1
|
Stingley KJ, Carpenter BA, Kean KM, Waters ML. Mismatched covalent and noncovalent templating leads to large coiled coil-templated macrocycles. Chem Sci 2023; 14:4935-4944. [PMID: 37181761 PMCID: PMC10171189 DOI: 10.1039/d3sc00231d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 04/02/2023] [Indexed: 04/05/2023] Open
Abstract
Herein we describe the use of dynamic combinatorial chemistry to self-assemble complex coiled coil motifs. We amide-coupled a series of peptides designed to form homodimeric coiled coils with 3,5-dithiobenzoic acid (B) at the N-terminus and then allowed each B-peptide to undergo disulfide exchange. In the absence of peptide, monomer B forms cyclic trimers and tetramers, and thus we expected that addition of the peptide to monomer B would shift the equilibrium towards the tetramer to maximize coiled coil formation. Unexpectedly, we found that internal templation of the B-peptide through coiled coil formation shifts the equilibrium towards larger macrocycles up to 13 B-peptide subunits, with a preference for 4, 7, and 10-membered macrocycles. These macrocyclic assemblies display greater helicity and thermal stability relative to intermolecular coiled coil homodimer controls. The preference for large macrocycles is driven by the strength of the coiled coil, as increasing the coiled coil affinity increases the fraction of larger macrocycles. This system represents a new approach towards the development of complex peptide and protein assemblies.
Collapse
Affiliation(s)
- Kyla J Stingley
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| | - Benjamin A Carpenter
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| | - Kelsey M Kean
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| | - Marcey L Waters
- Department of Chemistry, University of North Carolina at Chapel Hill CB 3290 Chapel Hill NC 27599 USA
| |
Collapse
|
2
|
Bragança PMS, Carepo MSP, Pauleta SR, Pinter TBJ, Elia M, Cordas CM, Moura I, Pecoraro VL, Moura JJG. Incorporation of a molybdenum atom in a Rubredoxin-type Centre of a de novo-designed α 3DIV-L21C three-helical bundle peptide. J Inorg Biochem 2023; 240:112096. [PMID: 36603242 PMCID: PMC11232944 DOI: 10.1016/j.jinorgbio.2022.112096] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/17/2022] [Accepted: 12/04/2022] [Indexed: 12/24/2022]
Abstract
The rational design and functionalization of small, simple, and stable peptides scaffolds is an attractive avenue to mimic catalytic metal-centres of complex proteins, relevant for the design of metalloenzymes with environmental, biotechnological and health impacts. The de novo designed α3DIV-L21C framework has a rubredoxin-like metal binding site and was used in this work to incorporate a Mo-atom. Thermostability studies using differential scanning calorimetry showed an increase of 4 °C in the melting temperature of the Mo-α3DIV-L21C when compared to the apo-α3DIV-L21C. Circular dichroism in the visible and far-UV regions corroborated these results showing that Mo incorporation provides stability to the peptide even though there were almost no differences observed in the secondary structure. A formal reduction potential of ∼ -408 mV vs. NHE, pH 7.6 was determined. Combining electrochemical results, EPR and UV-visible data we discuss the oxidation state of the molybdenum centre in Mo-α3DIV-L21C and propose that is mainly in a Mo (VI) oxidation state.
Collapse
Affiliation(s)
- Pedro M S Bragança
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Microbial Stress Lab, UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Marta S P Carepo
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Escola de Psicologia e Ciências da Vida, Departamento de Ciências da Vida, Universidade Lusófona de Humanidades e Tecnologias, Campo Grande, 1749-024 Lisboa, Portugal.
| | - Sofia R Pauleta
- Microbial Stress Lab, UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Tyler B J Pinter
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - Maddalena Elia
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Cristina M Cordas
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Isabel Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Vincent L Pecoraro
- Department of Chemistry and Biophysics, University of Michigan, Ann Arbor, MI 48109-1055, United States
| | - José J G Moura
- LAQV, REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| |
Collapse
|
3
|
Torner JM, Arora PS. Conformational control in a photoswitchable coiled coil. Chem Commun (Camb) 2021; 57:1442-1445. [PMID: 33514971 DOI: 10.1039/d0cc08318f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The coiled coil is a common protein tertiary structure intimately involved in mediating protein recognition and function. Due to their structural simplicity, coiled coils have served as attractive scaffolds for the development of functional biomaterials. Herein we describe the design of conformationally-defined coiled coil photoswitches as potential environmentally-sensitive biomaterials.
