1
|
Li Y, Zhou W, Huang X, Wang Y, Liang J, Liu Y, Tong M. Is crystalline chromium phosphate environmentally stable? A study on the formation, dissolution and oxidation risk of CrPO 4·6H 2O. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133112. [PMID: 38043420 DOI: 10.1016/j.jhazmat.2023.133112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/05/2023]
Abstract
Hexavalent chromium (Cr(VI)) contamination in soil and groundwater is usually remediated via reduction techniques. The formation of crystalline chromium phosphate (CrPO4·6 H2O) occurs as a byproduct during Cr(VI) remediation processes in the presence of phosphate, yet its stability in the environment has received limited attention. In this study, the formation conditions, structure, properties, and risks associated with the dissolution and oxidation of CrPO4·6 H2O were comprehensively assessed. Results showed that crystalline CrPO4·6 H2O was formed under pH 5 - 7 at room temperature. CrPO4·6 H2O exhibits higher dissolution risk compared to Cr(OH)3·3 H2O due to a long Cr-P bond (4.2 Å). H+ and OH- increased the risk of dissolution at pH 5 and 11, respectively, owing to the formation of CrH2PO42+ and Cr(OH)4-. In addition, under faintly acidic conditions, the high solubility of CrPO4·6 H2O increases the risk of oxidation; under neutral and weakly alkaline conditions, the presence of positively charged Cr(H2O)63+ structures on the surface elevates its susceptibility to contact and oxidation by δ-MnO2 compared to Cr(OH)3·3 H2O. Specifically, at pH 11, the conversion of CrPO4·6 H2O to Cr(OH)3·3 H2O results in similar oxidation risks for both Cr(III) precipitates.
Collapse
Affiliation(s)
- Yunyi Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| | - Wenshuai Zhou
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Xinmiao Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yutong Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Jialiang Liang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Yangsheng Liu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| | - Meiping Tong
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, PR China
| |
Collapse
|
2
|
Westrop JP, Yadav P, Nolan PJ, Campbell KM, Singh R, Bone SE, Chan AH, Kohtz AJ, Pan D, Healy O, Bargar JR, Snow DD, Weber KA. Nitrate-Stimulated Release of Naturally Occurring Sedimentary Uranium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4354-4366. [PMID: 36848522 DOI: 10.1021/acs.est.2c07683] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Groundwater uranium (U) concentrations have been measured above the U.S. EPA maximum contaminant level (30 μg/L) in many U.S. aquifers, including in areas not associated with anthropogenic contamination by milling or mining. In addition to carbonate, nitrate has been correlated to uranium groundwater concentrations in two major U.S. aquifers. However, to date, direct evidence that nitrate mobilizes naturally occurring U from aquifer sediments has not been presented. Here, we demonstrate that the influx of high-nitrate porewater through High Plains alluvial aquifer silt sediments bearing naturally occurring U(IV) can stimulate a nitrate-reducing microbial community capable of catalyzing the oxidation and mobilization of U into the porewater. Microbial reduction of nitrate yielded nitrite, a reactive intermediate, which was further demonstrated to abiotically mobilize U from the reduced alluvial aquifer sediments. These results indicate that microbial activity, specifically nitrate reduction to nitrite, is one mechanism driving U mobilization from aquifer sediments in addition to previously described bicarbonate-driven desorption from mineral surfaces, such as Fe(III) oxides.
Collapse
Affiliation(s)
- Jeffrey P Westrop
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Pooja Yadav
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - P J Nolan
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Kate M Campbell
- Geology, Geophysics, and Geochemistry Science Center, Denver Federal Center, U.S. Geological Survey, Denver, Colorado 80225, United States
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee 247667, India
| | - Sharon E Bone
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Alicia H Chan
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Anthony J Kohtz
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Donald Pan
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Olivia Healy
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - John R Bargar
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Menlo Park, California 94025, United States
| | - Daniel D Snow
- School of Natural Resources and Nebraska Water Center, Part of the Daugherty Water for Food Global Institute, Water Sciences Laboratory, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
| | - Karrie A Weber
- Department of Earth and Atmospheric Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- School of Biological Sciences, University of Nebraska-Lincoln, Lincoln, Nebraska 68588, United States
- Daugherty Water for Food Global Institute, University of Nebraska, Lincoln, Nebraska 68588, United States
| |
Collapse
|
3
|
Seder-Colomina M, Mangeret A, Bauda P, Brest J, Stetten L, Merrot P, Julien A, Diez O, Barker E, Billoir E, Poupin P, Thouvenot A, Cazala C, Morin G. Influence of microorganisms on uranium release from mining-impacted lake sediments under various oxygenation conditions. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1830-1843. [PMID: 36082760 DOI: 10.1039/d2em00104g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Microbial processes can be involved in the remobilization of uranium (U) from reduced sediments under O2 reoxidation events such as water table fluctuations. Such reactions could be typically encountered after U-bearing sediment dredging operations. Solid U(IV) species may thus reoxidize into U(VI) that can be released in pore waters in the form of aqueous complexes with organic and inorganic ligands. Non-uraninite U(IV) species may be especially sensitive to reoxidation and remobilization processes. Nevertheless, little is known regarding the effect of microbially mediated processes on the behaviour of U under these conditions.
Collapse
Affiliation(s)
- Marina Seder-Colomina
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Arnaud Mangeret
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Pascale Bauda
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Jessica Brest
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Lucie Stetten
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Pauline Merrot
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| | - Anthony Julien
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Olivier Diez
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Evelyne Barker
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Elise Billoir
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Pascal Poupin
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | | | - Charlotte Cazala
- Institut de Radioprotection et de Sûreté Nucléaire (IRSN), PSE-ENV/SEDRE, 31 avenue de la Division Leclerc, 92260 Fontenay-aux-Roses, France.
| | - Guillaume Morin
- Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie (IMPMC), UMR 7590 CNRS-Sorbonne Université -MNHN-IRD, case 115, 4 place Jussieu, 75252 Paris Cedex 5, France
| |
Collapse
|
4
|
Wu T, Cui P, Huang M, Liu C, Dang F, Wang Z, Alves ME, Zhou D, Wang Y. Oxidative dissolution of Sb 2O 3 mediated by surface Mn redox cycling in oxic aquatic systems. WATER RESEARCH 2022; 217:118403. [PMID: 35429878 DOI: 10.1016/j.watres.2022.118403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 03/29/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Antimony trioxide (Sb2O3) is one of the primary forms of Sb in the environment, and its dissolution significantly impacts the migration and bioavailability of Sb. However, the dissolution of Sb2O3 coupled with abiotic redox of Mn processes is unclear. Here, we investigated the kinetics of Sb2O3 dissolution in the presence of the ubiquitous Mn(II) by kinetic experiments, spectroscopies, density functional theory calculations and the chemical kinetic modeling. The oxidative dissolution of Sb2O3 was catalyzed by Mn(II) through the in-situ generated amorphous Mn oxides (MnOx) under oxic conditions, during which the generation of Mn(III) is a critical step in Sb(V) release. The released Sb(V) was partially retained on MnOx through bidentate-binuclear (corner-sharing) complexes as revealed by extended X-ray absorption fine structure analysis. The coexistent morphological forms of Sb2O3, i.e., senarmontite and valentinite exhibited distinct dissolution patterns. Valentinite showed higher activity in catalyzing Mn(II) oxidation and faster oxidative dissolution than senarmontite, due to its higher surface energy and lower conduction band minimum of its exposed facets. These abiotic processes can extrapolate to other metal(loid)s (hydr)oxides, further supplying for the comprehensive understanding of the redox transformation of Mn.
