38733877 DOI: 10.1016/j.jcis.2024.05.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/05/2024] [Accepted: 05/06/2024] [Indexed: 05/13/2024]
Abstract
Creating a microenvironment for enhanced peroxymonosulfate (PMS) activation is vital in advanced oxidation processes. The objective of this study was to fabricate nanoshells composed of titanium dioxide embedded with cobalt titanate nanoparticles of perovskite to act as nanoreactors for effectively initiating PMS and degrading contaminants. The unique porous structure and confined space of the nanoreactor facilitated reactant absorption and mass transfer to the active sites, resulting in exceptional catalytic performance for pollutant elimination. Experimental findings revealed close to 100% decomposition efficiency of 4-chlorophenol (4-CP) within an hour utilizing the nanoreactors over a wide pH range. The TiO2/CoTiO3 hollow nanoshells catalysts also displayed adaptability in disintegrating organic dyes and antibiotics. The radicals SO4•-, •OH, and non-radicals 1O2 were determined to be accountable for eliminating pollutants, as supported by trapping experiments and electron paramagnetic resonance spectra. The catalyst was confirmed as an electron donor and PMS as an electron acceptor through electrochemical tests and density functional theory calculations. This study underscores the potential of incorporating stable perovskite catalysts in hollow nanoreactors to enhance wastewater treatment.
Collapse
Affiliation(s)
- Xiaxi Yao
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China; Changshu Research Institute, East China University of Science and Technology, Changshu 215500, PR China.
| | - Xuhui Su
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xuhong Wang
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China
| | - Xiuli Hu
- School of Materials Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| | - Xuekun Hong
- School of Electronic Information Engineering, Changshu Institute of Technology, Changshu 215500, PR China.
| |
Collapse
|
9
|
Liu B, Lu H, Zhuang S, Huang H, Zou C, Tang L, Liu J, Zhang L, Liang J, Zhao C. Carboxymethyl chitosan modification of cobalt-zinc bimetallic MOF for tetracycline hydrochloride removal: Exploration of the enhancement mechanism of the process. Int J Biol Macromol 2024; 274:133385. [PMID: 38914402 DOI: 10.1016/j.ijbiomac.2024.133385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 06/26/2024]
Abstract
This study synthesized a carboxymethyl chitosan-modified bimetallic Co/Zn-ZIF (CZ@CMC) with strong hydrophilicity and adsorption performance via the one-pot method. Tetracycline hydrochloride (TCH) was used as the model contaminant to evaluate the adsorption and peroxymonosulfate (PMS) activation properties of CZ@CMC. Mechanism showed that the adsorption behavior occurred through pore filling, electrostatic attraction, surface complexation, hydrogen bonding, and π-π stacking. In addition, a CZ@CMC/PMS system was constructed, which had excellent catalytic performance. The hydrophilicity and selective adsorption properties of CMC conferred a greatly accelerated CZ@CMC in catalyzing the PMS process with kobs of 0.095 min-1, in which OH, 1O2, SO4-, O2-, and Co(III) were the main ROS which quenching tests, EPR, and chemical probe experiments verified. In addition, the degradation pathways of TCH were obtained utilizing DFT and HPLC-MS and analyzed to show that the system possessed a good detoxification capacity. This work is expected to provide a green, efficient, and stable strategy to enhance the adsorption properties of catalytic materials and subsequently their co-catalytic properties.
Collapse
Affiliation(s)
- Bingzhi Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Haitao Lu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Shuntao Zhuang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Honghao Huang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Chong Zou
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Lei Tang
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China
| | - Junxia Liu
- School of Civil and Transportation Engineering, Guangdong University of Technology, Guangzhou 510006, Guangdong, PR China.
| | - Lifang Zhang
- Guangzhou Water Supply Co., Ltd., Guangzhou 510600, PR China
| | - Jialiang Liang
- Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chun Zhao
- Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| |
Collapse
|
10
|
Li F, Gu Y, Zhai L, Zhang X, Wang T, Chen X, Xu C, Yan G, Jiang W. Peroxymonosulfate activation by cobalt-doped ferromanganese magnetic oxides through singlet oxygen and radical pathways for efficient sulfadiazine degradation. RSC Adv 2024; 14:22195-22208. [PMID: 39010914 PMCID: PMC11247358 DOI: 10.1039/d4ra03041a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 07/09/2024] [Indexed: 07/17/2024] Open
Abstract
In this paper, cobalt-doped MnFe2O4 (CMFO-0.4) with oxygen vacancies was successfully synthesised by the sol-gel method and applied as a high-performance catalyst for the activation of peroxomonosulfate (PMS). The catalyst showed an excellent catalytic effect for the degradation of sulfadiazine (SDZ) by activated PMS, and the degradation rate can reach 100% in 10 minutes. The effects of different conditions on the degradation of SDZ were investigated, and it was determined that the optimal concentrations of catalyst and PMS were 0.2 g L-1 and 1 mM, respectively, and had good degradation effects in the pH 5-11 range. Free radical quenching experiments, XPS, and electron paramagnetic resonance (EPR) analyses revealed the presence of hydroxyl radicals (˙OH), sulphate radicals (SO4˙-), singlet oxygen (1O2), and superoxide radicals (˙O2 -) in the CMFO-0.4/PMS system, with 1O2 being the main reactive oxygen species (ROS). In addition, CMFO-0.4 has good reusability and adaptability to the presence of other substances.
Collapse
Affiliation(s)
- Fengchun Li
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Yawei Gu
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Luwei Zhai
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Xuan Zhang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Ting Wang
- Jinan Eco-Environment Monitoring Center of Shandong Province Jinan 250014 China
| | - Xia Chen
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| | - Chongqing Xu
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Guihuan Yan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250103 China
| | - Wenqiang Jiang
- School of Environmental Science and Engineering, Qilu University of Technology (Shandong Academy of Sciences) Jinan 250353 China
| |
Collapse
|
11
|
Liu GC, Yi XH, Chu HY, Wang CC, Gao Y, Wang F, Wang FX, Wang P, Wang JF. Floating MIL-88A(Fe)@expanded perlites catalyst for continuous photo-Fenton degradation toward tetracyclines under artificial light and real solar light. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134420. [PMID: 38691997 DOI: 10.1016/j.jhazmat.2024.134420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 04/12/2024] [Accepted: 04/24/2024] [Indexed: 05/03/2024]
Abstract
In this work, MIL-88A(Fe) was immobilized onto the expanded perlites to fabricate the floating MIL-88A(Fe)@expanded perlites (M@EP) catalyst via high throughput batch synthesis method under room temperature. The as-prepared M@EP could efficiently activate H2O2 to achieve 100% tetracycline antibiotics (TCs) removal under both artificial low power UV light (UVL) and real sunlight (SL) irradiation. The toxicological evaluation, growth experiment of mung beans and antimicrobial estimation revealed the decreasing aquatic toxicity of the TCs intermediates compared to those of the pristine TCs. A self-designed continuous bed reactor was employed to investigate the long-term operation of the M@EP. The findings demonstrated that the antibiotics mixture can be continuously degraded up to 7 days under UVL and 5 daytimes under SL irradiation, respectively. More importantly, ca. 76.9% and 81.6% of total organic carbon (TOC) removal efficiencies were accomplished in continuous bed reactor under UVL and SL irradiation, respectively. This work advances the immobilized MOFs on floating supports for their practical application in large-scale wastewater purification through advanced oxidation processes. ENVIRONMENTAL IMPLICATION: This work presented the high throughput production and photo-Fenton degradation application of floating MIL-88A(Fe)@expanded perlites (M@EP). Three tetracycline antibiotics (TCs) were selected as model pollutants to test the degradation ability of M@EP in batch experiment and continuous operation under artificial light and solar light. The complete TCs degradation could be accomplished in self-designed device up to 7 d under UV light and 5 d under real solar light. This work tapped a new door to push MOFs-based functional materials in the real water purification.
Collapse
Affiliation(s)
- Guang-Chi Liu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Xiao-Hong Yi
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Hong-Yu Chu
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Chong-Chen Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China.
| | - Ya Gao
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fei Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Fu-Xue Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Peng Wang
- Beijing Key Laboratory of Functional Materials for Building Structure and Environment Remediation, Beijing University of Civil Engineering and Architecture, Beijing 100044, PR China
| | - Jian-Feng Wang
- Institute of Analysis and Testing, Beijing Academy of Science and Technology (Beijing Center for Physical & Chemical Analysis), Beijing 100089, PR China
| |
Collapse
|
12
|
Huang T, An R, Li J, Liu W, Zhu X, Ji H, Wang T. Encapsulate Co 3O 4 within ultrathin graphene sheets to enhance peroxymonosulfate activation by tuning surface electronic structures. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171872. [PMID: 38521253 DOI: 10.1016/j.scitotenv.2024.171872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/12/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Heterojunctions composed of cobalt-based materials and carbon materials have been recognized as the efficient catalysts for peroxymonosulfate (PMS) activation to generate reactive oxygen species for the removal of environmental contaminants. However, the role of carbon materials in promoting the heterojunction systems has not been fully understood. This study synthesized a heterojunction material of graphene sheets encapsulating Co3O4 (GCO-500) through the pyrolysis of cobalt MOF and applied it to activate PMS for the removal of lomefloxacin. The results showed a high removal rate of 93.59 % with a degradation rate of k1 = 0.0156 min-1. Co3O4 clusters was encapsulated within ultrathin graphene sheets (<2 nm). DFT calculations revealed that graphene layers improve the electron transfer ability of Co3O4 and increased the d-band center of Co3O4 (-1.61 eV) that promote the adsorption of PMS on GCO-500 (-1.32 eV). In the meanwhile, organic pollutant was enriched in graphene layers with high adsorption energy (-13.08 eV), which greatly enhanced the degradation efficiency of pharmaceuticals. This study provides an effective catalyst for PMS activation and sheds light on the fundamental electronic-level understanding of cobalt-based and carbon heterojunction catalysts in PMS activation.
