1
|
Grunwald L, Abbott DF, Mougel V. Gauging Iron-Sulfur Cubane Reactivity from Covalency: Trends with Oxidation State. JACS AU 2024; 4:1315-1322. [PMID: 38665672 PMCID: PMC11040707 DOI: 10.1021/jacsau.4c00213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/28/2024]
Abstract
We investigated room-temperature metal and ligand K-edge X-ray absorption (XAS) spectra of a complete redox series of cubane-type iron-sulfur clusters. The Fe K-edge position provides a qualitative but convenient alternative to the traditional spectroscopic descriptors used to identify oxidation states in these systems, which we demonstrate by providing a calibration curve based on two analytic methods. Furthermore, high energy resolution fluorescence detected XAS (HERFD-XAS) at the S K-edge was used to measure Fe-S bond covalencies and record their variation with the average valence of the Fe atoms. While the Fe-S(thiolate) covalency evolves linearly, gaining 11 ± 0.4% per bond and hole, the Fe-S(μ3) covalency evolves asystematically, reflecting changes in the magnetic exchange mechanism. A strong discontinuity manifested for superoxidation to the all-ferric state, distinguishing its electronic structure and its potential (bio)chemical role from those of its redox congeners. We highlight the functional implications of these trends for the reactivity of iron-sulfur cubanes.
Collapse
Affiliation(s)
- Liam Grunwald
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Daniel F. Abbott
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| | - Victor Mougel
- Department
of Chemistry and Applied Biosciences (D-CHAB), Swiss Federal Institute of Technology Zürich (ETHZ), Vladimir-Prelog-Weg 2, CH-8093 Zürich, Switzerland
| |
Collapse
|
2
|
Lukens WW, Minasian SG, Booth CH. Strengths of covalent bonds in LnO 2 determined from O K-edge XANES spectra using a Hubbard model. Chem Sci 2023; 14:12784-12795. [PMID: 38020387 PMCID: PMC10646950 DOI: 10.1039/d3sc03304j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 10/25/2023] [Indexed: 12/01/2023] Open
Abstract
In LnO2 (Ln = Ce, Pr, and Tb), the amount of Ln 4f mixing with O 2p orbitals was determined by O K-edge X-ray absorption near edge (XANES) spectroscopy and was similar to the amount of mixing between the Ln 5d and O 2p orbitals. This similarity was unexpected since the 4f orbitals are generally perceived to be "core-like" and can only weakly stabilize ligand orbitals through covalent interactions. While the degree of orbital mixing seems incompatible with this view, orbital mixing alone does not determine the degree of stabilization provided by a covalent interaction. We used a Hubbard model to determine this stabilization from the energies of the O 2p to 4f, 5d(eg), and 5d(t2g) excited charge-transfer states and the amount of excited state character mixed into the ground state, which was determined using Ln L3-edge and O K-edge XANES spectroscopy. The largest amount of stabilization due to mixing between the Ln 4f and O 2p orbitals was 1.6(1) eV in CeO2. While this energy is substantial, the stabilization provided by mixing between the Ln 5d and O 2p orbitals was an order of magnitude greater consistent with the perception that covalent bonding in the lanthanides is largely driven by the 5d orbitals rather than the 4f orbitals.
Collapse
Affiliation(s)
- Wayne W Lukens
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Stefan G Minasian
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| | - Corwin H Booth
- Chemical Sciences Division, Lawrence Berkeley National Laboratory Berkeley CA 94720 USA
| |
Collapse
|
3
|
Csizi K, Eckert L, Brunken C, Hofstetter TB, Reiher M. The Apparently Unreactive Substrate Facilitates the Electron Transfer for Dioxygen Activation in Rieske Dioxygenases. Chemistry 2022; 28:e202103937. [PMID: 35072969 PMCID: PMC9306888 DOI: 10.1002/chem.202103937] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Indexed: 12/29/2022]
Abstract
Rieske dioxygenases belong to the non-heme iron family of oxygenases and catalyze important cis-dihydroxylation as well as O-/N-dealkylation and oxidative cyclization reactions for a wide range of substrates. The lack of substrate coordination at the non-heme ferrous iron center, however, makes it particularly challenging to delineate the role of the substrate for productive O 2 activation. Here, we studied the role of the substrate in the key elementary reaction leading to O 2 activation from a theoretical perspective by systematically considering (i) the 6-coordinate to 5-coordinate conversion of the non-heme FeII upon abstraction of a water ligand, (ii) binding of O 2 , and (iii) transfer of an electron from the Rieske cluster. We systematically evaluated the spin-state-dependent reaction energies and structural effects at the active site for all combinations of the three elementary processes in the presence and absence of substrate using naphthalene dioxygenase as a prototypical Rieske dioxygenase. We find that reaction energies for the generation of a coordination vacancy at the non-heme FeII center through thermoneutral H2 O reorientation and exothermic O 2 binding prior to Rieske cluster oxidation are largely insensitive to the presence of naphthalene and do not lead to formation of any of the known reactive Fe-oxygen species. By contrast, the role of the substrate becomes evident after Rieske cluster oxidation and exclusively for the 6-coordinate non-heme FeII sites in that the additional electron is found at the substrate instead of at the iron and oxygen atoms. Our results imply an allosteric control of the substrate on Rieske dioxygenase reactivity to happen prior to changes at the non-heme FeII in agreement with a strategy that avoids unproductive O 2 activation.
