1
|
Wallace BJ, Mongeau ML, Zuend A, Preston TC. Impact of pH on Gas-Particle Partitioning of Semi-Volatile Organics in Multicomponent Aerosol. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16974-16988. [PMID: 37885068 DOI: 10.1021/acs.est.3c02894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/28/2023]
Abstract
The partitioning of semivolatile organic compounds (SVOCs) between the condensed and gas phases can have significant implications for the properties of aerosol particles. In addition to affecting size and composition, this partitioning can alter radiative properties and impact cloud activation processes. We present measurements and model predictions on how activity and pH influence the evaporation of SVOCs from particles to the gas phase, specifically investigating aqueous inorganic particles containing dicarboxylic acids (DCAs). The aerosols are studied at the single-particle level by using optical trapping and cavity-enhanced Raman spectroscopy. Optical resonances in the spectra enable precise size tracking, while vibrational bands allow real-time monitoring of pH. Results are compared to a Maxwell-type model that accounts for volatile and nonvolatile solutes in aqueous droplets that are held at a constant relative humidity. The aerosol inorganic-organic mixture functional group activity coefficients thermodynamic model and Debye-Hückel theory are both used to calculate the activities of the species present in the droplet. For DCAs, we find that the evaporation rate is highly sensitive to the particle pH. For acidity changes of approximately 1.5 pH units, we observe a shift from a volatile system to one that is completely nonvolatile. We also observe that the pH itself is not constant during evaporation; it increases as DCAs evaporate, slowing the rate of evaporation until it eventually ceases. Whether a DCA evaporates or remains a stable component of the droplet is determined by the difference between the lowest pKa of the DCA and the pH of the droplet.
Collapse
Affiliation(s)
- Brandon J Wallace
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Michel Laforest Mongeau
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
| | - Andreas Zuend
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9
| | - Thomas C Preston
- Department of Chemistry, McGill University, 801 Sherbrooke Street West, Montreal, Quebec H3A 0B8, Canada
- Department of Atmospheric and Oceanic Sciences, McGill University, 805 Sherbrooke Street West, Montreal, Quebec, Canada H3A 0B9
| |
Collapse
|
2
|
Fomete S, Kubečka J, Elm J, Jen CN. Limited Role of Malonic Acid in Sulfuric Acid-Dimethylamine New Particle Formation. ACS OMEGA 2023; 8:19807-19815. [PMID: 37305259 PMCID: PMC10249388 DOI: 10.1021/acsomega.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/08/2023] [Indexed: 06/13/2023]
Abstract
Aerosols play an important role in climate and air quality; however, the mechanisms behind aerosol particle formation in the atmosphere are poorly understood. Studies have identified sulfuric acid, water, oxidized organics, and ammonia/amines as key precursors for forming aerosol particles in the atmosphere. Theoretical and experimental investigations have indicated that other species, such as organic acids, may be involved in atmospheric nucleation and growth of freshly formed aerosol particles. Organic acids, such as dicarboxylic acids, which are abundant in the atmosphere, have been measured in ultrafine aerosol particles. These observations suggest that organic acids may contribute to new particle formation in the atmosphere but their role remains ambiguous. This study examines how malonic acid interacts with sulfuric acid and dimethylamine to form new particles at warm boundary layer conditions using experimental observations from a laminar flow reactor and quantum chemical calculations coupled with cluster dynamics simulations. Observations reveal that malonic acid does not contribute to the initial steps (formation of <1 nm diameter particle) of nucleation with sulfuric acid-dimethylamine. In addition, malonic acid was found to not participate in the subsequent growth of the freshly nucleated 1 nm particles from sulfuric acid-dimethylamine reactions to diameters of 2 nm.