Collapse
Affiliation(s)
- Tongliang Wu
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China
| | - Peixin Cui
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China
| | - Meiying Huang
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Cun Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China
| | - Fei Dang
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China
| | - Zimeng Wang
- Cluster of Interfacial Processes Against Pollution (CIPAP), Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200433, China
| | - Marcelo Eduardo Alves
- Department of Exact Sciences 'Luiz de Queiroz' Agricultural College - ESALQ/USP, Piracicaba, SP 13418-900, Brazil
| | - Dongmei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujun Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Chinese Academy of Sciences, Institute of Soil Science, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
5
|
Xia Q, Jin Q, Chen Y, Zhang L, Li X, He S, Guo D, Liu J, Dong H. Combined Effects of Fe(III)-Bearing Nontronite and Organic Ligands on Biogenic U(IV) Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1983-1993. [PMID: 35012308 DOI: 10.1021/acs.est.1c04946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Bioreduction of soluble U(VI) to sparingly soluble U(IV) solids was proposed as a remediation method for uranium contamination. Therefore, the stability and longevity of biogenic U(IV) are critical to the success of uranium remediation. However, co-occurrence of clay minerals and organic ligands could potentially reoxidize U(IV) to U(VI). Herein, we report a combined effect of Fe(III)-rich nontronite (NAu-2) and environmentally prevalent organic ligands on reoxidation of biogenic U(IV) at circumneutral pH. After 30 days of incubation, structural Fe(III) in NAu-2 oxidized 45.50% U(IV) with an initial rate of 2.7 × 10-3 mol m-2 d-1. Addition of citrate and ethylenediaminetetraacetic acid (EDTA) greatly promoted the oxidative dissolution of U(IV) by structural Fe(III) in NAu-2, primarily through the formation of aqueous ligand-U(IV) complexes. In contrast, a model siderophore, desferrioxamine B (DFOB), partially inhibited U(IV) oxidation due to the formation of stable DFOB-Fe3+ complexes. The resulting U(VI) species intercalated into an NAu-2 interlayer or adsorbed onto an NAu-2 surface. Our results highlight the importance of organic ligands in oxidative dissolution of U(IV) minerals by Fe(III)-bearing clay minerals and have important implications for the design of nuclear waste storage and remediation strategies, especially in clay- and organic-rich environments.
Collapse
Affiliation(s)
- Qingyin Xia
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| | - Qusheng Jin
- Department of Earth Sciences, University of Oregon, Eugene, Oregon 97403, United States
| | - Yu Chen
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Limin Zhang
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- State Key Laboratory of Microbial Resources, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiaoxu Li
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Sheng He
- Beijing Research Institute of Uranium Geology, Beijing 100029, China
| | - Dongyi Guo
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
| | - Juan Liu
- The Key Laboratory of Water and Sediment Sciences, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Hailiang Dong
- Center for Geomicrobiology and Biogeochemistry Research, State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, China
- School of Earth Science and Resources, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
6
|
Stanberry J, Szlamkowicz I, Purdy LR, Anagnostopoulos V. TcO 2 oxidative dissolution by birnessite under anaerobic conditions: a solid-solid redox reaction impacting the environmental mobility of Tc-99. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2021; 23:844-854. [PMID: 33885702 DOI: 10.1039/d1em00011j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Remediation efforts for the abatement of Tc-99 contamination in the environment have traditionally focused on the reduction of soluble pertechnetate (Tc(vii)O4-) to insoluble, and less mobile, technetium(iv) oxide (TcO2). Effectiveness of the reductive immobilization of Tc-99 depends on the susceptibility of TcO2 to oxidation to TcO4-in situ, as it is subject to dissolution by oxidizing agents, such as oxygen. Manganese minerals can be a liability for the long-term in situ immobilization of Tc-99, even in suboxic and anoxic systems due to their strong oxidizing capacity. This study presents for the first time the oxidative dissolution of TcO2 to pertechnetate by birnessite under anaerobic conditions. Oxidative dissolution of TcO2 was studied as a function of pH and birnessite:TcO2 ratios and in the presence of Ca2+ and Mn2+. As low as 5 mg of birnessite dissolved ∼65% of the original TcO2 in the suspensions and subsequently released TcO4- in the aqueous phase at both pH 6.5 and 8 in the absence of oxygen. On the other hand, the ability of birnessite to sequester calcium and manganese on its surface at pH 6.5 through sorption was shown to inhibit the oxidative capacity of birnessite. Maximum TcO4- release in the aqueous phase by Ca- and Mn-loaded birnessite was ∼50% less compared to pure birnessite, indicating that divalent cations sorb on active centers responsible for birnessite's oxidative capacity and potentially passivate the mineral. In summary, birnessite exerts strong geochemical controls over the mobility of Tc-99 in anoxic systems by oxidatively mobilizing the otherwise insoluble Tc(iv) to Tc(vii) and their presence in natural systems needs to be taken into account when long-term remediation strategies are being designed.
Collapse
Affiliation(s)
- Jordan Stanberry
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Ilana Szlamkowicz
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Lauren R Purdy
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| | - Vasileios Anagnostopoulos
- Environmental Radiochemistry Group, Department of Chemistry, University of Central Florida, 4353 Scorpius Str, Orlando, FL 32816, USA.
| |
Collapse
|
7
|
Roebbert Y, Rosendahl CD, Brown A, Schippers A, Bernier-Latmani R, Weyer S. Uranium Isotope Fractionation during the Anoxic Mobilization of Noncrystalline U(IV) by Ligand Complexation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:7959-7969. [PMID: 34038128 DOI: 10.1021/acs.est.0c08623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Uranium (U) isotopes are suggested as a tool to trace U reduction. However, noncrystalline U(IV), formed predominantly in near-surface environments, may be complexed and remobilized using ligands under anoxic conditions. This may cause additional U isotope fractionation and alter the signatures generated by U reduction. Here, we investigate the efficacy of noncrystalline U(IV) mobilization by ligand complexation and the associated U isotope fractionation. Noncrystalline U(IV) was produced via the reduction of U(VI) (400 μM) by Shewanella oneidensis MR-1 and was subsequently mobilized with EDTA (1 mM), citrate (1 mM), or bicarbonate (500 mM) in batch experiments. Complexation with all investigated ligands resulted in significant mobilization of U(IV) and led to an enrichment of 238U in the mobilized fraction (δ238U = 0.4-0.7 ‰ for EDTA; 0.3 ‰ for citrate; 0.2-0.3 ‰ for bicarbonate). For mobilization with bicarbonate, a Rayleigh approach was the most suitable isotope fractionation model, yielding a fractionation factor α of 1.00026-1.00036. Mobilization with EDTA could be modeled with equilibrium isotope fractionation (α: 1.00039-1.00049). The results show that U isotope fractionation associated with U(IV) mobilization under anoxic conditions is significant and needs to be considered when applying U isotopes in remediation monitoring or as a paleo-redox proxy.
