1
|
Takaguchi K, Nagano Y, Mizukawa H, Nakatsu S, Nomiyama K. Species- and tissue-specific profiles and potential risks of polychlorinated biphenyls (PCBs) and their metabolites in dogs and cats. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177965. [PMID: 39671934 DOI: 10.1016/j.scitotenv.2024.177965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/15/2024]
Abstract
In recent years, there has been growing concern about the long-term health effects of chemical exposure in pets, particularly dogs and cats, from sources such as pet food and house dust. Domestic cats (Felis silvestris catus) and dogs (Canis lupus familiaris) are continuously exposed to polychlorinated biphenyls (PCBs), with particular attention being paid to the toxicity of their metabolites, hydroxylated PCBs (OH-PCBs) and methylsulfonyl PCBs (MeSO2-PCBs). However, the tissue distribution and species-specific differences of these PCB metabolites in domestic animals have not been fully elucidated. This study investigates the tissue-specific profiles of PCBs, OH-PCBs, and MeSO2-PCBs by analyzing blood, brain, liver, and bile samples from dogs and cats. The analysis revealed that hexa- to octa-chlorinated OH-PCBs were the predominant congeners in the brain, liver and bile of dogs. In contrast, tri- to penta-chlorinated OH-PCBs were more prevalent in cats, with lower-chlorinated OH-PCBs tending to accumulate due to limited UDP-glucuronosyltransferase activity. In cats, OH-PCBs are more readily excreted in the bile than in dogs, probably because there are fewer higher-chlorinated thyroxine-like OH-PCBs, which are known to bind to and persist in proteins in the liver and blood. MeSO2-PCBs were detected at lower concentrations than parent PCBs and OH-PCBs and primarily accumulated in the liver due to their lipophilic nature. The consistent concentrations of MeSO2-PCBs across species, despite variations in parent PCB and OH-PCB levels, underscore species-specific differences in metabolic capacity and excretion pathways. In addition, some OH-PCB concentrations in both dog and cat brains exceeded levels known to affect neurons, suggesting the potential for neurotoxicity in these species. Therefore, continued biomonitoring and further investigation of the toxic effects of these compounds in pets is imperative.
Collapse
Affiliation(s)
- Kohki Takaguchi
- Center for Preventive Medical Sciences, Chiba University, 1-33, Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuko Nagano
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hazuki Mizukawa
- Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Susumu Nakatsu
- Nakatsu Veterinary Surgery, 2-2-5, Shorinjichonishi, Sakai-ku, Sakai-shi, Osaka 590-0960, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| |
Collapse
|
2
|
Lyu Z, Kobayashi H, Iwase K, Haraguchi K, Fujii Y, Harada KH. Relationships among CYP2B6 genetic variants and serum levels of multiple polychlorinated biphenyls and hydroxylated metabolites in a Japanese population. JOURNAL OF HAZARDOUS MATERIALS 2024; 486:136953. [PMID: 39724708 DOI: 10.1016/j.jhazmat.2024.136953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/06/2024] [Accepted: 12/19/2024] [Indexed: 12/28/2024]
Abstract
Production of polychlorinated biphenyls (PCBs) has been banned since 2001 but health risks from exposure persist. PCBs are metabolized by cytochrome P450 enzymes, including CYP2B6. However, the link between CYP2B6 gene polymorphisms and PCB metabolisms is poorly characterized. This study investigated the relationships among serum levels of major indicator PCBs and hydroxylated PCBs (OH-PCBs), which are PCB metabolites, and polymorphisms in CYP2B6. Blood samples (n = 129) were analyzed for single nucleotide polymorphisms in CYP2B6 (p.Q172H and p.K262R), and the corresponding haplotypes (*1, *4, *6) were determined. Concentrations of PCBs and OH-PCBs were determined using gas chromatography and mass spectrometer. Congener-specific variations in PCB metabolism were associated with different CYP2B6 genotypes, particularly * 1/* 4 (hypothesized to increased expression) and * 6/* 6 (hypothesized to decreased expression). For certain PCBs, the * 1/* 4 genotype was linked to increased metabolite-to-parent compound ratios, while * 6/* 6 was associated with decreased ratios, as observed for PCB146 (β = 0.192, 95 % CI: [0.100, 0.283], p < 0.0001 for *1/*4; β = -0.235, 95 % CI: [-0.366, -0.105], p = 0.001 for *6/*6). However, other PCBs, such as PCB170 and PCB183, exhibited opposite or more complex patterns. Our findings indicate intricate effects of CYP2B6 gene polymorphisms on PCB metabolism and highlight the potential for genotype-specific risks in PCB-related toxicity.
Collapse
Affiliation(s)
- Zhaoqing Lyu
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan
| | - Hatasu Kobayashi
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan.
| | - Kodai Iwase
- Department of Environmental and Molecular Medicine, Mie University Graduate School of Medicine, Mie 514-8507, Japan
| | - Koichi Haraguchi
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Yukiko Fujii
- Department of Pharmaceutical Sciences, Daiichi University of Pharmacy, 22-1 Tamagawa, Minami-ku, Fukuoka 815-8511, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida Konoe, Sakyo, Kyoto 606-8501, Japan.
| |
Collapse
|
3
|
Zhang Y, Gao Y, Liu QS, Zhou Q, Jiang G. Chemical contaminants in blood and their implications in chronic diseases. JOURNAL OF HAZARDOUS MATERIALS 2024; 466:133511. [PMID: 38262316 DOI: 10.1016/j.jhazmat.2024.133511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 12/27/2023] [Accepted: 01/10/2024] [Indexed: 01/25/2024]
Abstract
Artificial chemical products are widely used and ubiquitous worldwide and pose a threat to the environment and human health. Accumulating epidemiological and toxicological evidence has elucidated the contributions of environmental chemical contaminants to the incidence and development of chronic diseases that have a negative impact on quality of life or may be life-threatening. However, the pathways of exposure to these chemicals and their involvements in chronic diseases remain unclear. We comprehensively reviewed the research progress on the exposure risks of humans to environmental contaminants, their body burden as indicated by blood monitoring, and the correlation of blood chemical contaminants with chronic diseases. After entering the human body through various routes of exposure, environmental contaminants are transported to target organs through blood circulation. The application of the modern analytical techniques based on human plasma or serum specimens is promising for determining the body burden of environmental contaminants, including legacy persistent organic pollutants, emerging pollutants, and inorganic elements. Furthermore, their body burden, as indicated by blood monitoring correlates with the incidence and development of metabolic syndromes, cancers, chronic nervous system diseases, cardiovascular diseases, and reproductive disorders. On this basis, we highlight the urgent need for further research on environmental pollution causing health problems in humans.
Collapse
Affiliation(s)
- Yuzhu Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Yurou Gao
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qian S Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| | - Qunfang Zhou
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, PR China; School of Environment, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310000, PR China
| |
Collapse
|
4
|
Shen H, Nzabanita D, Foord C, Grist S, Nugegoda D. Environmental organic contaminant body burdens and GC-MS based untargeted metabolomics in mediterranean mussels from Port Phillip Bay, Australia ☆. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 335:122245. [PMID: 37487873 DOI: 10.1016/j.envpol.2023.122245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/02/2023] [Accepted: 07/20/2023] [Indexed: 07/26/2023]
Abstract
Mussels were collected from four coastal sites around Port Phillip Bay, Australia in Mar and Apr 2021). Body burdens of Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs), and organochlorine pesticides (OCPs) were measured and the possible sources of toxicants discussed. In addition, a gas chromatography-mass spectrometry (GC-MS) based untargeted metabolomics analysis was performed using the mantle tissues of mussels. Correlations between the results of contaminant body burdens and metabolic variations were investigated. The results demonstrated that high accumulations of low-molecular-weight PAHs were found in mussels. High body burdens of PCBs and OCPs were only found at mussels from the site close to the river mouth. Some of the metabolic pathways were correlated with the accumulation of PAHs. No correlations were found between PCB and OCP accumulations and metabolic abundances. According to the food and environmental standards of the European Union (EU), the PAH, PCB, and OCP accumulation in mussels in this study are a serious food safety concern.
Collapse
Affiliation(s)
- Hao Shen
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia.
| | - Damien Nzabanita
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Chantel Foord
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Stephen Grist
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| | - Dayanthi Nugegoda
- School of Science, RMIT University, Bundoora West Campus, PO box 71, Bundoora, VIC, 3083, Australia
| |
Collapse
|
5
|
Li X, Bullert AJ, Han W, Yang W, Zhang QY, Ding X, Lehmler HJ. Enantiomeric Fractions Reveal Differences in the Atropselective Disposition of 2,2',3,5',6-Pentachlorobiphenyl (PCB 95) in Wildtype, Cyp2abfgs-Null, and CYP2A6-Humanized Mice. Chem Res Toxicol 2023; 36:1386-1397. [PMID: 37467352 PMCID: PMC10445290 DOI: 10.1021/acs.chemrestox.3c00128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Indexed: 07/21/2023]
Abstract
Polychlorinated biphenyls (PCBs) are environmental contaminants that can cause neurotoxicity. PCBs, such as PCB 95 (2,2',3,5',6-pentachlorobiphenyl), can be metabolized by cytochrome P450 enzymes into neurotoxic metabolites. To better understand how the metabolism of PCB 95 affects neurotoxic outcomes, we conducted a study on the disposition of PCB 95 in transgenic mouse models. The mice were given a single oral dose of PCB 95 (1.0 mg/kg) and were euthanized 24 h later for analysis. PCB 95 levels were highest in adipose tissue, followed by the liver, brain, and blood. Adipose tissue levels were significantly higher in wild-type (WT) mice than in Cyp2abfgs-null (KO) or CYP2A6-transgenic (KI) mice. We also observed genotype-dependent differences in the enrichment of aS-PCB 95 in female mice, with a less pronounced enrichment in KO than WT and KI mice. Ten hydroxylated PCB 95 metabolites were detected in blood and tissue across all exposure groups. The metabolite profiles differed across tissues, while sex and genotype-dependent differences were less pronounced. Total OH-PCB levels were highest in the blood, followed by the liver, adipose tissue, and brain. Total OH-PCB blood levels were lower in KO than in WT mice, while the opposite trend was observed in the liver. In male mice, total OH-PCB metabolite levels were significantly lower in KI than in WT mice in blood and the liver, while the opposite trend was observed in female mice. In conclusion, the study highlights the differences in the atropselective disposition of PCB 95 and its metabolites in different types of mice, demonstrating the usefulness of these transgenic mouse models for characterizing the role of PCB metabolism in PCB neurotoxicity.
Collapse
Affiliation(s)
- Xueshu Li
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
| | - Amanda J. Bullert
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| | - Weiguo Han
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Weizhu Yang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Qing-Yu Zhang
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Xinxin Ding
- Department
of Pharmacology and Toxicology, College of Pharmacy, University of Arizona, Tucson, Arizona 85721, United States
| | - Hans-Joachim Lehmler
- Department
of Occupational and Environmental Health, College of Public Health, University of Iowa, Iowa City, Iowa 52242, United States
- Interdisciplinary
Graduate Program in Neuroscience, University
of Iowa, Iowa City, Iowa 52242, United States
| |
Collapse
|
6
|
Huang K, Zhou W, Fu J, Zhang Q, Teng Y, Gu L, Fu Y, Hu B, Mei Y, Zhang H, Zhang A, Fu J, Jiang G. Linking Transthyretin-Binding Chemicals and Free Thyroid Hormones: In Vitro to In Vivo Extrapolation Based on a Competitive Binding Model. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:9130-9139. [PMID: 37261382 DOI: 10.1021/acs.est.3c01094] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Large numbers of pollutants competitively inhibit the binding between thyroid hormones and transthyretin (TTR) in vitro. However, the impact of this unintended binding on free thyroid hormones in vivo has not yet been characterized. Herein, we established a quantitative in vitro to in vivo extrapolation (QIVIVE) method based on a competitive binding model to quantify the effect of TTR-binding chemicals on free thyroid hormones in human blood. Twenty-five TTR-binding chemicals including 6 hydroxyl polybromodiphenyl ethers (OH-PDBEs), 6 hydroxyl polychlorobiphenyls (OH-PCBs), 4 halogenphenols, 5 per- and polyfluorinated substances (PFASs), and 4 phenols were selected for investigation. Incorporating the in vitro binding parameters and human exposure data, the QIVIVE model could well predict the in vivo effect on free thyroid hormones. Co-exposure to twenty-five typical TTR-binding chemicals resulted in median increases of 0.080 and 0.060% in circulating levels of free thyroxine (FT4) and free triiodothyronine (FT3) in the general population. Individuals with occupational exposure to TTR-binding chemicals suffered 1.88-32.2% increases in free thyroid hormone levels. This study provides a quantitative tool to evaluate the thyroid-disrupting risks of TTR-binding chemicals and proposes a new framework for assessing the in vivo effects of chemical exposures on endogenous molecules.
