1
|
Karnwal A, Kumar Sachan RS, Devgon I, Devgon J, Pant G, Panchpuri M, Ahmad A, Alshammari MB, Hossain K, Kumar G. Gold Nanoparticles in Nanobiotechnology: From Synthesis to Biosensing Applications. ACS OMEGA 2024; 9:29966-29982. [PMID: 39035946 PMCID: PMC11256298 DOI: 10.1021/acsomega.3c10352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/23/2024]
Abstract
Nanobiotechnology has ushered in a new era of scientific discovery where the unique properties of nanomaterials, such as gold nanoparticles, have been harnessed for a wide array of applications. This review explores gold nanoparticles' synthesis, properties, and multidisciplinary applications, focusing on their role as biosensors. Gold nanoparticles possess exceptional physicochemical attributes, including size-dependent optical properties, biocompatibility, and ease of functionalization, making them promising candidates for the development of biosensing platforms. The review begins by providing a comprehensive overview of gold nanoparticle synthesis techniques, highlighting the advantages and disadvantages of various approaches. It then delves into the remarkable properties that underpin their success in biosensing, such as localized surface plasmon resonance and enhanced surface area. The discussion also includes the functionalization strategies that enable specific binding to biomolecules, enhancing the sensitivity and selectivity of gold-nanoparticle-based biosensors. Furthermore, this review surveys the diverse applications of gold nanoparticles in biosensing, encompassing diagnostics, environmental monitoring, and drug delivery. The multidisciplinary nature of these applications underscores the versatility and potential of gold nanoparticles in addressing complex challenges in healthcare and environmental science. The review emphasizes the pressing need for further exploration and research in the field of nanobiotechnology, particularly regarding the synthesis, properties, and biosensing applications of gold nanoparticles. With their exceptional physicochemical attributes and versatile functionalities, gold nanoparticles present a promising avenue for addressing complex challenges in healthcare and environmental science, making it imperative to advance our understanding of their synthesis, properties, and applications for enhanced biosensing capabilities and broader scientific innovation.
Collapse
Affiliation(s)
- Arun Karnwal
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Rohan Samir Kumar Sachan
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Inderpal Devgon
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| | - Jyotsna Devgon
- Centre
for Interdisciplinary Biomedical Research, Adesh University, Bathinda 151101, Punjab, India
| | - Gaurav Pant
- Department
of Microbiology, Graphic Era (Deemed to
be University), Dehradun 248009, Uttarakhand, India
| | - Mitali Panchpuri
- School
of Pharmaceutical and Population Health Informatics, DIT University, Dehradun 248009, Uttarakhand, India
| | - Akil Ahmad
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Mohammed B. Alshammari
- Department
of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
| | - Kaizar Hossain
- Department
of Environmental Science, Asutosh College,
University of Calcutta, 92, Shyama Prasad Mukherjee Rd, Bhowanipore, Kolkata 700026, West
Bengal, India
| | - Gaurav Kumar
- School
of Bioengineering & Biosciences, Lovely
Professional University, Phagwara 144411, Punjab, India
| |
Collapse
|
2
|
Li S, Li NN, Dong XY, Zang SQ, Mak TCW. Chemical Flexibility of Atomically Precise Metal Clusters. Chem Rev 2024; 124:7262-7378. [PMID: 38696258 DOI: 10.1021/acs.chemrev.3c00896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024]
Abstract
Ligand-protected metal clusters possess hybrid properties that seamlessly combine an inorganic core with an organic ligand shell, imparting them exceptional chemical flexibility and unlocking remarkable application potential in diverse fields. Leveraging chemical flexibility to expand the library of available materials and stimulate the development of new functionalities is becoming an increasingly pressing requirement. This Review focuses on the origin of chemical flexibility from the structural analysis, including intra-cluster bonding, inter-cluster interactions, cluster-environments interactions, metal-to-ligand ratios, and thermodynamic effects. In the introduction, we briefly outline the development of metal clusters and explain the differences and commonalities of M(I)/M(I/0) coinage metal clusters. Additionally, we distinguish the bonding characteristics of metal atoms in the inorganic core, which give rise to their distinct chemical flexibility. Section 2 delves into the structural analysis, bonding categories, and thermodynamic theories related to metal clusters. In the following sections 3 to 7, we primarily elucidate the mechanisms that trigger chemical flexibility, the dynamic processes in transformation, the resultant alterations in structure, and the ensuing modifications in physical-chemical properties. Section 8 presents the notable applications that have emerged from utilizing metal clusters and their assemblies. Finally, in section 9, we discuss future challenges and opportunities within this area.
Collapse
Affiliation(s)
- Si Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Na-Na Li
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Xi-Yan Dong
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China
| | - Shuang-Quan Zang
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
| | - Thomas C W Mak
- College of Chemistry, Zhengzhou University, Zhengzhou 450001, China
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, SAR 999077, China
| |
Collapse
|
3
|
Shirzadi E, Jin Q, Zeraati AS, Dorakhan R, Goncalves TJ, Abed J, Lee BH, Rasouli AS, Wicks J, Zhang J, Ou P, Boureau V, Park S, Ni W, Lee G, Tian C, Meira DM, Sinton D, Siahrostami S, Sargent EH. Ligand-modified nanoparticle surfaces influence CO electroreduction selectivity. Nat Commun 2024; 15:2995. [PMID: 38582773 PMCID: PMC10998913 DOI: 10.1038/s41467-024-47319-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 03/25/2024] [Indexed: 04/08/2024] Open
Abstract
Improving the kinetics and selectivity of CO2/CO electroreduction to valuable multi-carbon products is a challenge for science and is a requirement for practical relevance. Here we develop a thiol-modified surface ligand strategy that promotes electrochemical CO-to-acetate. We explore a picture wherein nucleophilic interaction between the lone pairs of sulfur and the empty orbitals of reaction intermediates contributes to making the acetate pathway more energetically accessible. Density functional theory calculations and Raman spectroscopy suggest a mechanism where the nucleophilic interaction increases the sp2 hybridization of CO(ad), facilitating the rate-determining step, CO* to (CHO)*. We find that the ligands stabilize the (HOOC-CH2)* intermediate, a key intermediate in the acetate pathway. In-situ Raman spectroscopy shows shifts in C-O, Cu-C, and C-S vibrational frequencies that agree with a picture of surface ligand-intermediate interactions. A Faradaic efficiency of 70% is obtained on optimized thiol-capped Cu catalysts, with onset potentials 100 mV lower than in the case of reference Cu catalysts.
Collapse
Affiliation(s)
- Erfan Shirzadi
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Qiu Jin
- Department of Chemistry, University of Calgary, 2500, Calgary, AB, Canada
| | - Ali Shayesteh Zeraati
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Tiago J Goncalves
- Department of Chemistry, University of Calgary, 2500, Calgary, AB, Canada
| | - Jehad Abed
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
- Department of Materials Science and Engineering, University of Toronto, Toronto, ON, Canada
| | - Byoung-Hoon Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Armin Sedighian Rasouli
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Jinqiang Zhang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Victor Boureau
- Interdisciplinary Center for Electron Microscopy, École Polytechnique Fédérale de Lausanne (EPFL), 1015, Lausanne, Switzerland
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Weiyan Ni
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Geonhui Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Cong Tian
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada
| | - Debora Motta Meira
- CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, IL, 60439, USA
- Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK, S7N 2V3, Canada
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON, Canada
| | | | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
4
|
Shen Q, Li Z, Bai H, Gu M, Kang J, Jia R, Zhang J, Dong A. Regulation of band gap and localized surface plasmon resonance by loading Au nanorods on violet phosphene nanosheets for photodynamic/photothermal synergistic anti-infective therapy. J Mater Chem B 2024; 12:3392-3403. [PMID: 38512335 DOI: 10.1039/d4tb00105b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
In the face of the serious threat to human health and the economic burden caused by bacterial antibiotic resistance, 2D phosphorus nanomaterials have been widely used as antibacterial agents. Violet phosphorus nanosheets (VPNSs) are an exciting bandgap-adjustable 2D nanomaterial due to their good physicochemical properties, yet the study of VPNS-based antibiotics is still in its infancy. Here, a composite of gold nanorods (AuNRs) loaded onto VPNS platforms (VPNS/AuNR) is constructed to maximize the potential of VPNSs for antimicrobial applications. The loading with AuNRs not only enhances the photothermal performance via a localized surface plasmon resonance (LSPR) effect, but also enhances the light absorption capacity due to the narrowing of the band gap of the VPNSs, thus increasing the ROS generation capacity. The results demonstrate that VPNS/AuNR exhibits outstanding antibacterial properties and good biocompatibility. Attractively, VPNS/AuNR is then extensively tested for treating skin wound infections, suggesting promising in vivo antibacterial and wound-healing features. Our findings may open a novel direction to develop a versatile VPNS-based treatment platform, which can significantly boost the progress of VPNS exploration.