Collapse
Affiliation(s)
- Yvonne Roebbert
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| | | | - Ashley Brown
- École polytechnique fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Axel Schippers
- Federal Institute for Geosciences and Natural Resources, Hannover D-30655, Germany
| | | | - Stefan Weyer
- Leibniz Universität Hannover, Institut für Mineralogie, Hannover D-30167, Germany
| |
Collapse
|
8
|
Chen P, Ma Y, Kang M, Shang C, Song Y, Xu F, Wang J, Song G, Yang Y. The redox behavior of uranium on Beishan granite: Effect of Fe 2+ and Fe 3+ content. JOURNAL OF ENVIRONMENTAL RADIOACTIVITY 2020; 217:106208. [PMID: 32217240 DOI: 10.1016/j.jenvrad.2020.106208] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/30/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
The Beishan granitic area in Gansu Province is a site with the greatest potential for a repository of high-level radioactive waste (HLW) in China. In this study, the redox behavior of uranium on Beishan granite was investigated at pH values from ~4.4 to ~9.2. Due to the presence of Fe2+-containing fluorannite, results showed that U(VI) was partially reduced by the granites from boreholes 2 (486 m) and 28 (670 m) at a relatively low initial pH whether Na2CO3/NaCl or native groundwater was used as a background electrolyte. Partial oxidation of UO2 was observed when UO2 contacted Beishan granite directly. Therefore, this incomplete reduction of U(VI) was mainly attributed to minor Fe3+ that was either originally contained in the granite or generated during U(VI) reduction. Consequently, aliovalent oxides (e.g., U3O8, U3O7, U4O9, etc.) should be the thermodynamically stable phase in Beishan granite. A mechanism involving the dissolution of Fe2+ from the granite structure followed by interfacial adsorption/reaction was proposed for the U(VI) reduction. This study demonstrates that Beishan granite has a good reducing capacity, which is suitable for the immobilization of redox-sensitive radionuclides. However, potential oxidation of spent fuel by Fe3+ in the granite should also been taken into account.
Collapse
Affiliation(s)
- Ping Chen
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yue Ma
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Mingliang Kang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China.
| | - Chengming Shang
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Yang Song
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Fengqi Xu
- Sino-French Institute of Nuclear Engineering and Technology, Sun Yat-sen University, Zhuhai, 519082, China
| | - Ju Wang
- Beijing Research Institute of Uranium Geology, Beijing, 100029, China
| | - Gang Song
- Guangdong Provincial Key Laboratory of Radionuclides Pollution Control and Resources, Guangzhou University, 230 Waihuan Street, Guangzhou, 510006, China
| | - Yongqiang Yang
- Guangdong Provincial Key Laboratory of Mineral Physics and Materials, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China; CAS Key Laboratory of Mineralogy and Metallogeny, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
9
|
Zhang YY, Lv JW, Dong XJ, Fang Q, Tan WF, Wu XY, Deng QW. Influence on Uranium(VI) migration in soil by iron and manganese salts of humic acid: Mechanism and behavior. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113369. [PMID: 31662254 DOI: 10.1016/j.envpol.2019.113369] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 09/23/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Soil contains large amounts of humic acid (HA), iron ions and manganese ions, all of which affect U(VI) migration in the soil. HA interacts with iron and manganese ions to form HA salts (called HA-Fe and HA-Mn in this paper); however, the effects of HA-Fe and HA-Mn on the migration of U(VI) is not fully understood. In this study, HA-Fe and HA-Mn were compounded by HA interactions with ferric chloride hexahydrate and manganese chloride tetrahydrate, respectively. The influence of HA, HA-Fe and HA-Mn on U(VI) immobilization and migration was investigated by bath adsorption experiments and adsorption-desorption experiments using soil columns. The results showed that the presence of HA, HA-Fe and HA-Mn retarded the migration of U(VI) in soil. Supported by X-ray photoelectron spectroscopy (XPS) and BCR sequential extraction analyses, a plausible explanation for the retardation was that HA-Fe and HA-Mn could reduce hexavalent uranium to stable tetravalent uranium and increase the specific gravity of Fe/Mn oxide-bound uranium and organic/sulfide-bound uranium, which made it difficult for them to longitudinally migrate in soil. Scanning electron microscopy (SEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), and surface area and pore size analyses indicated that the complex formed between the hydroxyl, amino and carboxyl groups of HA-Fe and U(VI) increased the crystallinity of HA-Fe. The reaction between U(VI) and the hydroxyl, amino, aldehyde, keto and chlorine-containing groups of HA-Mn had no effect on the crystallinity of HA-Mn. Notably, the column desorption experiment found that the U(VI) immobilized in the soil remigrated under the effect of rain leaching, and acid rain promoted uranium remigration better than neutral rain. The findings provide some guidance for the decommissioning disposal of uranium contaminated site and it's risk assessments.
Collapse
Affiliation(s)
- Yuan-Yuan Zhang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Jun-Wen Lv
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China.
| | - Xue-Jie Dong
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China
| | - Qi Fang
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Wen-Fa Tan
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Xiao-Yan Wu
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| | - Qin-Wen Deng
- School of Resources Environment and Safety Engineering, University of South China, Hengyang 421001, China; Hengyang Key Laboratory of Contamination Control and Remediation, Hengyang 421001, China
| |
Collapse
|
10
|
Wu Y, Wang Y, Guo W. Behavior and fate of geogenic uranium in a shallow groundwater system. JOURNAL OF CONTAMINANT HYDROLOGY 2019; 222:41-55. [PMID: 30827739 DOI: 10.1016/j.jconhyd.2019.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 01/09/2019] [Accepted: 02/21/2019] [Indexed: 06/09/2023]
Abstract
To unveil behavior and fate of uranium (U) in the Quaternary aquifer system of Datong basin (China), we analyzed sediment and groundwater samples, and performed geochemical modeling. The analyses for sediments were implemented by a sequential extraction procedure and measurements including X-ray power diffraction, scanning electron microscopy, and energy dispersive X-ray spectroscopy. Concentrations of main elements and U, and 234U/238U activity ratios for groundwater were determined. Results show that sediment U contents range from 1.93 to 8.80 (average 3.00 ± 1.69) mg/kg. In relation to the total U, average fractions of residual U (probably as betafite) and U(VI) bound to carbonates and FeMn oxides are 74.4 ± 18.7%, 17.2 ± 13.3%, and 4.3 ± 2.9%, respectively. Lower average fractions were determined for both organic matter- and sulfide-bound U (mainly as U(IV), e.g., brannerite) (2.0 ± 0.7%) and exchangeable U(VI) (2.0 ± 2.8%). For the groundwater (pH 7.36-8.86), Ca2UO2(CO3)30, CaUO2(CO3)32-, and UO2(CO3)34- constitute >99.5% of the total dissolved U; and elevated U concentrations occur mainly in shallow aquifers (3-40 m deep below land surface) of the west flow-through and discharge areas, with 50% of the sampled points exceeding 30 μg/L. We argue that betafite and carbonate weathering and U(VI) desorption from ferrihydrite are the primary geochemical processes responsible for U mobilization, with a minor contrition from U(IV) oxidation. Abiotic U(IV) oxidation may be induced mainly by dissolved oxygen under oxic/suboxic conditions (e.g., in the recharge and flow-through areas), but significantly linked to amorphous ferrihydrite under Fe(III)- and sulfate-reducing conditions. Abiotic U(VI) reduction could be caused principally by siderite and mackinawite. Under alkaline conditions, higher HCO3- concentrations and lower Ca2+/HCO3- molar ratios (<~0.2) cause formation of CaUO2(CO3)32- and UO2(CO3)34-, and U(VI) desorption. With increases in concentrations of Ca2+ and Ca2+/HCO3- ratios (>~0.2), these anionic forms may shift to neutral Ca2UO2(CO3)30, which can facilitate further desorption of U(VI). Our results improve the understanding of U environmental geochemistry and are important for groundwater resources management in this and similar other Quaternary aquifer systems.