Collapse
Affiliation(s)
- Kai Huang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Wei Zhou
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Qun Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yunhe Teng
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Luyao Gu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yilin Fu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Boyuan Hu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yang Mei
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Haiyan Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
| | - Aiqian Zhang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jianjie Fu
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Guibin Jiang
- School of Environment, Hangzhou Institute for Advanced Study, UCAS, Hangzhou 310024, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| |
Collapse
|
7
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Development of binary classification models for grouping hydroxylated polychlorinated biphenyls into active and inactive thyroid hormone receptor agonists. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2023; 34:267-284. [PMID: 37139950 DOI: 10.1080/1062936x.2023.2207039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Some adverse effects of hydroxylated polychlorinated biphenyls (OH-PCBs) in humans are presumed to be initiated via thyroid hormone receptor (TR) binding. Due to the trial-and-error approach adopted for OH-PCB selection in previous studies, experiments designed to test the TR binding hypothesis mostly utilized inactive OH-PCBs, leading to considerable waste of time, effort and other material resources. In this paper, linear discriminant analysis (LDA) and binary logistic regression (LR) were used to develop classification models to group OH-PCBs into active and inactive TR agonists using radial distribution function (RDF) descriptors as predictor variables. The classifications made by both LDA and LR models on the training set compounds resulted in an accuracy of 84.3%, sensitivity of 72.2% and specificity of 90.9%. The areas under the ROC curves, constructed with the training set data, were found to be 0.872 and 0.880 for LDA and LR models, respectively. External validation of the models revealed that 76.5% of the test set compounds were correctly classified by both LDA and LR models. These findings suggest that the two models reported in this paper are good and reliable for classifying OH-PCB congeners into active and inactive TR agonists.
Collapse
Affiliation(s)
- L K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - A Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - G A Shallangwa
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | - S E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
8
|
Akinola LK, Uzairu A, Shallangwa GA, Abechi SE. Development and Validation of Predictive Quantitative Structure-Activity Relationship Models for Estrogenic Activities of Hydroxylated Polychlorinated Biphenyls. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2023; 42:823-834. [PMID: 36692119 DOI: 10.1002/etc.5566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/17/2022] [Accepted: 01/18/2023] [Indexed: 06/17/2023]
Abstract
Disruption of the endocrine system by hydroxylated polychlorinated biphenyls (OH-PCBs) is hypothesized, among other potential mechanisms, to be mediated via nuclear receptor binding. Due to the high cost and lengthy time required to produce high-quality experimental data, empirical data to support the nuclear receptor binding hypothesis are in short supply. In the present study, two quantitative structure-activity relationship models were developed for predicting the estrogenic activities of OH-PCBs. Findings revealed that model I (for the estrogen receptor α dataset) contained five two-dimensional (2D) descriptors belonging to the classes autocorrelation, Burden modified eigenvalues, chi path, and atom type electrotopological state, whereas model II (for the estrogen receptor β dataset) contained three 2D and three 3D descriptors belonging to the classes autocorrelation, atom type electrotopological state, and Radial Distribution Function descriptors. The internal and external validation metrics reported for models I and II indicate that both models are robust, reliable, and suitable for predicting the estrogenic activities of untested OH-PCB congeners. Environ Toxicol Chem 2023;42:823-834. © 2023 SETAC.
Collapse
Affiliation(s)
- Lukman K Akinola
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
- Department of Chemistry, Bauchi State University, Gadau, Nigeria
| | - Adamu Uzairu
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | - Stephen E Abechi
- Department of Chemistry, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
9
|
Little CC, Barlow J, Alsen M, van Gerwen M. Association between polychlorinated biphenyl exposure and thyroid hormones: a systematic review and meta-analysis. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, TOXICOLOGY AND CARCINOGENESIS 2022; 40:248-267. [PMID: 36515092 DOI: 10.1080/26896583.2022.2149213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Purpose: To conduct a comprehensive meta-analysis investigating the association between polychlorinated biphenyl (PCB) exposure and serum thyroid hormone levels among adults. Methods: Eleven studies met inclusion criteria for analysis following systematic search of PubMed, Embase, and Scopus databases. Of these, 7 studies measured exposure by the total sum of PCB congeners (∑PCB), 1 study measured individual PCB congener levels, and 3 studies measured both ∑PCB levels and PCB congener levels. Correlation coefficients (r) were extracted from each study. Summary estimates were calculated for ∑PCB levels and PCB congeners reported by 2 or more studies: PCB 28, 52, 101, 105, 118, 138, 153, and 180, using random effects model. Results: Significant negative correlation was found between ∑PCBs and T3 (r: -0.09; 95% CI: -0.17, -0.02) and FT3 (r: -0.24; 95% CI: -0.36, -0.12). Congener-specific analysis found T3 to be negatively correlated with PCB-153 (r: -0.19; 95% CI: -0.34, -0.03) and PCB-180 (r: -0.14; 95% CI: -0.26, -0.01), whereas TSH was positively correlated with PCB-105 (r: 0.15; 95% CI: 0.02, 0.28). Conclusions: The present study is the first meta-analysis to investigate the association between PCB exposure and thyroid hormone dysfunction among adults. Results suggest a significant association between PCB exposure and thyroid hormone dysregulation.
Collapse
Affiliation(s)
- Christine C Little
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Joshua Barlow
- Department of Medical Education, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Mathilda Alsen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maaike van Gerwen
- Department of Otolaryngology-Head and Neck Surgery, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Institute for Translational Epidemiology, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
10
|
Peng L, Zhu X, Qin Z, Liu J, Song E, Song Y. Polychlorinated Biphenyl Quinone Metabolites Cause Neutrophil Extracellular Traps in Mouse Bone Marrow Neutrophils. Chem Res Toxicol 2022; 35:597-605. [PMID: 35168318 DOI: 10.1021/acs.chemrestox.1c00375] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polychlorinated biphenyls (PCBs) are a group of persistent organic environmental pollutants with various toxic effects. Our previous research found that a highly reactive quinone metabolite of PCBs, namely, PCB29-pQ, causes excessive reactive oxygen species (ROS) production and different toxic actions. Neutrophil extracellular traps (NETs), the product of NETosis, are one of the newly discovered programmed cell deaths. Recent studies have suggested the association of NET formation with excess ROS. The objective of this study was to investigate the influence of PCB29-pQ exposure on NETs and its possible molecular mechanisms. Using scanning electron microscopy, immunofluorescence microscopy, and the quantitative analysis of extracellular DNA, we found that PCB29-pQ exposure induces the formation of NETs in mouse bone marrow. Mechanistically, our results suggested that PCB29-pQ induces histone citrullination and chromatin decondensation, which are necessary processes for NET formation. Moreover, PCB29-pQ exposure increases ROS and autophagy levels, while ROS and autophagy inhibitors significantly reverse NET formation. These results indicated that PCB29-pQ-induced NET formation was mediated by the intracellular ROS level and autophagy signaling. In general, our research uncovered a toxicity mechanism of PCB29-pQ, which suggested the necessity of evaluating its immunotoxicity during the risk assessment of PCB exposure.
Collapse
Affiliation(s)
- Lu Peng
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Xiangyu Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Zongming Qin
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Food Sciences, Southwest University, 2 Tiansheng Rd, Beibei District, Chongqing 400715, China
| | - Jing Liu
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang 550025, China
| | - Erqun Song
- Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| | - Yang Song
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, 18 Shuangqing Rd., Haidian District, Beijing 100085, China.,Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, College of Pharmaceutical Sciences, Southwest University, 2 Tiansheng Rd., Beibei District, Chongqing 400715, China
| |
Collapse
|
11
|
Li Y, Bako CM, Saktrakulkla P, Lehmler HJ, Hornbuckle KC, Schnoor JL. Interconversion between methoxylated, hydroxylated and sulfated metabolites of PCB 3 in whole poplar plants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147341. [PMID: 33933776 PMCID: PMC8610232 DOI: 10.1016/j.scitotenv.2021.147341] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/20/2021] [Accepted: 04/20/2021] [Indexed: 05/21/2023]
Abstract
Methoxylated polychlorinated biphenyls (MeO-PCBs) are overlooked metabolites of PCBs. In general, they are more toxic to plants than their parent congeners. However, information on the fate of MeO-PCBs and the relationship between methoxylated, hydroxylated and sulfated metabolites of PCBs in plants is scarce. In this work, poplar plants (Populus deltoides × nigra, DN34) were hydroponically and separately exposed to 4'-methoxy-4-monochlorobiphenyl (4'-MeO-PCB 3) and 4'-PCB 3 sulfate for 10 days to investigate the uptake, translocation and metabolism of MeO-PCBs and the relationship between methoxy-PCBs, hydroxyl-PCBs and PCB sulfates within plants. Results showed that 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were taken up by the roots of poplar plants and translocated from roots to shoots and leaves. 4'-OH-PCB 3 and 4'-PCB 3 sulfate were identified as the hydroxylated metabolite and sulfate metabolite of 4'-MeO-PCB 3 in poplar, respectively. In the backward reaction, 4'-OH-PCB 3 and 4'-MeO-PCB 3 were found as metabolites of 4'-PCB 3 sulfate. For exposure groups, the yields of 4'-OH-PCB 3 produced from 4'-MeO-PCB 3 and 4'-PCB 3 sulfate were 1.29% and 0.13% respectively. The yield of 4'-PCB 3 sulfate which originated from 4'-MeO-PCB 3 in wood and root samples of exposure groups was only 0.02%. Only 0.04% of the initial mass of 4'-PCB 3 sulfate was transformed to 4'-MeO-PCB 3 in the exposure groups. The sulfation yield of 4'-OH-PCB 3 was higher than hydrolysis yield of 4'-PCB 3 sulfate, indicating that formation of PCB sulfates was predominant over the reverse reaction, the formation of hydroxy-PCBs. These results provide new perspective on the transport, metabolism, and fate of MeO-PCBs, and also help to better understand sources of OH-PCBs and PCB sulfates in the environment. This study provides the first evidence of interconversion of sulfate metabolites from methoxy-PCBs and methoxy-PCBs from PCB sulfates.