Collapse
Affiliation(s)
- Qiudi Shen
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Zhihao Li
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Haoran Bai
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Mengyue Gu
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Jing Kang
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| | - Ran Jia
- Institute of Theoretical Chemistry, College of Chemistry, Jilin University, 130023 Changchun, P. R. China
| | - Jinying Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Center of Nanomaterials for Renewable Energy (CNRE), School of Electrical Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Alideertu Dong
- College of Chemistry and Chemical Engineering, Engineering Research Center of Dairy Quality and Safety Control Technology, Ministry of Education, Inner Mongolia University, 235 University West Street, Hohhot 010021, China.
| |
Collapse
|
5
|
Madridejos JML, Alvino JF, Lu Y, Golovko VB, Metha GF. Revisiting ultrasmall phosphine-stabilized rhodium-doped gold clusters Au nRh ( n = 5, 6, 7, 8): geometric, electronic, and vibrational properties. Phys Chem Chem Phys 2024; 26:5289-5295. [PMID: 38264912 DOI: 10.1039/d3cp05976f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Incorporation of other transition metals in Au nanoclusters has been thriving recently due to its effect on their electronic and photophysical properties. Here, the ultrasmall phosphine-stabilized Rh-doped gold clusters AunRh (n = 5, 6, 7, 8), with metal core structures represented as fragments of a rhodium-centered icosahedron, are considered. The geometric and electronic properties of these nanoclusters are revisited and analyzed using density functional theory (DFT). Moreover, infrared spectra are simulated to identify the effects of Rh doping on the clusters through vibrational properties. Peaks are assigned to breathing-like normal modes for all AuRh clusters except for Au8Rh, likely due to the presence of bound Cl ligands. Unlike their pure gold core counterparts, the % motions of both Au and Rh atoms are lower in the mixed metal clusters, suggesting more restrained metal cores by rhodium, which could result in other novel physical and chemical properties not hitherto discovered.
Collapse
Affiliation(s)
- Jenica Marie L Madridejos
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Jason F Alvino
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| | - Yunpeng Lu
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore 639798, Singapore
| | - Vladimir B Golovko
- The MacDiarmid Institute for Advanced Materials and Nanotechnology, Department of Chemistry, University of Canterbury, Christchurch, 8140, New Zealand
| | - Gregory F Metha
- Department of Chemistry, The University of Adelaide, South Australia 5005, Australia.
| |
Collapse
|
6
|
Shiri F, Ho CC, Bissember AC, Ariafard A. Advancing Gold Redox Catalysis: Mechanistic Insights, Nucleophilicity-Guided Transmetalation, and Predictive Frameworks for the Oxidation of Aryl Gold(I) Complexes. Chemistry 2024; 30:e202302990. [PMID: 37967304 DOI: 10.1002/chem.202302990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Indexed: 11/17/2023]
Abstract
Gold redox catalysis, often facilitated by hypervalent iodine(III) reagents, offers unique reactivity but its progress is mainly hindered by an incomplete mechanistic understanding. In this study, we investigated the reaction between the gold(I) complexes [(aryl)Au(PR3 )] and the hypervalent iodine(III) reagent PhICl2 , both experimentally and computationally and provided an explanation for the formation of divergent products as the ligands bonded to the gold(I) center change. We tackled this essential question by uncovering an intriguing transmetalation mechanism that takes place between gold(I) and gold(III) complexes. We found that the ease of transmetalation is governed by the nucleophilicity of the gold(I) complex, [(aryl)Au(PR3 )], with greater nucleophilicity leading to a lower activation energy barrier. Remarkably, transmetalation is mainly controlled by a single orbital - the gold dx 2 -y 2 orbital. This orbital also has a profound influence on the reactivity of the oxidative addition step. In this way, the fundamental mechanistic basis of divergent outcomes in reactions of aryl gold(I) complexes with PhICl2 was established and these observations are reconciled from first principles. The theoretical model developed in this study provides a conceptual framework for anticipating the outcomes of reactions involving [(aryl)Au(PR3 )] with PhICl2 , thereby establishing a solid foundation for further advancements in this field.
Collapse
Affiliation(s)
- Farshad Shiri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch, Poonak, Tehran, Iran
| | - Curtis C Ho
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alex C Bissember
- School of Natural Sciences - Chemistry, University of Tasmania, Hobart, Tasmania, 7001, Australia
| | - Alireza Ariafard
- Research School of Chemistry, Australian National University, Canberra, ACT, 2601, Australia
| |
Collapse
|
7
|
Min J, Jung Y, Ahn J, Lee JG, Lee J, Ko SH. Recent Advances in Biodegradable Green Electronic Materials and Sensor Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211273. [PMID: 36934454 DOI: 10.1002/adma.202211273] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 03/16/2023] [Indexed: 06/18/2023]
Abstract
As environmental issues have become the dominant agenda worldwide, the necessity for more environmentally friendly electronics has recently emerged. Accordingly, biodegradable or nature-derived materials for green electronics have attracted increased interest. Initially, metal-green hybrid electronics are extensively studied. Although these materials are partially biodegradable, they have high utility owing to their metallic components. Subsequently, carbon-framed materials (such as graphite, cylindrical carbon nanomaterials, graphene, graphene oxide, laser-induced graphene) have been investigated. This has led to the adoption of various strategies for carbon-based materials, such as blending them with biodegradable materials. Moreover, various conductive polymers have been developed and researchers have studied their potential use in green electronics. Researchers have attempted to fabricate conductive polymer composites with high biodegradability by shortening the polymer chains. Furthermore, various physical, chemical, and biological sensors that are essential to modern society have been studied using biodegradable compounds. These recent advances in green electronics have paved the way toward their application in real life, providing a brighter future for society.
Collapse
Affiliation(s)
- JinKi Min
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Yeongju Jung
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jiyong Ahn
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jae Gun Lee
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| | - Jinwoo Lee
- Department of Mechanical, Robotics, and Energy Engineering, Dongguk University, 30 Pildong-ro 1-gil, Jung-gu, Seoul, 04620, Republic of Korea
| | - Seung Hwan Ko
- Applied Nano and Thermal Science Lab, Department of Mechanical Engineering, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
- Institute of Engineering Research/Institute of Advanced Machinery and Design (SNU-IAMD), Seoul National University, Gwanak-ro, Gwanak-gu, Seoul, 08826, Republic of Korea
| |
Collapse
|
8
|
Wei Z, Price A, Wei K, Luo Q, Thanneeru S, Sun S, He J. Polymer N-Heterocyclic Carbene (NHC) Ligands for Silver Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55227-55237. [PMID: 36459050 DOI: 10.1021/acsami.2c17706] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Polymer N-heterocyclic carbenes (NHCs) are a class of robust surface ligands to provide superior colloidal stability for metal nanoparticles (NPs) under various harsh conditions. We report a general method to prepare polymeric NHCs and demonstrate that these polymer NHC-AgNPs are stable against oxidative etching and show high peroxidase activity. We prepared three imidazolium-terminated poly(methyl methacrylate) (PMMA), polystyrene (PS), and poly(2-(2-methoxyethoxy)ethyl methacrylate) (PMEO2MA) through atom-transfer radical polymerization with an imidazole-containing initiator. The imidazolium end group was further converted to NHC-Ag(I) in the presence of Ag2O at room temperature. Polymer NHC-Ag(I) can transmetalate to AgNPs through ligand exchange at the interface of oil/water within 2 min. All the three polymers can modify metal NPs, such as AgNPs, Ag nanowires, and AuNPs, providing excellent thermal, oxidative, and chemical stabilities for AgNPs. As an example, in the presence of hydrogen peroxide, AgNPs modified by polymer NHCs were resistant against oxidative etching with a rate of ∼700 times slower than those grafted with thiolates. AgNPs modified by polymer NHCs also showed higher peroxidase activity, 4 times more active than those capped by citrate and polyvinylpyrrolidone (PVP) and 2 times more active than those with polymer thiolate. Our studies demonstrate a great potential of using polymer NHCs to stabilize metallic NPs for various applications.