Collapse
Affiliation(s)
- Ya Wu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China.
| | - Wei Guo
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
11
|
Sleep NH. Geological and Geochemical Constraints on the Origin and Evolution of Life. ASTROBIOLOGY 2018; 18:1199-1219. [PMID: 30124324 DOI: 10.1089/ast.2017.1778] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The traditional tree of life from molecular biology with last universal common ancestor (LUCA) branching into bacteria and archaea (though fuzzy) is likely formally valid enough to be a basis for discussion of geological processes on the early Earth. Biologists infer likely properties of nodal organisms within the tree and, hence, the environment they inhabited. Geologists both vet tenuous trees and putative origin of life scenarios for geological and ecological reasonability and conversely infer geological information from trees. The latter approach is valuable as geologists have only weakly constrained the time when the Earth became habitable and the later time when life actually existed to the long interval between ∼4.5 and ∼3.85 Ga where no intact surface rocks are known. With regard to vetting, origin and early evolution hypotheses from molecular biology have recently centered on serpentinite settings in marine and alternatively land settings that are exposed to ultraviolet sunlight. The existence of these niches on the Hadean Earth is virtually certain. With regard to inferring geological environment from genomics, nodes on the tree of life can arise from true bottlenecks implied by the marine serpentinite origin scenario and by asteroid impact. Innovation of a very useful trait through a threshold allows the successful organism to quickly become very abundant and later root a large clade. The origin of life itself, that is, the initial Darwinian ancestor, the bacterial and archaeal roots as free-living cellular organisms that independently escaped hydrothermal chimneys above marine serpentinite or alternatively from shallow pore-water environments on land, the Selabacteria root with anoxygenic photosynthesis, and the Terrabacteria root colonizing land are attractive examples that predate the geological record. Conversely, geological reasoning presents likely events for appraisal by biologists. Asteroid impacts may have produced bottlenecks by decimating life. Thermophile roots of bacteria and archaea as well as a thermophile LUCA are attractive.
Collapse
Affiliation(s)
- Norman H Sleep
- Department of Geophysics, Stanford University , Stanford, California
| |
Collapse
|
12
|
Wu Y, Li J, Wang Y, Xie X. Variations of uranium concentrations in a multi-aquifer system under the impact of surface water-groundwater interaction. JOURNAL OF CONTAMINANT HYDROLOGY 2018; 211:65-76. [PMID: 29559163 DOI: 10.1016/j.jconhyd.2018.03.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 01/24/2018] [Accepted: 03/05/2018] [Indexed: 06/08/2023]
Abstract
Understanding uranium (U) mobility is vital to minimizing its concentrations in potential drinking water sources. In this study, we report spatial-seasonal variations in U speciation and concentrations in a multi-aquifer system under the impact of Sanggan River in Datong basin, northern China. Hydrochemical and H, O, Sr isotopic data, thermodynamic calculations, and geochemical modeling are used to investigate the mechanisms of surface water-groundwater mixing-induced mobilization and natural attenuation of U. In the study site, groundwater U concentrations are up to 30.2 μg/L, and exhibit strong spatial-seasonal variations that are related to pH and Eh values, as well as dissolved Ca2+, HCO3-, and Fe(III) concentrations. For the alkaline aquifers of this site (pH 7.02-8.44), U mobilization is due to the formation and desorption of Ca2UO2(CO3)30 and CaUO2(CO3)32- caused by groundwater Ca2+ elevation via mineral weathering and Na-Ca exchange, incorporated U(VI) release from calcite, and U(IV) oxidation by Fe(OH)3. U immobilization is linked to the adsorption of CaUO2(CO3)32- and UO2(CO3)34- shifted from Ca2UO2(CO3)30 because of HCO3- elevation and Ca2+ depletion, U(VI) co-precipitation with calcite, and U(VI) reduction by adsorbed Fe2+ and FeS. Those results are of great significance for the groundwater resource management of this and similar other surface water-groundwater interaction zones.
Collapse
Affiliation(s)
- Ya Wu
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Junxia Li
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| | - Yanxin Wang
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China.
| | - Xianjun Xie
- School of Environmental Studies, China University of Geosciences, 430074 Wuhan, China
| |
Collapse
|
13
|
Chen A, Shang C, Shao J, Zhang J, Huang H. The application of iron-based technologies in uranium remediation: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:1291-1306. [PMID: 27720254 DOI: 10.1016/j.scitotenv.2016.09.211] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Revised: 09/25/2016] [Accepted: 09/26/2016] [Indexed: 06/06/2023]
Abstract
Remediating uranium contamination is of worldwide interest because of the increasing release of uranium from mining and processing, nuclear power leaks, depleted uranium components in weapons production and disposal, and phosphate fertilizer in agriculture activities. Iron-based technologies are attractive because they are highly efficient, inexpensive, and readily available. This paper provides an overview of the current literature that addresses the application of iron-based technologies in the remediation of sites with elevated uranium levels. The application of iron-based materials, the current remediation technologies and mechanisms, and the effectiveness and environmental safety considerations of these approaches were discussed. Because uranium can be reduced and reoxidized in the environment, the review also proposes strategies for long-term in situ remediation of uranium. Unfortunately, iron-based materials (nanoscale zerovalent iron and iron oxides) can be toxic to microorganisms. As such, further studies exploring the links among the fates, ecological impacts, and other environmentally relevant factors are needed to better understand the constraints on using iron-based technologies for remediation.
Collapse
Affiliation(s)
- Anwei Chen
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Cui Shang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Jihai Shao
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China.
| | - Jiachao Zhang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| | - Hongli Huang
- College of Resources and Environment, Hunan Agricultural University, Changsha 410128, PR China
| |
Collapse
|
14
|
Bi Y, Stylo M, Bernier-Latmani R, Hayes KF. Rapid Mobilization of Noncrystalline U(IV) Coupled with FeS Oxidation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1403-1411. [PMID: 26695098 DOI: 10.1021/acs.est.5b04281] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The reactivity of disordered, noncrystalline U(IV) species remains poorly characterized despite their prevalence in biostimulated sediments. Because of the lack of crystalline structure, noncrystalline U(IV) may be susceptible to oxidative mobilization under oxic conditions. The present study investigated the mechanism and rate of oxidation of biogenic noncrystalline U(IV) by dissolved oxygen (DO) in the presence of mackinawite (FeS). Previously recognized as an effective reductant and oxygen scavenger, nanoparticulate FeS was evaluated for its role in influencing U release in a flow-through system as a function of pH and carbonate concentration. The results demonstrated that noncrystalline U(IV) was more susceptible to oxidation than uraninite (UO2) in the presence of dissolved carbonate. A rapid release of U occurred immediately after FeS addition without exhibiting a temporary inhibition stage, as was observed during the oxidation of UO2, although FeS still kept DO levels low. X-ray photoelectron spectroscopy (XPS) characterized a transient surface Fe(III) species during the initial FeS oxidation, which was likely responsible for oxidizing noncrystalline U(IV) in addition to oxygen. In the absence of carbonate, however, the release of dissolved U was significantly hindered as a result of U adsorption by FeS oxidation products. This study illustrates the strong interactions between iron sulfide and U(IV) species during redox transformation and implies the lability of biogenic noncrystalline U(IV) species in the subsurface environment when subjected to redox cycling events.