Collapse
Affiliation(s)
- Justin M Torner
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| | - Paramjit S Arora
- Department of Chemistry, New York University, 100 Washington Square East, New York, NY 10003, USA.
| |
Collapse
|
4
|
Webster AM, Peacock AFA. De novo designed coiled coils as scaffolds for lanthanides, including novel imaging agents with a twist. Chem Commun (Camb) 2021; 57:6851-6862. [DOI: 10.1039/d1cc02013g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The design of artificial miniature lanthanide proteins, provide an opportunity to access new functional metalloproteins as well as insight into native lanthanide biochemistry.
Collapse
|
5
|
Curtis RW, Chmielewski J. A comparison of the collagen triple helix and
coiled‐coil
peptide building blocks on metal
ion‐mediated
supramolecular assembly. Pept Sci (Hoboken) 2020. [DOI: 10.1002/pep2.24190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Ryan W. Curtis
- Department of Chemistry Purdue University West Lafayette Indiana USA
| | - Jean Chmielewski
- Department of Chemistry Purdue University West Lafayette Indiana USA
| |
Collapse
|
6
|
Wuo MG, Hong SH, Singh A, Arora PS. Synthetic Control of Tertiary Helical Structures in Short Peptides. J Am Chem Soc 2018; 140:16284-16290. [PMID: 30395711 DOI: 10.1021/jacs.8b10082] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Helical secondary and tertiary motifs are commonly observed as binding epitopes in natural and engineered protein scaffolds. While several strategies have been described to constrain α-helices or reproduce their binding attributes in synthetic mimics, general strategies to mimic tertiary helical motifs remain in their infancy. We recently described a synthetic strategy to develop helical dimers ( J. Am. Chem. Soc. 2015, 137, 11618-11621). We found that replacement of an interhelical salt bridge with a covalent bond can stabilize antiparallel motifs in short sequences. Here we show that the approach can be generalized to obtain antiparallel and parallel dimers as well as trimer motifs. Helical stabilization requires judiciously designed cross-linkers as well as optimal interhelical hydrophobic packing. We anticipate that these mimics would afford new classes of modulators of biological function.
Collapse
Affiliation(s)
- Michael G Wuo
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Seong Ho Hong
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Arunima Singh
- Department of Chemistry , New York University , New York , New York 10003 , United States
| | - Paramjit S Arora
- Department of Chemistry , New York University , New York , New York 10003 , United States
| |
Collapse
|
7
|
Nema A, Pareek R, Rai T, Panda D. The Role of Glutathione and Ethanol in Dictating the Emission Dynamics of Natural Resources-Derived Highly Luminescent Carbon Nanodots. ChemistrySelect 2017. [DOI: 10.1002/slct.201702455] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Akansh Nema
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Rakshit Pareek
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Tripti Rai
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| | - Debashis Panda
- Rajiv Gandhi Institute of Petroleum Technology; Institute of National Importance; Jais- 229304, Uttar Pradesh INDIA
| |
Collapse
|
8
|
Singh A, Rai T, Panda D. Photoluminescence dynamics of copper nanoclusters synthesized by cellulase: role of the random-coil structure. RSC Adv 2016. [DOI: 10.1039/c6ra09763d] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cellulase-directed synthesis of magic numbered Cu NCs with blue-, cyan-, and green emission from Cu12, Cu20, and Cu34, respectively is presented. The random coil structure of enzyme dictates the size and luminescent properties of Cu NCs.