Collapse
Affiliation(s)
- Taobo Huang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Rui An
- China Institute of Geo-Environmental Monitoring, Beijing 100081, China
| | - Jie Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Wen Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Haodong Ji
- Eco-environment and Resource Efficiency Research Laboratory, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ting Wang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Science and Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
13
|
Liang Y, Zhang L, Huang C, Xiong J, Liu T, Yao S, Zhu H, Yang Q, Zou B, Wang S. New breakthrough in rapid degradation of lignin derivative compounds · A novel high stable and reusable green organic photocatalyst. J Colloid Interface Sci 2024; 662:426-437. [PMID: 38359506 DOI: 10.1016/j.jcis.2024.02.083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/07/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
The pulp and paper sectors are thriving yet pose significant environmental threats to water bodies, mainly due to the substantial release of pollutants. Lignin-derived compounds are among the most problematic of these contaminants. To address this issue, we present our initial results on utilizing organic semiconductor photocatalysis under visible light for treating lignin-derived compounds. Our investigation has been centered around creating a green and cost-effective organic semiconductor photocatalyst. This catalyst is designed using a structure of bagasse cellulose spheres to support PM6 (poly[(2,6-(4,8-bis(5-(2-ethylhexyl)-4-fluorothiophen-2-yl)benzo[1,2-b:4,5-b']dithiophene))-co-(1,3-di(5-thiophene-2-yl)-5,7-bis(2-ethylhexyl)-benzo[1,2-c:4,5-c']dithiophene-4,8-dione))]: MeIC (3,9-bis(2-methylene-(3-(1,1-dicyanomethylene)-cyclopentane-1,3-dione[c]-1-methyl-thiophe))-5,5,11,11-tetrakis(4-hexylphenyl)-dithieno[2,3-d:2',3'-d']-s-indaceno[1,2-b:5,6-b']-dithiophene)). This photocatalyst demonstrates remarkable efficiency, achieving over 91 % degradation of lignin-derived compounds. The superior photocatalytic performance is attributed to three main factors: (1) The ability of PM6 to broaden MeIC's absorption range from 300 to 800 nm, allowing for effective utilization of visible light; (2) the synergistic interaction between PM6 and MeIC, which ensures compatible energy levels and a vast, evenly spread surface area, promoting charge mobility and extensive donor/acceptor interfaces. This synergy significantly enhances the generation and transport of carriers, resulting in a high production of free radicals that accelerate the decomposition of organic materials; (3) The deployment of PM6:MeIC on biomass-based carriers increases the interaction surface with the organic substances. Notably, PM6: MeIC showcases outstanding durability, with its degradation efficiency remaining between 84 % and 91 % across 100 cycles. This study presents a promising approach for designing advanced photocatalysts aimed at degrading common pollutants in papermaking wastewater.
Collapse
Affiliation(s)
- Yinna Liang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Libin Zhang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Ciyuan Huang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Jianhua Xiong
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Tao Liu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| | - Shangfei Yao
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Hongxiang Zhu
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Qifeng Yang
- Guangxi Bossco Environmental Protection Technology Co., Ltd., Nanning 530007, China
| | - Bingsuo Zou
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China
| | - Shuangfei Wang
- School of Light Industry Technology and Engineering, State Key Laboratory of Featured Metal Materials and Life-cycle Safety for Composite Structures, School of Resources, Environment and Materials, Guangxi University, Nanning 530004, China.
| |
Collapse
|
14
|
Zheng J, Zhang S. Cyanide-Isolated Cobalt Catalyst for Ultraefficient Advanced Oxidation Treatment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:6444-6454. [PMID: 38551318 DOI: 10.1021/acs.est.4c00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Catalyst design with a "Co-N-C" structure at the atomic level has shown great interest for peroxymonosulfate (PMS) activation toward advanced oxidation water treatment. Here, we present an innovative way of producing cobalt hexacyanocobaltate (Co-HCC) with an abundance of atomically isolated CoII-NC sites at the outer surface. This material allows ultraefficient PMS activation to generate plenty of sulfate and hydroxyl radicals, with a turnover frequency much higher than those of most cobalt-based catalysts reported so far and even the homogeneous catalysis by Co2+ ions. We gained fundamental insights on its unprecedently high catalytic performance based on experimental results and computational study. Then, we controlled the growth of Co-HCC on a ceramic membrane to form a confined oxidation environment that utilizes the extended surface area and maximal exposure of short-lived radicals for a fast removal of organic pollutants that enter the pores. As a result, this catalytic membrane achieves complete disruption of micropollutants under a water flux up to 10,000 LMH (merely 0.2 s retention time) and further >90% mineralization of organic pollutants in complex industrial wastewater matrices (<100 s retention time), together with the merits of operational simplicity and great longevity (2 weeks continuous run). Our study elicits a new milestone in "Co-N-C" catalyst structure design for PMS activation and highlights the great interest of producing catalytic membranes for a confined treatment of organic pollutants from partial oxidation to complete mineralization as a new benchmark.
Collapse
Affiliation(s)
- Jianfeng Zheng
- Tianjin Key Laboratory of Aquatic Science and Technology, School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, P. R. China
| | - Shuo Zhang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, P. R. China
| |
Collapse
|
15
|
Jiang R, Zhong D, Xu Y, Chang H, He Y, Zhang J, Liao P. Chitosan derived N-doped carbon anchored Co 3O 4-doped MoS 2 nanosheets as an efficient peroxymonosulfate activator for degradation of dyes. Int J Biol Macromol 2024; 265:130519. [PMID: 38553393 DOI: 10.1016/j.ijbiomac.2024.130519] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 04/18/2024]
Abstract
Peroxymonosulfate (PMS), which is dominated by non-free radical pathway, has a good removal effect on organic pollutants in complex water matrices. In this article, a biodegradable cobalt-based catalyst (Co3O4/MoS2@NCS) was synthesized by a simple hydrothermal method with chitosan (CS) as nitrogen‑carbon precursor and doped with Cobaltic‑cobaltous oxide (Co3O4) and Molybdenum disulfide (MoS2), and was used to activate PMS to degrade dye wastewater. Electrochemical tests showed that Co3O4/MoS2@NCS exhibited higher current density and cycling area than MoS2@NCS and MoS2. In the Co3O4/MoS2@NCS/PMS system, the degradation rate of 30 mg·L-1 rhodamine B (RhB) reached 97.75 % within 5 min, and kept as high as 94.34 % after 5 cycles. Its rate constant was 1.91 and 8.37 times that of MoS2@NCS/PMS and MoS2/PMS, respectively. It had good complex background matrices and acid-base anti-interference ability, and had good universality and reusability. The degradation rate of methyl orange (MO) and methylene blue (MB) were more than 91 % within 5 min at pH 4.8. The experimental results demonstrated that MoS2-modified CS as a carrier exposed a large number of active sites, which not only dispersed Co3O4 nanoparticles and improved the stability of the catalyst, but also provided abundant electron rich groups, and promoted the activation of PMS and the production of reactive oxygen species (ROS). PMS was effectively activated by catalytic sites (Co3+/Co2+, Mo4+/Mo5+/Mo6+, CO, pyridine N, pyrrole N, hydroxyl group and unsaturated sulfur), producing a large number of radicals that attack RhB molecules, causing chromophore cleavage, ring opening, and mineralization. Among them, non-free radical 1O2 was the main ROS for RhB degradation. This work is expected to provide a new idea for the design and synthesis of environmentally friendly and efficient MoS2-modified cobalt-based catalysts.