Collapse
Affiliation(s)
- Yuqiang Bi
- Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Malgorzata Stylo
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Rizlan Bernier-Latmani
- Environmental Microbiology Laboratory, Ecole Polytechnique Fédérale de Lausanne , CH-1015 Lausanne, Switzerland
| | - Kim F Hayes
- Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
15
|
Lezama-Pacheco JS, Cerrato JM, Veeramani H, Alessi DS, Suvorova E, Bernier-Latmani R, Giammar DE, Long PE, Williams KH, Bargar JR. Long-term in situ oxidation of biogenic uraninite in an alluvial aquifer: impact of dissolved oxygen and calcium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:7340-7347. [PMID: 26001126 DOI: 10.1021/acs.est.5b00949] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Oxidative dissolution controls uranium release to (sub)oxic pore waters from biogenic uraninite produced by natural or engineered processes, such as bioremediation. Laboratory studies show that uraninite dissolution is profoundly influenced by dissolved oxygen (DO), carbonate, and solutes such as Ca(2+). In complex and heterogeneous subsurface environments, the concentrations of these solutes vary in time and space. Knowledge of dissolution processes and kinetics occurring over the long-term under such conditions is needed to predict subsurface uranium behavior and optimize the selection and performance of uraninite-based remediation technologies over multiyear periods. We have assessed dissolution of biogenic uraninite deployed in wells at the Rifle, CO, DOE research site over a 22 month period. Uraninite loss rates were highly sensitive to DO, with near-complete loss at >0.6 mg/L over this period but no measurable loss at lower DO. We conclude that uraninite can be stable over decadal time scales in aquifers under low DO conditions. U(VI) solid products were absent over a wide range of DO values, suggesting that dissolution proceeded through complexation and removal of oxidized surface uranium atoms by carbonate. Moreover, under the groundwater conditions present, Ca(2+) binds strongly to uraninite surfaces at structural uranium sites, impacting uranium fate.
Collapse
Affiliation(s)
- Juan S Lezama-Pacheco
- †Stanford Synchrotron Radiation Lightsource, SLAC, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| | - José M Cerrato
- §Department of Energy, Environmental, and Chemical Engineering, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Harish Veeramani
- ‡Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - Daniel S Alessi
- ‡Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - Elena Suvorova
- ‡Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - Rizlan Bernier-Latmani
- ‡Environmental Microbiology Laboratory, École Polytechnique Fédérale de Lausanne, Lausanne, CH 1015, Switzerland
| | - Daniel E Giammar
- §Department of Energy, Environmental, and Chemical Engineering, Washington University, One Brookings Drive, Saint Louis, Missouri 63130, United States
| | - Philip E Long
- ∥Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Kenneth H Williams
- ∥Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - John R Bargar
- †Stanford Synchrotron Radiation Lightsource, SLAC, 2575 Sand Hill Road, Menlo Park, California 94025, United States
| |
Collapse
|
16
|
Wang Z, Giammar DE. Metal Contaminant Oxidation Mediated by Manganese Redox Cycling in Subsurface Environment. ACS SYMPOSIUM SERIES 2015. [DOI: 10.1021/bk-2015-1197.ch002] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Zimeng Wang
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| | - Daniel E. Giammar
- Department of Civil and Environmental Engineering, Stanford University, Stanford, California 94305, United States
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130, United States
| |
Collapse
|
17
|
Yan S, Chen Y, Xiang W, Bao Z, Liu C, Deng B. Uranium(VI) reduction by nanoscale zero-valent iron in anoxic batch systems: the role of Fe(II) and Fe(III). CHEMOSPHERE 2014; 117:625-30. [PMID: 25461927 DOI: 10.1016/j.chemosphere.2014.09.087] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 09/24/2014] [Accepted: 09/25/2014] [Indexed: 05/27/2023]
Abstract
The role of Fe(II) and Fe(III) in U(VI) reduction by nanoscale zerovalent iron (nanoFe0) was investigated using two iron chelators 1,10-phenanthroline and triethanolamine (TEA) under a CO2-free anoxic condition. The results showed that U(VI) reduction was strongly inhibited by 1,10-phenanthroline and TEA in a pH range from 6.9 to 9.0. For instance, at pH 6.9 the observed U(VI) reduction rates decreased by 81% and 82% in the presence of 1,10-phenanthroline and TEA, respectively. The inhibition was attributed to the formation of stable complexes between 1,10-phenanthroline and Fe(II) or TEA and Fe(III). In the absence of iron chelators, U(VI) reduction can be enhanced by surface-bound Fe(II) on nanoFe0. Our results suggested that Fe(III) and Fe(II) possibly acted as an electron shuttle to ferry the electrons from nanoFe0 to U(VI), therefore a combined system with Fe(II), Fe(III) and nanoFe0 could facilitate U(VI) reductive immobilization in the contaminated groundwater.
Collapse
Affiliation(s)
- Sen Yan
- State Key Laboratory of Bio-Geology and Environmental Geology, School of Earth Sciences, China University of Geosciences, Wuhan 430074, China.
| | | | | | | | | | | |
Collapse
|
18
|
Bi Y, Hayes KF. Surface passivation limited UO2 oxidative dissolution in the presence of FeS. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:13402-13411. [PMID: 25322064 DOI: 10.1021/es5041392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Iron sulfide minerals produced during in situ bioremediation of U can serve as an oxygen scavenger to retard uraninite (UO2) oxidation upon oxygen intrusion. Under persistent oxygen supply, however, iron sulfides become oxidized and depleted, giving rise to elevated dissolved oxygen (DO) levels and remobilization of U(IV). The present study investigated the mechanism that regulates UO2 oxidative dissolution rate in a flow-through system when oxygen breakthrough occurred as a function of mackinawite (FeS) and carbonate concentrations. The formation and evolution of surface layers on UO2 were characterized using XAS and XPS. During FeS inhibition period, the continuous supply of carbonate and calcium in the influent effectively complexed and removed oxidized U(VI) to preserve an intermediate U4O9 surface. When the FeS became depleted by oxidization, a transient, rapid dissolution of UO2 was observed along with DO breakthrough in the reactor. This rate was greater than during the preceding FeS inhibition period and control experiments in the absence of FeS. With increasing DO, the rate slowed and the rate-limiting step shifted from surface oxidation to U(VI) detachment as U(VI) passivation layers developed. In contrast, increasing the carbonate concentrations facilitated detachment of surface-associated U(VI) complexes and impeded the formation of U(VI) passivation layer. This study demonstrates the critical role of U(VI) surface layer formation versus U(VI) detachment in controlling UO2 oxidative dissolution rate during periods of variable oxygen presence under simulated groundwater conditions.
Collapse
Affiliation(s)
- Yuqiang Bi
- Department of Civil and Environmental Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
19
|
Massey MS, Lezama-Pacheco JS, Michel FM, Fendorf S. Uranium incorporation into aluminum-substituted ferrihydrite during iron(ii)-induced transformation. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2014; 16:2137-2144. [PMID: 25124142 DOI: 10.1039/c4em00148f] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Uranium retention processes (adsorption, precipitation, and incorporation into host minerals) exert strong controls on U mobility in the environment, and understanding U retention is therefore crucial for predicting the migration of U within surface and groundwater. Uranium can be incorporated into Fe (hydr)oxides during Fe(ii)-induced transformation of ferrihydrite to goethite. However, ferrihydrite seldom exists as a pure phase within soils or sediments, and structural impurities such as Al alter its reactivity. The presence of Al in ferrihydrite, for example, decreases the rate of transformation to goethite, and thus may impact the retention pathway, or extent of retention, of U. Here, we investigate the extent and pathways of U(vi) retention on Al-ferrihydrite during Fe(ii)-induced transformation. Ferrihydrite containing 0%, 1%, 5%, 10%, and 20% Al was reacted with 10 μM U and 300 μM Fe(ii) in the presence of 0 mM and 4 mM Ca(2+) and 3.8 mM carbonate at pH 7.0. Solid reaction products were characterized using U L3-edge EXAFS spectroscopy to differentiate between adsorbed U and U incorporated into the goethite lattice. Uranium incorporation into Al-ferrihydrite declined from ∼70% of solid-phase U at 0% and 1% Al to ∼30% of solid phase U at 20% Al content. The decrease in U incorporation with increasing Al concentration was due to two main factors: (1) decreased transformation of ferrihydrite to goethite; and, (2) a decrease of the goethite lattice with increasing Al, making the lattice less compatible with large U atoms. However, uranium incorporation can occur even with an Al-substituted ferrihydrite precursor in the presence or absence of Ca(2+). The process of U incorporation into Al-goethite may therefore be a potential long-term sink of U in subsurface environments where Al-substituted iron oxides are common, albeit at lower levels of incorporation with increasing Al content.