Collapse
Affiliation(s)
- Sandra
K.W. Fomete
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | - Jakub Kubečka
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Jonas Elm
- Department
of Chemistry, Aarhus University, Langelandsgade 140, 8000 Aarhus C, Denmark
| | - Coty N. Jen
- Department
of Chemical Engineering, Carnegie Mellon
University, Pittsburgh, Pennsylvania 15213, United States
- Center
for Atmospheric Particle Studies, Carnegie
Mellon University, Pittsburgh, Pennsylvania 15213, United States
| |
Collapse
|
3
|
Li LF, Chen Z, Liu P, Zhang YH. Direct Measurement of pH Evolution in Aerosol Microdroplets Undergoing Ammonium Depletion: A Surface-Enhanced Raman Spectroscopy Approach. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6274-6281. [PMID: 35476405 DOI: 10.1021/acs.est.1c08626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Accurately measuring the pH of atmospheric aerosols is a prerequisite for understanding the multiphase chemistry that profoundly affects the environment and climate systems. Despite the advancements of experimental techniques for in situ pH measurements in aerosols, current studies are limited to measuring the static pH of aerosol microdroplets with an unperturbed composition. This steady-state scenario, however, deviates from the real-world aerosols undergoing atmospheric aging reactions, specifically, those characterized with a spontaneous displacement of strong bases (or acids) with high volatility. Here, we introduce a continuous and in situ measurement of aerosol pH by using a 4-mercaptopyridine-functionalized silver nanoparticle probe and surface-enhanced Raman spectroscopy. We find that the ammonium depletion─a spontaneous displacement of ammonium by dicarboxylic acid salts─continuously acidifies aerosol water over time. The decaying trends of pH in the aerosols under various humidity conditions can be unified with a universal exponential function. Such an exponentially decaying function further indicates that the ammonium depletion reaction is a self-limiting process. Our technique can be applied to study the dynamic change of aerosol acidity during the complex atmospheric aging processes, toward elucidating their implications on atmospheric chloride, nitrate, and ammonium cycles.
Collapse
Affiliation(s)
- Lin-Fang Li
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Zhe Chen
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Pai Liu
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| | - Yun-Hong Zhang
- Institute of Chemical Physics, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
4
|
Lan Y, Tham J, Jia S, Sarkar S, Fan WH, Reid JS, Ong CN, Yu LE. Peat-forest burning smoke in Maritime Continent: Impacts on receptor PM 2.5 and implications at emission sources. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 275:116626. [PMID: 33609858 DOI: 10.1016/j.envpol.2021.116626] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/06/2021] [Accepted: 01/28/2021] [Indexed: 06/12/2023]
Abstract
This study characterizes the impacts of transported peat-forest (PF) burning smoke on an urban environment and evaluates associated source burning conditions based on carbon properties of PM2.5 at the receptor site. We developed and validated a three-step classification that enables systematic and more rapid identification of PF smoke impacts on a tropical urban environment with diverse emissions and complex atmospheric processes. This approach was used to characterize over 300 daily PM2.5 data collected during 2011-2013, 2015 and 2019 in Singapore. A levoglucosan concentration of ≥0.1 μg/m3 criterion indicates dominant impacts of transported PF smoke on urban fine aerosols. This approach can be used in other ambient environments for practical and location-dependent applications. Organic carbon (OC) concentrations (as OC indicator) can be an alternate to levoglucosan for assessing smoke impacts on urban environments. Applying the OC concentration indicator identifies smoke impacts on ∼80% of daily samples in 2019 and shows an accuracy of 51-86% for hourly evaluation. Following the systematic identification of urban PM2.5 predominantly affected by PF smoke in 2011-2013, 2015 and 2019, we assessed the concentration ratio of char-EC/soot-EC as an indicator of smoldering- or flaming-dominated burning emissions. When under the influence of transported PF smoke, the mean concentration ratio of char-EC to soot-EC in urban PM2.5 decreased by >70% from 8.2 in 2011 to 2.3 in 2015 but increased to 3.8 in 2019 (p < 0.05). The reversed trend with a 65% increase from 2015 to 2019 shows stronger smoldering relative to flaming, indicating a higher level of soil moisture at smoke origins, possibly associated with rewetting and revegetating peatlands since 2016.
Collapse
Affiliation(s)
- Yang Lan
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Jackson Tham
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | - Shiguo Jia
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Sayantan Sarkar
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore
| | - Wei Hong Fan
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore
| | | | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, 117411, Singapore; Saw Swee Hock School of Public Health, National University of Singapore, 117549, Singapore
| | - Liya E Yu
- Department of Civil and Environmental Engineering, National University of Singapore, 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 117411, Singapore.