Collapse
Affiliation(s)
- Yanlin Li
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States.
| | - Christian M Bako
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Panithi Saktrakulkla
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Jerald L Schnoor
- Department of Civil and Environmental Engineering and IIHR Hydroscience and Engineering, The University of Iowa, Iowa City, IA 52242, United States
| |
Collapse
|
12
|
Ochiai M, Nguyen HT, Kurihara N, Hirano M, Tajima Y, Yamada TK, Iwata H. Directly Reprogrammed Neurons as a Tool to Assess Neurotoxicity of the Contaminant 4-Hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72) in Melon-Headed Whales. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8159-8168. [PMID: 34061511 DOI: 10.1021/acs.est.1c01074] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Whales accumulate high levels of environmental pollutants. Exposure to polychlorinated biphenyls (PCBs) and their metabolites (OH-PCBs) could be linked to abnormal behavior, which may lead to mass stranding of marine mammals. Whales may thus suffer from adverse effects such as neuronal dysfunction, yet testing the neurotoxicity of these compounds has never been feasible for these species. This study established neurons chemically reprogrammed from fibroblasts of mass stranded melon-headed whales (Peponocephala electra) and used them for in vitro neurotoxicity assays. Exposure to 4-hydroxy-2',3,5,5'-tetrachlorobiphenyl (4'OH-CB72), a metabolite of PCBs, caused apoptosis in the reprogrammed neurons. Transcriptome analysis of 4'OH-CB72-treated whale neurons showed altered expressions of genes associated with oxidative phosphorylation, chromatin degradation, axonal transport, and neurodegenerative diseases. These results suggest that 4'OH-CB72 exposure may induce neurodegeneration through disrupted apoptotic processes. A comparison of the results with human reprogrammed neurons revealed the specific effects on the whale neurons. Our noninvasive approach using fibroblast-derived neurons is useful for hazard and risk assessments of neurotoxicity in whales.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Hoa Thanh Nguyen
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Nozomi Kurihara
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| | - Yuko Tajima
- Division of Vertebrates, Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Tadasu K Yamada
- Division of Vertebrates, Department of Zoology, National Museum of Nature and Science, 4-1-1, Amakubo, Tsukuba, Ibaraki 305-0005, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577, Japan
| |
Collapse
|
13
|
Nomiyama K, Tsujisawa Y, Ashida E, Yachimori S, Eguchi A, Iwata H, Tanabe S. Mother to Fetus Transfer of Hydroxylated Polychlorinated Biphenyl Congeners (OH-PCBs) in the Japanese Macaque ( Macaca fuscata): Extrapolation of Exposure Scenarios to Humans. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:11386-11395. [PMID: 32786554 DOI: 10.1021/acs.est.0c01805] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Prenatal hydroxylated polychlorinated biphenyls (OH-PCBs) exposure may disrupt fetal brain development during the critical period of thyroid hormone (TH) action. However, there are limited studies on the OH-PCB transfer to the fetal brain, particularly in primates. In this study, we selected the Japanese macaque (Macaca fuscata) as a model animal for the fetal transfer of OH-PCBs in humans and revealed OH-PCB concentrations and their relationships in maternal and fetal blood, liver, and brain. l-thyroxine (T4)-like OH-PCBs including 4OH-CB187, a major congener in humans, were found in high proportions in the blood, liver, brain, and placenta of pregnant Japanese macaques. OH-PCBs were detected in the fetal brain and liver in the first trimester, indicating their transfer to the brain in the early pregnancy stage. 4OH-CB187 and 4OH-CB202 were the major congeners found in fetal brain, indicating that these T4-like OH-PCBs are transported from maternal blood to the fetal brain via the placenta. These results indicate that further studies are needed on the effects of OH-PCBs on the developing fetal brain.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Yusuke Tsujisawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
- Shimadzu Techno-Research, INC., 1, Nishinokyo-Shimoaicho, Nakagyo-ku, Kyoto 604-8436 Japan
| | - Emiko Ashida
- Shikoku Institute of Natural History, 470-1, Shimobun-otu, Susaki, Kochi 785-0023, Japan
| | - Syuji Yachimori
- The Yokogurayama Natural Forest Museum. Ochi, 737-12 Ochi-hei, Ochi-cho, Kochi 781-1303, Japan
| | - Akifumi Eguchi
- Center for Preventive Medical Sciences, Chiba University, Inage-ku Yayoi-cho 1-33, Chiba 263-0022, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
14
|
Ochiai M, Kurihara N, Hirano M, Nakata A, Iwata H. In Vitro Cytotoxicity and Risk Assessments of Environmental Pollutants Using Fibroblasts of a Stranded Finless Porpoise ( Neophocaena asiaeorientalis). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6832-6841. [PMID: 32337981 DOI: 10.1021/acs.est.9b07471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Cetaceans accumulate high levels of environmental pollutants, yet their toxicological studies have been difficult due to technical and ethical issues. It is essential to identify and fill the current knowledge gaps in the in vitro assays available for cetaceans. The present study establishes a novel in vitro assay that uses the fibroblasts of a finless porpoise (Neophocaena asiaeorientalis) (FF) stranded in the Seto Inland Sea (SIS) to answer questions about the cytotoxicity and risks of environmental pollutants. FF were treated with 17 compounds including polychlorinated biphenyls (PCBs) and dichlorodiphenyltrichloroethane and their metabolites (DDTs) and evaluated for cytotoxicity, viability, and apoptosis. The results of FF were compared with those of human fibroblasts (HF). The relative potencies of the test compounds were comparable between the two species, as EC50 of these compounds significantly correlated for FF and HF. Exposure-activity ratios (EARs) revealed that accumulation of PCBs and DDTs are likely to pose adverse effects at the cellular level in the SIS finless porpoises, as their tissue concentrations exceeded EC50 values obtained in this study. This study successfully evaluated the risks of environmental pollutants using cetacean fibroblasts isolated by a non-invasive method that may be applied to various cetacean species and compounds.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Nozomi Kurihara
- Joint Faculty of Veterinary Medicine, Yamaguchi University, 1677-1, Yoshida, Yamaguchi City, Yamaguchi 753-8515, Japan
| | - Masashi Hirano
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| | - Akifumi Nakata
- Hokkaido University of Science, 7-Jo 15-4-1 Maeda, Teine, Sapporo, Hokkaido 006-8585, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama City, Ehime 790-8577 Japan
| |
Collapse
|
15
|
Saktrakulkla P, Dhakal RC, Lehmler HJ, Hornbuckle KC. A semi-target analytical method for quantification of OH-PCBs in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020. [PMID: 31359319 DOI: 10.25820/036e-b439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are oxidative metabolites of PCBs and residuals found in original Aroclors. OH-PCBs are known to play a role as genotoxicants, carcinogens, and hormone disruptors, and therefore it is important to quantify their presence in human tissues, organisms, and environmental matrices. Of 837 possible mono-OH-PCBs congeners, there are only ~ 70 methoxylated PCB (MeO-PCB) standards commercially available. Hence, a semi-target analytical method is needed for unknown OH-PCBs. The mass concentrations of these unknowns are sometimes determined by assuming the peak responses of other available compounds. This can bias the results due to the choices and availabilities of standards. To overcome this issue, we investigated the peak responses of all commercially available MeO-PCB standards with gas chromatography (GC) coupling with triple quadrupole (QqQ) mass spectrometry (MS) system, with positive electron impact (EI) ionization at 20-70 eV in selected ion monitoring (SIM) mode. We found correlations between the relative peak responses (RRFs) and the number of chlorine (#Cl) in the molecules of MeO-PCBs. Among the studied models, the quadratic regression of #Cl is the most suitable model in the RRF prediction (RRF = β1 × #Cl^2 + β0) when the peak responses are captured at 30 eV. We evaluated the performance of the model by analyzing 12 synthesized MeO-PCB standards and a PCB-contaminated sediment collected from a wastewater lagoon. We further demonstrate the utility of the model using a different chromatography column and GC-EI-MS system. We found the method and associated model to be sufficiently simple, accurate, and versatile for use in quantifying OH-PCBs in complex environmental samples.
Collapse
Affiliation(s)
- Panithi Saktrakulkla
- Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ram C Dhakal
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Keri C Hornbuckle
- Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
16
|
Saktrakulkla P, Dhakal RC, Lehmler HJ, Hornbuckle KC. A semi-target analytical method for quantification of OH-PCBs in environmental samples. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:8859-8871. [PMID: 31359319 PMCID: PMC6986979 DOI: 10.1007/s11356-019-05775-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 06/17/2019] [Indexed: 04/16/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are oxidative metabolites of PCBs and residuals found in original Aroclors. OH-PCBs are known to play a role as genotoxicants, carcinogens, and hormone disruptors, and therefore it is important to quantify their presence in human tissues, organisms, and environmental matrices. Of 837 possible mono-OH-PCBs congeners, there are only ~ 70 methoxylated PCB (MeO-PCB) standards commercially available. Hence, a semi-target analytical method is needed for unknown OH-PCBs. The mass concentrations of these unknowns are sometimes determined by assuming the peak responses of other available compounds. This can bias the results due to the choices and availabilities of standards. To overcome this issue, we investigated the peak responses of all commercially available MeO-PCB standards with gas chromatography (GC) coupling with triple quadrupole (QqQ) mass spectrometry (MS) system, with positive electron impact (EI) ionization at 20-70 eV in selected ion monitoring (SIM) mode. We found correlations between the relative peak responses (RRFs) and the number of chlorine (#Cl) in the molecules of MeO-PCBs. Among the studied models, the quadratic regression of #Cl is the most suitable model in the RRF prediction (RRF = β1 × #Cl^2 + β0) when the peak responses are captured at 30 eV. We evaluated the performance of the model by analyzing 12 synthesized MeO-PCB standards and a PCB-contaminated sediment collected from a wastewater lagoon. We further demonstrate the utility of the model using a different chromatography column and GC-EI-MS system. We found the method and associated model to be sufficiently simple, accurate, and versatile for use in quantifying OH-PCBs in complex environmental samples.
Collapse
Affiliation(s)
- Panithi Saktrakulkla
- Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA
| | - Ram C Dhakal
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Hans-Joachim Lehmler
- Department of Occupational and Environmental Health, College of Public Health, The University of Iowa, Iowa City, IA, 52242, USA
| | - Keri C Hornbuckle
- Graduate Program in Human Toxicology, Department of Civil and Environmental Engineering, IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, IA, 52242, USA.
| |
Collapse
|
17
|
Guo JY, Wang MZ, Wang MS, Sun T, Wei FH, Yu XT, Wang C, Xu YY, Wang L. The Undervalued Effects of Polychlorinated Biphenyl Exposure on Breast Cancer. Clin Breast Cancer 2020; 20:12-18. [DOI: 10.1016/j.clbc.2019.07.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 07/07/2019] [Indexed: 12/26/2022]
|
18
|
Nomiyama K, Eguchi A, Takaguchi K, Yoo J, Mizukawa H, Oshihoi T, Tanabe S, Iwata H. Targeted metabolome analysis of the dog brain exposed to PCBs suggests inhibition of oxidative phosphorylation by hydroxylated PCBs. Toxicol Appl Pharmacol 2019; 377:114620. [PMID: 31195005 DOI: 10.1016/j.taap.2019.114620] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 05/23/2019] [Accepted: 06/07/2019] [Indexed: 01/23/2023]
Abstract
Canis lupus familiaris (domestic dog) possess a high capacity to metabolize higher-chlorinated polychlorinated biphenyls (PCBs) to thyroid hormone (TH)-like hydroxylated PCB metabolites (OH-PCBs). As a result, the brain could be at high risk of toxicity caused by OH-PCBs. To evaluate the effect of OH-PCBs on dog brain, we analyzed OH-PCB levels in the brain and the metabolome of the frontal cortex following exposure to a mixture of PCBs (CB18, 28, 70, 77, 99, 101, 118, 138, 153, 180, 187, and 202). 4-OH-CB202 and 4-OH-CB107 were major OH-PCBs in the brain of PCB-exposed dogs. These OH-PCBs were associated with metabolites involved in urea cycle, proline-related compounds, and purine, pyrimidine, glutathione, and amino-acid metabolism in dog brain. Moreover, adenosine triphosphate levels in the PCBs exposure group were significantly lower than in the control group. These results suggest that OH-PCB exposure is associated with a disruption in TH homeostasis, generation of reactive oxygen species, and/or disruption of oxidative phosphorylation (OXPHOS) in brain cells. Among them, OXPHOS disturbance could be associated with both disruptions in cellular amino-acid metabolism and urea cycle. Therefore, an OXPHOS activity assay was performed to evaluate the disruption of OXPHOS by OH-PCBs. The results indicated that 4-OH-CB107 inhibits the function of Complexes III, IV, and V of the electron transport chain, suggesting that 4-OH-CB107 inhibit these complexes in OXPHOS. The neurotoxic effects of PCB exposure may be mediated through mitochondrial toxicity of OH-PCBs in the brain.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan.
| | - Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1, -33 Chiba-city, Japan
| | - Kohki Takaguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Jean Yoo
- Environmental Health Research Department, National Institute of Environmental Research, Incheon 404-708, Republic of Korea
| | - Hazuki Mizukawa
- Laboratory of Environmental Analytical Chemistry, Department of Science and Technology for Biological Resources and Environment, Graduate School of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama, Ehime 790-8566, Japan
| | - Tomoko Oshihoi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama, Ehime 790-8577, Japan
| |
Collapse
|
19
|
Ma S, Ren G, Zeng X, Yu Z, Sheng G, Fu J. Polychlorinated biphenyls and their hydroxylated metabolites in the serum of e-waste dismantling workers from eastern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1931-1940. [PMID: 28477162 DOI: 10.1007/s10653-017-9958-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 04/18/2017] [Indexed: 05/16/2023]
Abstract
A number of studies have reported on the exposure of e-waste dismantling workers to significantly high concentrations of halogenated organic pollutants such as polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers. Such exposure can have adverse health effects. However, little information on the metabolites of these contaminants exists. In this study, we investigated PCBs levels and their hydroxylated metabolites (OH-PCB) in the serum of e-waste workers in Taizhou in eastern China. Our results indicate elevated PCB and OH-PCB levels in the serum of the workers, with medians of 443.7 and 133.9 ng/g lw, respectively. Tri- to hexachlorinated PCB congeners were the dominant homologue groups in all of the samples. 4-OH-CB107 was the predominant homologue among the hydroxylated metabolites, accounting for 88.9% of the total OH-PCB concentrations. While dietary sources (e.g., fish) appear to be an important route for PCB accumulation in non-occupational exposure groups, exposure via ingestion of house dust and inhalation of pollutants derived from the recycling of PCB-containing e-wastes may primarily contribute to the high body burden observed in the occupational groups. Since we found concentrations of metabolites higher than those of their parent compounds, further studies need to pay more attention to their bioaccumulation and toxicity.
Collapse
Affiliation(s)
- Shengtao Ma
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Guofa Ren
- Institute of Environmental Pollution and Health, School of Environment and Chemical Engineering, Shanghai University, Shanghai, 200072, China
| | - Xiangying Zeng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Zhiqiang Yu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China.
| | - Guoying Sheng
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Jiamo Fu
- State Key Laboratory of Organic Geochemistry, Guangdong Key Laboratory of Environment Protection and Resource Utilization, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
20
|
Haga Y, Suzuki M, Matsumura C, Okuno T, Tsurukawa M, Fujimori K, Kannan N, Weber R, Nakano T. Monitoring OH-PCBs in PCB transport worker's urine as a non-invasive exposure assessment tool. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16446-16454. [PMID: 29656357 DOI: 10.1007/s11356-018-1927-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 04/02/2018] [Indexed: 05/18/2023]
Abstract
In this study, we analyzed hydroxylated polychlorinated biphenyls (OH-PCBs) in urine of both PCB transport workers and PCB researchers. A method to monitor OH-PCB in urine was developed. Urine was solid-phase extracted with 0.1% ammonia/ methanol (v/v) and glucuronic acid/sulfate conjugates and then decomposed using β-glucuronidase/arylsulfatase. After alkaline digestion/derivatization, the concentration of OH-PCBs was determined by HRGC/HRMS-SIM. In the first sampling campaign, the worker's OH-PCB levels increased several fold after the PCB waste transportation work, indicating exposure to PCBs. The concentration of OH-PCBs in PCB transport workers' urine (0.55~11 μg/g creatinine (Cre)) was higher than in PCB researchers' urine (< 0.20 μg/g Cre). However, also a slight increase of OH-PCBs was observed in the researchers doing the air sampling at PCB storage area. In the second sampling, after recommended PCB exposure reduction measures had been enacted, the worker's PCB levels did not increase during handling of PCB equipment. This suggests that applied safety measures improved the situation. Hydroxylated trichlorobiphenyls (OH-TrCBs) were identified as a major homolog of OH-PCBs in urine. Also, hydroxylated tetrachlorobiphenyls (OH-TeCBs) to hydroxylated hexachlorobiphenyls (OH-HxCBs) were detected. For the sum of ten selected major indicators, a strong correlation to total OH-PCBs were found and these can possibly be used as non-invasive biomarkers of PCB exposure in workers managing PCB capacitors and transformer oils. We suggest that monitoring of OH-PCBs in PCB management projects could be considered a non-invasive way to detect exposure. It could also be used as a tool to assess and improve PCB management. This is highly relevant considering the fact that in the next 10 years, approx. 14 million tons of PCB waste need to be managed. Also, the selected populations could be screened to assess whether exposure at work, school, or home has taken place.
Collapse
Affiliation(s)
- Yuki Haga
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan.
| | - Motoharu Suzuki
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
| | - Chisato Matsumura
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
| | - Toshihiro Okuno
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
| | - Masahiro Tsurukawa
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
| | - Kazuo Fujimori
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
| | - Narayanan Kannan
- Faculty of Applied Sciences, AIMST University, Bedong, Kedha, Malaysia
| | - Roland Weber
- POPs Environmental Consulting, 73527, Schwäbisch Gmünd, Germany
| | - Takeshi Nakano
- Hyogo Prefectural Institute of Environmental Sciences, Kobe, Hyogo, 654-0037, Japan
- Center for Advanced Science and Innovation, Osaka University, Suita, Osaka, 565-0871, Japan
- Graduate School of Maritime Science, Kobe University, Kobe, Hyogo, 658-0022, Japan
| |
Collapse
|
21
|
Zhang Q, Wang X, Zhu J, Li Z, Wang Y. Occurrence and risk assessment of persistent organic pollutants in a branch of the Grand Canal in Hangzhou, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:211. [PMID: 29532177 DOI: 10.1007/s10661-018-6572-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 02/20/2018] [Indexed: 05/25/2023]
Abstract
The Grand Canal is one of the most important waterways and sources of drinking water in China. The security of this water environment has a strong influence on national economic development and public health. However, data on the pollution status and potential risks due to persistent organic pollutants (POPs) in this area is insufficient. In this study, we selected a branch of the Grand Canal in Hangzhou as the study subject from which 16 surface water samples were collected in the summer of 2016. The concentrations of organochlorine pesticides (OCPs) (including 4 hexachlorocyclohexanes (HCHs) and 6 dichlorodiphenyltrichloroethanes (DDTs)), 12 polycyclic aromatic hydrocarbons (PAHs), and 35 polychlorinated biphenyls (PCBs) in the water samples were determined by gas chromatography-mass spectrometry (GC-MS). Non-carcinogenic risk, carcinogenic risk, and cytotoxicity experiments were conducted to evaluate the potential health risks due to these POPs. Additionally, the toxicological data for the Danio rerio aquatic organism from the US EPA were employed for comparison with the residue from POPs in this area. The results showed that the total concentrations of HCHs, DDTs, PCBs, and PAHs were 29.937, 60.2, 8.30, and 1670.2 ng/L, respectively. Some pollutants (including acenaphthene and acenaphthylene, hepta-PCBs and tetra-PCBs, octa-PCBs and hexa-PCBs, β-HCH and α-HCH, and δ-HCH and γ-HCH) showed a correlation, which indicated they might have a similar origin. There were no non-carcinogenic risks or ecological risks for adults, children, and aquatic organisms, but a relatively low carcinogenic risk for adults presented at certain sites. The data provided here will be helpful in fully understanding the pollution status of the surface water in this branch of the Grand Canal and the potential risks from this water. Graphical abstract ᅟ.
Collapse
Affiliation(s)
- Quan Zhang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China.
| | - Ximing Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Jianqiang Zhu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Zhe Li
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| | - Ye Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang, 310032, China
| |
Collapse
|
22
|
Eguchi A, Enomoto T, Suzuki N, Okuno M, Mori C. Development of simple analytical methods of polychlorinated biphenyls in human serum by gas chromatography negative ion chemical ionization quadrupole mass spectrometry. ACTA CHROMATOGR 2017. [DOI: 10.1556/1326.2017.00029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Akifumi Eguchi
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba City 263-0022, Japan
| | - Takeshi Enomoto
- JEOL Ltd., 1156 Nakagami-cho, Akishima, Tokyo 196-0022, Japan
| | - Norimichi Suzuki
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba City 263-0022, Japan
| | - Miho Okuno
- JEOL Ltd., 1156 Nakagami-cho, Akishima, Tokyo 196-0022, Japan
| | - Chisato Mori
- Chiba University, Center for Preventive Medical Sciences, Inage-ku Yayoi-cho 1-33, Chiba City 263-0022, Japan
- Chiba University, Department of Bioenvironmental Medicine, Graduate School of Medicine, Chuo-ku Inohana 1-8-1, Chiba City 260-8670, Japan
| |
Collapse
|
23
|
Haraguchi K, Ito Y, Takagi M, Fujii Y, Harada KH, Koizumi A. Levels, profiles and dietary sources of hydroxylated PCBs and hydroxylated and methoxylated PBDEs in Japanese women serum samples. ENVIRONMENT INTERNATIONAL 2016; 97:155-162. [PMID: 27615405 DOI: 10.1016/j.envint.2016.08.022] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 08/03/2016] [Accepted: 08/24/2016] [Indexed: 06/06/2023]
Abstract
Human exposure to polychlorinated biphenyls (PCBs) and polybrominated diphenyl ethers (PBDEs) may result in retention of specific congeners of hydroxylated PCBs (OH-PCBs) and hydroxylated/methoxylated PBDEs (OH-/MeO-PBDEs) in serum. However, dietary sources and biotransformation of OH-/MeO-PBDEs in humans are poorly understood. Therefore, this study was conducted to investigate the levels, profiles, and exposure sources of OH-/MeO-PBDEs along with OH-PCBs present in human serum. Twenty serum samples pooled from women of four age groups (30s/40s/50s/60s) living in four districts of Japan were analyzed for OH-/MeO-PBDEs, and their profiles were then compared with those of seafood (seaweed and fish). The major component of OH-PCBs in the phenolic fraction of serum was 4-OH-CB187 (mean: 85pgg-1 wet weight (ww)). Total OH-PCBs accounted for about 1/20 of the total PCBs (mean; 1800pgg-1 ww). In contrast, the predominant component of OH-PBDEs in serum was 6-OH-BDE47 (mean: 183pgg-1 ww), which was about 20-fold higher than BDE-47 (mean; 8.7pgg-1 ww). In the neutral fraction, 2'-MeO-BDE68 was primarily found at a similar concentration (mean 5.6pgg-1 ww) to BDE-47. Both 4-OH-PCB187 and 2'-MeO-BDE68 were significantly correlated with woman's age (p<0.01), but not with 6-OH-BDE47 or BDE-47. The profiles of OH-PBDEs in serum were consistent with those in edible seaweeds (Sargassum fusiforme) sold for human consumption, whereas MeO-PBDEs had a similar profile as those in edible fish (Serranidae sp.) from Japanese coastal waters. These findings indicate that the profiles of OH-PBDEs and MeO-PBDEs in Japanese serum are different from those in other countries, and their sources may be specific edible seaweeds and fish, respectively. This is the first report of profiles and dietary sources of OH/MeO-PBDEs in human serum from Japan.