Collapse
Affiliation(s)
- Katja‐Sophia Csizi
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Lina Eckert
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Christoph Brunken
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| | - Thomas B. Hofstetter
- EawagSwiss Federal Institute of Aquatic Science and TechnologyÜberlandstrasse 1338600DübendorfSwitzerland
| | - Markus Reiher
- ETH ZürichLaboratory for Physical ChemistryVladimir-Prelog-Weg 28093ZürichSwitzerland
| |
Collapse
|
4
|
Chattopadhyay S, Mukherjee M, Kandemir B, Bowman SEJ, Bren KL, Dey A. Contributions to cytochrome c inner- and outer-sphere reorganization energy. Chem Sci 2021; 12:11894-11913. [PMID: 34659730 PMCID: PMC8442690 DOI: 10.1039/d1sc02865k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/05/2021] [Indexed: 11/21/2022] Open
Abstract
Cytochromes c are small water-soluble proteins that catalyze electron transfer in metabolism and energy conversion processes. Hydrogenobacter thermophilus cytochrome c552 presents a curious case in displaying fluxionality of its heme axial methionine ligand; this behavior is altered by single point mutation of the Q64 residue to N64 or V64, which fixes the ligand in a single configuration. The reorganization energy (λ) of these cytochrome c552 variants is experimentally determined using a combination of rotating disc electrochemistry, chronoamperometry and cyclic voltammetry. The differences between the λ determined from these complementary techniques helps to deconvolute the contribution of the active site and its immediate environment to the overall λ (λTotal). The experimentally determined λ values in conjunction with DFT calculations indicate that the differences in λ among the protein variants are mainly due to the differences in contributions from the protein environment and not just inner-sphere λ. DFT calculations indicate that the position of residue 64, responsible for the orientation of the axial methionine, determines the geometric relaxation of the redox active molecular orbital (RAMO). The orientation of the RAMO with respect to the heme is key to determining electron transfer coupling (HAB) which results in higher ET rates in the wild-type protein relative to the Q64V mutant despite a 150 mV higher λTotal in the former. Efficient delocalization of the redox-active molecular orbital (RAMO) in HtWT results in an increase in HAB value which in turn accelerates the electron transfer (ET) rate in spite of the higher reorganization energy (λ) than the HtQ64V mutant.![]()
Collapse
Affiliation(s)
- Samir Chattopadhyay
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| | - Manjistha Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| | - Banu Kandemir
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Sarah E J Bowman
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Kara L Bren
- Department of Chemistry, University of Rochester Rochester NY 14627-0216 USA
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science 2A Raja SC Mullick Road Kolkata WB 700032 India
| |
Collapse
|
5
|
Balachandar S, Sethuram M, Muthuraja P, Dhandapani M. Bioactivity of a radical scavenger bis(pyrazolium p-toluenesulphonate) on ctDNA and certain microbes: a combined experimental and theoretical analysis. Toxicol Res (Camb) 2019; 8:421-431. [PMID: 31160975 PMCID: PMC6505382 DOI: 10.1039/c8tx00258d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/12/2019] [Indexed: 11/21/2022] Open
Abstract
A small organic molecule, bis(pyrazolium p-toluenesulphonate) (BPPTS), was crystallized, characterized and used to scavenge free radicals in biological systems. SXRD and spectroscopic analyses were used to confirm the structure of BPPTS. Methanolic and ethanolic solutions of BPPTS were used to assess the stability of the proposed drug using the UV-vis spectrophotometric technique. Optimization of the molecular structure was carried out by DFT with B3LYP/6-311++G(d,p) level of basis set. MEP and Fukui functions that elaborate theoretically the predominant electrophilic, nucleophilic and radical sites in BPPTS were correlated with experimental biological screening. BPPTS exhibits strong activity against Bacillus subtilis and Escherichia coli, comparable with all other analyzed pathogens. The free radical scavenging activity of BPPTS was assessed by both experimental studies and theoretical calculations. The binding sites of DPPH, which can bind to BPPTS, were also predicted by Fukui functions. DNA binding of BPPTS in UV-vis studies revealed the groove mode of binding due to the occurrence of hyperchromism. The phenomenon of hyperchromism was established by the Hirshfeld surface analysis of BPPTS, which confirmed the presence of π···π interactions (2.4%). Molecular docking established a positive correlation between experimental bio-screening reports and simulated data. ADMET properties were also calculated.