Collapse
Affiliation(s)
- Ran Jiang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Dengjie Zhong
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China.
| | - Yunlan Xu
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Haixing Chang
- School of Resources & Environmental Science, Hubei Key Laboratory of Biomass-Resources Chemistry and Environmental Biotechnology, Wuhan University, Wuhan 430079, China
| | - Yuanzhen He
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Jiayou Zhang
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Pengfei Liao
- School of Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| |
Collapse
|
16
|
Wang D, Zhang C, Zhang L, Xie X, Lv Y. Integrated Optimization of Crystal Facets and Nanoscale Spatial Confinement toward the Boosted Catalytic Performance of Pd Nanocrystals. Inorg Chem 2024; 63:1247-1257. [PMID: 38154082 DOI: 10.1021/acs.inorgchem.3c03635] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2023]
Abstract
Tuning the surface chemical property and the local environment of nanocrystals is crucial for realizing a high catalytic performance in various reactions. Herein, we aim to elucidate the structure sensitivity of Pd facets on the surface catalytic hydrogenation reaction and to identify what role the nanoconfinement effect plays in the catalytic properties of Pd nanocrystal catalysts. By controlling the coating structures of mesoporous silica (mSiO2) on Pd nanocrystals with different exposed facets that include {100}, {111}, and {hk0}, we present a series of Pd@mSiO2 nanoreactors in core-shell and yolk-shell structures and the discovery of a partial-coated structure, which can provide different types of nanoconfinement, and we propose a seed size-dominated growth mechanism. We demonstrate that a superior activity was exhibited in Pd nanocrystals enclosed by the {hk0} facet as compared to the Pd{100} and Pd{111} facets, and substantially enhanced efficiency and stability were achieved in Pd@mSiO2 particles with yolk-shell structures, indicating a crucial superiority of optimizing the configuration of crystal facets and nanoconfinement. Our study provides an efficient strategy to rationally design and optimize nanocatalysts for promoting catalytic performance.
Collapse
Affiliation(s)
- Dongling Wang
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Chengchao Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lichun Zhang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaobin Xie
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
| | - Yi Lv
- Analytical & Testing Center, Sichuan University, Chengdu 610064, China
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
17
|
Tan J, Zhang X, Lu Y, Li X, Huang Y. Role of Interface of Metal-Organic Frameworks and Their Composites in Persulfate-Based Advanced Oxidation Process for Water Purification. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:21-38. [PMID: 38146074 DOI: 10.1021/acs.langmuir.3c02877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The persulfate activation-based advanced oxidation process (PS-AOP) is an important technology in wastewater purification. Using metal-organic frameworks (MOFs) as heterogeneous catalysts in the PS-AOP showed good application potential. Considering the intrinsic advantages and disadvantages of MOF materials, combining MOFs with other functional materials has also shown excellent PS activation performance and even achieves certain functional expansion. This Review introduces the classification of MOFs and MOF-based composites and the latest progress of their application in PS-AOP systems. The relevant activation/degradation mechanisms are summarized and discussed. Moreover, the importance of catalyst-related interfacial interaction for developing and optimizing advanced oxidation systems is emphasized. Then, the interference behavior of environmental parameters on the interfacial reaction is analyzed. Specifically, the initial solution pH and coexisting inorganic anions may hinder the interfacial reaction process via the consumption of reactive oxygen species, affecting the activation/degradation process. This Review aims to explore and summarize the interfacial mechanism of MOF-based catalysts in the activation of PS. Hopefully, it will inspire researchers to develop new AOP strategies with more application prospects.
Collapse
Affiliation(s)
- Jianke Tan
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xiaodan Zhang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuwan Lu
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Xue Li
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Yuming Huang
- Key Laboratory of Eco-Environments in Three Gorges Reservoir Region (Ministry of Education), College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
18
|
Wu Y, Wang X, She T, Li T, Wang Y, Xu Z, Jin X, Song H, Yang S, Li S, Yan S, He H, Zhang L, Zou Z. Iron 3D-Orbital Configuration Dependent Electron Transfer for Efficient Fenton-Like Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306464. [PMID: 37658488 DOI: 10.1002/smll.202306464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/18/2023] [Indexed: 09/03/2023]
Abstract
Transition metals are excellent active sites to activate peroxymonosulfate (PMS) for water treatment, but the favorable electronic structures governing reaction mechanism still remain elusive. Herein, the authors construct typical d-orbital configurations on iron octahedral (FeOh ) and tetrahedral (FeTd ) sites in spinel ZnFe2 O4 and FeAl2 O4 , respectively. ZnFe2 O4 (136.58 min-1 F-1 cm2 ) presented higher specific activity than FeAl2 O4 (97.47 min-1 F-1 cm2 ) for tetracycline removal by PMS activation. Considering orbital features of charge amount, spin state, and orbital arrangement by magnetic spectroscopic analysis, ZnFe2 O4 has a larger bond order to decompose PMS. Using this descriptor, high-spin FeOh is assumed to activate PMS mainly to produce nonradical reactive oxygen species (ROS) while high-spin FeTd prefers to induce radical species. This hypothesis is confirmed by the selective predominant ROS of 1 O2 on ZnFe2 O4 and O2 •- on FeAl2 O4 via quenching experiments. Electrochemical determinations reveal that FeOh has superior capability than FeTd for feasible valence transformation of iron cations and fast interfacial electron transfer. DFT calculations further suggest octahedral d-orbital configuration of ZnFe2 O4 is beneficial to enhancing Fe-O covalence for electron exchange. This work attempts to understand the d-orbital configuration-dependent PMS activation to design efficient catalysts.
Collapse
Affiliation(s)
- Yijie Wu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Wang
- School of Mathematics and Physics, North China Electric Power University, Beijing, 102206, P. R. China
| | - Tiantian She
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Taozhu Li
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Yunheng Wang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Zhe Xu
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Xin Jin
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Haiou Song
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shaogui Yang
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shiyin Li
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Shicheng Yan
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, Nanjing University, Nanjing, 210093, P. R. China
| | - Huan He
- School of Environment, Jiangsu Engineering Lab of Water and Soil Eco-remediation, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Limin Zhang
- Green Economy Development Institute, Nanjing University of Finance and Economics, Nanjing, 210023, P. R. China
| | - Zhigang Zou
- National Laboratory of Solid State Microstructures, Collaborative Innovation Center of Advanced Microstructures, Eco-Materials and Renewable Energy Research Center (ERERC), College of Engineering and Applied Sciences, School of Physics, Nanjing University, Nanjing, 210093, P. R. China
| |
Collapse
|
19
|
Liu X, Hao Z, Fang C, Pang K, Yan J, Huang Y, Huang D, Astruc D. Using waste to treat waste: facile synthesis of hollow carbon nanospheres from lignin for water decontamination. Chem Sci 2023; 15:204-212. [PMID: 38131073 PMCID: PMC10732141 DOI: 10.1039/d3sc05275c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
Lignin, the most abundant natural material, is considered as a low-value commercial biomass waste from paper mills and wineries. In an effort to turn biomass waste into a highly valuable material, herein, a new-type of hollow carbon nanospheres (HCNs) is designed and synthesized by pyrolysis of biomass dealkali lignin, as an efficient nanocatalyst for the elimination of antibiotics in complex water matrices. Detailed characterization shows that HCNs possess a hollow nanosphere structure, with abundant graphitic C/N and surface N and O-containing functional groups favorable for peroxydisulfate (PDS) activation. Among them, HCN-500 provides the maximum degradation rate (95.0%) and mineralization efficiency (74.4%) surpassing those of most metal-based advanced oxidation processes (AOPs) in the elimination of oxytetracycline (OTC). Density functional theory (DFT) calculations and high-resolution mass spectroscopy (HR-MS) were employed to reveal the possible degradation pathway of OTC elimination. In addition, the HCN-500/PDS system is also successfully applied to real antibiotics removal in complex water matrices (e.g. river water and tap water), with excellent catalytic performances.
Collapse
Affiliation(s)
- Xiang Liu
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Zixuan Hao
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Chen Fang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Kun Pang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Jiaying Yan
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Yingping Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Di Huang
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
| | - Didier Astruc
- Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region of Ministry of Education, College of Materials and Chemical Engineering, China Three Gorges University Yichang Hubei 443002 China
- ISM, UMR CNRS N°5255, Université de Bordeaux 351 Cours de la Libération, 33405 Talence Cedex France
| |
Collapse
|
20
|
Li Z, Zhang W, Liu X, Wang X, Dai H, Chen F, Tang Y, Li J. Iron-Cobalt magnetic porous carbon beads activated peroxymonosulfate for enhanced degradation and Microbial inactivation. J Colloid Interface Sci 2023; 652:1878-1888. [PMID: 37688934 DOI: 10.1016/j.jcis.2023.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/11/2023]
Abstract
Magnetic carbon-based catalysts are promising materials for advanced oxidation processes, offering both high catalytic activity and environmental friendliness, and hold great potential in environmental remediation. In this work, Fe and Co zeolite imidazole frameworks (ZIFs) derived micron-sized magnetic porous carbon beads (MPCBs) were prepared by phase inversion and following the carbonization procedure, and the morphological and structural characteristics of the MPCBs were confirmed. The presence of pores and channels in the MPCBs provides a specific microenvironment for the for the catalysis of the core. Bisphenol A (BPA) was selected for the targeted pollutant, and the catalytic experiments confirmed that the effective catalytic activity of MPCBs in the presence of peroxymonosulfate (PMS), which could almost completely degrade BPA in 20 min with a reaction rate of 0.368 min-1. Furthermore, the MPCBs were used to effectively bacterial inactivation. Intermediate products of the BPA degradation process were validated and the toxicological studies showed a gradual decrease in toxicity, indicating effective reduction of potential hazards. The macroscopic preparation methods we developed for MPCBs that is promising for industrial applications and has the potential to cope with complex environmental remediation.