| |
Collapse
|
5
|
Wang T, Liu Y, Deng Y, Cheng H, Yang Y, Feng Y, Zhang L, Fu H, Chen J. Photochemical Oxidation of Water-Soluble Organic Carbon (WSOC) on Mineral Dust and Enhanced Organic Ammonium Formation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:15631-15642. [PMID: 33210909 DOI: 10.1021/acs.est.0c04616] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Water-soluble organic carbon (WSOC), which is closely related to biogenic emissions, is of great importance in the atmosphere for its ubiquitous existence and rich abundance. Levoglucosan, a typical WSOC, is usually considered to be stable and thus used as a tracer of biomass burning. However, we found that levoglucosan can be photo-oxidized on mineral dust, with formic acid, oxalic acid, glyoxylic acid, 2,3-dioxopropanoic acid, dicarbonic acid, performic acid, mesoxalaldehyde, 2-hydroxymalonaldehyde, carbonic formic anhydride, and 1,3-dioxolane-2,4-dione detected as main products. Further, we observed the heterogeneous uptake of NH3 promoted by the carboxylic acids stemming from the photocatalytic oxidation (PCO) of levoglucosan. The mineral-dust-initiated PCO of levoglucosan and enhanced heterogeneous uptake of NH3, which are highly influenced by irradiation and moisture conditions, were for the first time revealed. The reaction mechanisms and pathways were studied in detail by diffuse reflection infrared Fourier transform spectroscopy (DRIFTS), high-pressure photon ionization time-of-flight mass spectrometry (HPPI-ToF-MS) and flow reactor systems. Diverse WSOC constituents were studied as well, and the reactivity toward NH3 is related to the number of hydroxyl groups of the WSOC molecules. This work reveals a new precursor of secondary organic aerosols and provides experimental evidence of the existence of organic ammonium salts in atmospheric particles.
Collapse
Affiliation(s)
- Tao Wang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yangyang Liu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yue Deng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Hanyun Cheng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yang Yang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Yiqing Feng
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Liwu Zhang
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, People's Republic of China
| | - Hongbo Fu
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| | - Jianmin Chen
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention, Department of Environmental Science & Engineering, Fudan University, Shanghai 200433, People's Republic of China
| |
Collapse
|
6
|
A Zwitterionic Hydrophilic Interaction Liquid Chromatographic Photo Diode Array Method as a Tool to Investigate Oxalic Acid in Bees: Comparison with Mass Spectrometric Methods. SEPARATIONS 2019. [DOI: 10.3390/separations6040048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Oxalic acid constitutes beekeepers′ leading choice for the battle of the parasitic mite Varroa destructor considering its efficacy, low cost, and easy application. Nevertheless, its broad use and reported synergistic effects prompted us to explore analytical methodologies for its determination in honeybees, especially after death incidents. Methods: The extraction of oxalic acid from bees was conducted by applying a simplified water extraction protocol. Oxalic acid′s content in honeybees was investigated through a novel zwiterionic hydrophilic interaction liquid chromatographic coupled to photo diode array (ZIC-HILIC-PDA) method and paralleled to gas/liquid chromatographic mass spectrometric methods. Results: The analytical method was validated, exhibiting a sufficient limit of quantification (LOQ) of 1.46 μg/g bee bw and precision and accuracy within the acceptable statistical limits as expressed by the relative standard deviation (RSD%) obtained from repeatability-reproducibility and recovery studies <12.5%. The application of the analytical method to 45 real honeybee samples demonstrated a fluctuation of oxalic acid’s concentrations from 1.6 to 1202.4 μg/g bee bw, verifying its frequent use in apiculture, exemplified by an overall 19% of positive samples. Conclusions: ZIC-HILIC-PDA proves a pivotal and alternative method to mass spectrometry tools in the determination of oxalic acid and other organic acids in honeybees and pertinent commodities.