Collapse
Affiliation(s)
- Zichao Wei
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Aleisha Price
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Kecheng Wei
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Qiang Luo
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Srinivas Thanneeru
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
| | - Shouheng Sun
- Department of Chemistry, Brown University, Providence, Rhode Island02912, United States
| | - Jie He
- Department of Chemistry, University of Connecticut, Storrs, Connecticut06269, United States
- Polymer Program, Institute of Materials Science, University of Connecticut, Storrs, Connecticut06269, United States
| |
Collapse
|
9
|
Flecken F, Grell T, Hanf S. Transition metal complexes of the PPO/POP ligand: variable coordination chemistry and photo-luminescence properties. Dalton Trans 2022; 51:8975-8985. [PMID: 35582983 DOI: 10.1039/d2dt01091g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In the current work the tautomeric equilibrium between tetraphenyldiphosphoxane (Ph2P-O-PPh2, POP) and tetraphenyldiphosphine monoxide (Ph2P-P(O)Ph2, PPO) in the absence and presence of transition metal precursors is investigated. Whereas with hard transition metal ions, such as Fe(II) and Y(III), PPO-type complexes, such as [FeCl2(PPO)2] (1) and [YCl3(THF)2(PPO)] (2), are formed, softer transition metals ions tend to form so-called coordination stabilised tautomers of the POP ligand form, such as [Cu2(MeCN)3(μ2-POP)2](PF6)2 (3), [Au2Cl2(μ2-POP)] (4), and [Au2(μ2-POP)2](OTf)2 (5). The photo-optical properties of the PPO- and POP-type transition metal complexes are investigated experimentally using photo-luminescence spectroscopy, whereby the presence of metallophillic interactions was found to play a crucial role. The dinuclear copper complex [Cu2(MeCN)3(μ2-POP)2](PF6)2 (3) shows a very interesting thermochromic behavior and intense photo-luminescence with remarkable phosphoresence lifetimes at 77 K, which can probably be attributed to short intramolecular Cu-Cu distances.
Collapse
Affiliation(s)
- Franziska Flecken
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, 20131 Milano, Italy
| | - Schirin Hanf
- Institute for Inorganic Chemistry, Karlsruhe Institute of Technology, Engesserstr. 15, 76131 Karlsruhe, Germany.
| |
Collapse
|
10
|
Adnan RH, Madridejos JML, Alotabi AS, Metha GF, Andersson GG. A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2105692. [PMID: 35332703 PMCID: PMC9130904 DOI: 10.1002/advs.202105692] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 02/23/2022] [Indexed: 05/28/2023]
Abstract
Atomically precise gold clusters are highly desirable due to their well-defined structure which allows the study of structure-property relationships. In addition, they have potential in technological applications such as nanoscale catalysis. The structural, chemical, electronic, and optical properties of ligated gold clusters are strongly defined by the metal-ligand interaction and type of ligands. This critical feature renders gold-phosphine clusters unique and distinct from other ligand-protected gold clusters. The use of multidentate phosphines enables preparation of varying core sizes and exotic structures beyond regular polyhedrons. Weak gold-phosphorous (Au-P) bonding is advantageous for ligand exchange and removal for specific applications, such as catalysis, without agglomeration. The aim of this review is to provide a unified view of gold-phosphine clusters and to present an in-depth discussion on recent advances and key developments for these clusters. This review features the unique chemistry, structural, electronic, and optical properties of gold-phosphine clusters. Advanced characterization techniques, including synchrotron-based spectroscopy, have unraveled substantial effects of Au-P interaction on the composition-, structure-, and size-dependent properties. State-of-the-art theoretical calculations that reveal insights into experimental findings are also discussed. Finally, a discussion of the application of gold-phosphine clusters in catalysis is presented.
Collapse
Affiliation(s)
- Rohul H. Adnan
- Department of Chemistry, Faculty of ScienceCenter for Hydrogen EnergyUniversiti Teknologi Malaysia (UTM)Johor Bahru81310Malaysia
| | | | - Abdulrahman S. Alotabi
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
- Department of PhysicsFaculty of Science and Arts in BaljurashiAlbaha UniversityBaljurashi65655Saudi Arabia
| | - Gregory F. Metha
- Department of ChemistryUniversity of AdelaideAdelaideSouth Australia5005Australia
| | - Gunther G. Andersson
- Flinders Institute for NanoScale Science and TechnologyFlinders UniversityAdelaideSouth Australia5042Australia
| |
Collapse
|
11
|
Ang PL, Nguyen VH, Yip JHK. Hetero- and homoleptic binuclear gold(I)-thiolate and -halide complexes - ligand exchange kinetics and supramolecular structures. Dalton Trans 2022; 51:3081-3095. [PMID: 35113094 DOI: 10.1039/d1dt04245a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Heteroleptic and homoleptic binuclear Au(I) complexes [Au2(μ-PAnP)(SPh)(X)] (X = Cl- or Br-), [Au2(μ-PAnP)(SPh)2] and [Au2(μ-PAnP)(SPhCO2H)2] (SPh = benzenethiolate and SPhCO2H = 4-thiolatobenzoic acid) containing the bridging diphosphine, 9,10-bis(diphenylphosphino)anthracene (PAnP), were synthesized and characterized by single crystal X-ray diffraction. [Au2(μ-PAnP)(SPh)2] exists as a monomer in its crystals but [Au2(μ-PAnP)(SPhCO2H)2] polymerizes into zig-zag chains via intermolecular hydrogen bonding. [Au2(μ-PAnP)(SPh)(Cl)] forms cyclophane-like dimers of Ci symmetry in crystals via intermolecular aurophilic interactions (Au-Au distance = 3.3081(5) Å). Recrystallization of [Au2(μ-PAnP)(SPh)(Br)] invariably led to crystals composed of [Au2(μ-PAnP)(SPh)(Br)] and [Au2(μ-PAnP)(Br)2]. Despite the chemically different P atoms in the heteroleptic [Au2(μ-PAnP)(SPh)(Cl)] and [Au2(μ-PAnP)(SPh)(Br)], solutions of the complexes show only a single signal in their 31P{1H} NMR spectra at room temperature which resolved into two singlets of equal intensity at 183 K. Identical signals which show the same thermal behavior were observed in solutions of [Au2(μ-PAnP)(SPh)2] and [Au2(μ-PAnP)(X)2] in 1 : 1 molar ratios, indicating that there are three exchanging species, [Au2(μ-PAnP)(SPh)(X)], [Au2(μ-PAnP)(SPh)2] and [Au2(μ-PAnP)(X)2], in solution. A solution of [Au2(μ-PAnP)(Cl)2] and [Au2(μ-PAnP)(Br)2] in 1 : 1 molar ratio shows two singlets, implying that the exchange is not due to the dissociation of either PAnP or halide ligands, but rather it involves the exchange of the thiolate and the halide ligands (SPh- ↔ X-). A mixture of [(PPh3)Au(SPh)] and [(PPh3)Au(Cl)] (1 : 1 molar ratio) showed only one signal in its room temperature 31P{1H} NMR spectrum, indicating that the ligand exchange can happen intermolecularly. Self-exchange of SPh- ligands is possible as the room temperature 31P NMR spectrum of a mixture of [Au2(μ-PAnP)(SPh)2] and [Au2(μ-PAnP)(SPhCO2H)2] displayed only one signal. The rate constants of the exchange were determined by fitting the line shapes of the 31P NMR signals at different temperatures. The activation energies (Eas), obtained from Arrhenius plots, for the SPh- ↔ Cl- and SPh- ↔ Br- exchange are 36.9 ± 0.7 and 33.7 ± 1.0 kJ mol-1, respectively. The activation enthalpy and activation entropy, obtained from Eyring plots, for the SPh- ↔ Cl- and SPh- ↔ Br- exchange are 35.0 ± 0.7 kJ mol-1 and -25.7 ± 3.2 J K-1, and 32.0 ± 1.0 kJ mol-1 and -21.8 ± 4.7 J K-1, respectively. Based on the kinetic results, two possible mechanisms were proposed for the reactions.
Collapse
Affiliation(s)
- Pau Lin Ang
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - Van Ha Nguyen
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| | - John H K Yip
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.
| |
Collapse
|
12
|
Simon ZC, Lopato EM, Bhat M, Moncure PJ, Bernhard SM, Kitchin JR, Bernhard S, Millstone JE. Ligand Enhanced Activity of In Situ Formed Nanoparticles for Photocatalytic Hydrogen Evolution. ChemCatChem 2021. [DOI: 10.1002/cctc.202101551] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Zoe C. Simon
- Department of Chemistry University of Pittsburgh Pittsburgh PA-15260 USA
| | - Eric M. Lopato
- Department of Chemistry Carnegie Mellon University Pittsburgh PA-15213 USA
| | - Maya Bhat
- Department of Chemical Engineering Carnegie Mellon University Pittsburgh PA-15213 USA
| | - Paige J. Moncure
- Department of Chemistry University of Pittsburgh Pittsburgh PA-15260 USA
| | - Sarah M. Bernhard
- Department of Chemistry Carnegie Mellon University Pittsburgh PA-15213 USA
| | - John R. Kitchin
- Department of Chemical Engineering Carnegie Mellon University Pittsburgh PA-15213 USA
| | - Stefan Bernhard
- Department of Chemistry Carnegie Mellon University Pittsburgh PA-15213 USA
| | - Jill E. Millstone
- Department of Chemistry University of Pittsburgh Pittsburgh PA-15260 USA
- Department of Chemical and Petroleum Engineering University of Pittsburgh Pittsburgh PA-15260 USA
- Department of Mechanical Engineering and Materials Science University of Pittsburgh Pittsburgh PA-15260 USA
| |
Collapse
|
13
|
Gildenast H, Garg F, Englert U. Sterically Crowded Tris(2-(trimethylsilyl)phenyl)phosphine - Is it Still a Ligand? Chemistry 2021; 28:e202103555. [PMID: 34856017 PMCID: PMC9303349 DOI: 10.1002/chem.202103555] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Indexed: 11/05/2022]
Abstract
Tris(2-(trimethylsilyl)phenyl)phosphine, P( o -TMSC 6 H 4 ) 3 , was synthesised and characterised in solution and in the solid state. The large steric bulk prevents most reactions of the phosphorus donor and makes the compound air stable both in the solid state as well as in solution. This shielded phosphine can still undergo three reactions, namely protonation, oxidation to the phosphine oxide under harsh conditions and complexation to Au I , thus forming a complex with linear coordination. Unexpectedly, complexation was unsuccessful with a range of other metal cations. Neither Pd II , Pt II , Zn II nor Hg II reacted and even the remaining coinage metal cations Cu I and Ag I could not be coordinated. Both the parent molecule as well as the reaction products were structurally characterised by single crystal X-ray di raction, and the conformational change of geometry required to accommodate the additional atoms was analysed in detail. Apart from chemical oxidation with H 2 O 2 , P( o -TMSC 6 H 4 ) 3 displays reversible electrochemical oxidation with a potential not unlike the one of sterically unencumbered phosphines for which the oxidation is usually not reversible. P( o -TMSC 6 H 4 ) 3 can thus be considered a model compound for the investigation of the electronic properties of sterically unencumbered phosphines.