Collapse
Affiliation(s)
- Zihan Li
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Wuxiang Zhang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China.
| | - Xingyu Liu
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Xingang Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongliang Dai
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Fangyan Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Yubin Tang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, PR China.
| |
Collapse
|
21
|
Zeng T, Tang X, Huang Z, Chen H, Jin S, Dong F, He J, Song S, Zhang H. Atomically Dispersed Fe-N 4 Site as a Conductive Bridge Enables Efficient and Stable Activation of Peroxymonosulfate: Active Site Renewal, Anti-Oxidative Capacity, and Pathway Alternation Mechanism. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:20929-20940. [PMID: 37956230 DOI: 10.1021/acs.est.3c06229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Atomically dispersed metal sites anchored on nitrogen-doped carbonaceous substrates (M-NCs) have emerged as promising alternatives to conventional peroxymonosulfate (PMS) activators; however, the exact contribution of each site still remains elusive. Herein, isolated Fe-N4 active site-decorated three-dimensional NC substrates (FeSA-NC) via a micropore confinement strategy are fabricated to initiate PMS oxidation reaction, achieving a specific activity of 5.16 × 103 L·min-1·g-1 for the degradation of bisphenol A (BPA), which outperforms most of the state-of-the-art single-atom (SA) catalysts. Mechanism inquiry reveals enhanced chemisorption and electron transfer between PMS and FeSA-NC, enabling an inner electron shuttle mechanism in which Fe-N4 serves as a conductive bridge. The Fe-N4 sites reduce the energy barrier for the formation of SO5* and H*, thereby transforming the reaction pathway from directly adjacent electron transfer into reactive oxygen species (ROS)-dominated oxidation. Theoretical calculations and dynamic simulations reveal that the Fe-N4 sites induce facilitated desorption of reaction intermediates (PMS*/BPA*), which collectively contribute to the renewal of active sites and eventually enhance the catalytic durability. This work offers a reasonable interpretation for the important role of the Fe-N4 moiety in altering the activation mechanism and enhancing the antioxidative capacity of NC materials, which fundamentally furnishes theoretical support for SA material design.
Collapse
Affiliation(s)
- Tao Zeng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Xiaofeng Tang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Zheqing Huang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Hong Chen
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310024, P.R. China
| | - Sijia Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Feilong Dong
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Jia He
- Beijing Key Laboratory of Urban Hydrological Cycle and Sponge City Technology, College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Shuang Song
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
| | - Haiyan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, Department of Environment, Zhejiang University of Technology, Zhejiang, Hangzhou 310032, P.R. China
- Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Zhejiang, Hangzhou 310024, P.R. China
| |
Collapse
|
22
|
Su C, Tang C, Sun Z, Hu X. Mechanisms of interaction between metal-organic framework-based material and persulfate in degradation of organic contaminants (OCs): Activation, reactive oxygen generation, conversion, and oxidation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 347:119089. [PMID: 37783089 DOI: 10.1016/j.jenvman.2023.119089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/11/2023] [Accepted: 09/01/2023] [Indexed: 10/04/2023]
Abstract
Metal-organic frameworks (MOFs)-based materials have been of great public interest in persulfate (PS)-based catalytic oxidation for wastewater purification, because of their excellent performance and selectiveness in organic contaminants (OCs) removal in complex water environments. The formation, fountainhead and reaction mechanism of reactive oxygen species (ROSs) in PS-based catalytic oxidation are crucial for understanding the principles of PS activation and the degradation mechanism of OCs. In the paper, we presented the quantitative structure-activity relationship (QSAR) of MOFs-based materials for PS activation, including the relationship of structure and removal efficiency, active sites and ROSs as well as OCs. In various MOFs-based materials, there are many factors will affect their performances. We discussed how various surface modification projects affected the characteristics of MOFs-based materials used in PS activation. Moreover, we revealed the process of ROSs generation by active sites and the oxidation of OCs by ROSs from the micro level. At the end of this review, we putted forward an outlook on the development trends and faced challenges of MOFs for PS-based catalytic oxidation. Generally, this review aims to clarify the formation mechanisms of ROSs via the active sites on the MOFs and the reaction mechanism between ROSs and OCs, which is helpful for reader to better understand the QSAR in various MOFs/PS systems.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Chenliu Tang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
23
|
Zhang M, Ruan J, Wang X, Shao W, Chen Z, Chen Z, Gu C, Qiao W, Li J. Selective oxidation of organic pollutants based on reactive oxygen species and the molecular structure: Degradation behavior and mechanism analysis. WATER RESEARCH 2023; 246:120697. [PMID: 37837899 DOI: 10.1016/j.watres.2023.120697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 09/12/2023] [Accepted: 10/03/2023] [Indexed: 10/16/2023]
Abstract
The selective and rapid elimination of refractory organic pollutants from surface water is significant. However, the relationship of between reactive oxygen species (ROSs) and diversified pollutants molecular structures still needs to be further clarified. Here, we utilize polydopamine (PDA)-assisted coating strategy to prepare hollow 2D carbon nanosheet (ZPL-HCNS) and 2D Co3O4 nanosheet (ZPL-Co3O4) by thermolysis of PDA coated ZIF-L (ZIF-L@PDA) precursor under different gas atmosphere, which realizes the controlled generation of radicals and non-radicals. Organic pollutants including bisphenols, sulfonamides, quinolones, tetracyclines, and azo dyes are applied to assess the catalytic performance. Results show that dyes containing azo structure are more likely to be degraded by radical process, which is due to that the energy (ΔE) requirements to break the azo bond is higher than energy released from singlet oxygen to oxygen molecule and lower than that of sulfate radical to sulfate. Frontier molecular orbital theory HOMO-LUMO and Fukui function expounded the possible selectivity mechanism. In addition, the degradation pathway and biotoxicity test are carried out. This work provides a reference to illustrate the selective degradation for ROSs and molecular structure of pollutants.
Collapse
Affiliation(s)
- Ming Zhang
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jingqi Ruan
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Xinhao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weizhen Shao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhonglin Chen
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Zhanghao Chen
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Cheng Gu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Weichuan Qiao
- Department of Environmental Engineering, College of Ecology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Jiansheng Li
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
24
|
Su C, Zhang N, Zhu X, Sun Z, Hu X. pH adjustable MgAl@LDH-coated MOFs-derived Co 2.25Mn 0.75O 4 for SMX degradation in PMS activated system. CHEMOSPHERE 2023; 339:139672. [PMID: 37517665 DOI: 10.1016/j.chemosphere.2023.139672] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Sulfate radical-based advanced oxidation processes (SR-AOPs) is considered as one of the most promising technologies for antibiotic pollution. In this study, a core-shell catalyst of cobalt-manganese oxide derived from CoMn-MOFs coating by MgAl-LDH (Co/Mn@LDH) was synthesized for peroxymonosulfate (PMS) activation to degrade sulfamethoxazole (SMX). Degradation efficiency of nearly 100% and a mineralization efficiency of 68.3% for SMX were achieved in Co/Mn@LDH/PMS system. Mn species and out shell MgAl-LDH greatly suppressed the cobalt ions leaching, which only 23 μg/L Co ions were detected by ICP after the reaction. SO4·- was identified as dominant reactive species in the system. Furthermore, the possible reactive sites of SMX were predicted by the density functional theory (DFT) calculations. And the intermediates of SMX were detected by LC-MS and the degradation pathway was proposed based on the results above. The ECOSAR results suggested the intermediates of SMX showed a relatively low toxicity compared to SMX, indicating huge potential of utilization of Co/Mn@LDH in SR-AOPs system.
Collapse
Affiliation(s)
- Chenxin Su
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Nizi Zhang
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China
| | - Xiaobiao Zhu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| | - Zhirong Sun
- Faculty of Environment and Life, Beijing University of Technology, Beijing, 100124, PR China
| | - Xiang Hu
- Research Group of Water Pollution Control and Water Reclamation, College of Chemical Engineering, Beijing University of Chemical Technology, Beijing, 100029, PR China.
| |
Collapse
|
25
|
Liu J, Dong Y, Kang Y, Kong Q, Wang K, Mao F, Bu Y, Zhou R, Zhang C, Wu H. Exploration for cobalt/nitrogen-doped catalyst to creatinine degradation via peroxymonosulfate activation: toxicity evaluation, statistical modeling, and mechanisms study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:109110-109122. [PMID: 37770734 DOI: 10.1007/s11356-023-29990-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 09/16/2023] [Indexed: 09/30/2023]
Abstract
Developing multifunctional catalysts applied in diversiform modes via advanced oxidation processes (AOPs) is a promising and attractive approach for organic pollution degradation. Herein, a novel hollow bamboo-like structural cobalt/nitrogen-doped carbonized material (CoC/N) was employed as a catalyst for AOPs, in which CoC/N was prepared in situ through calcining a Co-based coordination polymer. When CoC/N was utilized as a peroxymonosulfate (PMS) activator, the catalyst stood out prominent activities for effective CA oxidation. Furthermore, a five-level central composite rotatable design (CCRD) model describing CA decay as a function of PMS concentration, CoC/N dosage, and solution pH value was successfully constructed and engaged to explore the optimal operating conditions. Finally, the possible degradation mechanism of CA in CoC/N-PMS system was proposed by quantum chemistry calculation and LC/MS analysis. This work shed light on the structural morphology of the catalyst and its PMS synergy degradation pathway, which promotes its applications in miscellaneous pollutant degradation. A new Co/N-doped material was used to degrade unconventionality organic pollutant creatinine (CA) for the first time, in which the scientific approaches of five-level central composite rotatable design (CCRD) model, response surface methodology (RSM) and density function theory (DFT) were employed to evaluate the material performance and CA degradation pathway. The toxicity evaluation, statistical modeling and mechanisms study have been investigated meticulously.