Collapse
Affiliation(s)
- Akanksha Singh
- Rajiv Gandhi Institute of Petroleum Technology
- (An Institute of National Importance)
- Rae Bareli
- India
| | - Tripti Rai
- Rajiv Gandhi Institute of Petroleum Technology
- (An Institute of National Importance)
- Rae Bareli
- India
| | - Debashis Panda
- Rajiv Gandhi Institute of Petroleum Technology
- (An Institute of National Importance)
- Rae Bareli
- India
| |
Collapse
|
9
|
Dabb SL, Fletcher NC. mer and fac isomerism in tris chelate diimine metal complexes. Dalton Trans 2015; 44:4406-22. [PMID: 25600485 DOI: 10.1039/c4dt03535f] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we highlight the issue of meridional (mer) and facial (fac) orientation of asymmetrical diimines in tris-chelate transition metal complexes. Diimine ligands have long been the workhorse of coordination chemistry, and whilst there are now good strategies to isolate materials where the inherent metal centered chirality is under almost complete control, and systematic methodologies to isolate heteroleptic complexes, the conceptually simple geometrical isomerism has not been widely investigated. In systems where the two donor atoms are significantly different in terms of the σ-donor and π-accepting ability, the fac isomer is likely to be the thermodynamic product. For the diimine complexes with two trigonal planar nitrogen atoms there is much more subtlety to the system, and external factors such as the solvent, lattice packing and the various steric considerations play a delicate role in determining the observed and isolable product. In this article we discuss the possibilities to control the isomeric ratio in labile systems, consider the opportunities to separate inert complexes and discuss the observed differences in their spectroscopic properties. Finally we report on the ligand orientation in supramolecular systems where facial coordination leads to simple regular structures such as helicates and tetrahedra, but the ability of the ligand system to adopt a mer orientation enables self-assembled structures of considerable beauty and complexity.
Collapse
Affiliation(s)
- Serin L Dabb
- School of Chemistry and Chemical Engineering, Queen's University of Belfast, David Keir Building, Belfast, Northern Ireland BT9 5AG, UK.
| | | |
Collapse
|
10
|
Cal M, Kotynia A, Jaremko Ł, Jaremko M, Lisowski M, Cebo M, Brasuń J, Stefanowicz P. Metallacrowns as products of the aqueous medium self-assembly of histidinehydroxamic acid-containing polypeptides. Dalton Trans 2015; 44:11172-81. [PMID: 26008716 DOI: 10.1039/c5dt01267h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Self-assembly is a widely studied, spontaneous, and reversible phenomenon leading to the formation of the ordered structures by non-covalent specific interactions among starting molecules. In this work, a new template for the self-assembly of polypeptides based on peptides containing the C-terminal histidinehydroxamic acid moiety and Cu(2+) ions is characterized. Two peptide (tripeptide and pentadecapeptide) hydroxamic acid systems were synthesized and their interactions with Cu(2+) ions were investigated, revealing a high stability of the supramolecular assemblies formed. The supramolecular metallacrown-based L4Cu5 complexes exist at physiological pH in the presence of Cu(2+) ions as is evidenced from the spectroscopic methods, ESI mass spectrometry, and physicochemical techniques.