Collapse
Affiliation(s)
- Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| | - Yoshiko Ito
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Masae Takagi
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yukiko Fujii
- Daiichi College of Pharmaceutical Sciences, 22-1 Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan; Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| |
Collapse
|
24
|
Koh WX, Hornbuckle KC, Wang K, Thorne PS. Serum polychlorinated biphenyls and their hydroxylated metabolites are associated with demographic and behavioral factors in children and mothers. ENVIRONMENT INTERNATIONAL 2016; 94:538-545. [PMID: 27352881 PMCID: PMC4980156 DOI: 10.1016/j.envint.2016.06.014] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/12/2016] [Indexed: 05/18/2023]
Abstract
Factors contributing to the inter-individual variation in body burden of polychlorinated biphenyls (PCBs) and their hydroxylated metabolites (OH-PCBs) have not been fully elucidated. We examined associations between total serum concentrations of 209 PCBs, 64 OH-PCBs, and frequently detected individual congeners with demographic characteristics (age, gender, ethnicity and community of residence), body mass index (BMI or BMI percentile), and breastfeeding history in children and their mothers from 83 U.S. households. There was a significant positive association between age and concentrations of total PCBs and OH-PCBs in mothers. Non-Hispanics had significantly higher concentrations of total PCBs in mothers and OH-PCBs in children than Hispanics. Concentrations of total PCBs were significantly lower in mothers who had longer breastfeeding duration. Living in the Columbus Junction, Iowa community as compared to East Chicago, Indiana was associated with higher total PCBs in children, probably attributable to higher exposures at school. Lower concentrations of OH-PCBs were significantly associated with a higher BMI percentile in children. Congener-specific associations were observed for 30 PCB and 12 OH-PCB congeners and followed comparable trends. To our knowledge, this is the first study to examine factors contributing to variations in serum concentrations of total 209 PCBs and total OH-PCBs in children, as well as to examine ethnic differences in OH-PCB levels. Results from this study revealed that demographic characteristics, body mass index and breastfeeding history are factors that should be considered for human exposure and risk assessment of PCBs and OH-PCBs.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States; Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, Iowa 52242, United States
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, Iowa 52242, United States; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, Iowa 52242, United States.
| |
Collapse
|
25
|
Koh WX, Hornbuckle KC, Marek RF, Wang K, Thorne PS. Hydroxylated polychlorinated biphenyls in human sera from adolescents and their mothers living in two U.S. Midwestern communities. CHEMOSPHERE 2016; 147:389-95. [PMID: 26774304 PMCID: PMC4747419 DOI: 10.1016/j.chemosphere.2015.12.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 12/12/2015] [Accepted: 12/25/2015] [Indexed: 05/18/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) have been detected in human specimens and some are suspected as being more toxic than their parent compounds. We compared 58 OH-PCB congeners (in 51 chromatographic peaks) in serum samples from participants in the AESOP Study, a longitudinal cohort study of adolescents and their mothers living in urban and rural areas in the United States. We hypothesized that adolescents would have lower levels of OH-PCBs than their mothers and that serum concentration of OH-PCBs would be stable over a 3-year period. We found statistically significant differences in total OH-PCBs between age groups in both East Chicago (p = 0.001) and Columbus Junction (p < 0.001), with adolescents having lower concentrations than their mothers. We observed that lower-chlorinated OH-PCBs were rarely detected, suggesting that they are not retained in serum and/or rapidly biotransformed into other forms. Twelve OH-PCBs, including several that are rarely reported (4,4'-diOH-PCB 202, 4'-OH-PCB 208, and 4-OH-PCB 163) were detected in over 60% of participants. Lastly, from repeated measures within subject serum for three OH-PCBs, concentrations of 4-OH-PCB 107 and 4-OH-PCB 187 changed significantly over three years of the study.
Collapse
Affiliation(s)
- Wen Xin Koh
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States
| | - Keri C Hornbuckle
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, United States.
| | - Rachel F Marek
- Department of Civil and Environmental Engineering, The University of Iowa, Iowa City, IA 52242, United States
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City, IA 52242, United States
| | - Peter S Thorne
- Interdisciplinary Graduate Program in Human Toxicology, The University of Iowa, Iowa City, IA 52242, United States; Department of Occupational and Environmental Health, The University of Iowa, Iowa City, IA 52242, United States.
| |
Collapse
|
26
|
Determination of hydroxylated polychlorinated biphenyls by offline solid-phase extraction-liquid chromatography–tandem mass spectrometry using a molecularly imprinted polymer as a sorbent for sample preconcentration. Talanta 2015; 144:115-21. [DOI: 10.1016/j.talanta.2015.05.064] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 05/17/2015] [Accepted: 05/25/2015] [Indexed: 11/18/2022]
|
27
|
Quinete N, Kraus T, Belov VN, Aretz C, Esser A, Schettgen T. Fast determination of hydroxylated polychlorinated biphenyls in human plasma by online solid phase extraction coupled to liquid chromatography-tandem mass spectrometry. Anal Chim Acta 2015; 888:94-102. [DOI: 10.1016/j.aca.2015.06.041] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 06/12/2015] [Accepted: 06/17/2015] [Indexed: 10/23/2022]
|
28
|
Xu D, Su C, Song X, Shi Q, Fu J, Hu L, Xia X, Song E, Song Y. Polychlorinated biphenyl quinone induces endoplasmic reticulum stress, unfolded protein response, and calcium release. Chem Res Toxicol 2015; 28:1326-37. [PMID: 25950987 DOI: 10.1021/acs.chemrestox.5b00124] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Organisms are able to respond to environmental insult to maintain cellular homeostasis, which include the activation of a wide range of cellular adaptive responses with tightly controlled mechanisms. The endoplasmic reticulum (ER) is an organelle responsible for protein folding and calcium storage. ER stress leads to the accumulation of unfolded proteins in the ER lumen. To be against or respond to this effect, cells have a comprehensive signaling system, called unfolded protein response (UPR), to restore homeostasis and normal ER function or activate the cell death program. Therefore, it is critical to understand how environmental insult regulates the ingredients of ER stress and UPR signalings. Previously, we have demonstrated that polychlorinated biphenyl (PCB) quinone caused oxidative stress, cytotoxicity, genotoxicity, and apoptosis in HepG2 cells. Here, we investigated the role of a PCB quinone, PCB29-pQ on ER stress, UPR, and calcium release. PCB29-pQ markedly increased the hallmark genes of ER stress, namely, glucose-regulated protein 78 (GRP78), GRP94, and C/EBP homologous protein (CHOP) on both protein and mRNA levels in HepG2 cells. We also confirmed PCB29-pQ induced ER morphological defects by using transmission electron microscopy. Moreover, PCB29-pQ induced intracellular calcium accumulation and calpain activity, which were significantly inhibited by the pretreatment of BAPTA-AM (Ca(2+) chelator). These results were correlated with the outcome that PCB29-pQ induces ER stress-related apoptosis through caspase family gene 12, while salubrinal and Z-ATAD-FMK (a specific inhibitor of caspase 12) partially ameliorated this effect, respectively. N-Acetyl-l-cysteine (NAC) scavenged ROS formation and consequently alleviated PCB29-pQ-induced expression of ER stress-related genes. In conclusion, our result demonstrated for the first time that PCB quinone leads to ROS-dependent induction of ER stress, and UPR and calcium release in HepG2 cells, and the evaluation of the perturbations of ER stress, UPR, and calcium signaling provide further information on the mechanisms of PCB-induced toxicity.
Collapse
Affiliation(s)
- Demei Xu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Chuanyang Su
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiufang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Qiong Shi
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Juanli Fu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Lihua Hu
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Xiaomin Xia
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Erqun Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| | - Yang Song
- Key Laboratory of Luminescence and Real-Time Analytical Chemistry (Southwest University), Ministry of Education, College of Pharmaceutical Sciences, Southwest University, Chongqing 400715, People's Republic of China
| |
Collapse
|
29
|
Influence of 4-hydroxylated polychlorinated biphenyls on the secretory function of bovine ovarian cells: Role of the steroidogenic factor-1 receptor. Anim Reprod Sci 2015; 155:89-98. [DOI: 10.1016/j.anireprosci.2015.02.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 11/20/2022]
|
30
|
Mizukawa H, Nomiyama K, Kunisue T, Watanabe MX, Subramanian A, Iwata H, Ishizuka M, Tanabe S. Organohalogens and their hydroxylated metabolites in the blood of pigs from an open waste dumping site in south India: association with hepatic cytochrome P450. ENVIRONMENTAL RESEARCH 2015; 138:255-263. [PMID: 25743931 DOI: 10.1016/j.envres.2015.02.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 02/09/2015] [Accepted: 02/10/2015] [Indexed: 06/04/2023]
Abstract
The concentrations of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and their hydroxylated metabolites (OH-PCBs and OH-PBDEs) were measured in the blood of Eurasian wild pigs (Sus scrofa) from a municipal waste open dumping site (DS) and a reference site (RS) in South India. We showed that contamination with OH-PCBs was higher in female pigs from the DS than in all other adult pigs. The highest OH-PCB concentrations were found in piglets from the DS. Moreover, the hepatic expression levels of CYP1A and CYP2B were higher in piglets than in their dam, implying metabolism of PCBs by cytochrome P450 (CYP) enzymes. The OH-PCB congener profiles differed according to sex and collection sites, possibly because of variations in the expression levels of phase I and phase II enzymes among individual pigs, differences in the exposure sources, and maternal transfer of parent PCBs. The hepatic CYP1A expression levels were positively correlated with the blood concentrations of 4OH-CB107, 4OH-CB162, and 4OH-CB187, implying CYP1A-dependent formation of these OH-PCBs in the pig liver. We found no significant correlations between the blood concentrations of OH-PCBs and thyroid hormones (THs); however, the thyroxin (T4) levels were lower in pigs from the DS than in pigs from the RS. Our limited dataset suggest that induced CYP enzymes accelerate the metabolism of xenobiotics and endogenous molecules in pigs. Thus, besides parental compounds, the risk of hydroxylated metabolites entering wildlife and humans living in and around municipal open waste dumping sites should be considered.
Collapse
Affiliation(s)
- Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Michio X Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Annamalai Subramanian
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Graduate School of Veterinary Medicine, Hokkaido University, Kita 18, Nishi 9, Kita-ku, Sapporo 060-0818, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
31
|
Eguchi A, Nomiyama K, Minh Tue N, Trang PTK, Hung Viet P, Takahashi S, Tanabe S. Residue profiles of organohalogen compounds in human serum from e-waste recycling sites in North Vietnam: Association with thyroid hormone levels. ENVIRONMENTAL RESEARCH 2015; 137:440-449. [PMID: 25659948 DOI: 10.1016/j.envres.2015.01.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 01/07/2015] [Accepted: 01/08/2015] [Indexed: 06/04/2023]
Abstract
This study demonstrated the contamination levels of polychlorinated biphenyls (PCBs), hydroxylated PCBs (OH-PCBs), polybrominated diphenyl ethers (PBDEs), methoxylated PBDEs (MeO-PBDEs), hydroxylated PBDEs (OH-PBDEs), and bromophenols (BPhs), and their relationships with thyroid hormones (THs), in the serum of human donors from an e-waste recycling site and a rural site in Hung Yen province, Vietnam. Occupationally related exposure was indicated by significantly higher residue levels of PCBs, OH-PCBs, PBDEs, and BPhs in the serum of donors from the e-waste recycling site (median: 420, 160, 290, and 300pgg(-1) wet wt, respectively) than those in the serum of donors from the rural site (median: 290, 82, 230, and 200pgg(-)(1) wet wt, respectively). On the other hand, levels of OH-/MeO-PBDEs were significantly higher in serum of donors from the reference site (median: 160 and 20pgg(-1) wet wt, respectively) than in those from the e-waste recycling site (median: 43 and 0.52pgg(-1) wet wt, respectively). In addition, we implemented stepwise generalized linear models to assess the association between the levels of TH and PCBs, PBDEs, and their related compounds. In females, we found positive associations of PCBs and OH-PCB concentrations with total thyroxine, free thyroxine, total triiodothyronine, and free triiodothyronine, and a negative association with thyroid-stimulating hormone concentrations.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Pham Thi Kim Trang
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development, Hanoi University of Science, 334 Nguyen Trai, Hanoi, Vietnam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, Tarumi 3-5-7, Matsuyama 790-8566, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
32
|
Imaeda D, Nomiyama K, Kunisue T, Iwata H, Tsydenova O, Amano M, Petrov EA, Batoev VB, Tanabe S. Blood levels of polychlorinated biphenyls and their hydroxylated metabolites in Baikal seals (Pusa sibirica): emphasis on interspecies comparison, gender difference and association with blood thyroid hormone levels. CHEMOSPHERE 2014; 114:1-8. [PMID: 25113177 DOI: 10.1016/j.chemosphere.2014.03.089] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2013] [Revised: 03/19/2014] [Accepted: 03/21/2014] [Indexed: 06/03/2023]
Abstract
We have previously demonstrated that Baikal seals (Pusa sibirica) are still being exposed to polychlorinated biphenyls (PCBs), and the population is at risk. In the present study, we measured the residue levels of PCBs and their hydroxylated metabolites (OH-PCBs) in the blood of Baikal seals and assessed the impact of OH-PCBs on the thyroid function. Blood concentrations of PCBs and OH-PCBs were in the range of 2.8-130 ng g(-1)wet wt. and 0.71-4.6 ng g(-1)wetwt., respectively. Concentrations of higher-chlorinated OH-PCBs (hexa- to octa-PCBs) were more than 70% to total OH-PCB concentrations, indicating Baikal seals are mostly risked by higher-chlorinated OH-PCBs. High levels of 4OH-CB146 and 4OH-CB187 and low levels of 4OH-CB107/4'OH-CB108 found in Baikal seals were different from those in other phocidae species, suggesting the unique drug-metabolizing enzyme activities and/or contamination sources in this species. Concentrations of some OH-PCBs in males were significantly higher than those in females. These results suggest that these isomers may be preferentially transferred from mother to pup via cord blood. However, concentrations of almost all the isomers were not significantly correlated with the levels of blood total T3 and T4, implying less impact of PCB-related compounds on the thyroid hormone circulation.