Collapse
Affiliation(s)
- S Balachandar
- Post Graduate and Research Department of Chemistry , Sri Ramakrishna Mission Vidyalaya College of Arts and Science , Coimbatore-641 020 , Tamil Nadu , India . ; Tel: +91 944 200 1232
| | - M Sethuram
- Department of Chemical Engineering , Sethu Institute of Technology , Virudhunagar , Tamil Nadu 626 115 , India
| | - P Muthuraja
- Post Graduate and Research Department of Chemistry , Sri Ramakrishna Mission Vidyalaya College of Arts and Science , Coimbatore-641 020 , Tamil Nadu , India . ; Tel: +91 944 200 1232
| | - M Dhandapani
- Post Graduate and Research Department of Chemistry , Sri Ramakrishna Mission Vidyalaya College of Arts and Science , Coimbatore-641 020 , Tamil Nadu , India . ; Tel: +91 944 200 1232
| |
Collapse
|
6
|
Mao Z, Liou SH, Khadka N, Jenney FE, Goodin DB, Seefeldt LC, Adams MWW, Cramer SP, Larsen DS. Cluster-Dependent Charge-Transfer Dynamics in Iron-Sulfur Proteins. Biochemistry 2018; 57:978-990. [PMID: 29303562 DOI: 10.1021/acs.biochem.7b01159] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Photoinduced charge-transfer dynamics and the influence of cluster size on the dynamics were investigated using five iron-sulfur clusters: the 1Fe-4S cluster in Pyrococcus furiosus rubredoxin, the 2Fe-2S cluster in Pseudomonas putida putidaredoxin, the 4Fe-4S cluster in nitrogenase iron protein, and the 8Fe-7S P-cluster and the 7Fe-9S-1Mo FeMo cofactor in nitrogenase MoFe protein. Laser excitation promotes the iron-sulfur clusters to excited electronic states that relax to lower states. The electronic relaxation lifetimes of the 1Fe-4S, 8Fe-7S, and 7Fe-9S-1Mo clusters are on the picosecond time scale, although the dynamics of the MoFe protein is a mixture of the dynamics of the latter two clusters. The lifetimes of the 2Fe-2S and 4Fe-4S clusters, however, extend to several nanoseconds. A competition between reorganization energies and the density of electronic states (thus electronic coupling between states) mediates the charge-transfer lifetimes, with the 2Fe-2S cluster of Pdx and the 4Fe-4S cluster of Fe protein lying at the optimum leading to them having significantly longer lifetimes. Their long lifetimes make them the optimal candidates for long-range electron transfer and as external photosensitizers for other photoactivated chemical reactions like solar hydrogen production. Potential electron-transfer and hole-transfer pathways that possibly facilitate these charge transfers are proposed.