Collapse
Affiliation(s)
- Jiadi Liu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yawen Dong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yu Kang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Qian Kong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Kuaibing Wang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Feifei Mao
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Yuanqing Bu
- Research Center of Solid Waste Pollution Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China
- Jiangsu Collaborative Innovation Center of Atmospheric Environment and Equipment Technology, Nanjing University of Information Science & Technology, Nanjing, 210044, People's Republic of China
| | - Rong Zhou
- Research Center of Solid Waste Pollution Prevention, Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing, 210042, People's Republic of China
| | - Chunyong Zhang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
- College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, People's Republic of China.
| |
Collapse
|
26
|
Zhang BT, Yan Z, Zhao J, Chen Z, Liu Y, Fan M, Du W. Peroxymonocarbonate activation via Co nanoparticles confined in metal-organic frameworks for efficient antibiotic degradation in different actual water matrices. WATER RESEARCH 2023; 243:120340. [PMID: 37480599 DOI: 10.1016/j.watres.2023.120340] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 06/29/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
Traditional advanced oxidation processes suffer from low availability of ultrashort lifetime radicals and declining stability of catalysts. Co nanoparticles in hollow bimetallic metal-organic frameworks (Co@MOFs) were synthesized via a solvothermal method. Nanoconfinement and peroxymonocarbonate (PMC) degradation system endows Co@MOFs with high catalytic activity and stability even in the actual water matrices. The nanocomposites exhibited 100-200 nm polyhedron structure with irregular nanocavity between the 20 nm shell and multicores. Co nanoparticles were completely encapsulated by the FeIII-MOF-5 shell according to the X-ray diffraction and photoelectron spectra. Both 0.8 nm micropores and 3.6 nm mesopores were proven to be present. The yolk-shell Co@MOFs exhibited higher catalytic performance than that of Co nanoparticles, hollow FeIII-MOF-5 and its core-shell counterpart toward PMC activation during sulfamethoxazole degradation. The catalytic activities of Co@MOFs for the activation of unsymmetrical peroxides (PMC and peroxymonosulfate) were much higher than those for the symmetrical peroxides (H2O2 and persulfate) and the heterogeneous catalysis was dominant in the Co@MOFs activated H2O2 and PMC systems. The MOF stability was the highest and metal leakages were the least in the activated PMC system among the four peroxides because of mild reaction conditions and the alkalescent solution (pH = 8.3-8.4). Furthermore, the high removal efficiencies (>94%) and degradation rates could be maintained in the different actual water matrices due to the confinement effects. The contributions of carbonate and hydroxyl radicals were primary for sulfamethoxazole degradation, and superoxide anion and singlet oxygen also played essential roles according to scavenging experiments and time-series spin-trapping electron spin resonance spectra. Six degradation pathways were proposed according to 26 intermediate identification and the pharmacophores of more than 80% intermediates were destroyed, which would benefit subsequent biological treatment. Successful combination of nanoconfinement and PMC might provide a new effective solution for pollution remediation.
Collapse
Affiliation(s)
- Bo-Tao Zhang
- College of Water Sciences, Beijing Normal University, Beijing 100875, China.
| | - Zihan Yan
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Juanjuan Zhao
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Zhuo Chen
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Yuchun Liu
- College of Water Sciences, Beijing Normal University, Beijing 100875, China
| | - Maohong Fan
- College of Engineering and Physical Sciences, University of Wyoming, Laramie, WY 82071, United States.
| | - Wei Du
- Agilent Technologies (China) Co., Ltd., Beijing 100102, China
| |
Collapse
|
27
|
Wen R, Shen G, Meng L. Research progress of metal-organic framework-based material activation of persulfate to degrade organic pollutants in water. RSC Adv 2023; 13:24565-24575. [PMID: 37593667 PMCID: PMC10427975 DOI: 10.1039/d3ra04296k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/31/2023] [Indexed: 08/19/2023] Open
Abstract
The rapid development of industry in recent years has led to the introduction of serious pollutants into water bodies, and there is an urgent need for efficient organic degradation technologies. At present, selective peroxynitrite (PS) oxidation (SR-AOPs) is an effective way to treat pollutants in water bodies, and it is necessary to select a suitable material for the activation of peroxynitrite. Metal-organic frameworks (MOFs), with their tunable structure, large specific surface area, and tunable ligand molecules exhibit excellent reactivity and catalytic performance in the activation of persulfate. With MOF-based materials for PS activation as a novel advanced oxidation technology, this study reviews MOFs and their composites and derived materials. The current research status of activated persulfate for the treatment of organic pollutants in water, the influence of different systems on the degradation performance are discussed, and the activation and degradation mechanisms are discussed; the problems of the above materials in the degradation of organic pollutants are summarized, and research directions based on the coupled activated persulfate system of MOF materials are proposed.
Collapse
Affiliation(s)
- Ruiyang Wen
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Guoliang Shen
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| | - Linghui Meng
- School of Petrochemical Engineering, Shenyang University of Technology Liaoyang 111003 China
| |
Collapse
|
28
|
Zhang M, Huang Y, Zou J, Yang Y, Yao Y, Cheng G, Yang Y. Advanced Oxidation Nanoprocessing Boosts Immunogenicity of Whole Tumor Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2302250. [PMID: 37211712 PMCID: PMC10401122 DOI: 10.1002/advs.202302250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Whole tumor cells expressing a wide array of tumor antigens are considered as a highly promising source of antigens for cancer vaccines. However, simultaneously preserving the antigen diversity, improving immunogenicity, and eliminating the potential tumorigenic risk of whole tumor cells are highly challenging. Inspired by the recent progress in sulfate radical-based environmental technology, herein, an advanced oxidation nanoprocessing (AONP) strategy is developed for boosting the immunogenicity of whole tumor cells. The AONP is based on the activation of peroxymonosulfate by ZIF-67 nanocatalysts to produce SO4 -∙ radicals continuously, leading to sustained oxidative damage to tumor cells and consequently extensive cell death. Importantly, AONP causes immunogenic apoptosis as evidenced by the release of a series of characteristic damage associated molecular patterns and at the same time maintains the integrity of cancer cells, which is critical to preserve the cellular components and thus maximize the diversity of antigens. Finally, the immunogenicity of AONP-treated whole tumor cells is evaluated in a prophylactic vaccination model, demonstrating significantly delayed tumor growth and increased survival rate of live tumor-cell-challenged mice. It is expected that the developed AONP strategy would pave the way to develop effective personalized whole tumor cell vaccines in future.
Collapse
Affiliation(s)
- Min Zhang
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yiming Huang
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Jie Zou
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yang Yang
- Key Laboratory of Colloid and Interface Chemistry of the Ministry of EducationSchool of Chemistry and Chemical EngineeringShandong UniversityJinanShandong250100P. R. China
| | - Yue Yao
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Guofeng Cheng
- Clinical Medicine Scientific and Technical Innovation CenterShanghai Tenth People's HospitalTongji University School of MedicineShanghai200092P. R. China
| | - Yannan Yang
- Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Institute of OptoelectronicsFudan UniversityShanghai200433P. R. China
- Australian Institute for Bioengineering and NanotechnologyThe University of QueenslandBrisbaneQueensland4072Australia
| |
Collapse
|
29
|
Tran NM, Nguyen AN, Bae J, Kim J, Kim D, Yoo H. Recent strategies for constructing hierarchical multicomponent nanoparticles/metal-organic framework hybrids and their applications. NANOSCALE ADVANCES 2023; 5:3589-3605. [PMID: 37441260 PMCID: PMC10334412 DOI: 10.1039/d3na00213f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/25/2023] [Indexed: 07/15/2023]
Abstract
Hybrid nanoparticles with unique tailored morphologies and compositions can be utilized for numerous applications owing to their combination of inherent properties as well as the structural and supportive functions of each component. Controlled encapsulation of nanoparticles within nanospaces (NPNSs) of metal-organic frameworks (MOFs) (denoted as NPNS@MOF) can generate a large number of hybrid nanomaterials, facilitating superior activity in targeted applications. In this review, recent strategies for the fabrication of NPNS@MOFs with a hierarchical architecture, tailorability, unique intrinsic properties, and superior catalytic performance are summarized. In addition, the latest and most important examples in this sector are emphasized since they are more conducive to the practical applicability of NPNS@MOF nanohybrids.