Collapse
Affiliation(s)
- Daisuke Imaeda
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Hisato Iwata
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Oyuna Tsydenova
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | - Masao Amano
- Faculty of Fisheries, Nagasaki University, Bunkyo-cho 1-14, Nagasaki 852-8521, Japan
| | - Evgeny A Petrov
- The Eastern-Siberian Scientific and Production Fisheries Center, "VOSTSIBRYBCENTER", Ulan-Ude, Buryatia 670034, Russia
| | - Valeriy B Batoev
- Baikal Institute of Nature Management, Siberian Branch of Russian Academy of Sciences, Ulan-Ude, Buryatia 670047, Russia
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| |
Collapse
|
33
|
Quinete N, Schettgen T, Bertram J, Kraus T. Occurrence and distribution of PCB metabolites in blood and their potential health effects in humans: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2014; 21:11951-11972. [PMID: 24943885 DOI: 10.1007/s11356-014-3136-9] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/30/2014] [Indexed: 06/03/2023]
Abstract
In recent years, attention has been directed to chemicals with possible endocrine-disrupting properties. Polychlorinated biphenyls (PCBs) and their metabolites belong to one group of environmental contaminants that have been shown to interact with the endocrine system in mammals, including humans. Although recent developments have been made in terms of determination of PCB metabolites in blood samples, still limited number of studies have been able to elucidate their profiles and toxicological and health effects in humans. This review aims to evaluate and compare the levels of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs) in blood and their relationship to parent compounds and also address the potential risks and adverse health effects in humans. Levels of OH-PCBs varied between 0.0002 and 1.6 ng g(-1) w/w in human serum/plasma from the selected literature, correlating well with ∑PCBs. In contrast, ∑OH-PCB/∑PCB ratio in animals did not show a significant correlation, which might suggest that the bioaccumulation plays an even more important role in the concentration of OH-PCBs compared to PCB metabolism. Highest levels of MeSO2-PCBs were reported in marine mammals with high selectivity retention in the liver. Health effects of PCB metabolites included carcinogenicity, reproductive impairment, and developmental neurotoxicity, being more efficiently transferred to the brain and across the placenta from mother to fetus in comparison to the parent PCBs. Based on the lack of knowledge on the occurrence and distribution of lower chlorinated OH-PCBs in humans, further studies to identify and assess the risks associated to human exposure are essential.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
34
|
Quinete N, Schettgen T, Bertram J, Kraus T. Analytical approaches for the determination of PCB metabolites in blood: a review. Anal Bioanal Chem 2014; 406:6151-64. [PMID: 24908411 DOI: 10.1007/s00216-014-7922-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 05/13/2014] [Accepted: 05/22/2014] [Indexed: 10/25/2022]
Abstract
Polychlorinated biphenyls (PCBs) are among the most ubiquitous pollutants in the environment, and their metabolism leads to the formation of hydroxylated PCBs (OH-PCBs) and methyl sulfone PCBs (MeSO2-PCBs). These metabolites are generally more hydrophilic than the parent compound, and therefore are more easily eliminated from the body. However, some congeners have been shown to be strongly retained in human blood, binding to transthyretin with an affinity that is, in general, greater than that of the natural ligand thyroxin itself, which could result in toxicological effects, particularly on the thyroid system. Currently available analytical methods require, in general, extensive sample preparation, which includes a series of time-consuming and low-throughput liquid-liquid and back extractions, evaporations, several cleanup steps, and in some cases, derivatization prior to analysis by gas chromatography (GC) or liquid chromatography (LC) coupled with mass spectrometry (MS). Recent developments in the use of LC coupled with tandem MS (MS/MS) have brought some improvements in terms of sample preparation for the determination of PCB metabolites in blood, although there are still possibilities for continued development. The selected literature has evidenced few studies of LC-MS/MS-based methods, a lack of analytical standards, nonassessment of lower-chlorinated OH-PCBs, and scarce attention to MeSO2-PCBs in blood. This review aims to evaluate critically the currently available analytical methods for determination of OH-PCBs and MeSO2-PCBs in blood.
Collapse
Affiliation(s)
- Natalia Quinete
- Institute for Occupational and Social Medicine, Medical Faculty, RWTH Aachen University, Pauwelsstrasse 30, 52074, Aachen, Germany,
| | | | | | | |
Collapse
|
35
|
Fujii Y, Harada KH, Hitomi T, Kobayashi H, Koizumi A, Haraguchi K. Temporal trend and age-dependent serum concentration of phenolic organohalogen contaminants in Japanese men during 1989-2010. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:228-233. [PMID: 24291611 DOI: 10.1016/j.envpol.2013.11.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 10/29/2013] [Accepted: 11/01/2013] [Indexed: 06/02/2023]
Abstract
The temporal trend in serum concentrations of phenolic organohalogen contaminants (POCs) were investigated in two age groups of men from Kyoto, Japan, from 1989 to 2010. These concentrations and trends were compared with neutral contaminants including polychlorinated biphenyls (PCBs) and pesticides. Serum concentrations of pentachlorophenol (PenCP) and 4-hydroxy-PCB187 were age-dependent and decreased to approximately one-half during the two decades, whereas no contamination trends were observed for 2,4,6-tribromophenol (TriBP), tetrabromobisphenol A (TBBPA) and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47). 6-OH-BDE47 was found in all samples (up to 3000 pg/g wet weight), whereas TBBPA was detected in 17 of 60 serum samples (up to 950 pg/g wet weight). The concentrations of TriBP, TBBPA and 6-OH-BDE47 were not correlated to those of PenCP or 4-OH-PCB187 in either age group, suggesting the different kinetics on exposure routes and fate between these brominated and chlorinated POCs.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Toshiaki Hitomi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Hatasu Kobayashi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
36
|
Nomiyama K, Kanbara C, Ochiai M, Eguchi A, Mizukawa H, Isobe T, Matsuishi T, Yamada TK, Tanabe S. Halogenated phenolic contaminants in the blood of marine mammals from Japanese coastal waters. MARINE ENVIRONMENTAL RESEARCH 2014; 93:15-22. [PMID: 24060385 DOI: 10.1016/j.marenvres.2013.08.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/07/2013] [Accepted: 08/29/2013] [Indexed: 06/02/2023]
Abstract
Information on accumulation of halogenated phenolic contaminants in the blood of marine mammal is limited. The present study, we determined the residue levels and patterns of chlorinated and brominated phenolic contaminants (OH-PCBs, OH-PBDEs and bromophenols) in the blood collected from pinnipeds (northern fur seal, spotted seal, Steller sea lion and ribbon seal) and small cetaceans (harbor porpoise and Dall's porpoise) from Japanese coastal waters. Concentrations of PCBs and OH-PCBs found in pinnipeds were the same as in small cetaceans living in the same coastal area. However, significantly lower concentrations of brominated compounds (PBDEs, MeO-PBDEs, OH-PBDEs) were found in the blood of pinnipeds than the levels found in cetacean species which live same area (p < 0.05). This difference of accumulation pattern suggested pinnipeds have an enhanced capability to degrade organobromine compounds relative to cetaceans.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan.
| | - Chika Kanbara
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Akifumi Eguchi
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Tomohiko Isobe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| | - Takashi Matsuishi
- Faculty of Fisheries Sciences, Hokkaido University, 3-3-1 Minato-cho, Hakodate 041-8611, Japan
| | - Tadasu K Yamada
- Department of Zoology, National Museum of Nature and Science, 3-23-1 Hyakunin-cho, Shinjuku-ku, Tokyo 169-0073, Japan
| | - Shinsuke Tanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Bunkyo-cho 3, Matsuyama 790-8577, Japan
| |
Collapse
|
37
|
Zhang Q, Ye J, Chen J, Xu H, Wang C, Zhao M. Risk assessment of polychlorinated biphenyls and heavy metals in soils of an abandoned e-waste site in China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2014; 185:258-265. [PMID: 24292442 DOI: 10.1016/j.envpol.2013.11.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/31/2013] [Accepted: 11/04/2013] [Indexed: 06/02/2023]
Abstract
Risk assessment of abandoned e-waste recycling areas received little attention. Herein, we report the concentrations of 16 PCBs and 7 heavy metals in soils near an abandoned e-waste recycling plant in Taizhou, China. Our data showed that levels of tri-, tetra-, penta-, hexa-PCBs were 9.01, 5.56, 12.93, 3.13 mg/kg, and Pb, Cd, Cu were 6082.9, 42.3, 2364.2 mg/kg soil. Cd was the most prevalent contaminant with Nemerow index value of 44.3. Contaminants have been transported from the abandoned site to nearby areas. The ecology risk assessment based on the high toxicological effect in Chinese hamster ovary cells and earthworms showed that both PCBs and heavy metal residue pose high risk to the ecosystem. Hazard quotient showed that Pb, Cd, Hg and Cu pose high health risks for adults and children. Our results recommended a full examination of the risk and regulatory compliance of abandoned e-waste recycling areas in the future.
Collapse
Affiliation(s)
- Quan Zhang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jingjia Ye
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jinyuan Chen
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Hangjie Xu
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China
| | - Cui Wang
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Meirong Zhao
- College of Biological and Environmental Engineering, Zhejiang University of Technology, Hangzhou 310032, China.
| |
Collapse
|
38
|
Fujii Y, Nishimura E, Kato Y, Harada KH, Koizumi A, Haraguchi K. Dietary exposure to phenolic and methoxylated organohalogen contaminants in relation to their concentrations in breast milk and serum in Japan. ENVIRONMENT INTERNATIONAL 2014; 63:19-25. [PMID: 24263137 DOI: 10.1016/j.envint.2013.10.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2013] [Revised: 09/27/2013] [Accepted: 10/22/2013] [Indexed: 05/22/2023]
Abstract
This study investigated human exposure to neutral, phenolic, and methoxylated organohalogen contaminants (OHCs) in a duplicate diet study to evaluate their concentrations in breast milk and serum of Okinawan people from Japan during 2004-2009. Dietary intakes of phenolic OHCs were predominantly 2,4,6-tribromophenol (TriBP), followed by tetrabromobisphenol A (TBBPA), and 6-hydroxy-2,2',4,4'-tetrabromodiphenyl ether (6-OH-BDE47). After exposure, TriBP and TBBPA were transferred to breast milk, whereas 6-OH-BDE47 was selectively retained in serum. Despite a lower dietary exposure to pentachlorophenol and 4-hydroxy-CB187, both were retained in serum. For the methoxylated OHCs, 2,4,6-tribromoanisole (TriBA) and 6-methoxy-BDE47 were the predominant dietary contaminants, of which TriBA was present in both breast milk and serum, whereas 6-methoxy-BDE47 was selectively transferred to breast milk. These findings suggest that dietary exposure to phenolic and methoxylated OHCs may result in differential partitioning between breast milk and serum with different pharmacokinetic or exposure routes.