Collapse
Affiliation(s)
- Ziliang Mao
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Shu-Hao Liou
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Nimesh Khadka
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Francis E Jenney
- Georgia Campus, Philadelphia College of Osteopathic Medicine , Suwanee, Georgia 30024, United States
| | - David B Goodin
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Lance C Seefeldt
- Department of Chemistry and Biochemistry, Utah State University , 0300 Old Main Hill, Logan, Utah 84322, United States
| | - Michael W W Adams
- Department of Biochemistry, The University of Georgia , Athens, Georgia 30602, United States
| | - Stephen P Cramer
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| | - Delmar S Larsen
- Department of Chemistry, University of California at Davis , One Shields Avenue, Davis, California 95616, United States
| |
Collapse
|
7
|
Garino C, Borfecchia E, Gobetto R, van Bokhoven JA, Lamberti C. Determination of the electronic and structural configuration of coordination compounds by synchrotron-radiation techniques. Coord Chem Rev 2014. [DOI: 10.1016/j.ccr.2014.03.027] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
8
|
Harris TV, Szilagyi RK. Iron-sulfur bond covalency from electronic structure calculations for classical iron-sulfur clusters. J Comput Chem 2014; 35:540-52. [PMID: 24458434 DOI: 10.1002/jcc.23518] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 11/11/2013] [Accepted: 12/04/2013] [Indexed: 11/06/2022]
Abstract
The covalent character of iron-sulfur bonds is a fundamental electronic structural feature for understanding the electronic and magnetic properties and the reactivity of biological and biomimetic iron-sulfur clusters. Conceptually, bond covalency obtained from X-ray absorption spectroscopy (XAS) can be directly related to orbital compositions from electronic structure calculations, providing a standard for evaluation of density functional theoretical methods. Typically, a combination of functional and basis set that optimally reproduces experimental bond covalency is chosen, but its dependence on the population analysis method is often neglected, despite its important role in deriving theoretical bond covalency. In this study of iron tetrathiolates, and classical [2Fe-2S] and [4Fe-4S] clusters with only thiolate ligands, we find that orbital compositions can vary significantly depending on whether they are derived from frontier orbitals, spin densities, or electron sharing indexes from "Átoms in Molecules" (ÁIM) theory. The benefits and limitations of Mulliken, Minimum Basis Set Mulliken, Natural, Coefficients-Squared, Hirshfeld, and AIM population analyses are described using ab initio wave function-based (QCISD) and experimental (S K-edge XAS) bond covalency. We find that the AIM theory coupled with a triple-ζ basis set and the hybrid functional B(5%HF)P86 gives the most reasonable electronic structure for the studied Fe-S clusters.
Collapse
Affiliation(s)
- Travis V Harris
- Department of Chemistry and Biochemistry, NAI Astrobiology Biogeocatalysis Research Center, Montana State University, Bozeman, Montana, 59717
| | | |
Collapse
|
9
|
|
10
|
Harb MK, Apfel U, Sakamoto T, El‐khateeb M, Weigand W. Diiron Dichalcogenolato (Se and Te) Complexes: Models for the Active Site of [FeFe] Hydrogenase. Eur J Inorg Chem 2011. [DOI: 10.1002/ejic.201001112] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Mohammad K. Harb
- Institut für Anorganische und Analytische Chemie, Friedrich‐Schiller‐Universität Jena, August‐Bebel‐Straße 2, 07743 Jena, Germany
| | - Ulf‐Peter Apfel
- Institut für Anorganische und Analytische Chemie, Friedrich‐Schiller‐Universität Jena, August‐Bebel‐Straße 2, 07743 Jena, Germany
| | - Takahiro Sakamoto
- Department of Chemistry and Biochemistry, The University of Arizona, Tucson, AZ 85721, U.S.A
| | - Mohammad El‐khateeb
- Chemistry Department, Jordan University of Science and Technology, 22110 Irbid, Jordan
| | - Wolfgang Weigand
- Institut für Anorganische und Analytische Chemie, Friedrich‐Schiller‐Universität Jena, August‐Bebel‐Straße 2, 07743 Jena, Germany
| |
Collapse
|
11
|
Martin-Diaconescu V, Kennepohl P. Effects of hyperconjugation on the electronic structure and photoreactivity of organic sulfonyl chlorides. Inorg Chem 2009; 48:1038-44. [PMID: 19132932 DOI: 10.1021/ic801665f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The electronic structure of organic sulfonyl compounds of the form RSO(2)G (G = -Cl, -OH, -CH(3)) is investigated to evaluate the effect of aryl R groups on photocleavage of the S-G bond. Sulfur K-edge X-ray absorption spectroscopy (XAS) provides a direct measure of the empty low-lying molecular orbitals in these complexes and, in combination with DFT calculations, a detailed description of the bonding in these compounds. The presence of an aryl group bound to the sulfonyl moiety has a significant impact on the spectroscopy and electronic structure of the site. The analysis suggests that the SCl(sigma*) orbital is significantly affected by mixing with the aryl pi* manifold. This mixing is dependent upon the nature of G and is most pronounced in the sulfonyl chlorides, where the energy of the SCl(sigma*) orbital is lowered by approximately 0.5 eV. The observed mixing is best described as excited-state hyperconjugation of the aryl pi system into the SCl(sigma*) orbital. The magnitude of the effect can be estimated directly from the S K-edge XAS spectra. These results are discussed in relation to the observed photochemistry of RSO(2)Cl, which is significantly enhanced when R = aryl as compared to alkyl substituents.