Collapse
Affiliation(s)
- Ngoc Minh Tran
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Anh Ngoc Nguyen
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jungeun Bae
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Jinhee Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Dahae Kim
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| | - Hyojong Yoo
- Department of Materials Science and Chemical Engineering, Hanyang University Ansan Gyeonggi-do 15588 Republic of Korea
| |
Collapse
|
30
|
Wang L, Li Z, Wang Y, Gao M, He T, Zhan Y, Li Z. Surface ligand-assisted synthesis and biomedical applications of metal-organic framework nanocomposites. NANOSCALE 2023. [PMID: 37323021 DOI: 10.1039/d3nr01723k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Metal-organic framework (MOF) nanocomposites have recently gained intensive attention for biosensing and disease therapy applications owing to their outstanding physiochemical properties. However, the direct growth of MOF nanocomposites is usually hindered by the mismatched lattice in the interface between the MOF and other nanocomponents. Surface ligands, molecules with surfactant-like properties, are demonstrated to exhibit the robust capability to modify the interfacial properties of nanomaterials and can be utilized as a powerful strategy for the synthesis of MOF nanocomposites. Besides this, surface ligands also exhibit significant functions in the morphological control and functionalization of MOF nanocomposites, thus greatly enhancing their performance in biomedical applications. In this review, the surface ligand-assisted synthesis and biomedical applications of MOF nanocomposites are comprehensively reviewed. Firstly, the synthesis of MOF nanocomposites is discussed according to the diverse roles of surface ligands. Then, MOF nanocomposites with different properties are listed with their applications in biosensing and disease therapy. Finally, current challenges and further directions of MOF nanocomposites are presented to motivate the development of MOF nanocomposites with elaborate structures, enriched functions, and excellent application prospects.
Collapse
Affiliation(s)
- Lihua Wang
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhiheng Li
- College of Materials and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yingqian Wang
- College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan, 030024, China
| | - Mengyue Gao
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Ting He
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Yifang Zhan
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| | - Zhihao Li
- Wuhan Academy of Agricultural Sciences, Wuhan, 430072, China.
| |
Collapse
|
31
|
Liu T, Xiao S, Li N, Chen J, Zhou X, Qian Y, Huang CH, Zhang Y. Water decontamination via nonradical process by nanoconfined Fenton-like catalysts. Nat Commun 2023; 14:2881. [PMID: 37208339 DOI: 10.1038/s41467-023-38677-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 05/09/2023] [Indexed: 05/21/2023] Open
Abstract
There is an urgent need to develop effective and sustainable solutions to reduce water pollution. Heterogeneous Fenton-like catalysts are frequently used to eliminate contaminants from water. However, the applicability of these catalysts is limited due to low availability of the reactive species (RS). Herein, nanoconfinement strategy was applied to encapsulate short-lived RS at nanoscale to boost the utilization efficiency of the RS in Fenton-like reactions. The nanoconfined catalyst was fabricated by assembling Co3O4 nanoparticles in carbon nanotube nanochannels to achieve exceptional reaction rate and excellent selectivity. Experiments collectively suggested that the degradation of contaminants was attributed to singlet oxygen (1O2). Density functional theory calculations demonstrated the nanoconfined space contributes to quantum mutation and alters the transition state to lower activation energy barriers. Simulation results revealed that the enrichment of contaminant on the catalyst reduced the migration distance and enhanced the utilization of 1O2. The synergy between the shell layer and core-shell structure further improved the selectivity of 1O2 towards contaminant oxidation in real waters. The nanoconfined catalyst is expected to provide a viable strategy for water pollution control.
Collapse
Affiliation(s)
- Tongcai Liu
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Shaoze Xiao
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Nan Li
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Jiabin Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yajie Qian
- College of Environmental Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| |
Collapse
|
32
|
Xie Q, Wang X, Chen W, Lei C, Huang B. Engineering active heterojunction architecture with oxygenated-Co, Mo bimetallic sulfide heteronanosheet and graphene oxide for peroxymonosulfate activation. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130852. [PMID: 36753909 DOI: 10.1016/j.jhazmat.2023.130852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
Bimetallic sulfides have distinctive catalytic property in activating peroxymonosulfate (PMS) for water remediation. Polyoxometalates as potential precursors have rarely been reported for the catalytic degradation of refractory organic pollutants. Herein, a composite catalyst of Co-Mo bimetallic sulfides supported onto graphene oxide (O-CoMoS/GO) with a heterojunction architecture was synthesized through a hydrothermal strategy with polyoxometalates ((NH4)4[CoIIMo6O24H6]·6H2O) as the precursor and applied in the PMS activation. This material showed a superior performance for the catalytic degradation of the model organic pollutant, 4-chlorophenol (rapidly removed within 10 min with an apparent reaction rate constant of 0.5458 min-1). O-CoMoS/GO outperformed most of the reported catalysts in terms of activity and had a strong tolerance towards common organic and inorganic compounds in water, and could perform well in different real water systems. Experimental and theoretical results indicated that the introduction of GO could achieve the enrichment of electrons on the metals and reduce the d band center (εd) of Co close to the Fermi level (εF), thereby facilitating the interfacial electron transfer process. The activation mechanism was due to the as-prepared bimetallic sulfides and the formation of heterojunction structure with GO, where Co(II) as the active center could be regenerated by the adjacent Mo element (as co-catalyst) and by gathering electrons from GO through the Co/Mo-O-C coupling. This work provides insights into the design of bimetallic sulfide catalysts in activating PMS for water remediation.
Collapse
Affiliation(s)
- Qianqian Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xuxu Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Wenqian Chen
- Department of Pharmacy, National University of Singapore, S9, 4 Science Drive 2, 117544, Singapore.
| | - Chao Lei
- School of Hydraulic Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Binbin Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
33
|
Xiao Z, Yang B, Feng X, Liao Z, Shi H, Jiang W, Wang C, Ren N. Density Functional Theory and Machine Learning-Based Quantitative Structure-Activity Relationship Models Enabling Prediction of Contaminant Degradation Performance with Heterogeneous Peroxymonosulfate Treatments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3951-3961. [PMID: 36809928 DOI: 10.1021/acs.est.2c09034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Heterogeneous peroxymonosulfate (PMS) treatment is recognized as an effective advanced oxidation process (AOP) for the treatment of organic contaminants. Quantitative structure-activity relationship (QSAR) models have been applied to predict the oxidation reaction rates of contaminants in homogeneous PMS treatment systems but are seldom applied in heterogeneous treatment systems. Herein, we established QSAR models updated with density functional theory (DFT) and machine learning approaches to predict the degradation performance for a series of contaminants in heterogeneous PMS systems. We imported the characteristics of organic molecules calculated using constrained DFT as input descriptors and predicted the apparent degradation rate constants of contaminants as the output. The genetic algorithm and deep neural networks were used to improve the predictive accuracy. The qualitative and quantitative results from the QSAR model for the degradation of contaminants can be used to select the most appropriate treatment system. A strategy for selection of the optimum catalyst for PMS treatment of specific contaminants was also established according to the QSAR models. This work not only increases our understanding of contaminant degradation in PMS treatment systems but also highlights a novel QSAR model to predict the degradation performance in complicated heterogeneous AOPs.
Collapse
Affiliation(s)
- Zijie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Bowen Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Xiaochi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Zhenqin Liao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Hongtao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Weiyu Jiang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Caipeng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, P. R. China
| |
Collapse
|
34
|
You J, Li J, Zhang H, Luo M, Xing B, Ren Y, Liu Y, Xiong Z, He C, Lai B. Removal of Bisphenol A via peroxymonosulfate activation over graphite carbon nitride supported NiCx nanoclusters catalyst: Synergistic oxidation of high-valent nickel-oxo species and singlet oxygen. JOURNAL OF HAZARDOUS MATERIALS 2023; 445:130440. [PMID: 36446311 DOI: 10.1016/j.jhazmat.2022.130440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 10/27/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
In this work, a g-C3N4 supported NiCx nanoclusters catalyst (NiCx-CN) was developed, and its performance in activating peroxymonosulfate (PMS) was evaluated. Mechanism investigation stated that although singlet oxygen (1O2) was formed in the catalytic process, its contribution to BPA elimination was weeny. Interestingly, through the experiment with dimethyl sulfoxide as the probe, it was considered that the high-valent nickel-oxo species (Ni&+=O), generated after the interaction of NiCx-CN and PMS, was the dominating reactive oxygen species (ROS). Theoretical calculations (DFT) implied that NiCx-CN might lose electrons to generate high-valent Ni, which was consistent with the detection of Ni3+ on the surface of the used NiCx-CN. Besides, the prepared NiCx-CN showed advantages in resisting the interference of inorganic anions. Meanwhile, three BPA degradation routes had been proposed based on the transformation intermediates. This study will establish a new protocol for PMS activation using heterogeneous Ni-based catalysts to efficiently degrade organic pollutants via a nonradical mechanism.