Collapse
Affiliation(s)
- Hans Gildenast
- RWTH Aachen: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Felix Garg
- RWTH: Rheinisch-Westfalische Technische Hochschule Aachen, Institut für Anorganische Chemie, GERMANY
| | - Ulli Englert
- RWTH Aachen, Institute for Inorganic Chemistry, Landoltweg 1, 52074, Aachen, GERMANY
| |
Collapse
|
14
|
Hoy R, Grell T, Lönnecke P, Hey-Hawkins E. Selective formation of a supramolecular coordination complex in the nanometre scale with a ferrocene-based phospholane ligand. Chem Commun (Camb) 2021; 57:9200-9203. [PMID: 35225989 DOI: 10.1039/d1cc03755b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
A straightforward synthesis of the tetradentate phospholane ligand 1 is reported. The 2 : 1 [M : L] reaction of 1 with [AuCl(tht)] (tht = tetrahydrothiophene) resulted in the 4 : 2 [M : L] supramolecular coordination complex 2 where two ligands 1 are bridging four gold(I) cations. The formation of 2 can be rationalised via a geometrical analysis of the ligand. The coordination mode of the gold atoms was evaluated based on a CSD search, revealing the geometrical changes for a transition from linear to trigonal planar coordination environment.
Collapse
Affiliation(s)
- Reinhard Hoy
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Toni Grell
- Dipartimento di Chimica, Università degli Studi di Milano, Via Camillo Golgi 19, Milano 20133, Italy
| | - Peter Lönnecke
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| | - Evamarie Hey-Hawkins
- Faculty of Chemistry and Mineralogy, Institute of Inorganic Chemistry, Leipzig University, Johannisallee 29, Leipzig 04103, Germany.
| |
Collapse
|
15
|
Schlindwein SH, Nieger M, Gudat D. Small Variations, Big Impact: Structural Diversity of the Complexes of a Phosphane‐Decorated Benzenedithiol with Group‐11 Metals. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Simon H. Schlindwein
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| | - Martin Nieger
- Department of Chemistry University of Helsinki P.O Box 55 00014 University of Helsinki Finland
| | - Dietrich Gudat
- Institut für Anorganische Chemie Universität Stuttgart Pfaffenwaldring 55 70550 Stuttgart Germany
| |
Collapse
|
16
|
Lu Z, Li T, Mudshinge SR, Xu B, Hammond GB. Optimization of Catalysts and Conditions in Gold(I) Catalysis—Counterion and Additive Effects. Chem Rev 2021; 121:8452-8477. [DOI: 10.1021/acs.chemrev.0c00713] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Affiliation(s)
- Zhichao Lu
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Tingting Li
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Sagar R. Mudshinge
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| | - Bo Xu
- College of Chemistry, Chemical Engineering and Biotechnology, Donghua University, 2999 North Renmin Lu, Shanghai 201620, China
| | - Gerald B. Hammond
- Department of Chemistry, University of Louisville, Louisville, Kentucky 40292, United States
| |
Collapse
|
17
|
Luong LMC, Aristov MM, Adams AV, Walters DT, Berry JF, Olmstead MM, Balch AL. Unsymmetrical Coordination of Bipyridine in Three-Coordinate Gold(I) Complexes. Inorg Chem 2020; 59:4109-4117. [PMID: 32096996 DOI: 10.1021/acs.inorgchem.0c00138] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The unsymmetrical coordination of gold(I) by 2,2'-bipyridine (bipy) in some planar, three-coordinate cations has been examined by crystallographic and computational studies. The salts [(Ph3P)Au(bipy)]XF6 (X = P, As, Sb) form an isomorphic series in which the differences in Au-N distances range from 0.241(2) to 0.146(2) Å. A second polymorph of [(Ph3P)Au(bipy)]AsF6 has also been found. Both polymorphs exhibit similar structures. The salts [(Et3P)Au(bipy)]XF6 (X = P, As, Sb) form a second isostructural series. In this series the unsymmetrical coordination of the bipy ligand is maintained, but the gold ions are disordered over two unequally populated positions that produce very similar overall structures for the cations. Although many planar, three-coordinate gold(I) complexes are strongly luminescent, the salts [(R3P)Au(bipy)]XF6 (R = Ph or Et; X = P, As, Sb) are not luminescent as solids or in solution. Computational studies revealed that a fully symmetrical structure for [(Et3P)Au(bipy)]+ is 7 kJ/mol higher in energy than the observed unsymmetrical structure and is best described as a transition state between the two limiting unsymmetrical geometries. The Au-N bonding has been examined by natural resonance theory (NRT) calculations using the "12 electron rule". The dominant Lewis structure is one with five lone pairs on Au and one bond to the P atom, which results in a saturated (12 electron) gold center and thereby inhibits the formation of any classical, 2 e- bonds between the gold and either of the bipy nitrogen atoms. The nitrogen atoms may instead donate a lone pair into an empty Au-P antibonding orbital, resulting in a three-center, four-electron (3c/4e) P-Au-N bond. The binuclear complex, [μ2-bipy(AuPPh3)2](PF6)2, has also been prepared and shown to have an aurophillic interaction between the two gold ions, which are separated by 3.0747(3) Å. Despite the aurophillic interaction, this binuclear complex is not luminescent.
Collapse
Affiliation(s)
- Lucy M C Luong
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, California 05616, United States
| | - Michael M Aristov
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Alexandria V Adams
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, California 05616, United States
| | - Daniel T Walters
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, California 05616, United States
| | - John F Berry
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Marilyn M Olmstead
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, California 05616, United States
| | - Alan L Balch
- Department of Chemistry, University of California-Davis, One Shields Ave, Davis, California 05616, United States
| |
Collapse
|
18
|
Osawa M, Soma S, Hoshino M, Tanaka Y, Akita M. Photoluminescent properties and molecular structures of dinuclear gold(i) complexes with bridged diphosphine ligands: near-unity phosphorescence from 3XMMCT/3MC. Dalton Trans 2020; 49:15204-15212. [DOI: 10.1039/d0dt03144e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dinuclear gold(i) complexes with bridged diphosphine ligands display near-unity phosphorescence in the crystalline state at room-temperature.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry
- Nippon Institute of Technology
- Miyashiro-Machi
- Japan
| | - Sakie Soma
- Department of Applied Chemistry
- Nippon Institute of Technology
- Miyashiro-Machi
- Japan
| | - Mikio Hoshino
- Department of Applied Chemistry
- Nippon Institute of Technology
- Miyashiro-Machi
- Japan
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research
- Tokyo Institute of Technology R1-27
- Yokohama 226-8503
- Japan
| |
Collapse
|
19
|
Segato J, Del Zotto A, Belpassi L, Belanzoni P, Zuccaccia D. Hydration of alkynes catalyzed by [Au(X)(L)(ppy)]X in the green solvent γ-valerolactone under acid-free conditions: the importance of the pre-equilibrium step. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01343a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Stable and robust [Au(H2O)(NHC)(ppy)](X)2 successfully catalyses the hydration of alkynes in GVL, under acid-free conditions. DFT calculation and NMR measurements suggest that pre-equilibrium is the key step of the whole process.