Collapse
Affiliation(s)
- Yukiko Fujii
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Eri Nishimura
- Daiichi College of Pharmaceutical Sciences, Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan
| | - Yoshihisa Kato
- Kagawa School of Pharmaceutical Sciences, Tokushima Bunri University, Sanuki, Kagawa, 769-2193, Japan
| | - Kouji H Harada
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Akio Koizumi
- Department of Health and Environmental Sciences, Kyoto University Graduate School of Medicine, Yoshida, Kyoto 606-8501, Japan
| | - Koichi Haraguchi
- Daiichi College of Pharmaceutical Sciences, Tamagawa-cho, Minami-ku, Fukuoka 815-8511, Japan.
| |
Collapse
|
39
|
Li X, Ye L, Wang X, Shi W, Qian X, Zhu Y, Yu H. Molecular modeling and molecular dynamics simulation studies on the interactions of hydroxylated polychlorinated biphenyls with estrogen receptor-β. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2013; 65:357-367. [PMID: 23712771 DOI: 10.1007/s00244-013-9916-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2012] [Accepted: 05/13/2013] [Indexed: 06/02/2023]
Abstract
Endocrine-disrupting chemicals have attracted great concern. As major metabolites of polychlorinated biphenyls (PCBs), hydroxylated polychlorinated biphenyls (HO-PCBs) may disrupt estrogen hormone status because of their structural similarity to estrogen endogenous compounds. However, interactions between HO-PCBs and estrogen receptors (ERs) are not fully understood. In the present work, a molecular modeling study combining molecular docking, molecular dynamics simulations, and binding free energy calculations was performed to characterize the interactions of three HO-PCBs (4'-HO-PCB50, 2'-HO-PCB65, and 4'-HO-PCB69) having much different estrogenic activities with ERβ. Docking results showed that binding between ligands and ERβ was stabilized by hydrogen bond and hydrophobic interactions. The binding free energies of three ligands with ERβ were calculated, and further binding free energy decomposition analysis indicated that the dominating driving force of the binding between the ligands and ERβ was the van der Waals interaction. Some key residues, such as Leu298, Phe356, Gly472, His475, and Leu476, played important roles in ligand-receptor interactions by forming hydrophobic and hydrogen bond interactions with ligands. The results may be beneficial to increase understanding of the interactions between HO-PCBs and ERβ.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
40
|
Cao F, Li X, Ye L, Xie Y, Wang X, Shi W, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on the aryl hydrocarbon receptor agonistic activity of hydroxylated polychlorinated biphenyls. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2013; 36:626-635. [PMID: 23850706 DOI: 10.1016/j.etap.2013.06.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2013] [Revised: 06/11/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
The binding interactions between hydroxylated polychlorinated biphenyls (HO-PCBs) and the aryl hydrocarbon receptor (AhR) are suspected of causing toxic effects. To understand the binding mode between HO-PCBs and AhR, and to explore the structural characteristics that influence the AhR agonistic activities of HO-PCBs, the combination of molecular docking, three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular dynamics (MD) simulations was performed. Using molecular docking, the HO-PCBs were docked into the binding pocket of AhR, which was generated by homology modeling. Comparative molecular similarity index analysis (CoMSIA) models were subsequently developed from three different alignment rules. The optimum 3D-QSAR model showed good predictive ability (q(2)=0.583, R(2)=0.913) and good mechanism interpretability. The statistical reliability of the CoMSIA model was also validated. In addition, molecular docking and MD simulations were applied to explore the binding modes between the ligands and AhR. The results obtained from this study may lead to a better understanding of the interaction mechanism between HO-PCBs and AhR.
Collapse
Affiliation(s)
- Fu Cao
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Li Ye
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China
| | - Yuwei Xie
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiaoxiang Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wei Shi
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| | - Xiangping Qian
- Suzhou NeuPharma Co., Ltd., Suzhou 215123, China; College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | | | - Hongxia Yu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
41
|
Marek RF, Martinez A, Hornbuckle KC. Discovery of hydroxylated polychlorinated biphenyls (OH-PCBs) in sediment from a lake Michigan waterway and original commercial aroclors. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:8204-10. [PMID: 23862721 PMCID: PMC3781593 DOI: 10.1021/es402323c] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) were measured in surficial sediment from Indiana Harbor and Ship Canal (IHSC), East Chicago, IN and five original Monsanto Aroclors. These compounds were measured using gas chromatography with tandem mass spectrometry (GC-MS/MS) and certified standards that allowed us to identify 65 individual or coeluting congeners. Concentrations in the sediment ranged from 0.20 to 26 ng/g dry weight. Profiles of most samples were similar and were dominated by mono- to penta-chlorinated OH-PCBs. Interestingly, most of the samples strongly resembled the OH-PCB profiles of Aroclors 1221, 1242, 1248, and 1254, yet 25% of OH-PCBs measured in the sediment were not detected in Aroclors. A strong positive correlation was found between ΣOH-PCB and ΣPCB (p < 0.0001) and also between many individual OH-PCB:PCB pairs (p < 0.05). Analysis of OH-PCB:PCB pairs suggest PCB degradation is unlikely as a source of OH-PCBs in IHSC sediment. We are the first to report levels of OH-PCBs in sediment and Aroclors, and our discovery is significant because it is likely that OH-PCB contamination exists in sediment anywhere that PCB contamination from Aroclors is present.
Collapse
Affiliation(s)
- Rachel F. Marek
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, United States, 52242
| | - Andres Martinez
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, United States, 52242
| | - Keri C. Hornbuckle
- Department of Civil and Environmental Engineering and IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City, Iowa, United States, 52242
- Corresponding contact information: Keri Hornbuckle: 4105 SC, Iowa City, IA 52242; ; Phone: (319) 384-0789 FAX: (319) 335-5660
| |
Collapse
|
42
|
Ochiai M, Nomiyama K, Isobe T, Mizukawa H, Yamada TK, Tajima Y, Matsuishi T, Amano M, Tanabe S. Accumulation of hydroxylated polychlorinated biphenyls (OH-PCBs) and implications for PCBs metabolic capacities in three porpoise species. CHEMOSPHERE 2013; 92:803-810. [PMID: 23725750 DOI: 10.1016/j.chemosphere.2013.04.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Revised: 02/24/2013] [Accepted: 04/06/2013] [Indexed: 06/02/2023]
Abstract
The present study investigated polychlorinated biphenyls (PCBs) and hydroxylated metabolites of PCBs (OH-PCBs) in blood from three porpoise species: finless porpoises (Neophocaena phocaenoides), harbor porpoises (Phocoena phocoena), and Dall's porpoises (Phocoenoides dalli). The porpoises were found stranded or were bycaught along the Japanese coast. Concentrations of OH-PCB were the highest in Dall's porpoises (58pgg(-1) wet wt), second highest in finless porpoises (20pgg(-1) wet wt), and lowest in harbor porpoises (8.3pgg(-1) wet wt). The concentrations in Dall's porpoises were significantly higher than the concentrations in finless porpoises and harbor porpoises (p<0.05 and p<0.01, respectively). There was a positive correlation between PCB and OH-PCB concentrations (r=0.67, p<0.001), suggesting the possible concentration-dependent induction of CYP enzymes. The three porpoise species may have exceptionally low metabolic capacities compared with other marine and terrestrial mammals, because low OH-PCB/PCB concentration ratios were found, which were 0.0016 for Dall's porpoises, 0.0013 for harbor porpoises, and 0.00058 for finless porpoises. Distinct differences in the OH-PCB congener patterns were observed for the three species, even though they are taxonomically closely related.
Collapse
Affiliation(s)
- Mari Ochiai
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Montaño M, Gutleb AC, Murk AJ. Persistent toxic burdens of halogenated phenolic compounds in humans and wildlife. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:6071-6081. [PMID: 23635024 DOI: 10.1021/es400478k] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Halogenated phenolic compounds (HPCs) including hydroxylated polychlorobiphenyls (OH-PCBs) and hydroxylated polybromodiphenyl-ethers (OH-PBDEs) can be persistent organic pollutant (POP) metabolites or natural marine compounds. Structurally similar to thyroid hormones (THs), they are retained in blood, transported through selective barriers, and the cause of endocrine and neuronal POP effects. This study presents a meta-analysis of HPC burdens in human and wildlife tissues, including OH-PCBs, OH-PBDEs, Pentachlorophenol, and polybromophenols. HPC blood plasma levels were also compared to known in vitro and in vivo toxicological effect concentrations. Blood, highly perfused, and fetal tissues contained the highest levels of HPCs. Plasma concentrations of analyzed OH-PCBs/PBDEs ranged from 0.1 to 100 nM in humans and up to 240, 454, 800, and 7650 nM for birds, fish, cetaceans, and other mammals, respectively. These concentrations fully fall within the in vitro effect concentrations reported in literature for HPCs of 0.05-10000 nM. We strongly advise further study of HPC blood levels in the general population, children, and fetal tissue to establish background levels and the risk at sensitive development stages. As not all HPCs are, or can be, chemically analyzed, the application of additional bioanalysis might reveal an even greater toxicological relevance of HPCs. In addition, metabolic activation should always be included within in vitro hazard assessment of POPs.
Collapse
Affiliation(s)
- Mauricio Montaño
- Centre de Recherche Public - Gabriel Lippmann, Department Environment and Agro-biotechnologies, 41 rue du Brill, L-4422 Belvaux, Grand Duchy of Luxembourg
| | | | | |
Collapse
|
44
|
Marek RF, Thorne PS, Wang K, DeWall J, Hornbuckle KC. PCBs and OH-PCBs in serum from children and mothers in urban and rural U.S. communities. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3353-61. [PMID: 23452180 PMCID: PMC3645264 DOI: 10.1021/es304455k] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
East Chicago, Indiana is a heavily industrialized community bisected by the Indiana Harbor and Ship Canal, which volatilizes ~7.5 kg/yr polychlorinated biphenyls (PCBs). In contrast, the rural Columbus Junction, Iowa area has no known current or past PCB industrial sources. Blood from children and their mothers from these communities were collected April 2008 to January 2009 (n = 177). Sera were analyzed for all 209 PCBs and 4 hydroxylated PCBs (OH-PCBs). Sum PCBs ranged from nondetect to 658 ng/g lw (median = 33.5 ng/g lw). Sum OH-PCBs ranged from nondetect to 1.2 ng/g fw (median = 0.07 ng/g fw). These concentrations are similar to those reported in other populations without high dietary PCB intake. Differences between the two communities were subtle. PCBs were detected in more East Chicago mothers and children than Columbus Junction mothers and children, and children from East Chicago were enriched in lower-molecular weight PCBs. East Chicago and Columbus Junction residents had similar levels of total and individual PCBs and OH-PCBs in their blood. Concentrations of parent PCBs correlated with concentrations of OH-PCBs. This is the first temporally and methodologically consistent study to evaluate all 209 PCBs and major metabolites in two generations of people living in urban and rural areas of the United States.