Collapse
Affiliation(s)
- Michael S Massey
- Department of Environmental & Earth System Science, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
20
|
Massey MS, Lezama-Pacheco JS, Nelson JM, Fendorf S, Maher K. Uranium incorporation into amorphous silica. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:8636-8644. [PMID: 24984107 DOI: 10.1021/es501064m] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
High concentrations of uranium are commonly observed in naturally occurring amorphous silica (including opal) deposits, suggesting that incorporation of U into amorphous silica may represent a natural attenuation mechanism and promising strategy for U remediation. However, the stability of uranium in opaline silicates, determined in part by the binding mechanism for U, is an important factor in its long-term fate. U may bind directly to the opaline silicate matrix, or to materials such as iron (hydr)oxides that are subsequently occluded within the opal. Here, we examine the coordination environment of U within opaline silica to elucidate incorporation mechanisms. Precipitates (with and without ferrihydrite inclusions) were synthesized from U-bearing sodium metasilicate solutions, buffered at pH ∼ 5.6. Natural and synthetic solids were analyzed with X-ray absorption spectroscopy and a suite of other techniques. In synthetic amorphous silica, U was coordinated by silicate in a double corner-sharing coordination geometry (Si at ∼ 3.8-3.9 Å) and a small amount of uranyl and silicate in a bidentate, mononuclear (edge-sharing) coordination (Si at ∼ 3.1-3.2 Å, U at ∼ 3.8-3.9 Å). In iron-bearing synthetic solids, U was adsorbed to iron (hydr)oxide, but the coordination environment also contained silicate in both edge-sharing and corner-sharing coordination. Uranium local coordination in synthetic solids is similar to that of natural U-bearing opals that retain U for millions of years. The stability and extent of U incorporation into opaline and amorphous silica represents a long-term repository for U that may provide an alternative strategy for remediation of U contamination.
Collapse
Affiliation(s)
- Michael S Massey
- Department of Earth and Environmental Sciences, California State University, East Bay , Hayward, California 94542, United States
| | | | | | | | | |
Collapse
|
21
|
Cheng Y, Xu X, Yan S, Pan X, Chen Z, Lin Z. Hydrothermal growth of large-size UO2 nanoparticles mediated by biomass and environmental implications. RSC Adv 2014. [DOI: 10.1039/c4ra10428e] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
We reveal the hydrothermal conversion rule for amorphous U(vi) to large-size UO2.
Collapse
Affiliation(s)
- Yangjian Cheng
- College of Environment and Resources
- Fuzhou University
- Fuzhou, China
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
| | - Xinya Xu
- College of Environment and Resources
- Fuzhou University
- Fuzhou, China
| | - Shungao Yan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
| | - Xiaohong Pan
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
| | - Zhi Chen
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
| | - Zhang Lin
- State Key Laboratory of Structural Chemistry
- Fujian Institute of Research on the Structure of Matter
- Chinese Academy of Sciences
- Fuzhou, China
| |
Collapse
|
22
|
Wang Z, Xiong W, Tebo BM, Giammar DE. Oxidative UO2 dissolution induced by soluble Mn(III). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 48:289-298. [PMID: 24286164 DOI: 10.1021/es4037308] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The stability of UO2 is critical to the success of reductive bioremediation of uranium. When reducing conditions are no longer maintained, Mn redox cycling may catalytically mediate the oxidation of UO2 and remobilization of uranium. Ligand-stabilized soluble Mn(III) was recently recognized as an important redox-active intermediate in Mn biogeochemical cycling. This study evaluated the kinetics of oxidative UO2 dissolution by soluble Mn(III) stabilized by pyrophosphate (PP) and desferrioxamine B (DFOB). The Mn(III)-PP complex was a potent oxidant that induced rapid UO2 dissolution at a rate higher than that by a comparable concentration of dissolved O2. However, the Mn(III)-DFOB complex was not able to induce oxidative dissolution of UO2. The ability of Mn(III) complexes to oxidize UO2 was probably determined by whether the coordination of Mn(III) with ligands allowed the attachment of the complexes to the UO2 surface to facilitate electron transfer. Systematic investigation into the kinetics of UO2 oxidative dissolution by the Mn(III)-PP complex suggested that Mn(III) could directly oxidize UO2 without involving particulate Mn species (e.g., MnO2). The expected 2:1 reaction stoichiometry between Mn(III) and UO2 was observed. The reactivity of soluble Mn(III) in oxidizing UO2 was higher at lower ratios of pyrophosphate to Mn(III) and lower pH, which is probably related to differences in the ligand-to-metal ratio and/or protonation states of the Mn(III)-pyrophosphate complexes. Disproportionation of Mn(III)-PP occurred at pH 9.0, and the oxidation of UO2 was then driven by both MnO2 and soluble Mn(III). Kinetic models were derived that provided excellent fits of the experimental results.
Collapse
Affiliation(s)
- Zimeng Wang
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis , St. Louis, Missouri 63130, United States
| | | | | | | |
Collapse
|
23
|
Stoliker DL, Campbell KM, Fox PM, Singer DM, Kaviani N, Carey M, Peck NE, Bargar JR, Kent DB, Davis JA. Evaluating chemical extraction techniques for the determination of uranium oxidation state in reduced aquifer sediments. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:9225-9232. [PMID: 23875928 DOI: 10.1021/es401450v] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Extraction techniques utilizing high pH and (bi)carbonate concentrations were evaluated for their efficacy in determining the oxidation state of uranium (U) in reduced sediments collected from Rifle, CO. Differences in dissolved concentrations between oxic and anoxic extractions have been proposed as a means to quantify the U(VI) and U(IV) content of sediments. An additional step was added to anoxic extractions using a strong anion exchange resin to separate dissolved U(IV) and U(VI). X-ray spectroscopy showed that U(IV) in the sediments was present as polymerized precipitates similar to uraninite and/or less ordered U(IV), referred to as non-uraninite U(IV) species associated with biomass (NUSAB). Extractions of sediment containing both uraninite and NUSAB displayed higher dissolved uranium concentrations under oxic than anoxic conditions while extractions of sediment dominated by NUSAB resulted in identical dissolved U concentrations. Dissolved U(IV) was rapidly oxidized under anoxic conditions in all experiments. Uraninite reacted minimally under anoxic conditions but thermodynamic calculations show that its propensity to oxidize is sensitive to solution chemistry and sediment mineralogy. A universal method for quantification of U(IV) and U(VI) in sediments has not yet been developed but the chemical extractions, when combined with solid-phase characterization, have a narrow range of applicability for sediments without U(VI).