Collapse
Affiliation(s)
- Jacopo Segato
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali
- Sezione di Chimica
- Università di Udine
- I-33100 Udine
- Italy
| | - Alessandro Del Zotto
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali
- Sezione di Chimica
- Università di Udine
- I-33100 Udine
- Italy
| | - Leonardo Belpassi
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- Consiglio Nazionale delle Ricerche c/o
- Dipartimento di Chimica, Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
| | - Paola Belanzoni
- Istituto di Scienze e Tecnologie Chimiche “Giulio Natta” (SCITEC)
- Consiglio Nazionale delle Ricerche c/o
- Dipartimento di Chimica, Biologia e Biotecnologie
- Università degli Studi di Perugia
- 06123 Perugia
| | - Daniele Zuccaccia
- Dipartimento di Scienze Agroalimentari, Ambientali e Animali
- Sezione di Chimica
- Università di Udine
- I-33100 Udine
- Italy
| |
Collapse
|
20
|
A. C. A. Bayrakdar T, Scattolin T, Ma X, Nolan SP. Dinuclear gold(i) complexes: from bonding to applications. Chem Soc Rev 2020; 49:7044-7100. [DOI: 10.1039/d0cs00438c] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The last two decades have seen a veritable explosion in the use of gold(i) complexes bearing N-heterocyclic carbene (NHC) and phosphine (PR3) ligands.
Collapse
Affiliation(s)
| | - Thomas Scattolin
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Xinyuan Ma
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| | - Steven P. Nolan
- Department of Chemistry and Center for Sustainable Chemistry
- Ghent University
- Ghent
- Belgium
| |
Collapse
|
21
|
Burchak O, Keller C, Lapertot G, Salaün M, Danet J, Chen Y, Bendiab N, Pépin-Donat B, Lombard C, Faure-Vincent J, Vignon A, Aradilla D, Reiss P, Chenevier P. Scalable chemical synthesis of doped silicon nanowires for energy applications. NANOSCALE 2019; 11:22504-22514. [PMID: 31746905 DOI: 10.1039/c9nr03749g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
A versatile, low-cost and easily scalable synthesis method is presented for producing silicon nanowires (SiNWs) as a pure powder. It applies air-stable diphenylsilane as a Si source and gold nanoparticles as a catalyst and takes place in a sealed reactor at 420 °C (pressure <10 bar). Micron-sized NaCl particles, acting as a sacrificial support for the catalyst particles during NW growth, can simply be removed with water during purification. This process gives access to SiNWs of precisely controlled diameters in the range of 10 ± 3 nm with a high production yield per reactor volume (1 mg cm-3). The reaction was scaled up to 500 mg of SiNWs without altering the morphology or diameter. Adding diphenylphosphine results in SiNW n-type doping as confirmed by ESR spectroscopy and EDX analyses. The measured SiNW doping level closely follows the initial dopant concentration. Doping induces both an increase in diameter and a sharp increase of electrical conductivity for P concentrations >0.4%. When used in symmetric supercapacitor devices, 1% P-doped SiNWs exhibit an areal capacity of 0.25 mF cm-2 and retention of 80% of the initial capacitance after one million cycles, demonstrating excellent cycling stability of the SiNW electrodes in the presence of organic electrolytes.
Collapse
Affiliation(s)
- Olga Burchak
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES, 38000 Grenoble, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Yang Y, Eberle L, Mulks FF, Wunsch JF, Zimmer M, Rominger F, Rudolph M, Hashmi ASK. Trans Influence of Ligands on the Oxidation of Gold(I) Complexes. J Am Chem Soc 2019; 141:17414-17420. [DOI: 10.1021/jacs.9b09363] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Yangyang Yang
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Lukas Eberle
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Florian F. Mulks
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Jonas F. Wunsch
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Marc Zimmer
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Frank Rominger
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - Matthias Rudolph
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
| | - A. Stephen K. Hashmi
- Organisch-Chemisches Institut, Heidelberg University, Im Neuenheimer Feld 270, 69120 Heidelberg, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University (KAU), Jeddah 21589, Saudi Arabia
| |
Collapse
|
23
|
Gold(I/III)-Phosphine Complexes as Potent Antiproliferative Agents. Sci Rep 2019; 9:12335. [PMID: 31451718 PMCID: PMC6710276 DOI: 10.1038/s41598-019-48584-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 08/07/2019] [Indexed: 11/23/2022] Open
Abstract
The reaction of gold reagents [HAuCl4•3H2O], [AuCl(tht)], or cyclometalated gold(III) precursor, [C^NAuCl2] with chiral ((R,R)-(-)-2,3-bis(t-butylmethylphosphino) quinoxaline) and non-chiral phosphine (1,2-Bis(diphenylphosphino)ethane, dppe) ligands lead to distorted Au(I), (1, 2, 4, 5) and novel cyclometalated Au(III) complexes (3, 6). These gold compounds were characterized by multinuclear NMR, microanalysis, mass spectrometry, and X-ray crystallography. The inherent electrochemical properties of the gold complexes were also studied by cyclic voltammetry and theoretical insight of the complexes was gained by density functional theory and TD-DFT calculations. The complexes effectively kill cancer cells with IC50 in the range of ~0.10–2.53 μΜ across K562, H460, and OVCAR8 cell lines. In addition, the retinal pigment epithelial cell line, RPE-Neo was used as a healthy cell line for comparison. Differential cellular uptake in cancer cells was observed for the compounds by measuring the intracellular accumulation of gold using ICP-OES. Furthermore, the compounds trigger early – late stage apoptosis through potential disruption of redox homeostasis. Complexes 1 and 3 induce predominant G1 cell cycle arrest. Results presented in this report suggest that stable gold-phosphine complexes with variable oxidation states hold promise in anticancer drug discovery and need further development.
Collapse
|
24
|
Yang M, Wang G, Zou J, Li S. Mechanistic Insight Into the AuCN Catalyzed Annulation Reaction of Salicylaldehyde and Aryl Acetylene: Cyanide Ion Promoted Umpolung Hydroacylation/Intramolecular Oxa-Michael Addition Mechanism. Front Chem 2019; 7:557. [PMID: 31448263 PMCID: PMC6691126 DOI: 10.3389/fchem.2019.00557] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 07/22/2019] [Indexed: 01/19/2023] Open
Abstract
The detailed mechanism of the AuCN-catalyzed annulation of salicylaldehyde (SA) and phenyl acetylene leading to isoflavanone-type complexes has been investigated via density functional theory (DFT) calculations. Reaction pathways and possible stationary points are obtained with the combined molecular dynamics and coordinate driving (MD/CD) method. Our calculations reveal that the cyanide ion promoted umpolung hydroacylation/intramolecular oxa-Michael addition mechanism is more favorable than the Au(I)/Au(III) redox mechanism proposed previously. In the umpolung mechanism, the hydroxyl of SA is found to strongly stabilize the cyanide ion involved intermediates and transition states via hydrogen bond interactions, while the Au(I) ion always acts as a counter cation. The overall reaction is exergonic by 41.8 kcal/mol. The hydroacylation of phenyl acetylene is the rate-determining step and responsible for the regioselectivity with a free energy barrier of 27.3 kcal/mol. These calculated results are in qualitative accord with the experimental findings.
Collapse
Affiliation(s)
- Manyi Yang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Guoqiang Wang
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Jingxiang Zou
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| | - Shuhua Li
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education, School of Chemistry and Chemical Engineering, Institute of Theoretical and Computational Chemistry, Nanjing University, Nanjing, China
| |
Collapse
|
25
|
Santamaría-Pérez D, Daisenberger D, Ruiz-Fuertes J, Marqueño T, Chulia-Jordan R, Muehle C, Jansen M, Rodriguez-Hernandez P, Muñoz A, Johnson ER, Otero-de-la-Roza A. Gold(i) sulfide: unusual bonding and an unexpected computational challenge in a simple solid. Chem Sci 2019; 10:6467-6475. [PMID: 31341598 PMCID: PMC6610519 DOI: 10.1039/c9sc00371a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/19/2019] [Indexed: 11/23/2022] Open
Abstract
We report the experimental high-pressure crystal structure and equation of state of gold(i) sulfide (Au2S) determined using diamond-anvil cell synchrotron X-ray diffraction. Our data shows that Au2S has a simple cubic structure with six atoms in the unit cell (four Au in linear, and two S in tetrahedral, coordination), no internal degrees of freedom, and relatively low bulk modulus. Despite its structural simplicity, Au2S displays very unusual chemical bonding. The very similar and relatively high electronegativities of Au and S rule out any significant metallic or ionic character. Using a simple valence bond (Lewis) model, we argue that the Au2S crystal possesses two different types of covalent bonds: dative and shared. These bonds are distributed in such a way that each Au atom engages in one bond of each kind. The multiple arrangements in space of dative and shared bonds are degenerate, and the multiplicity of configurations imparts the system with multireference character, which is highly unusual for an extended solid. The other striking feature of this system is that common computational (DFT) methods fail quite spectacularly to describe it, with 20% and 400% errors in the equilibrium volume and bulk modulus, respectively. We explain this by the poor treatment of static correlation in common density-functional approximations. The fact that the solid is structurally very simple, yet presents unique chemical bonding and is unmodelable using current DFT methods, makes it an interesting case study and a computational challenge.