Collapse
Affiliation(s)
- Marta Cal
- Faculty of Chemistry, University of Wroclaw, Joliot-Curie 14, 50-383 Wroclaw, Poland.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Amdursky N. Electron Transfer across Helical Peptides. Chempluschem 2015; 80:1075-1095. [DOI: 10.1002/cplu.201500121] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 05/06/2015] [Indexed: 02/05/2023]
|
12
|
Chmielewski MJ, Buhler E, Candau J, Lehn JM. Multivalency by Self-Assembly: Binding of Concanavalin A to Metallosupramolecular Architectures Decorated with Multiple Carbohydrate Groups. Chemistry 2014; 20:6960-77. [DOI: 10.1002/chem.201304511] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Indexed: 12/17/2022]
|
13
|
Yu F, Cangelosi VM, Zastrow ML, Tegoni M, Plegaria JS, Tebo AG, Mocny CS, Ruckthong L, Qayyum H, Pecoraro VL. Protein design: toward functional metalloenzymes. Chem Rev 2014; 114:3495-578. [PMID: 24661096 PMCID: PMC4300145 DOI: 10.1021/cr400458x] [Citation(s) in RCA: 332] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fangting Yu
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | | | | | | | - Alison G. Tebo
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | | - Leela Ruckthong
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | - Hira Qayyum
- University of Michigan, Ann Arbor, Michigan 48109, United States
| | | |
Collapse
|
14
|
He Y, Liu M, Darabedian N, Liang Y, Wu D, Xiang J, Zhou F. pH-dependent coordination of Pb2+ to metallothionein2: structures and insight into lead detoxification. Inorg Chem 2014; 53:2822-30. [PMID: 24559479 PMCID: PMC3993925 DOI: 10.1021/ic402452s] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2013] [Indexed: 11/30/2022]
Abstract
Lead is a toxic heavy metal whose detoxification in organisms is mainly carried out by its coordination with some metalloproteins such as metallothioneins (MTs). Two Pb-MT complexes, named as Pb7-MT2(I) and Pb7-MT2(II), form under neutral and weakly acidic conditions, respectively. However, the structures of the two complexes, which are crucial for a better understanding of the detoxification mechanism of Pb-MTs, have not been clearly elucidated. In this Work, coordination of Pb(2+) with rabbit liver apo-MT2, as well as with the two individual domains (apo-αMT2 and apo-βMT2) at different pH, were studied by combined spectroscopic (UV-visible, circular dichroism, and NMR) and computational methods. The results showed that in Pb7-MT2(I) the Pb(2+) coordination is in the trigonal pyramidal Pb-S3 mode, whereas the Pb7-MT2(II) complex contains mixed trigonal pyramidal Pb-S3, distorted trigonal pyramidal Pb-S2O1, and distorted quadrilateral pyramidal Pb-S3O1 modes. The O-donor ligand in Pb7-MT2(II) was identified as the carboxyl groups of the aspartic acid residues at positions 2 and 56. Our studies also revealed that Pb7-MT2(II) has a greater acid tolerance and coordination stability than Pb7-MT2(I), thereby retaining the Pb(2+) coordination at acidic pH. The higher flexibility of Pb7-MT2(II) renders it more accessible to lysosomal proteolysis than Pb7-MT2(I). Similar spectral features were observed in the coordination of Pb(2+) by human apo-MT2, suggesting a commonality among mammalian MT2s in the Pb(2+) coordination chemistry.
Collapse
Affiliation(s)
- Yonghui He
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, People’s Republic
of China
- Key
Laboratory of Chemistry in Ethnic Medicine Resource, State Ethnic
Affairs Commission & Ministry of Education, Yunnan University of Nationalities, Kunming 650031, People’s
Republic of China
| | - Mengmeng Liu
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, People’s Republic
of China
| | - Narek Darabedian
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California 90032 United States
| | - Yizeng Liang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, People’s Republic
of China
| | - Deyin Wu
- State
Key Laboratory for Physical Chemistry of Solid Surfaces, Xiamen University, Xiamen 361005, People’s
Republic of China
| | - Juan Xiang
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, People’s Republic
of China
| | - Feimeng Zhou
- College
of Chemistry and Chemical Engineering, Central
South University, Changsha 410083, People’s Republic
of China
- Department
of Chemistry and Biochemistry, California
State University, Los Angeles, California 90032 United States
| |
Collapse
|
15
|
Gamble AJ, Peacock AFA. De novo design of peptide scaffolds as novel preorganized ligands for metal-ion coordination. Methods Mol Biol 2014; 1216:211-31. [PMID: 25213418 DOI: 10.1007/978-1-4939-1486-9_11] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This chapter describes how de novo designed peptides can be used as novel preorganized ligands for metal ion coordination. The focus is on the design of peptides which are programmed to spontaneously self-assemble into α-helical coiled coils in aqueous solution, and how metal ion binding sites can be engineered onto and into these structures. In addition to describing the various design principles, some key examples are covered illustrating the success of this approach, including a more detailed example in the case study.