Collapse
|
24
|
Rui X, Kwon MJ, O'Loughlin EJ, Dunham-Cheatham S, Fein JB, Bunker B, Kemner KM, Boyanov MI. Bioreduction of hydrogen uranyl phosphate: mechanisms and U(IV) products. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:5668-5678. [PMID: 23634690 DOI: 10.1021/es305258p] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The mobility of uranium (U) in subsurface environments is controlled by interrelated adsorption, redox, and precipitation reactions. Previous work demonstrated the formation of nanometer-sized hydrogen uranyl phosphate (abbreviated as HUP) crystals on the cell walls of Bacillus subtilis, a non-U(VI)-reducing, Gram-positive bacterium. The current study examined the reduction of this biogenic, cell-associated HUP mineral by three dissimilatory metal-reducing bacteria, Anaeromyxobacter dehalogenans strain K, Geobacter sulfurreducens strain PCA, and Shewanella putrefaciens strain CN-32, and compared it to the bioreduction of abiotically formed and freely suspended HUP of larger particle size. Uranium speciation in the solid phase was followed over a 10- to 20-day reaction period by X-ray absorption fine structure spectroscopy (XANES and EXAFS) and showed varying extents of U(VI) reduction to U(IV). The reduction extent of the same mass of HUP to U(IV) was consistently greater with the biogenic than with the abiotic material under the same experimental conditions. A greater extent of HUP reduction was observed in the presence of bicarbonate in solution, whereas a decreased extent of HUP reduction was observed with the addition of dissolved phosphate. These results indicate that the extent of U(VI) reduction is controlled by dissolution of the HUP phase, suggesting that the metal-reducing bacteria transfer electrons to the dissolved or bacterially adsorbed U(VI) species formed after HUP dissolution, rather than to solid-phase U(VI) in the HUP mineral. Interestingly, the bioreduced U(IV) atoms were not immediately coordinated to other U(IV) atoms (as in uraninite, UO2) but were similar in structure to the phosphate-complexed U(IV) species found in ningyoite [CaU(PO4)2·H2O]. This indicates a strong control by phosphate on the speciation of bioreduced U(IV), expressed as inhibition of the typical formation of uraninite under phosphate-free conditions.
Collapse
Affiliation(s)
- Xue Rui
- Department of Physics, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Bioremediation of uranium-contaminated groundwater: a systems approach to subsurface biogeochemistry. Curr Opin Biotechnol 2013; 24:489-97. [DOI: 10.1016/j.copbio.2012.10.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2012] [Accepted: 10/09/2012] [Indexed: 11/18/2022]
|
26
|
Plathe KL, Lee SW, Tebo BM, Bargar JR, Bernier-Latmani R. Impact of microbial Mn oxidation on the remobilization of bioreduced U(IV). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:3606-3613. [PMID: 23484504 DOI: 10.1021/es3036835] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Effects of Mn redox cycling on the stability of bioreduced U(IV) are evaluated here. U(VI) can be biologically reduced to less soluble U(IV) species and the stimulation of biological activity to that end is a salient remediation strategy; however, the stability of these materials in the subsurface environments where they form remains unproven. Manganese oxides are capable of rapidly oxidizing U(IV) to U(VI) in mixed batch systems where the two solid phases are in direct contact. However, it is unknown whether the same oxidation would take place in a porous medium. To probe that question, U(IV) immobilized in agarose gels was exposed to conditions allowing biological Mn(II) oxidation (HEPES buffer, Mn(II), 5% O2 and Bacillus sp. SG-1 spores). Results show the oxidation of U(IV) to U(VI) is due primarily to O2 rather than to MnO2. U(VI) produced is retained within the gel to a greater extent when Mn oxides are present, suggesting the formation of strong surface complexes. The implication for the long-term stability of U in a bioremediated site is that, in the absence of competing ligands, biological Mn(II) oxidation may promote the immobilization of U(VI) produced by the oxidation of U(IV).
Collapse
Affiliation(s)
- Kelly L Plathe
- Environmental Microbiology Laboratory, Ecole Polytechnique Federale de Lausanne, Station 6, CH-1015, Lausanne, Switzerland
| | | | | | | | | |
Collapse
|
27
|
Stoliker DL, Kaviani N, Kent DB, Davis JA. Evaluating ion exchange resin efficiency and oxidative capacity for the separation of uranium(IV) and uranium(VI). GEOCHEMICAL TRANSACTIONS 2013; 14:1. [PMID: 23363052 PMCID: PMC3563538 DOI: 10.1186/1467-4866-14-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Accepted: 01/27/2013] [Indexed: 05/26/2023]
Abstract
BACKGROUND Previously described methods to separate dissolved U(IV) from dissolved U(VI) under acidic anoxic conditions prior to laboratory analysis were ineffective with materials currently available commercially. Three strong anion exchange resins were examined for their efficiency in separating, recovering, and preserving both redox states during separation. RESULTS Under oxic conditions, recovery of U(VI) from three exchange resins (Bio-Rad AG® 1x8 Poly-Prep® prefilled columns, Bio-Rad AG® 1x8 powder, and Dowex® 1x8 powder) ranged from 72% to 100% depending on the dosed mass, eluent volume, and resin selected. Dowex® 1x8 resin was the only resin found to provide 100% recovery of U(VI) with fewer than 5 bed volumes of eluent. Under anoxic conditions, all three resins oxidized U(IV) in aqueous solutions with relatively low U(IV) concentrations (<3x10-6 M). Resin-induced oxidation was observed visually using a leuco dye, safranin-o. Oxidants associated with the resin were irreversibly reduced by the addition of Ti(III). After anoxic resin pre-treatment, a series of U(IV)/U(VI) mixtures at micro-molar levels were prepared and separated using the Dowex® 1x8 resin with 100% recovery of both U(IV) and U(VI) with no resin-induced changes in oxidation state. CONCLUSIONS Currently available anion exchange resins with apparently identical physical properties were found to have significantly different recoveries for hexavalent uranium at micro-molar concentrations. A novel qualitative technique was developed to visually assess oxidative capacities of anion exchange resins under acidic anoxic conditions. A protocol was developed for pre-treatment and use of currently available anion exchange resins to achieve quantitative separation of U(IV) and U(VI) in aqueous solutions with low U(IV) concentrations. This method can be applied to future work to quantitatively assess dissolved U(IV) and U(VI) concentrations in both laboratory and field samples.
Collapse
Affiliation(s)
| | - Nazila Kaviani
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA, 94025, USA
| | - Douglas B Kent
- U.S. Geological Survey, 345 Middlefield Rd, Menlo Park, CA, 94025, USA
| | - James A Davis
- Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA, 94720, USA
| |
Collapse
|
28
|
Stewart BD, Girardot C, Spycher N, Sani RK, Peyton BM. Influence of chelating agents on biogenic uraninite reoxidation by Fe(III) (Hydr)oxides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:364-371. [PMID: 23163577 DOI: 10.1021/es303022p] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Microbially mediated reduction of soluble U(VI) to U(IV) with subsequent precipitation of uraninite, UO(2(S)), has been proposed as a method for limiting uranium (U) migration. However, microbially reduced UO(2) may be susceptible to reoxidation by environmental factors, with Fe(III) (hydr)oxides playing a significant role. Little is known about the role that organic compounds such as Fe(III) chelators play in the stability of reduced U. Here, we investigate the impact of citrate, DFB, EDTA, and NTA on biogenic UO(2) reoxidation with ferrihydrite, goethite, and hematite. Experiments were conducted in anaerobic batch systems in PIPES buffer (10 mM, pH 7) with bicarbonate for approximately 80 days. Results showed EDTA accelerated UO(2) reoxidation the most at an initial rate of 9.5 μM day(-1) with ferrihydrite, 8.6 μM day(-1) with goethite, and 8.8 μM day(-1) with hematite. NTA accelerated UO(2) reoxidation with ferrihydrite at a rate of 4.8 μM day(-1); rates were less with goethite and hematite (0.66 and 0.71 μM day(-1), respectively). Citrate increased UO(2) reoxidation with ferrihydrite at a rate of 1.8 μM day(-1), but did not increase the extent of reaction with goethite or hematite, with no reoxidation in this case. In all cases, bicarbonate increased the rate and extent of UO(2) reoxidation with ferrihydrite in the presence and absence of chelators. The highest rate of UO(2) reoxidation occurred when the chelator promoted both UO(2) and Fe(III) (hydr)oxide dissolution as demonstrated with EDTA. When UO(2) dissolution did not occur, UO(2) reoxidation likely proceeded through an aqueous Fe(III) intermediate with lower reoxidation rates observed. Reaction modeling suggests that strong Fe(II) chelators promote reoxidation whereas strong Fe(III) chelators impede it. These results indicate that chelators found in U contaminated sites may play a significant role in mobilizing U, potentially affecting bioremediation efforts.