Collapse
Affiliation(s)
- D Santamaría-Pérez
- Departamento de Física Aplicada-ICMUV , Universidad de Valencia , MALTA Consolider Team , Edificio de Investigación, C/Dr Moliner 50, E-46100 Burjassot , Valencia , Spain .
| | | | - J Ruiz-Fuertes
- DCITIMAC , Universidad de Cantabria , Avenida de Los Castros 48 , 39005 Santander , Spain
| | - T Marqueño
- Departamento de Física Aplicada-ICMUV , Universidad de Valencia , MALTA Consolider Team , Edificio de Investigación, C/Dr Moliner 50, E-46100 Burjassot , Valencia , Spain .
| | - R Chulia-Jordan
- Departamento de Física Aplicada-ICMUV , Universidad de Valencia , MALTA Consolider Team , Edificio de Investigación, C/Dr Moliner 50, E-46100 Burjassot , Valencia , Spain .
| | - C Muehle
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - M Jansen
- Max Planck Institute for Solid State Research , Heisenbergstrasse 1 , 70569 Stuttgart , Germany
| | - P Rodriguez-Hernandez
- Departamento de Física , Instituto de Materiales y Nanotecnología , Universidad de La Laguna , MALTA Consolider Team , E-38206 La Laguna , Tenerife , Spain
| | - A Muñoz
- Departamento de Física , Instituto de Materiales y Nanotecnología , Universidad de La Laguna , MALTA Consolider Team , E-38206 La Laguna , Tenerife , Spain
| | - Erin R Johnson
- Department of Chemistry , Dalhousie University , 6274 Coburg Road , Halifax , Nova Scotia , Canada B3H 4R2
| | - A Otero-de-la-Roza
- Departamento de Química Física y Analítica , Facultad de Química , Universidad de Oviedo , 33006 Oviedo , Spain .
| |
Collapse
|
26
|
Harisomayajula NVS, Makovetskyi S, Tsai Y. Cuprophilic Interactions in and between Molecular Entities. Chemistry 2019; 25:8936-8954. [DOI: 10.1002/chem.201900332] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Indexed: 12/15/2022]
Affiliation(s)
- N. V. Satyachand Harisomayajula
- Department of Chemistry and Frontier Research Centeron Fundamental and Applied Sciences and MattersNational Tsing Hua University 101, Sec.2, Guang-Fu Road Hsinchu 300 Taiwan
| | - Serhii Makovetskyi
- Department of Chemistry and Frontier Research Centeron Fundamental and Applied Sciences and MattersNational Tsing Hua University 101, Sec.2, Guang-Fu Road Hsinchu 300 Taiwan
| | - Yi‐Chou Tsai
- Department of Chemistry and Frontier Research Centeron Fundamental and Applied Sciences and MattersNational Tsing Hua University 101, Sec.2, Guang-Fu Road Hsinchu 300 Taiwan
| |
Collapse
|
27
|
van der Linden M, van Bunningen AJ, Amidani L, Bransen M, Elnaggar H, Glatzel P, Meijerink A, de Groot FMF. Single Au Atom Doping of Silver Nanoclusters. ACS NANO 2018; 12:12751-12760. [PMID: 30458110 PMCID: PMC6328285 DOI: 10.1021/acsnano.8b07807] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 11/20/2018] [Indexed: 05/30/2023]
Abstract
Ag29 nanoclusters capped with lipoic acid (LA) can be doped with Au. The doped clusters show enhanced stability and increased luminescence efficiency. We attribute the higher quantum yield to an increase in the rate of radiative decay. With mass spectrometry, the Au-doped clusters were found to consist predominantly of Au1Ag28(LA)123-. The clusters were characterized using X-ray absorption spectroscopy at the Au L3-edge. Both the extended absorption fine structure (EXAFS) and the near edge structure (XANES) in combination with electronic structure calculations confirm that the Au dopant is preferentially located in the center of the cluster. A useful XANES spectrum can be recorded for lower concentrations, or in shorter time, than the more commonly used EXAFS. This makes XANES a valuable tool for structural characterization.
Collapse
Affiliation(s)
- Marte van der Linden
- Inorganic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Arnoldus J. van Bunningen
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Lucia Amidani
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Maarten Bransen
- Soft Condensed Matter, Debye Institute
for Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Hebatalla Elnaggar
- Inorganic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| | - Pieter Glatzel
- European Synchrotron Radiation Facility, 71 Avenue des Martyrs, CS 40220, 38043 Grenoble, France
| | - Andries Meijerink
- Condensed Matter and Interfaces, Debye Institute for
Nanomaterials Science, Utrecht University, Princetonplein 1, 3584 CC Utrecht, The Netherlands
| | - Frank M. F. de Groot
- Inorganic Chemistry
and Catalysis, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitslaan 99, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
28
|
Michalczyk M, Zierkiewicz W, Drożdżewski P, Nawaz S, Monim-ul-Mehboob M, Ahmad S. Theoretical modeling of argentophilic interactions in [Ag(CN)2−]3 trimer found in a copper(II) complex of cis-1,2-diaminocyclohexane (Dach), [Cu(Dach)2-Ag(CN)2-Cu(Dach)2][Ag(CN)2]3. Chem Phys Lett 2018. [DOI: 10.1016/j.cplett.2018.08.034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
29
|
Kim H, Choi SY, Shin S. Asymmetric Synthesis of Dihydropyranones via Gold(I)‐Catalyzed Intermolecular [4+2] Annulation of Propiolates and Alkenes. Angew Chem Int Ed Engl 2018; 57:13130-13134. [PMID: 30129705 DOI: 10.1002/anie.201807514] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/06/2018] [Indexed: 12/19/2022]
Affiliation(s)
- Hanbyul Kim
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Su Yeon Choi
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
30
|
Kim H, Choi SY, Shin S. Asymmetric Synthesis of Dihydropyranones via Gold(I)‐Catalyzed Intermolecular [4+2] Annulation of Propiolates and Alkenes. Angew Chem Int Ed Engl 2018. [DOI: 10.1002/ange.201807514] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Hanbyul Kim
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Su Yeon Choi
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| | - Seunghoon Shin
- Department of Chemistry, Research Institute for Natural Sciences and Center for New Directions in Organic Synthesis (CNOS)Hanyang University 222 Wangsimni-ro, Seongdong-gu Seoul 04763 Korea
| |
Collapse
|
31
|
Osawa M, Aino MA, Nagakura T, Hoshino M, Tanaka Y, Akita M. Near-unity thermally activated delayed fluorescence efficiency in three- and four-coordinate Au(i) complexes with diphosphine ligands. Dalton Trans 2018; 47:8229-8239. [PMID: 29756141 DOI: 10.1039/c8dt01097h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The synthesis and photoluminescence properties of three-coordinate Au(i) complexes with rigid diphosphine ligands LMe {1,2-bis[bis(2-methylphenyl)phosphino]benzene}, LEt {1,2-bis[bis(2-ethylphenyl)phosphino]benzene}, and LiPr {1,2-bis[bis(2-isopropylphenyl)phosphino]benzene} are investigated. The LMe and LEt ligands afford two types of complexes: dinuclear complexes [μ-LMe(AuCl)2] (1d) and [μ-LEt(AuCl)2] (2d) with an Au(i)-Au(i) bond and mononuclear three-coordinate Au(i) complexes LMeAuCl (1) and LEtAuCl (2). On the other hand, the bulkiest ligand, LiPr, affords three-coordinate Au(i) complexes, LiPrAuCl (3) and LiPrAuI (4), but no dinuclear complexes. X-ray analysis suggests that both 3 and 4 possess a highly distorted trigonal planar geometry. Moreover, luminescence data reveal that at room temperature, 3 and 4 exhibit yellow-green thermally activated delayed fluorescence in the crystalline state with maximum emission wavelengths at 558 and 549 nm, respectively. The emission yields are close to unity. Quantum chemical calculations suggest that the emission of 4 originates from the (σ + X) → π* excited state that possesses strong intraligand charge-transfer character. The luminescent properties of four-coordinate Au(i) complex (5) possessing a tetrahedral geometry are discussed on the basis of the emission spectra and decay times measured in a temperature range of 309-77 K.