Collapse
Affiliation(s)
- Vlad Martin-Diaconescu
- The University of British Columbia, Department of Chemistry, Vancouver, British Columbia V6T 1Z1
| | | |
Collapse
|
12
|
Shearer J, Dehestani A, Abanda F. Probing Variable Amine/Amide Ligation in NiIIN2S2 Complexes Using Sulfur K-Edge and Nickel L-Edge X-ray Absorption Spectroscopies: Implications for the Active Site of Nickel Superoxide Dismutase. Inorg Chem 2008; 47:2649-60. [DOI: 10.1021/ic7019878] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jason Shearer
- Department of Chemistry, University of Nevada, Reno, Nevada 89557
| | - Ahmad Dehestani
- Department of Chemistry, University of Nevada, Reno, Nevada 89557
| | - Franklin Abanda
- Department of Chemistry, University of Nevada, Reno, Nevada 89557
| |
Collapse
|
13
|
Dey A, Jenney FE, Adams MWW, Johnson MK, Hodgson KO, Hedman B, Solomon EI. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on superoxide reductase: role of the axial thiolate in reactivity. J Am Chem Soc 2007; 129:12418-31. [PMID: 17887751 PMCID: PMC2533108 DOI: 10.1021/ja064167p] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Superoxide reductase (SOR) is a non-heme iron enzyme that reduces superoxide to peroxide at a diffusion-controlled rate. Sulfur K-edge X-ray absorption spectroscopy (XAS) is used to investigate the ground-state electronic structure of the resting high-spin and CN- bound low-spin FeIII forms of the 1Fe SOR from Pyrococcus furiosus. A computational model with constrained imidazole rings (necessary for reproducing spin states), H-bonding interaction to the thiolate (necessary for reproducing Fe-S bond covalency of the high-spin and low-spin forms), and H-bonding to the exchangeable axial ligand (necessary to reproduce the ground state of the low-spin form) was developed and then used to investigate the enzymatic reaction mechanism. Reaction of the resting ferrous site with superoxide and protonation leading to a high-spin FeIII-OOH species and its subsequent protonation resulting in H2O2 release is calculated to be the most energetically favorable reaction pathway. Our results suggest that the thiolate acts as a covalent anionic ligand. Replacing the thiolate with a neutral noncovalent ligand makes protonation very endothermic and greatly raises the reduction potential. The covalent nature of the thiolate weakens the FeIII bond to the proximal oxygen of this hydroperoxo species, which raises its pKa by an additional 5 log units relative to the pKa of a primarily anionic ligand, facilitating its protonation. A comparison with cytochrome P450 indicates that the stronger equatorial ligand field from the porphyrin results in a low-spin FeIII-OOH species that would not be capable of efficient H2O2 release due to a spin-crossing barrier associated with formation of a high-spin 5C FeIII product. Additionally, the presence of the dianionic porphyrin pi ring in cytochrome P450 allows O-O heterolysis, forming an FeIV-oxo porphyrin radical species, which is calculated to be extremely unfavorable for the non-heme SOR ligand environment. Finally, the 5C FeIII site that results from the product release at the end of the O2- reduction cycle is calculated to be capable of reacting with a second O2-, resulting in superoxide dismutase (SOD) activity. However, in contrast to FeSOD, the 5C FeIII site of SOR, which is more positively charged, is calculated to have a high affinity for binding a sixth anionic ligand, which would inhibit its SOD activity.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry, Stanford University, Stanford, CA 94305
| | - Francis E. Jenney
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael W. W. Adams
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Michael K. Johnson
- Department of Chemistry and Department of Biochemistry & Molecular Biology, University of Georgia, Athens, GA 30602
| | - Keith O. Hodgson
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Britt Hedman
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| | - Edward I. Solomon
- Department of Chemistry, Stanford University, Stanford, CA 94305
- Stanford Synchrotron Radiation Laboratory, SLAC, Stanford University, Menlo Park, CA 94025
| |
Collapse
|
14
|