Collapse
Affiliation(s)
- Junjie You
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Junyi Li
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Heng Zhang
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China.
| | - Mengfan Luo
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Xing
- School of Chemical Engineering, Sichuan University of Science and Engineering, Zigong 643000, China
| | - Yi Ren
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Water Resource & Hydropower, Sichuan University, Chengdu 610065, China
| | - Yang Liu
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Zhaokun Xiong
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Chuanshu He
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| | - Bo Lai
- State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China; Sino-German Centre for Water and Health Research, Sichuan University, Chengdu 610065, China
| |
Collapse
|
35
|
Tian N, Giannakis S, Akbarzadeh L, Hasanvandian F, Dehghanifard E, Kakavandi B. Improved catalytic performance of ZnO via coupling with CoFe 2O 4 and carbon nanotubes: A new, photocatalysis-mediated peroxymonosulfate activation system, applied towards Cefixime degradation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:117022. [PMID: 36549062 DOI: 10.1016/j.jenvman.2022.117022] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 12/10/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
In this study, a ternary ZnO@spinel cobalt ferrite@carbon nanotube magnetic photocatalyst (ZSCF@CNT) was successfully synthesized and used to activate peroxymonosulfate (PMS) for Cefixime (CFX) antibiotic degradation under UVC irradiation. The morphology, optical, structural, and physicochemical properties of ZSCF@CNT were characterized and analyzed by XPS, XRD, FESEM-EDX, TEM, BET, VSM, UV-vis DRS and PL analysis. The results indicated that the ternary ZSCF@CNT photocatalyst exhibited superior catalytic activity on CFX elimination than that of individual components and binary composite catalysts, in which CFX with was rapidly removed under UVC irradiation and PMS. The effect of operational parameters including initial PMS, catalyst, and CFX concentrations and solution pH on the catalytic activity was investigated in detail; the optimal conditions were: pH: 7.0, catalyst: 0.3 g/L, PMS: 3.0 mM, leading to total CFX (10 mg/L) elimination in ∼20 min. Based on the radical scavenger tests, various radicals and non-radical species including sulfate, hydroxyl and superoxide radicals, singlet oxygen and electrons were involved in the ZSCF@CNT/PMS/UVC system. The high surface area, reduced agglomeration formation and excellent separation of photogenerated electron-hole pairs embodied in ZSCF@CNT photocatalyst conferred its superior catalytic activity and stability. The results from the tests in real water matrices revealed that ZSCF@CNT could be a promising photocatalyst to activate PMS for actual aqueous matrices' treatment.
Collapse
Affiliation(s)
- Na Tian
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China; Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES, 28040, Madrid, Spain
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Unidad Docente Ingeniería Sanitaria, C/ Profesor Aranguren, S/n, ES, 28040, Madrid, Spain
| | - Leila Akbarzadeh
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran
| | - Farzad Hasanvandian
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Emad Dehghanifard
- Department of Environmental Health Engineering, Faculty of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran.
| |
Collapse
|
36
|
Yang R, Peng Q, Ahmed A, Gao F, Yu B, Shen Y, Cong H. Yolk-shell Co 3 O 4 @Fe 3 O 4 /C Nanocomposites as a Heterogeneous Fenton-like Catalyst for Organic Dye Removal. Chemistry 2023; 29:e202203097. [PMID: 36453090 DOI: 10.1002/chem.202203097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022]
Abstract
The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites with Co3 O4 as the core, Fe3 O4 /C as the shell, and a cavity structure were synthesized by the hard template method. The physical and chemical properties of the composites were characterized by SEM, TEM, XRD, TGA, XPS, BET, and VSM. The specific surface area of yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites is 175.9 m2 g-1 , showing superparamagnetic properties. The yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites were used as heterogeneous Fenton catalysts to activate peroxymonosulfate (PMS) to degrade MB, which showed high catalytic degradation performance. The degradation rate of MB reached 100 % within 30 min under the circumstances of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites dosage of 0.1 g L-1 , the PMS dosage of 1.0 g L-1 , the initial MB concentration of 100 mg L-1 , an initial pH of 5.5, and a temperature of 30±2 °C. The enhanced catalytic performance of the yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be attributed to the synergistic effect of the two catalytically active materials and the middle cavity. The effects of different operating parameters and co-existing anion species on MB degradation were also investigated. Electron paramagnetic resonance (EPR) analysis and quenching experiments confirmed that the formation of SO4 ⋅- in the yolk-shell Co3 O4 @Fe3 O4 /C/PMS system contributes to MB degradation. In addition, yolk-shell Co3 O4 @Fe3 O4 /C nanocomposites can be easily separated from the pollutant solution under the action of an external magnetic field, and the degradation rate of MB can still reach 98 % after five cycles, indicating that it has good stability and reusability and has broad application prospects in the field of water purification.
Collapse
Affiliation(s)
- Ruixia Yang
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Qiaohong Peng
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Adeel Ahmed
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Fengyuan Gao
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Bing Yu
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, P. R. China
| | - Youqing Shen
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China
| | - Hailin Cong
- College of Chemistry and Chemical Engineering College of Materials Science and Engineering College of Environmental Science and Engineering Institute of Biomedical Materials and Engineering, Qingdao University, Qingdao, 266071, P. R. China.,State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, 266071, P. R. China.,School of Materials Science and Engineering, Shandong University of Technology, Zibo, 255000, P. R. China
| |
Collapse
|
37
|
Zhang RJ, Chai BL, Xu H, Zheng TF, Zhu ZH, Peng Y, Chen JL, Liu SJ, Wen HR. Enhanced Heterogeneous Catalytic Activity of Peroxymonosulfate for Rhodamine B Degradation via a Co II-Based Metal-Organic Framework. Inorg Chem 2023; 62:2760-2768. [PMID: 36724472 DOI: 10.1021/acs.inorgchem.2c03888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
A stable metal-organic framework with the formula {[Co(BBZB)(IPA)]·H2O}n (JXUST-23, BBZB = 4,7-bis(1H-benzimidazole-1-yl)-2,1,3-benzothiadiazole and H2IPA = isophthalic acid) was constructed by incorporating Co2+ ions and two conjugated ligands under solvothermal conditions. JXUST-23 takes a dinuclear cluster-based layer structure with a porosity of 2.7%. In this work, JXUST-23 was used to activate peroxymonosulfate (PMS) to degrade rhodamine B (RhB), a difficult-to-degrade pollutant in water. Compared with pure PMS or JXUST-23, the JXUST-23/PMS system displays the best degradation ability of RhB in neutral solution. When the mass ratio of JXUST-23 to PMS was 2:3, 99.72% of RhB (50 ppm) was removed within 60 min, and the reaction rate was 0.1 min-1. Furthermore, free radical quenching experiments show that SO4•- was the main free radical during the process of RhB degradation. In addition, JXUST-23 exhibits good reusability for the degradation of the organic dye RhB, making it a potential candidate for environmental remediation.
Collapse
Affiliation(s)
- Rui-Jie Zhang
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Bi-Lian Chai
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Hui Xu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Teng-Fei Zheng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Zi-Hao Zhu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Yan Peng
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Jing-Lin Chen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - Sui-Jun Liu
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| | - He-Rui Wen
- School of Chemistry and Chemical Engineering, Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry, Jiangxi University of Science and Technology, Ganzhou 341000, Jiangxi, P. R. China
| |
Collapse
|
38
|
Jin X, Yao S, Liu Y, Tang J, Zhu M, Liu H, Yu Y, Yu X, Sun J. Photocatalysis of carbamazepine via activating bisulfite by ultraviolet: Performance, transformation mechanism, and residual toxicity assessment of intermediates products. CHEMOSPHERE 2023; 315:137741. [PMID: 36610515 DOI: 10.1016/j.chemosphere.2023.137741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/13/2022] [Accepted: 01/02/2023] [Indexed: 06/17/2023]
Abstract
Carbamazepine (CBZ) as an extensively distributed emerging pollutant has menaced ecological security. The degradation performance of CBZ by UV driven bisulfite process was investigated in this work. The kinetics results indicated that CBZ was high-efficiently degraded by UV/bisulfite following a pseudo first-order kinetic model (Kobs = 0.0925 min-1). SO4•- and •OH were verified as the reactive oxidants by EPR test and the radicals scavenging experiment using MeOH and TBA. SO4•- played a dominant role for CBZ degradation. The Density functional theory (DFT) and LC-qTOF-MS/MS clarified that hydroxylation, ketonation, ring opening reaction, and ring contraction were main transformation patterns of CBZ. As to influence factors, CBZ degradation was significantly hindered in presence of CO32-, HPO42- and NOM. Toxicological analysis derived from metabonomics suggested that the remarkable alteration of metabolic profile was triggered by exposure to intermediates mixture. CBZ intermediates interfered in several key metabolic pathways, including pentose phosphate, amino acids, lysine degradation, glycerophospholipid, glutathione, nucleotides and carbohydrate, which was alleviated after UV/bisulfite treatment. This work provided a meaningful support to potential risk of CBZ intermediates products, which shed light on the future application in eliminating drugs using UV /bisulfite.