Collapse
|
7
|
Sheng X, Song X, Zhu H, Ngwenya CA, Zhao H. Effects of the inter- and intra-molecular hydrogen bonding interactions in forming atmospheric malonic acid-containing clusters. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Wang N, Jing B, Wang P, Wang Z, Li J, Pang S, Zhang Y, Ge M. Hygroscopicity and Compositional Evolution of Atmospheric Aerosols Containing Water-Soluble Carboxylic Acid Salts and Ammonium Sulfate: Influence of Ammonium Depletion. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:6225-6234. [PMID: 30938517 DOI: 10.1021/acs.est.8b07052] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Water-soluble organic acid salts are important components of atmospheric aerosols. Despite their importance, it is still not clear how water-soluble organic acid salts influence interactions between aerosols and water vapor in the atmosphere. In this study, the hygroscopic behaviors and chemical compositions of aerosol particles containing water-soluble organic acid salt ((CH2) n(COONa)2, n = 0, 1, 2) and (NH4)2SO4 were measured using in situ attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR). The ammonium depletion due to release of gaseous NH3 was found in mixed aerosols composed of (CH2) n(COONa)2 ( n = 1, 2) and (NH4)2SO4 upon dehydration. The ammonium loss could modify the aerosol composition, resulting in the formation of corresponding organic acid and monosodium dicarboxylate in mixed particles with high and low (NH4)2SO4 content, respectively. Due to the weaker hydrolysis of oxalate anions, the ammonium depletion was not observed for the Na2C2O4/(NH4)2SO4 mixtures. The changes in the particle composition led to the decreased water uptake upon hydration as compared to that upon dehydration. Our findings reveal that interactions between water-soluble organic acid salts and (NH4)2SO4 in aqueous aerosols may affect the repartition of NH3 between the condensed and gas phases, thus modifying composition and physicochemical properties of aerosols as well as relevant chemical processes.
Collapse
Affiliation(s)
- Na Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Bo Jing
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
| | - Pan Wang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Zhen Wang
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
| | - Jiarong Li
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Shufeng Pang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Yunhong Zhang
- School of Chemistry and Chemical Engineering , Beijing Institute of Technology , Beijing 100081 , People's Republic of China
| | - Maofa Ge
- State Key Laboratory for Structural Chemistry of Unstable and Stable Species, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences , Beijing 100190 , People's Republic of China
- University of Chinese Academy of Sciences , Beijing 100049 , People's Republic of China
- Center for Excellence in Regional Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences , Xiamen 361021 , People's Republic of China
| |
Collapse
|
9
|
Tham J, Sarkar S, Jia S, Reid JS, Mishra S, Sudiana IM, Swarup S, Ong CN, Yu LE. Impacts of peat-forest smoke on urban PM 2.5 in the Maritime Continent during 2012-2015: Carbonaceous profiles and indicators. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 248:496-505. [PMID: 30831346 DOI: 10.1016/j.envpol.2019.02.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 05/24/2023]
Abstract
This study characterizes impacts of peat-forest (PF) smoke on an urban environment through carbonaceous profiles of >260 daily PM2.5 samples collected during 2012, 2013 and 2015. Organic carbon (OC) and elemental carbon (EC) comprising eight carbonaceous fractions are examined for four sample groups - non-smoke-dominant (NSD), smoke-dominant (SD), episodic PM2.5 samples at the urban receptor, and near-source samples collected close to PF burning sites. PF smoke introduced much larger amounts of OC than EC, with OC accounting for up to 94% of total carbon (TC), or increasing by up to 20 times in receptor PM2.5. SD PM2.5 at the receptor site and near-source samples have OC3 and EC1 as the dominant fractions. Both sample classes also exhibit char-EC >1.4 times of soot-EC, characterizing smoldering-dominant PF smoke, unlike episodic PM2.5 at the receptor site featuring large amounts of pyrolyzed organic carbon (POC) and soot-EC. Relative to the mean NSD PM2.5 at the receptor, increasing strength of transboundary PF smoke enriches OC3 and OC4 fractions, on average, by factors of >3 for SD samples, and >14 for episodic samples. A peat-forest smoke (PFS) indicator, representing the concentration ratio of (OC2+OC3+POC) to soot-EC, shows a temporal trend satisfactorily correlating with an organic marker (levoglucosan) of biomass burning. The PFS indicator systematically differentiates influences of PF smoke from source to urban receptor sites, with a progressive mean of 3.6, 13.4 and 20.1 for NSD, SD and episodic samples respectively at the receptor site, and 54.7 for the near-source PM2.5. A PFS indicator of ≥5.0 is proposed to determine dominant influence of transboundary PF smoke on receptor urban PM2.5 in the equatorial Asia with ∼90% confidence. Assessing >2900 hourly OCEC data in 2017-2018 supports the applicability of the PFS indicator to evaluate hourly impacts of PF smoke on receptor urban PM2.5 in the Maritime Continent.