Sarangi R, Aboelella N, Fujisawa K, Tolman WB, Hedman B, Hodgson KO, Solomon EI. X-ray absorption edge spectroscopy and computational studies on LCuO2 species: Superoxide-Cu(II) versus peroxide-Cu(III) bonding. J Am Chem Soc 2007; 128:8286-96. [PMID: 16787093 PMCID: PMC2556900 DOI: 10.1021/ja0615223] [Citation(s) in RCA: 126] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The geometric and electronic structures of two mononuclear CuO2 complexes, [Cu(O2){HB(3-Ad-5-(i)Prpz)3}] (1) and [Cu(O2)(beta-diketiminate)] (2), have been evaluated using Cu K- and L-edge X-ray absorption spectroscopy (XAS) studies in combination with valence bond configuration interaction (VBCI) simulations and spin-unrestricted broken symmetry density functional theory (DFT) calculations. Cu K- and L-edge XAS data indicate the Cu(II) and Cu(III) nature of 1 and 2, respectively. The total integrated intensity under the L-edges shows that the 's in 1 and 2 contain 20% and 28% Cu character, respectively, indicative of very covalent ground states in both complexes, although more so in 1. Two-state VBCI simulations also indicate that the ground state in 2 has more Cu (/3d8) character. DFT calculations show that the in both complexes is dominated by O2(n-) character, although the O2(n-) character is higher in 1. It is shown that the ligand L plays an important role in modulating Cu-O2 bonding in these LCuO2 systems and tunes the ground states of 1 and 2 to have dominant Cu(II)-superoxide-like and Cu(III)-peroxide-like character, respectively. The contributions of ligand field (LF) and the charge on the absorbing atom in the molecule (Q(mol)M) to L- and K-edge energy shifts are evaluated using DFT and time-dependent DFT calculations. It is found that LF makes a dominant contribution to the edge energy shift, while the effect of Q(mol)M is minor. The charge on the Cu in the Cu(III) complex is found to be similar to that in Cu(II) complexes, which indicates a much stronger interaction with the ligand, leading to extensive charge transfer.
Collapse
Affiliation(s)
- Ritimukta Sarangi
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Extended charge decomposition analysis and its application for the investigation of electronic relaxation. Theor Chem Acc 2007. [DOI: 10.1007/s00214-007-0270-1] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Waters T, Wang XB, Wang LS. Electrospray ionization photoelectron spectroscopy: Probing the electronic structure of inorganic metal complexes in the gas-phase. Coord Chem Rev 2007. [DOI: 10.1016/j.ccr.2006.04.010] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
17
|
Tributsch H. Multi-electron transfer catalysis for energy conversion based on abundant transition metals. Electrochim Acta 2007. [DOI: 10.1016/j.electacta.2006.03.111] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
18
|
Structure and ionization energies of some analogues of iron-only hydrogenases studied by density functional theory methods. J Organomet Chem 2006. [DOI: 10.1016/j.jorganchem.2006.04.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
19
|
Kirk ML, Shultz DA, Depperman EC. Beyond the active-electron approximation: Origin of ferromagnetic exchange in donor–acceptor heterospin biradicals. Polyhedron 2005. [DOI: 10.1016/j.poly.2005.08.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
20
|
Sundararajan M, Hillier IH, Burton NA. Structure and Redox Properties of the Protein, Rubredoxin, and Its Ligand and Metal Mutants Studied by Electronic Structure Calculation. J Phys Chem A 2005; 110:785-90. [PMID: 16405354 DOI: 10.1021/jp054276a] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The changes in the structural and electronic properties accompanying metal ionization of the iron-containing protein, rubredoxin, and of some ligand and metal mutants, have been explored using density functional theory (DFT) calculations of the metal atom coordinated to the four immediate residues. Both isolated and embedded cluster studies have been carried out, the latter using the hybrid quantum mechanics/molecular mechanics (QM/MM) approach. The replacement of a cysteine by a serine residue has a considerable effect on both the electronic and geometric structure of the core, which can be qualitatively understood on the basis of the isolated cluster studies. The modulation of these properties caused by the protein environment is quite accurately described by the QM/MM calculations. The predicted core geometries are in good accord with both X-ray and EXAFS data, and the changes in the redox potentials are predicted, at least semiquantitatively, by considering only the core part of the protein.