Collapse
Affiliation(s)
- Xu Jin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao, 266100, China
| | - Siyu Yao
- Department of Environmental Sciences, College of Earth and Environment Sciences, Lanzhou University, Lanzhou, 730000, China
| | - Yang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Jin Tang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Minghan Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, Guangdong, China
| | - Hang Liu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Yuanyuan Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China
| | - Xiaolong Yu
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Jianteng Sun
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University OfPetrochemical Technology, Maoming, 525000, Guangdong, China.
| |
Collapse
|
39
|
Qu C, Lv X, Wang R, Zhang R, Guo W. Controllable synthesis of FeMn bimetallic ferrocene-based metal-organic frameworks to boost the catalytic efficiency for removal of organic pollutants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:17449-17458. [PMID: 36195810 DOI: 10.1007/s11356-022-23315-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
A series of FeMn bimetallic ferrocene-based metal-organic frameworks (FeMn-Fc-MOFs) with various molar ratios of Fe and Mn (1:9, 2:8, 4:6, 6:4) were successfully synthesized using a simple hydrothermal synthesis method and employed as an efficient activator on persulfate (PS) activation for water decontamination. Characterizations demonstrated that Fe and Mn were smoothly introduced into ferrocene-based MOFs and various molar ratios of Fe:Mn had some influence on crystallinity and surface structure of FeMn-Fc-MOFs. Within 120 min, Fe4Mn6-Fc-MOFs demonstrated the best catalytic activity among the different molar ratios, and acid orange 7(AO7) degradation rate was up to 92.0%. In addition, electrochemical experiments revealed that Fe4Mn6-Fc-MOFs possessed superior electron transfer capability than other FeMn-Fc-MOFs, leading to better catalytic performance. Moreover, quenching tests and electron paramagnetic resonance (EPR) detection indicated that hydroxyl radicals and sulfate radicals were both responsible for AO7 decomposition. Notably, the redox cycle of Fe(II)/Fe(III) and Mn(II)/Mn(IV) was discovered in the Fe4Mn6-Fc-MOFs/PS system, which was considered as the limiting process for the cleavage of the O-O bond in PS to generate active radicals. Ultimately, the Fe4Mn6-Fc-MOFs exhibits an excellent universality and good cycling stability for 5 continuous runs. This paper broadens the application of ferrocene-based MOFs on heterogeneous PS activation in environmental catalysis.
Collapse
Affiliation(s)
- Chengjie Qu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Xiaoyu Lv
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Rongyao Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Ruijuan Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Weilin Guo
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| |
Collapse
|
40
|
Functional polymers-assisted confined pyrolysis strategy to transform MOF into hierarchical Co/N-doped carbon for peroxymonosulfate advanced oxidation processes. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
41
|
Xu Z, Jiang J, Wang M, Wang J, Tang Y, Li S, Liu J. Enhanced levofloxacin degradation by hierarchical porous Co3O4 with rich oxygen vacancies activating peroxymonosulfate: Performance and mechanism. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2022.122055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Yang Q, Yang Y, Zhang Y, Zhang L, Sun S, Dong K, Luo Y, Wu J, Kang X, Liu Q, Hamdy MS, Sun X. Highly efficient activation of peroxymonosulfate by biomass juncus derived carbon decorated with cobalt nanoparticles for the degradation of ofloxacin. CHEMOSPHERE 2023; 311:137020. [PMID: 36330974 DOI: 10.1016/j.chemosphere.2022.137020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
The cobalt nanoparticles decorated biomass Juncus derived carbon (Co@JDC) was prepared by facile calcination strategy and applied to activate peroxymonosulfate (PMS) for eliminating ofloxacin (OFX) in the water environment. The results of catalytic experiments show that 97% of OFX degradation efficiency and 70.4% of chemical oxygen demand removal rate are obtained within 24 min at 0.1 g L-1 Co@JDC, 0.2 g L-1 PMS, 20 mg L-1 OFX (100 mL), and pH = 7, which indicates that Co@JDC/PMS system exhibits excellent performance. Meanwhile, the experimental results of affect factor show that Co@JDC/PMS system can operate in a wider pH range (3-9) and Cl-1, NO3-1, and SO42- have an ignorable effect on OFX degradation. The radical identification experiments confirm that SO4˙-, ·OH, O2˙-, and 1O2 are involved in the process of PMS activation, especially SO4˙- and 1O2 are the main contributors. Furthermore, a possible PMS activation mechanism by Co@JDC was proposed and the degradation pathways of OFX were deduced. Finally, the stable catalytic activity, negligible leaching of Co2+, and the outstanding degradation efficiency for other antibiotics prove that Co@JDC possesses good stability and universality.
Collapse
Affiliation(s)
- Qin Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Yingchun Yang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China.
| | - Yujie Zhang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Longcheng Zhang
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Shengjun Sun
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China
| | - Kai Dong
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Yongsong Luo
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China
| | - Junyou Wu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Xiaowen Kang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, 610225, Sichuan, China
| | - Qian Liu
- Institute for Advanced Study, Chengdu University, Chengdu, 610106, Sichuan, China
| | - Mohamed S Hamdy
- Catalysis Research Group (CRG), Department of Chemistry, College of Science, King Khalid University, P.O. Box 9004, 61413, Abha, Saudi Arabia
| | - Xuping Sun
- Institute of Fundamental and Frontier Sciences, University of Electronic Science and Technology of China, Chengdu, 610054, Sichuan, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, Jinan, 250014, Shandong, China.
| |
Collapse
|
43
|
The enhanced mechanism of Fe(III)/H2O2 system by N, S-doped mesoporous nanocarbon for the degradation of sulfamethoxazole. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
44
|
Graphene-Supported Fe–N Catalysts for Activation of Persulfate for Trichlorophenol Degradation by Surface Radicals. Catal Letters 2022. [DOI: 10.1007/s10562-022-04198-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
45
|
Zhao T, Yang Y, Deng X, Ma S, Wu M, Zhang Y, Guan Y, Zhu Y, Yao T, Yang Q, Wu J. Preparation of double-yolk egg-like nanoreactor: Enhanced catalytic activity in Fenton-like reaction and insight on confinement effect. J Colloid Interface Sci 2022; 625:774-784. [DOI: 10.1016/j.jcis.2022.06.065] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/06/2022] [Accepted: 06/15/2022] [Indexed: 11/29/2022]
|
46
|
Wang G, Hambly AC, Zhao D, Wang G, Tang K, Andersen HR. Peroxymonosulfate activation by suspended biogenic manganese oxides for polishing micropollutants in wastewater effluent. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
47
|
Zhang M, Chen Z, Ruan J, Shao W, Wei W, Guo H, Chen Z, Qiao W. Confined catalytic with yolk-shell nanoreactor boosting the efficient removal of antibiotic by low temperature plasma-catalytic degradation: reaction kinetics and mechanisms. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
48
|
Ding J, Wang L, Ma YL, Sun YG, Zhu YB, Wang LQ, Li YY, Ji WX. Synergistically boosted non-radical catalytic oxidation by encapsulating Fe3O4 nanocluster into hollow multi-porous carbon octahedra with emphasise on interfacial engineering. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.122706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Mubarak S, Dhamodharan D, Ghoderao PN, Byun HS. A systematic review on recent advances of metal–organic frameworks-based nanomaterials for electrochemical energy storage and conversion. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
50
|
Feng XC, Xiao ZJ, Shi HT, Zhou BQ, Wang YM, Chi HZ, Kou XH, Ren NQ. How Nitrogen and Sulfur Doping Modified Material Structure, Transformed Oxidation Pathways, and Improved Degradation Performance in Peroxymonosulfate Activation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14048-14058. [PMID: 36074547 DOI: 10.1021/acs.est.2c04172] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Current research has widely applied heteroatom doping for the promotion of catalyst activity in peroxymonosulfate (PMS) systems; however, the relationship between heteroatom doping and stimulated activation mechanism transformation is not fully understood. Herein, we introduce nitrogen and sulfur doping into a Co@rGO material for PMS activation to degrade tetracycline (TC) and systematically investigate how heteroatom doping transformed the activation mechanism of the original Co@rGO/PMS system. N was homogeneously inserted into the reduced graphene oxide (rGO) matrix of Co@rGO, inducing a significant increase in the degradation efficiency without affecting the activation mechanism transformation. Additionally, S doping converted Co3O4 to Co4S3 in Co@rGO and transformed the cooperative oxidation pathway into a single non-radical pathway with stronger intensity, which led to a higher stability against environmental interferences. Notably, based on density functional theory (DFT) calculations, we demonstrated that Co4S3 had a higher energy barrier for PMS adsorption and cleavage than Co3O4, and therefore, the radical pathway was not easily stimulated by Co4S3. Overall, this study not only illustrated the improvement due to the heteroatom doping of Co@rGO for TC degradation in a PMS system but also bridged the knowledge gap between the catalyst structure and degradation performance through activation mechanism transformation drawn from theoretical and experimental analyses.
Collapse
Affiliation(s)
- Xiao-Chi Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Zi-Jie Xiao
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Hong-Tao Shi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Bai-Qin Zhou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Yong-Mei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Hui-Zhong Chi
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Xiao-Hang Kou
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen, Guangdong 518055, PR China
| |
Collapse
|