Collapse
Affiliation(s)
- Aimee J Gamble
- School of Chemistry, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | | |
Collapse
|
16
|
Zastrow ML, Pecoraro VL. Designing functional metalloproteins: from structural to catalytic metal sites. Coord Chem Rev 2013; 257:2565-2588. [PMID: 23997273 PMCID: PMC3756834 DOI: 10.1016/j.ccr.2013.02.007] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Metalloenzymes efficiently catalyze some of the most important and difficult reactions in nature. For many years, coordination chemists have effectively used small molecule models to understand these systems. More recently, protein design has been shown to be an effective approach for mimicking metal coordination environments. Since the first designed proteins were reported, much success has been seen for incorporating metal sites into proteins and attaining the desired coordination environment but until recently, this has been with a lack of significant catalytic activity. Now there are examples of designed metalloproteins that, although not yet reaching the activity of native enzymes, are considerably closer. In this review, we highlight work leading up to the design of a small metalloprotein containing two metal sites, one for structural stability (HgS3) and the other a separate catalytic zinc site to mimic carbonic anhydrase activity (ZnN3O). The first section will describe previous studies that allowed for a high affinity thiolate site that binds heavy metals in a way that stabilizes three-stranded coiled coils. The second section will examine ways of preparing histidine rich environments that lead to metal based hydrolytic catalysts. We will also discuss other recent examples of the design of structural metal sites and functional metalloenzymes. Our work demonstrates that attaining the proper first coordination geometry of a metal site can lead to a significant fraction of catalytic activity, apparently independent of the type of secondary structure of the surrounding protein environment. We are now in a position to begin to meet the challenge of building a metalloenzyme systematically from the bottom-up by engineering and analyzing interactions directly around the metal site and beyond.
Collapse
Affiliation(s)
- Melissa L. Zastrow
- Department of Chemistry, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
17
|
Cal M, Jaremko Ł, Jaremko M, Stefanowicz P. The metallacrowns as templates for spontaneous self-assembly of polypeptides into a tetrahelical bundle. NEW J CHEM 2013. [DOI: 10.1039/c3nj00641g] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
18
|
Álvarez CM, García-Rodríguez R, Miguel D. Iminopyridine Complexes of Manganese, Rhenium, and Molybdenum Derived from Amino Ester Methylserine and Peptides Gly-Gly, Gly-Val, and Gly-Gly-Gly: Self-Assembly of the Peptide Chains. Inorg Chem 2012; 51:2984-96. [PMID: 22329711 DOI: 10.1021/ic2022984] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Celedonio M. Álvarez
- IU CINQUIMA/Química
Inorgánica, Facultad
de Ciencias, Universidad de Valladolid,
E-47005 Spain
| | - Raúl García-Rodríguez
- IU CINQUIMA/Química
Inorgánica, Facultad
de Ciencias, Universidad de Valladolid,
E-47005 Spain
| | - Daniel Miguel
- IU CINQUIMA/Química
Inorgánica, Facultad
de Ciencias, Universidad de Valladolid,
E-47005 Spain
| |
Collapse
|
19
|
Samiappan M, Alasibi S, Cohen-Luria R, Shanzer A, Ashkenasy G. Allosteric effects in coiled-coil proteins folding and lanthanide-ion binding. Chem Commun (Camb) 2012; 48:9577-9. [DOI: 10.1039/c2cc35166h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
20
|
Lin ZS, Lo FC, Li CH, Chen CH, Huang WN, Hsu IJ, Lee JF, Horng JC, Liaw WF. Peptide-Bound Dinitrosyliron Complexes (DNICs) and Neutral/Reduced-Form Roussin’s Red Esters (RREs/rRREs): Understanding Nitrosylation of [Fe–S] Clusters Leading to the Formation of DNICs and RREs Using a De Novo Design Strategy. Inorg Chem 2011; 50:10417-31. [DOI: 10.1021/ic201529e] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Zong-Sian Lin
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Feng-Chun Lo
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hsiang Li
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chih-Hao Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Ning Huang
- Department of Biotechnology, Yuanpei University, Hsinchu 30015, Taiwan