Collapse
|
21
|
Morgado CA, Mcnamara JP, Hillier * IH, Sundararajan M. The structure and spin-states of some Fe(III) mimics of nitrile hydratase, studied by DFT and ONIOM(DFT:PM3) calculations. Mol Phys 2005. [DOI: 10.1080/00268970512331340583] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Sundararajan M, McNamara JP, Hillier IH, Wang H, Burton NA. The development of a PM3 parameter set to describe iron–sulfur proteins. Chem Phys Lett 2005. [DOI: 10.1016/j.cplett.2005.01.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Solomon EI, Basumallick L, Chen P, Kennepohl P. Variable energy photoelectron spectroscopy: electronic structure and electronic relaxation. Coord Chem Rev 2005. [DOI: 10.1016/j.ccr.2004.02.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
24
|
Uhrhammer D, Schultz FA. Modulation of Molybdenum-Centered Redox Potentials and Electron-Transfer Rates by Sulfur versus Oxygen Ligation. Inorg Chem 2004; 43:7389-95. [PMID: 15530089 DOI: 10.1021/ic040082i] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Temperature-dependent measurements of potential, E degrees', and electron-transfer rate constant, k(s,h), are reported for electrochemical reduction (in 0.3 M TBAPF(6)/CH(3)CN) of a series of oxomolybdenum(V) complexes, [(Tp)MoO(X,Y)], where Tp = hydrotris(3,5-dimethyl-1-pyrazolyl)borate and X,Y is a series of bidentate 1,2-disubstituted aliphatic or aromatic ligands in which oxygen donors are replaced sequentially by sulfur. E degrees' values shift in the positive direction, and k(s,h) values increase as O is replaced by S and as the framework of the ligand is changed from aliphatic to aromatic. The electrochemical enthalpy of activation, measured under conditions of zero driving force as DeltaH= -R partial differential[ln(k(s,h))]/ partial differential(1/T) and corrected for an outer-shell component by the mean spherical approximation, is approximately 10 kJ mol(-1) larger for complexes with O versus S donors and with an aliphatic versus aromatic ligand framework. Thus, the rate of Mo(V/IV) electron transfer is modulated primarily by differences in inner-shell reorganization. Following a recent description of electronic structure contributions to electron-transfer reactivity (Kennepohl, P.; Solomon, E. I. Inorg. Chem. 2003, 42, 679 ff), it is concluded that more effective charge distribution over the entire molecular structure, as mediated by electronic relaxation in S versus O and aromatic versus aliphatic systems, is responsible for the influence of ligand structure on the kinetics and thermodynamics of Mo-centered electron transfer. There is no evidence, based on experimentally measured pre-exponential factors, that sulfur donors or an aromatic ligand framework are more effective than their structural counterparts in facilitating electronic coupling between the electrode and the Mo d(xy) redox orbital.
Collapse
Affiliation(s)
- Darrell Uhrhammer
- Department of Chemistry, Indiana University/Purdue University Indianapolis, 402 North Blackford Street, Indianapolis, IN 46202, USA
| | | |
Collapse
|
25
|
Zhai HJ, Yang X, Fu YJ, Wang XB, Wang LS. Sequential oxidation of the cubane [4Fe--4S] cluster from [4Fe--4S](-) to [4Fe--4S](3+) in Fe(4)S(4)L(n)(-) complexes. J Am Chem Soc 2004; 126:8413-20. [PMID: 15237997 DOI: 10.1021/ja0498437] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Gaseous Fe(4)S(n)(-) (n = 4-6) clusters and synthetic analogue complexes, Fe(4)S(4)L(n)(-) (L = Cl, Br, I; n = 1-4), were produced by laser vaporization of a solid Fe/S target and electrospray from solution samples, respectively, and their electronic structures were probed by photoelectron spectroscopy. Low binding energy features derived from minority-spin Fe 3d electrons were clearly distinguished from S-derived bands. We showed that the electronic structure of the simplest Fe(4)S(4)(-) cubane cluster can be described by the two-layer spin-coupling model previously developed for the [4Fe] cubane analogues. The photoelectron data revealed that each extra S atom in Fe(4)S(5)(-) and Fe(4)S(6)(-) removes two minority-spin Fe 3d electrons from the [4Fe--4S] cubane core and each halogen ligand removes one Fe 3d electron from the cubane core in the Fe(4)S(4)L(n)(-) complexes, clearly revealing a behavior of sequential oxidation of the cubane over five formal oxidation states: [4Fe--4S](-) --> [4Fe--4S](0) --> [4Fe--4S](+) --> [4Fe-4S](2+) --> [4Fe-4S](3+). The current work shows the electron-storage capability of the [4Fe--4S] cubane, contributes to the understanding of its electronic structure, and further demonstrates the robustness of the cubane as a structural unit and electron-transfer center.