Collapse
Affiliation(s)
- Jackson Tham
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Sayantan Sarkar
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Shiguo Jia
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore
| | - Jeffrey S Reid
- Naval Research Laboratory, Monterey, CA, 93943-5502, USA
| | - Shailendra Mishra
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - I M Sudiana
- Cibinong Science Center, LIPI, Jl. Raya Bogor Km 46, Cibinong Bogor, 16911, Indonesia
| | - Sanjay Swarup
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Biological Sciences, National University of Singapore, 14 Science Drive 4, 117543, Singapore
| | - Choon Nam Ong
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore
| | - Liya E Yu
- NUS Environmental Research Institute, National University of Singapore, 5A Engineering Drive 1, 117411, Singapore; Department of Civil and Environmental Engineering, National University of Singapore, 1 Engineering Drive 2, 117576, Singapore.
| |
Collapse
|
10
|
Fiori J, Amadesi E, Fanelli F, Tropeano CV, Rugolo M, Gotti R. Cellular and mitochondrial determination of low molecular mass organic acids by LC-MS/MS. J Pharm Biomed Anal 2017; 150:33-38. [PMID: 29216582 DOI: 10.1016/j.jpba.2017.11.071] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 11/24/2017] [Accepted: 11/28/2017] [Indexed: 12/23/2022]
Abstract
A selective and sensitive method for the determination of low molecular mass organic acids (LMMOAs) in cell and mitochondrial extracts is presented. The analytical method consists in the separation by reversed phase liquid chromatography and detection with tandem mass spectrometry (LC-MS/MS) of the LMMOAs like malic, succinic, formic and citric acids. These acids are among the cellular intermediates of the tricarboxylic acid cycle (TCA), thus their quantitation can provide essential information about the catabolic and anabolic processes occurring in cells under physiological and pathological conditions. The analytical method was fully validated in terms of linearity, detection and quantification limits, recovery and precision. Detection limits (LOD) for malic, succinic and fumaric acids were in the range of 1-10nM, while 20nM was obtained for citric acid. Analytical recovery in cell and mitochondrial extracts was found between 88 and 105% (CV% ≤7.1) and matrix effect was estimated to be less than 108%. The LC-MS/MS method applied to the quantification of TCA cycle metabolites revealed a different distribution of the four acids in cells and mitochondria, and it could be used to monitoring metabolic alterations associated with TCA cycle and oxidative phosphorylation dysfunctions.
Collapse
Affiliation(s)
- Jessica Fiori
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy.
| | - Elisa Amadesi
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Flaminia Fanelli
- Endocrinology Unit and Center for Applied Biomedical Research, Department of Medical and Surgical Sciences, University of Bologna - S. Orsola-Malpighi Hospital, Italy
| | | | - Michela Rugolo
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| | - Roberto Gotti
- Department of Pharmacy and Biotechnology, University of Bologna, Via Belmeloro 6, 40126, Bologna, Italy
| |
Collapse
|
11
|
Hu YC, Zhang XH, Li QS, Zhang YH, Li ZS. Effect of Water on the Structure and Stability of Hydrogen-Bonded Oxalic Acid Dimer. Chemphyschem 2017; 18:3375-3383. [DOI: 10.1002/cphc.201700950] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2017] [Revised: 10/06/2017] [Indexed: 01/11/2023]
Affiliation(s)
- Yuan-Chun Hu
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Xiu-Hui Zhang
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Quan-Song Li
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Yun-Hong Zhang
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| | - Ze-Sheng Li
- School of Chemistry and Chemical Engineering; Beijing Institute of Technology; Beijing 100081 P.R. China
| |
Collapse
|
12
|
Nozière B, Kalberer M, Claeys M, Allan J, D'Anna B, Decesari S, Finessi E, Glasius M, Grgić I, Hamilton JF, Hoffmann T, Iinuma Y, Jaoui M, Kahnt A, Kampf CJ, Kourtchev I, Maenhaut W, Marsden N, Saarikoski S, Schnelle-Kreis J, Surratt JD, Szidat S, Szmigielski R, Wisthaler A. The molecular identification of organic compounds in the atmosphere: state of the art and challenges. Chem Rev 2015; 115:3919-83. [PMID: 25647604 DOI: 10.1021/cr5003485] [Citation(s) in RCA: 212] [Impact Index Per Article: 23.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Barbara Nozière
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Barbara D'Anna
- †Ircelyon/CNRS and Université Lyon 1, 69626 Villeurbanne Cedex, France