Collapse
Affiliation(s)
- Masahisa Osawa
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Masa-Aki Aino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Takaki Nagakura
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Mikio Hoshino
- Department of Applied Chemistry, Nippon Institute of Technology, Gakuendai 4-1, Miyashiro-Machi, Saitama, 345-8501, Japan.
| | - Yuya Tanaka
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| | - Munetaka Akita
- Laboratory for Chemistry and Life Science Institute of Innovative Research, Tokyo Institute of Technology, R1-27, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
| |
Collapse
|
32
|
Armstrong D, Kirk SM, Murphy C, Guerriero A, Peruzzini M, Gonsalvi L, Phillips AD. Water-Soluble Silver(I) Complexes Featuring the Hemilabile 3,7-Dimethyl-1,3,5-triaza-7-phosphabicyclo[3.3.1]nonane Ligand: Synthesis, Characterization, and Antimicrobial Activity. Inorg Chem 2018; 57:6309-6323. [DOI: 10.1021/acs.inorgchem.8b00227] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | | | - Antonella Guerriero
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Maurizio Peruzzini
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
- Dipartimento di Scienze Chimiche e Tecnologia dei Materiali (DSCTM), Consiglio Nazionale delle Ricerche (CNR), Via dei Taurini 19, 00185 Rome, Italy
| | - Luca Gonsalvi
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| | - Andrew D. Phillips
- Istituto di Chimica dei Composti Organometallici (ICCOM), Consiglio Nazionale delle Ricerche (CNR), Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy
| |
Collapse
|
33
|
Linear gold(I) complex with tris-(2-carboxyethyl)phosphine (TCEP): Selective antitumor activity and inertness toward sulfur proteins. J Inorg Biochem 2018; 186:104-115. [PMID: 29885553 DOI: 10.1016/j.jinorgbio.2018.04.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 03/02/2018] [Accepted: 04/02/2018] [Indexed: 12/18/2022]
Abstract
The search for modulating ligand substitution reaction in gold complexes is essential to find new active metallo compounds for medical applications. In this work, a new linear and hydrosoluble goldI complex with tris-(2-carboxyethylphosphine) (AuTCEP). The two phosphines coordinate linearly to the metal as solved by single crystal X-ray diffraction. Complete spectroscopic characterization is also reported. In vitro growth inhibition (GI50) in a panel of nine tumorigenic and one non-tumorigenic cell lines demonstrated the complex is highly selective to ovarium adenocarcinoma (OVCAR-03) with GI50 of 3.04 nmol mL-1. Moreover, non-differential uptake of AuTCEP was observed between OVCAR-03 (tumor) and HaCaT (non-tumor) two cell lines. Biophysical evaluation with the sulfur-rich biomolecules showed the compound does not interact with two types of zinc fingers, bovine serum albumin, N-acetyl-l-cysteine and also l-histidine, revealing to be inert to ligand substitution reactions with these molecules. However, AuTCEP demonstrated to cleave plasmidial DNA, suggesting DNA as a possible target. No antibacterial activity was observed in the strains evaluated. Besides, it inhibits 15% of the activity of a mixture of serine-β-lactamase and metallo-β-lactamase from Bacillus cereus in the enzymatic activity assay, similarly to EDTA. These results suggest AuTCEP is selective to metallo-β-lactamase but the cell uptake is hindered, and the compound does not reach the periplasmic space of Gram-positive bacteria. The unique inert behavior of AuTCEP is interesting and represent the modulation of the reactivity through coordination chemistry to decrease the toxicity associated with AuI complexes and its lack of specificity, generating very selective compounds with unexpected targets.
Collapse
|
34
|
Fürstner A. Gold-Katalyse für die Heterocyclenchemie: eine repräsentative Fallstudie zu Naturstoffen der Pyron-Reihe. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201707260] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung; 45470 Mülheim/Ruhr Deutschland
| |
Collapse
|
35
|
Fürstner A. Gold Catalysis for Heterocyclic Chemistry: A Representative Case Study on Pyrone Natural Products. Angew Chem Int Ed Engl 2017; 57:4215-4233. [PMID: 28862364 DOI: 10.1002/anie.201707260] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Indexed: 11/06/2022]
Abstract
2-Pyrones and 4-pyrones are common structural motifs in bioactive natural products. However, traditional methods for their synthesis, which try to emulate the biosynthetic pathway of cyclization of a 1,3,5-tricarbonyl precursor, are often harsh and, therefore, not particularly suitable for applications to polyfunctionalized and/or sensitive target compounds. π-Acid catalysis, in contrast, has proved to be better for a systematic exploration of the pyrone estate. To this end, alkynes are used as stable ketone surrogates, which can be activated under exceedingly mild conditions due to the pronounced carbophilicity of [LAu]+ fragments (L=two electron donor ligand); attack of a tethered ester carbonyl group onto the transient alkyne-gold complex then forges the pyrone ring in a fully regiocontrolled manner.
Collapse
Affiliation(s)
- Alois Fürstner
- Max-Planck-Institut für Kohlenforschung, 45470, Mülheim/Ruhr, Germany
| |
Collapse
|
36
|
de Paiva REF, Du Z, Peterson EJ, Corbi PP, Farrell NP. Probing the HIV-1 NCp7 Nucleocapsid Protein with Site-Specific Gold(I)–Phosphine Complexes. Inorg Chem 2017; 56:12308-12318. [DOI: 10.1021/acs.inorgchem.7b01762] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Raphael E. F. de Paiva
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Zhifeng Du
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| | - Erica J. Peterson
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| | - Pedro P. Corbi
- Department of Chemistry, Virginia Commonwealth University, 1001 West Main Street, Richmond, Virginia 23284-2006, United States
| | - Nicholas P. Farrell
- Institute of Chemistry, University of Campinas − UNICAMP, P.O. Box 6154, 13083-970 Campinas-SP, Brazil
| |
Collapse
|
37
|
Tlahuext-Aca A, Hopkinson MN, Daniliuc CG, Glorius F. Oxidative Addition to Gold(I) by Photoredox Catalysis: Straightforward Access to Diverse (C,N)-Cyclometalated Gold(III) Complexes. Chemistry 2016; 22:11587-92. [PMID: 27338119 DOI: 10.1002/chem.201602649] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Indexed: 11/10/2022]
Abstract
Herein, we report the oxidative addition of aryldiazonium salts to ligand-supported gold(I) complexes under visible light photoredox conditions. This method provides experimental evidence for the involvement of such a process in dual gold/photoredox-catalyzed reactions and delivers well-defined (C,N)-cyclometalated gold(III) species. The remarkably mild reaction conditions and the ability to widely vary the ancillary ligand make this method a potentially powerful synthetic tool to access diverse gold(III) complexes for systematic studies into their properties and reactivity. Initial studies show that these species can undergo chloride abstraction to afford Lewis acidic dicationic gold(III) species.
Collapse
Affiliation(s)
- Adrian Tlahuext-Aca
- NRW Graduate School of Chemistry, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Matthew N Hopkinson
- NRW Graduate School of Chemistry, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Constantin G Daniliuc
- NRW Graduate School of Chemistry, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany
| | - Frank Glorius
- NRW Graduate School of Chemistry, Organisch-Chemisches Institut, Westfälische Wilhelms-Universität Münster, Corrensstraße 40, 48149, Münster, Germany.
| |
Collapse
|
38
|
Smirnova ES, Muñoz Molina JM, Johnson A, Bandeira NAG, Bo C, Echavarren AM. Polynuclear Gold [Au(I) ]4 , [Au(I) ]8 , and Bimetallic [Au(I) 4 Ag(I) ] Complexes: C-H Functionalization of Carbonyl Compounds and Homogeneous Carbonylation of Amines. Angew Chem Int Ed Engl 2016; 55:7487-91. [PMID: 27167611 PMCID: PMC5053296 DOI: 10.1002/anie.201603200] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Indexed: 11/11/2022]
Abstract
The synthesis of tetranuclear gold complexes, a structurally unprecedented octanuclear complex with a planar [Au(I) 8 ] core, and pentanuclear [Au(I) 4 M(I) ] (M=Cu, Ag) complexes is presented. The linear [Au(I) 4 ] complex undergoes C-H functionalization of carbonyl compounds under mild reaction conditions. In addition, [Au(I) 4 Ag(I) ] catalyzes the carbonylation of primary amines to form ureas under homogeneous conditions with efficiencies higher than those achieved by gold nanoparticles.
Collapse
Affiliation(s)
- Ekaterina S Smirnova
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - José M Muñoz Molina
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Alice Johnson
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Nuno A G Bandeira
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007, Tarragona, Spain
| | - Antonio M Echavarren
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.