Collapse
Affiliation(s)
- Rachel F. Marek
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
| | - Peter S. Thorne
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding contact information: Keri Hornbuckle: 4105 SC, Iowa City, IA 52242; ; Phone: (319) 384-0789 FAX: (319) 335-5660; Peter Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242; ; Phone: (319) 335-4216 FAX: (319) 384-4138
| | - Kai Wang
- Department of Biostatistics, The University of Iowa, Iowa City IA (USA) 52242
| | - Jeanne DeWall
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City IA (USA) 52242
| | - Keri C. Hornbuckle
- Department of Civil & Environmental Engineering, The University of Iowa, Iowa City IA (USA) 52242
- IIHR-Hydroscience and Engineering, The University of Iowa, Iowa City IA (USA) 52242
- Department of Occupational and Environmental Health, The University of Iowa, Iowa City IA (USA) 52242
- Corresponding contact information: Keri Hornbuckle: 4105 SC, Iowa City, IA 52242; ; Phone: (319) 384-0789 FAX: (319) 335-5660; Peter Thorne: 105 River St., S341A CPHB, Iowa City, IA 52242; ; Phone: (319) 335-4216 FAX: (319) 384-4138
| |
Collapse
|
45
|
Mizukawa H, Nomiyama K, Nakatsu S, Yachimori S, Hayashi T, Tashiro Y, Nagano Y, Tanabe S. Species-specific differences in the accumulation features of organohalogen contaminants and their metabolites in the blood of Japanese terrestrial mammals. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 174:28-37. [PMID: 23246744 DOI: 10.1016/j.envpol.2012.11.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 10/30/2012] [Accepted: 11/03/2012] [Indexed: 06/01/2023]
Abstract
Residue levels and patterns of polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), their hydroxylated metabolites (OH-PCBs, OH-PBDEs), and methoxylated PBDEs (MeO-PBDEs) in the blood of various terrestrial mammals in Japan, including cats, raccoon dogs, dogs, masked palm civets, foxes, raccoons, badgers, and mongooses were determined. Tri- through penta-chlorinated OH-PCBs were predominant in cat blood, whereas hexa- through octa-chlorinated OH-PCBs were found in other species. High proportion of BDE209 was found in all species, suggesting exposure to municipal waste and soil containing higher levels of deca-BDE products. 6OH-/MeO-BDE47 and 2'OH-/MeO-BDE68 were dominant in all terrestrial mammals. This is first report on the detection of OH-/MeO-PBDEs in the blood of terrestrial mammals. High concentrations of OH-/MeO-PBDEs were found in cats, suggesting the intake of these compounds from seafood. Cats exhibited higher accumulation and specific patterns of OH-PCBs, OH-PBDEs, and MeO-PBDEs, they may be at a high risk from these metabolites.
Collapse
Affiliation(s)
- Hazuki Mizukawa
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Ehime 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Li X, Ye L, Wang X, Wang X, Liu H, Qian X, Zhu Y, Yu H. Molecular docking, molecular dynamics simulation, and structure-based 3D-QSAR studies on estrogenic activity of hydroxylated polychlorinated biphenyls. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 441:230-238. [PMID: 23137989 DOI: 10.1016/j.scitotenv.2012.08.072] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2012] [Revised: 08/21/2012] [Accepted: 08/24/2012] [Indexed: 06/01/2023]
Abstract
Hydroxylated polychlorinated biphenyls (HO-PCBs), major metabolites of PCBs, have been reported to present agonist or antagonist interactions with estrogen receptor α (ERα) and induce ER-mediated responses. In this work, a multistep framework combining molecular docking, molecular dynamics (MD) simulations, and structure-based three-dimensional quantitative structure-activity relationship (3D-QSAR) studies were performed to explore the influence of structural features on the estrogenic activities of HO-PCBs, and to investigate the molecular mechanism of ERα-ligand interactions. The CoMSIA (comparative molecular similarity indices analysis) model was developed from the conformations obtained from molecular docking. The model exhibited statistically significant results as the cross-validated correlation coefficient q² was 0.648, the non-cross-validated correlation coefficient r² was 0.968, and the external predictive correlation coefficient r(pred)² was 0.625. The key amino acid residues were identified by molecular docking, and the detailed binding modes of the compounds with different activities were determined by MD simulations. The binding free energies correlated well with the experimental activity. An energetic analysis, MM-GBSA energy decomposition, revealed that the van der Waals interaction was the major driving force for the binding of compounds to ERα. The hydrogen bond interactions between the ligands and residue His524 help to stabilize the conformation of ligands at the binding pocket. These results are expected to be beneficial to predict estrogenic activities of other HO-PCB congeners and helpful for understanding the binding mechanism of HO-PCBs and ERα.
Collapse
Affiliation(s)
- Xiaolin Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210046, PR China
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Eguchi A, Nomiyama K, Devanathan G, Subramanian A, Bulbule KA, Parthasarathy P, Takahashi S, Tanabe S. Different profiles of anthropogenic and naturally produced organohalogen compounds in serum from residents living near a coastal area and e-waste recycling workers in India. ENVIRONMENT INTERNATIONAL 2012; 47:8-16. [PMID: 22717641 DOI: 10.1016/j.envint.2012.05.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2012] [Revised: 04/18/2012] [Accepted: 05/10/2012] [Indexed: 06/01/2023]
Abstract
We determined the contamination status and accumulation profiles of polychlorinated biphenyls (PCBs), hydroxylated PCB congeners (OH-PCBs), polybrominated diphenyl ethers (PBDEs), hydroxylated PBDEs (OH-PBDEs), methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in serum from e-waste recycling workers and residents near a coastal area in India. Residue levels of penta- to octa-chlorinated PCBs, penta- to octa-chlorinated OH-PCBs, 6MeO-BDE47, 6OH-BDE47, and 2,4,6-tri-BPh in serum from residents living near the coastal area were significantly higher than those in serum from e-waste recycling workers. Residue levels of tri- to tetra-chlorinated PCBs, tri- to tetra-chlorinated OH-PCBs, PBDEs, octa-brominated OH-PBDEs, and tetra-BPhs in serum from e-waste recycling workers were higher than those in serum from residents living near the coastal area. Principal component analysis revealed that residents living near the coastal area and e-waste recycling workers had different serum profiles of chlorinated and brominated compounds.
Collapse
Affiliation(s)
- Akifumi Eguchi
- Center for Marine Environmental Studies-CMES, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Hisada A, Shimodaira K, Okai T, Watanabe K, Takemori H, Takasuga T, Noda Y, Shirakawa M, Kato N, Yoshinaga J. Serum levels of hydroxylated PCBs, PCBs and thyroid hormone measures of Japanese pregnant women. Environ Health Prev Med 2012; 18:205-14. [PMID: 23054994 DOI: 10.1007/s12199-012-0306-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2012] [Accepted: 09/04/2012] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES The purpose of this study was to investigate the associations between serum concentrations of hydroxylated PCBs (OH-PCBs) and PCBs and measures of thyroid hormone status of Japanese pregnant women. METHODS The concentrations of free thyroxine (fT4), thyroid stimulating hormone (TSH), and thyroxine binding globulin (TBG) as well as 16 OH-PCB isomers and 29 PCB isomers were analyzed in the serum of 129 women sampled in the first trimester of gestation. Dietary and lifestyle information of the subjects was obtained by self-administered questionnaire. Multiple regression analysis was performed using measures of thyroid hormones as the dependent variable and serum levels of OH-PCBs/PCBs, urinary iodine concentration, and other potential covariates (age, BMI, smoking, etc.) as independent variables. RESULTS Geometric mean (GM) concentration of the sum of 16 isomers of OH-PCBs was 120 pg/g wet wt. and that of 29 isomers of PCBs was 68 ng/g lipid wt., respectively, in the serum of the subjects. Iodine nutrition was considered adequate to high from urinary iodine level (GM, 370 μg/g creatinine). The mean concentration of TSH, fT4 and TBG was 1.34 ± 1.37 μIU/mL, 1.22 ± 0.16 ng/dL and 33.0 ± 6.4 μg/mL, respectively, with a small number of subjects who were outside the reference range. Multiple regression analysis revealed that serum concentrations of OH-PCBs/PCBs were not significantly associated with any of the measures of thyroid hormone status. CONCLUSIONS Exposure/body burden of OH-PCBs and PCBs at environmental levels does not have a measurable effect on thyroid hormones.
Collapse
Affiliation(s)
- Aya Hisada
- Department of Environmental Studies, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8563, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Teasley Hamorsky K, Ensor CM, Dikici E, Pasini P, Bachas L, Daunert S. Bioluminescence inhibition assay for the detection of hydroxylated polychlorinated biphenyls. Anal Chem 2012; 84:7648-55. [PMID: 22908962 DOI: 10.1021/ac301872u] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hydroxylated polychlorinated biphenyls (OH-PCBs) are an important class of contaminants that mainly originate from polychlorinated biphenyl metabolism. They may conceivably be as dangerous and persistent as the parent compounds; most prominently, OH-PCBs are endocrine disruptors. Due to increasing evidence of the presence of OH-PCBs in the environment and in living organisms, including humans, and of their toxicity, methods of detection for OH-PCBs are needed in the environmental and medical fields. Herein, we describe the development and optimization of a protein-based inhibition assay for the quantification of OH-PCBs. Specifically, the photoprotein aequorin was utilized for the detection of OH-PCBs. We hypothesized that OH-PCBs interact with aequorin, and we established that OH-PCBs actually inhibit the bioluminescence of aequorin in a dose-dependent manner. We took advantage of this phenomenon to develop an assay that is capable of detecting a wide variety of OH-PCBs with a range of detection limits, the best detection limit being 11 nM for the compound 2-hydroxy-2',3,4',5',6-pentachorobiphenyl. The viability of this system for the screening of OH-PCBs in spiked biological and environmental samples was also established. We envision the implementation of this novel bioluminescence inhibition assay as a rapid, sensitive, and cost-effective method for monitoring OH-PCBs. Furthermore, to the best of our knowledge, this is the first time aequorin has been employed to detect an analyte by the inhibition of its bioluminescence reaction. Hence, this strategy may prove to be a general approach for the development of a new generation of protein-based inhibition assays.
Collapse
|
50
|
Nomiyama K, Eguchi A, Mizukawa H, Ochiai M, Murata S, Someya M, Isobe T, Yamada TK, Tanabe S. Anthropogenic and naturally occurring polybrominated phenolic compounds in the blood of cetaceans stranded along Japanese coastal waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2011; 159:3364-73. [PMID: 21903310 DOI: 10.1016/j.envpol.2011.08.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Revised: 08/13/2011] [Accepted: 08/20/2011] [Indexed: 05/15/2023]
Abstract
We determined the residue levels and patterns of hydroxylated polybrominated diphenyl ethers (OH-PBDEs), and related compounds, such as PBDEs, methoxylated PBDEs (MeO-PBDEs), and bromophenols (BPhs) in the blood of eleven cetacean species stranded along the Japanese coasts. The dominant OH- and MeO-PBDE isomers found in all cetaceans were 6OH-BDE47 and 6MeO-BDE47. Additionally, 2,4,6-triBPh was dominant isomer in all cetaceans. In contrast, specific differences in the distribution of para- and meta- OH-PBDE isomers and some BPhs (potential PBDEs metabolites) were found among the cetaceans. Residue levels of ΣMeO-PBDEs and 6OH-BDE47 + 2'OH-BDE68, and 2,4,6-triBPh and 6OH-BDE47 + 2'OH-BDE68 showed a significant positive correlation. These results may suggest that the large percentages of OH-PBDEs, MeO-PBDEs and 2,4,6-triBPh might share common source (i.e. biosynthesis by marine organisms), or metabolic pathway in cetacean species. Significant correlations were found between the concentrations of BDE99 and 2,4,5-triBPh. This result suggested that 2,4,5-triBPh in cetaceans could be a metabolite of BDE99.
Collapse
Affiliation(s)
- Kei Nomiyama
- Center for Marine Environmental Studies, Ehime University, Bunkyo-cho 2-5, Matsuyama 790-8577, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|