Collapse
Affiliation(s)
- Hua-Jin Zhai
- Department of Physics, Washington State University, 2710 University Drive, Richland, Washington 99352, USA
| | | | | | | | | |
Collapse
|
26
|
DFT and CI Studies of Electronic Structure and Photoionization of Sc, Ti, V, Cr, and Co Tris-β-diketonate Complexes. J STRUCT CHEM+ 2004. [DOI: 10.1007/s10947-005-0053-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
27
|
Quantum-chemical modeling of photoelectron spectra and electronic structure of tris-β-diketonates of 3d-metals Sc, Ti, V. J STRUCT CHEM+ 2004. [DOI: 10.1007/s10947-005-0036-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
28
|
Dey A, Glaser T, Couture MMJ, Eltis LD, Holm RH, Hedman B, Hodgson KO, Solomon EI. Ligand K-Edge X-ray Absorption Spectroscopy of [Fe4S4]1+,2+,3+ Clusters: Changes in Bonding and Electronic Relaxation upon Redox. J Am Chem Soc 2004; 126:8320-8. [PMID: 15225075 DOI: 10.1021/ja0484956] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sulfur K-edge X-ray absorption spectroscopy (XAS) is reported for [Fe(4)S(4)](1+,2+,3+) clusters. The results are quantitatively and qualitatively compared with DFT calculations. The change in covalency upon redox in both the [Fe(4)S(4)](1+/2+) (ferredoxin) and the [Fe(4)S(4)](2+/3+) (HiPIP) couple are much larger than that expected from just the change in number of 3d holes. Moreover, the change in the HiPIP couple is higher than that of the ferredoxin couple. These changes in electronic structure are analyzed using DFT calculations in terms of contributions from the nature of the redox active molecular orbital (RAMO) and electronic relaxation. The results indicate that the RAMO of HiPIP has 50% ligand character, and hence, the HiPIP redox couple involves limited electronic relaxation. Alternatively, the RAMO of the ferredoxin couple is metal-based, and the ferredoxin redox couple involves extensive electronic relaxation. The contributions of these RAMO differences to ET processes in the different proteins are discussed.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Chemistry and Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Solomon EI, Szilagyi RK, DeBeer George S, Basumallick L. Electronic Structures of Metal Sites in Proteins and Models: Contributions to Function in Blue Copper Proteins. Chem Rev 2004; 104:419-58. [PMID: 14871131 DOI: 10.1021/cr0206317] [Citation(s) in RCA: 673] [Impact Index Per Article: 33.7] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Edward I Solomon
- Department of Chemistry, Stanford University, Stanford, California 94305, USA
| | | | | | | |
Collapse
|
30
|
Vrajmasu V, Münck E, Bominaar EL. Density functional study of the electric hyperfine interactions and the redox-structural correlations in the cofactor of nitrogenase. Analysis of general trends in (57)Fe isomer shifts. Inorg Chem 2003; 42:5974-88. [PMID: 12971768 DOI: 10.1021/ic0301371] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of the interstitial atom, X, discovered in a recent crystallographic study of the MoFe protein of nitrogenase, on the electric hyperfine interactions of (57)Fe has been investigated with density functional theory. A semiempirical theory for the isomer shift, delta, is formulated and applied to the cofactor. The values of delta for the relevant redox states of the cofactor are predicted to be higher in the presence of X than in its absence. The analysis strongly suggests a [Mo(4+)4Fe(2+)3Fe(3+)] oxidation state for the S = 3/2 state M(N). Among C(4-), N(3-), and O(2-), oxide is found to be the least likely candidate for X. The analysis suggests that X should be present in the cofactor states M(OX) and M(R) as well as in the alternative nitrogenases. The calculations of the electric field gradients (EFGs) indicate that the small values for DeltaE(Q) in M(N) result from an extensive cancellation between valence and ligand contributions. X emerges from the analysis of the hyperfine interactions as an ionically bonded species. Its major effect is on the asymmetry parameters for the EFGs at the six equatorial sites, Fe(Eq). A spin-coupling scheme is proposed for the state [Mo(4+)4Fe(2+)3Fe(3+)] that is consistent with the measured (57)Fe A-tensors and DeltaE(Q) values for M(N) and identifies the unique site exhibiting the small A value with the terminal Fe site, Fe(T). The optimized structure of a cofactor model has been calculated for several oxidation states. The study reveals a contraction in the average Fe-Fe distance upon increasing the number of electrons stored in the cluster, in accord with extended X-ray absorption fine structure studies. The reliability of the adopted methodology for predicting redox-structural correlations is tested for cuboidal [4Fe-4S] clusters. The calculations reveal a systematic increase in the S...S sulfide distances, in quantitative agreement with the available data. These trends are rationalized by a simple electrostatic model.
Collapse
Affiliation(s)
- Vladislav Vrajmasu
- Department of Chemistry, Carnegie Mellon University, 4400 Fifth Avenue, Pittsburgh, PA 15213, USA
| | | | | |
Collapse
|