- Departament de Química Analítica i Química Orgànica, Universitat Rovira i Virgili, 43007, Tarragona, Spain.
| |
Collapse
|
39
|
Yoshinari N, Konno T. Metallosupramolecular Structures Derived from a Series of Diphosphine-bridged Digold(I) Metalloligands with Terminald-Penicillamine. CHEM REC 2016; 16:1647-63. [DOI: 10.1002/tcr.201600026] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Indexed: 01/08/2023]
Affiliation(s)
- Nobuto Yoshinari
- Department of Chemistry; Graduate School of Science Osaka University; Toyonaka Osaka 560-0043 Japan
| | - Takumi Konno
- Department of Chemistry; Graduate School of Science Osaka University; Toyonaka Osaka 560-0043 Japan
| |
Collapse
|
40
|
Smirnova ES, Muñoz Molina JM, Johnson A, Bandeira NAG, Bo C, Echavarren AM. Polynuclear Gold [AuI
]4
, [AuI
]8
, and Bimetallic [AuI
4
AgI
] Complexes: C−H Functionalization of Carbonyl Compounds and Homogeneous Carbonylation of Amines. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201603200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Ekaterina S. Smirnova
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - José M. Muñoz Molina
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Alice Johnson
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Nuno A. G. Bandeira
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
| | - Carles Bo
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; 43007 Tarragona Spain
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ); Barcelona Institute of Science and Technology; Av. Països Catalans 16 43007 Tarragona Spain
- Departament de Química Analítica i Química Orgànica; Universitat Rovira i Virgili; 43007 Tarragona Spain
| |
Collapse
|
41
|
Azizpoor Fard M, Rabiee Kenaree A, Boyle PD, Ragogna PJ, Gilroy JB, Corrigan JF. Coinage metal coordination chemistry of stable primary, secondary and tertiary ferrocenylethyl-based phosphines. Dalton Trans 2016; 45:2868-80. [PMID: 26792103 DOI: 10.1039/c5dt03962b] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Ferrocene-based phosphines constitute an important auxiliary ligand in inorganic chemistry. Utilizing the (ferrocenylethyl)phosphines (FcCH2CH2)3-nHnP (Fc = ferrocenyl; n = 2, 1; n = 1, 2; n = 0, 3) the synthesis of a series of coordination complexes [(FcCH2CH2)3-nHnPCuCl]4 (n = 2, 1-CuCl; n = 0, 3-CuCl), [(FcCH2CH2)2HPCuCl] (2-CuCl), {[(FcCH2CH2)H2P]2AgCl}2 (1-AgCl), [(FcCH2CH2)2HPAgCl] (2-AgCl), [(FcCH2CH2)3PAgCl]4 (3-AgCl), [(FcCH2CH2)3PM(OAc)]4 (M = Cu, 3-CuOAc M = Ag, 3-AgOAc), [(FcCH2CH2)3-nHnPAuCl] (n = 1, 2-AuCl; n = 0, 3-AuCl), via the reaction between the free phosphine and MX (M = Cu, Ag and Au; X = Cl, OAc), is described. The reaction between the respective phosphine with a suspension of metal-chloride or -acetate in a 1 : 1 ratio in THF at ambient temperature affords coordinated phosphine-coinage metal complexes. Varying structural motifs are observed in the solid state, as determined via single crystal X-ray analysis of 1-CuCl, 3-CuCl, 1-AgCl, 3-AgCl, 3-CuOAc, 3-AgOAc, 2-AuCl and 3-AuCl. Complexes 1-CuCl and 3-CuCl are tetrameric Cu(i) cubane-like structures with a Cu4Cl4 core, whereas silver complexes with primary and tertiary phosphine reveal two different structural types. The structure of 1-AgCl, unlike the rest, displays the coordination of two phosphines to each silver atom and shows a quadrangle defined by two Ag and two Cl atoms. In contrast, 3-AgCl is distorted from a cubane structure via elongation of one of the ClAg distances. 3-CuOAc and 3-AgOAc are isostructural with step-like cores, while complexes 2-AuCl and 3-AuCl reveal a linear geometry of a phosphine gold(i) chloride devoid of any aurophilic interactions. All of the complexes were characterized in solution by multinuclear (1)H, (13)C{(1)H} and (31)P NMR spectroscopic techniques; the redox chemistry of the series of complexes was examined using cyclic voltammetry. This class of complexes has been found to exhibit one reversible Fe(ii)/Fe(iii) oxidation couple, suggesting the absence of electronic communication between the ferrocenyl units on individual phosphine ligands as well as between different phosphines on the polymetallic cores.
Collapse
Affiliation(s)
- M Azizpoor Fard
- Department of Chemistry, The University of Western Ontario, London, Ontario, CanadaN6A 5B7
| | | | | | | | | | | |
Collapse
|
42
|
Joost M, Amgoune A, Bourissou D. Reaktivität von Goldkomplexen in metallorganischen Elementarreaktionen. Angew Chem Int Ed Engl 2015. [DOI: 10.1002/ange.201506271] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
43
|
Joost M, Amgoune A, Bourissou D. Reactivity of Gold Complexes towards Elementary Organometallic Reactions. Angew Chem Int Ed Engl 2015; 54:15022-45. [DOI: 10.1002/anie.201506271] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 11/09/2022]
|
44
|
Doddi A, Bockfeld D, Nasr A, Bannenberg T, Jones PG, Tamm M. N‐Heterocyclic Carbene–Phosphinidene Complexes of the Coinage Metals. Chemistry 2015; 21:16178-89. [DOI: 10.1002/chem.201502208] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Adinarayana Doddi
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| | - Dirk Bockfeld
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| | - Alexandre Nasr
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| | - Thomas Bannenberg
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| | - Peter G. Jones
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| | - Matthias Tamm
- Institut für Anorganische und Analytische Chemie, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig (Germany) http://www.tu‐braunschweig.de/iaac
| |
Collapse
|
45
|
Ranieri B, Escofet I, Echavarren AM. Anatomy of gold catalysts: facts and myths. Org Biomol Chem 2015; 13:7103-18. [PMID: 26055272 PMCID: PMC4479959 DOI: 10.1039/c5ob00736d] [Citation(s) in RCA: 173] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 05/19/2015] [Indexed: 12/23/2022]
Abstract
This review article covers the main types of gold(i) complexes used as precatalysts under homogeneous conditions in organic synthesis and discusses the different ways of catalyst activation as well as ligand, silver, and anion effects.
Collapse
Affiliation(s)
- Beatrice Ranieri
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
| | - Imma Escofet
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
| | - Antonio M. Echavarren
- Institute of Chemical Research of Catalonia (ICIQ) , Av. Països Catalans 16 , 43007 Tarragona , Spain .
- Departament de Química Analítica i Química Orgànica , Universitat Rovira i Virgili , C/Marcel·li Domingo s/n , 43007 Tarragona , Spain
| |
Collapse
|
46
|
Kuniyasu H, Nakajima T, Tamaki T, Iwasaki T, Kambe N. Regioselective Cis Insertion of DMAD into Au–P Bonds: Effect of Auxiliary Ligands on the Reaction Mechanism. Organometallics 2015. [DOI: 10.1021/acs.organomet.5b00078] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Hitoshi Kuniyasu
- Department
of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takuya Nakajima
- Department
of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takashi Tamaki
- Department
of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Takanori Iwasaki
- Department
of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Nobuaki Kambe
- Department
of Applied Chemistry,
Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
47
|
Adiraju VAK, Yousufuddin M, Rasika Dias HV. Copper(i), silver(i) and gold(i) complexes of N-heterocyclic carbene-phosphinidene. Dalton Trans 2015; 44:4449-54. [DOI: 10.1039/c4dt03285c] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
IMes·PPh serves as a good bridging ligand for group 11 metal ions affording molecules with diverse solid state structures.
Collapse
Affiliation(s)
- Venkata A. K. Adiraju
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - Muhammed Yousufuddin
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| | - H. V. Rasika Dias
- Department of Chemistry and Biochemistry
- The University of Texas at Arlington
- Arlington
- USA
| |
Collapse
|
48
|
Schmidbaur H, Schier A. Argentophilic Interactions. Angew Chem Int Ed Engl 2014; 54:746-84. [DOI: 10.1002/anie.201405936] [Citation(s) in RCA: 618] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Indexed: 11/06/2022]
|
49
|
|
50
|
Joost M, Zeineddine A, Estévez L, Mallet−Ladeira S, Miqueu K, Amgoune A, Bourissou D. Facile Oxidative Addition of Aryl Iodides to Gold(I) by Ligand Design: Bending Turns on Reactivity. J Am Chem Soc 2014; 136:14654-7. [DOI: 10.1021/ja506978c] [Citation(s) in RCA: 195] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Maximilian Joost
- Laboratoire
Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Abdallah Zeineddine
- Laboratoire
Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Laura Estévez
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, Equipe Chimie Physique, Université de Pau et des Pays de l’Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président
Angot, 64053 Pau, Cedex 09, France
- Departamento
de Química Física, Universidade de Vigo, Facultade de Química Lagoas-Marcosende s/n, 36310 Vigo, Galicia, Spain
| | - Sonia Mallet−Ladeira
- Institut de Chimie de Toulouse (FR 2599), 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Karinne Miqueu
- Institut
des Sciences Analytiques et de Physico-Chimie pour l’Environnement
et les Matériaux, Equipe Chimie Physique, Université de Pau et des Pays de l’Adour/CNRS UMR 5254, Hélioparc, 2 Avenue du Président
Angot, 64053 Pau, Cedex 09, France
| | - Abderrahmane Amgoune
- Laboratoire
Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| | - Didier Bourissou
- Laboratoire
Hétérochimie Fondamentale et Appliquée, Université Paul Sabatier/CNRS UMR 5069, 118 Route de Narbonne, 31062 Toulouse, Cedex 09, France
| |
Collapse
|