Collapse
Affiliation(s)
- Brandy D Stewart
- Chemical and Biological Engineering and Center for Biofilm Engineering, Montana State University, Bozeman, Montana 59717, United States
| | | | | | | | | |
Collapse
|
29
|
Giammar DE, Cerrato JM, Mehta V, Wang Z, Wang Y, Pepping TJ, Ulrich KU, Lezama-Pacheco JS, Bargar JR. Effect of diffusive transport limitations on UO2 dissolution. WATER RESEARCH 2012; 46:6023-6032. [PMID: 22980573 DOI: 10.1016/j.watres.2012.08.034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 08/08/2012] [Accepted: 08/22/2012] [Indexed: 06/01/2023]
Abstract
The effects of diffusive transport limitations on the dissolution of UO(2) were investigated using an artificial groundwater prepared to simulate the conditions at the Old Rifle aquifer site in Colorado, USA. Controlled batch, continuously-stirred tank (CSTR), and plug flow reactors were used to study UO(2) dissolution in the absence and presence of diffusive limitations exerted by permeable sample cells. The net rate of uranium release following oxidative UO(2) dissolution obtained from diffusion-limited batch experiments was ten times lower than that obtained for UO(2) dissolution with no permeable sample cells. The release rate of uranium to bulk solution from UO(2) contained in permeable sample cells under advective flow conditions was more than 100 times lower than that obtained from CSTR experiments without diffusive limitations. A 1-dimensional transport model was developed that could successfully simulate diffusion-limited release of U following oxidative UO(2) dissolution with the dominant rate-limiting process being the transport of U(VI) out of the cells. Scanning electron microscopy, X-ray diffraction, and extended X-ray absorption fine structure spectroscopy (EXAFS) characterization of the UO(2) solids recovered from batch experiments suggest that oxidative dissolution was more evident in the absence of diffusive limitations. Ca-EXAFS spectra indicate the presence of Ca in the reacted UO(2) solids with a coordination environment similar to that of a Ca-O-Si mineral. The findings from this study advance our overall understanding of the coupling of geochemical and transport processes that can lead to differences in dissolution rates measured in the field and in laboratory experiments.
Collapse
Affiliation(s)
- Daniel E Giammar
- Department of Energy, Environmental, and Chemical Engineering, One Brookings Drive, Washington University, Saint Louis, MO 63130, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Luan F, Burgos WD. Sequential extraction method for determination of Fe(II/III) and U(IV/VI) in suspensions of iron-bearing phyllosilicates and uranium. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:11995-12002. [PMID: 23075386 DOI: 10.1021/es303306f] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Iron-bearing phyllosilicates strongly influence the redox state and mobility of uranium because of their limited hydraulic conductivity, high specific surface area, and redox reactivity. Standard extraction procedures cannot be accurately applied for the determination of clay-Fe(II/III) and U(IV/VI) in clay mineral-U suspensions such that advanced spectroscopic techniques are required. Instead, we developed and validated a sequential extraction method for determination of clay-Fe(II/III) and U(IV/VI) in clay-U suspensions. In our so-called "H(3)PO(4)-HF-H(2)SO(4) sequential extraction" method, H(3)PO(4)-H(2)SO(4) is used first to solubilize and remove U, and the remaining clay pellet is subject to HF-H(2)SO(4) digestion. Physical separation of U and clay eliminates valence cycling between U(IV/VI) and clay-Fe(II/III) that otherwise occurred in the extraction solutions and caused analytical discrepancies. We further developed an "automated anoxic KPA" method to measure soluble U(VI) and total U (calculate U(IV) by difference) and modified the conventional HF-H(2)SO(4) digestion method to eliminate a series of time-consuming weighing steps. We measured the kinetics of uraninite oxidation by nontronite using this sequential extraction method and anoxic KPA method and measured a stoichiometric ratio of 2.19 ± 0.05 mol clay-Fe(II) produced per mol U(VI) produced (theoretical value of 2.0). We found that we were able to recover 98.0-98.5% of the clay Fe and 98.1-98.5% of the U through the sequential extractions. Compared to the theoretical stoichiometric ratio of 2.0, the parallel extractions of 0.5 M HCl for clay-Fe(II) and 1 M NaHCO(3) for U(VI) leached two-times more Fe(II) than U(VI). The parallel extractions of HF-H(2)SO(4) for clay Fe(II) and 1 M NaHCO(3) for U(VI) leached six-times more Fe(II) than U(VI).
Collapse
Affiliation(s)
- Fubo Luan
- Department of Civil and Environmental Engineering, The Pennsylvania State University, University Park, Pennsylvania 16801-1408, USA
| | | |
Collapse
|
31
|
Pearce CI, Wilkins MJ, Zhang C, Heald SM, Fredrickson JK, Zachara JM. Pore-scale characterization of biogeochemical controls on iron and uranium speciation under flow conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2012; 46:7992-8000. [PMID: 22731932 DOI: 10.1021/es301050h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Etched silicon microfluidic pore network models (micromodels) with controlled chemical and redox gradients, mineralogy, and microbiology under continuous flow conditions are used for the incremental development of complex microenvironments that simulate subsurface conditions. We demonstrate the colonization of micromodel pore spaces by an anaerobic Fe(III)-reducing bacterial species (Geobacter sulfurreducens) and the enzymatic reduction of a bioavailable Fe(III) phase within this environment. Using both X-ray microprobe and X-ray absorption spectroscopy, we investigate the combined effects of the precipitated Fe(III) phases and the microbial population on uranium biogeochemistry under flow conditions. Precipitated Fe(III) phases within the micromodel were most effectively reduced in the presence of an electron shuttle (AQDS), and Fe(II) ions adsorbed onto the precipitated mineral surface without inducing any structural change. In the absence of Fe(III), U(VI) was effectively reduced by the microbial population to insoluble U(IV), which was precipitated in discrete regions associated with biomass. In the presence of Fe(III) phases, however, both U(IV) and U(VI) could be detected associated with biomass, suggesting reoxidation of U(IV) by localized Fe(III) phases. These results demonstrate the importance of the spatial localization of biomass and redox active metals, and illustrate the key effects of pore-scale processes on contaminant fate and reactive transport.
Collapse
Affiliation(s)
- Carolyn I Pearce
- Pacific Northwest National Laboratory, Richland, Washington 99352, USA.
| | | | | | | | | | | |
Collapse
|
32
|
Borch T, Roche N, Johnson TE. Determination of contaminant levels and remediation efficacy in groundwater at a former in situ recovery uranium mine. ACTA ACUST UNITED AC 2012; 14:1814-23. [DOI: 10.1039/c2em30077j] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
33
|
O’Loughlin EJ, Boyanov MI, Antonopoulos DA, Kemner KM. Redox Processes Affecting the Speciation of Technetium, Uranium, Neptunium, and Plutonium in Aquatic and Terrestrial Environments. ACS SYMPOSIUM SERIES 2011. [DOI: 10.1021/bk-2011-1071.ch022] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Edward J. O’Loughlin
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Maxim I. Boyanov
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Dionysios A. Antonopoulos
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| | - Kenneth M. Kemner
- Biosciences Division, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
- The Institute for Genomics and Systems Biology, Argonne National Laboratory, 9700 South Cass Avenue, Argonne, IL 60439
| |
Collapse
|
34
|
Ginder-Vogel M, Sparks DL. The Impacts of X-Ray Absorption Spectroscopy on Understanding Soil Processes and Reaction Mechanisms. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/s0166-2481(10)34001-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|