| | | | | | | | - Irena Grgić
- ○National Institute of Chemistry, 1000 Ljubljana, Slovenia
| | | | | | - Yoshiteru Iinuma
- ¶Leibniz-Institut für Troposphärenforschung, 04318 Leipzig, Germany
| | | | | | | | - Ivan Kourtchev
- ‡University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Willy Maenhaut
- §University of Antwerp, 2000 Antwerp, Belgium.,□Ghent University, 9000 Gent, Belgium
| | | | | | | | - Jason D Surratt
- ▼University of North Carolina at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | | | | | | |
Collapse
|
13
|
Paciga AL, Riipinen I, Pandis SN. Effect of ammonia on the volatility of organic diacids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13769-13775. [PMID: 25356879 DOI: 10.1021/es5037805] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
The effect of ammonia on the partitioning of two dicarboxylic acids, oxalic (C2) and adipic (C6) is determined. Measurements by a tandem differential mobility analysis system and a thermodenuder (TD-TDMA) system are used to estimate the saturation vapor pressure and enthalpy of vaporization of ammonium oxalate and adipate. Ammonia dramatically lowered the vapor pressure of oxalic acid, by several orders of magnitude, with an estimated vapor pressure of 1.7 ± 0.8 × 10(–6) Pa at 298 K. The vapor pressure of ammonium adipate was 2.5 ± 0.8 × 10(–5) Pa at 298 K, similar to that of adipic acid. These results suggest that the dominance of oxalate in diacid concentrations measured in ambient aerosol could be attributed to the salt formation with ammonia.
Collapse
Affiliation(s)
- Andrea L Paciga
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, United States
| | | | | |
Collapse
|
14
|
Mishra BK, Chakrabartty AK, Bhattacharjee D, Deka RC. Theoretical investigation on unimolecular decomposition of malonic acid: a potential sink for ketene. RSC Adv 2014. [DOI: 10.1039/c4ra06506a] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
15
|
Ma Q, Ma J, Liu C, Lai C, He H. Laboratory study on the hygroscopic behavior of external and internal C2-C4 dicarboxylic acid-NaCl mixtures. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10381-10388. [PMID: 23941508 DOI: 10.1021/es4023267] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Atmospheric aerosol is usually found to be a mixture of various inorganic and organic components in field measurements, whereas the effect of this mixing state on the hygroscopicity of aerosol particles has remained unknown. In this study, the hygroscopic behavior of mixtures of C2-C4 dicarboxylic acids and NaCl was investigated. For both externally and internally mixed malonic acid-NaCl and succinic acid-NaCl particles, correlation between water content and chemical composition was observed and the water content of these mixtures at relative humidity (RH) above 80% can be well predicted by the Zdanovskii-Stokes-Robinson (ZSR) method. In contrast, a nonlinear relation between the total water content of the mixtures and the water content of each chemical composition separately was found for oxalic acid-NaCl mixtures. Compared to the values predicted by the ZSR method, the dissolution of oxalic acid in external mixtures resulted in an increase in the total water content, whereas the formation of less hygroscopic disodium oxalate in internal mixtures led to a significant decrease in the total water content. Furthermore, we found that the hygroscopicity of the sodium dicarboxylate plays a critical role in determining the aqueous chemistry of dicarboxylic acid-NaCl mixtures during the humidifying and dehumidifying process. It was also found that the hydration of oxalic acid and the deliquescence of NaCl did not change in external oxalic acid-NaCl mixtures. The deliquescence relative humidity (DRHs) for both malonic acid and NaCl decreased in both external and internal mixtures. These results could help in understanding the conversion processes of dicarboxylic acids to dicarboxylate salts, as well as the substitution of Cl by oxalate in the atmosphere. It was demonstrated that the effect of coexisting components on the hygroscopic behavior of mixed aerosols should not be neglected.
Collapse
Affiliation(s)
- Qingxin Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | | | | | | | | |
Collapse
|
16
|
Jaitz L, Mueller B, Koellensperger G, Huber D, Oburger E, Puschenreiter M, Hann S. LC–MS analysis of low molecular weight organic acids derived from root exudation. Anal Bioanal Chem 2010; 400:2587-96. [DOI: 10.1007/s00216-010-4090-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2010] [Revised: 07/30/2010] [Accepted: 08/03/2010] [Indexed: 11/27/2022]
|