| | - I-Jui Hsu
- Department of Molecular Science and Engineering, National Taipei University of Technology, Taipei 10608, Taiwan
| | - Jyh-Fu Lee
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 30076, Taiwan
| | - Jia-Cherng Horng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
21
|
Das A, Wei Y, Pelczer I, Hecht MH. Binding of small molecules to cavity forming mutants of a de novo designed protein. Protein Sci 2011; 20:702-11. [PMID: 21328630 DOI: 10.1002/pro.601] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2010] [Revised: 01/18/2011] [Accepted: 01/20/2011] [Indexed: 11/09/2022]
Abstract
A central goal of protein design is to devise novel proteins for applications in biotechnology and medicine. Many applications, including those focused on sensing and catalysis will require proteins that recognize and bind to small molecules. Here, we show that stably folded α-helical proteins isolated from a binary patterned library of designed sequences can be mutated to produce binding sites capable of binding a range of small aromatic compounds. Specifically, we mutated two phenylalanine side chains to alanine in the known structure of de novo protein S-824 to create buried cavities in the core of this four-helix bundle. The parental protein and the Phe→Ala variants were exposed to mixtures of compounds, and selective binding was assessed by saturation transfer difference NMR. The affinities of benzene and a number of its derivatives were determined by pulse field gradient spin echo NMR, and several of the compounds were shown to bind the mutated protein with micromolar dissociation constants. These studies suggest that stably folded de novo proteins from binary patterned libraries are well-suited as scaffolds for the design of binding sites.
Collapse
Affiliation(s)
- Aditi Das
- Department of Chemistry, Princeton University, Princeton, New Jersey 08544-1009, USA
| | | | | | | |
Collapse
|
22
|
Dube N, Presley AD, Shu JY, Xu T. Amphiphilic Peptide-Polymer Conjugates with Side-Conjugation. Macromol Rapid Commun 2011; 32:344-53. [DOI: 10.1002/marc.201000603] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2010] [Revised: 11/23/2010] [Indexed: 11/08/2022]
|
23
|
Son SY, Han YD, Lee KH, Yoon HC. Electrochemical Assay for Glycated Hemoglobin based on the Magnetic Particle-supported Concentration Coupled to Boronate-diol Interactions. B KOREAN CHEM SOC 2010. [DOI: 10.5012/bkcs.2010.31.7.2103] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
24
|
Shu JY, Huang YJ, Tan C, Presley AD, Chang J, Xu T. Amphiphilic Peptide−Polymer Conjugates Based on the Coiled-Coil Helix Bundle. Biomacromolecules 2010; 11:1443-52. [DOI: 10.1021/bm100009e] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jessica Y. Shu
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Yu-Ja Huang
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Cen Tan
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Andrew D. Presley
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Joseph Chang
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| | - Ting Xu
- Departments of Materials Science and Engineering and Chemistry, University of California, Berkeley, California 94720, and Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720
| |
Collapse
|
25
|
Jabre ND, Respondek T, Ulku SA, Korostelova N, Kodanko JJ. A Divergent Strategy for Attaching Polypyridyl Ligands to Peptides. J Org Chem 2010; 75:650-9. [DOI: 10.1021/jo9021953] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Nitinkumar D. Jabre
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Tomasz Respondek
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Selma A. Ulku
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Nadiya Korostelova
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| | - Jeremy J. Kodanko
- Department of Chemistry, Wayne State Universty, 5101 Cass Ave, Detroit, Michigan 48202
| |
Collapse
|
26
|
Apostolovic B, Danial M, Klok HA. Coiled coils: attractive protein folding motifs for the fabrication of self-assembled, responsive and bioactive materials. Chem Soc Rev 2010; 39:3541-75. [DOI: 10.1039/b914339b] [Citation(s) in RCA: 223] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
27
|
Cisnetti F, Gateau C, Lebrun C, Delangle P. Lanthanide(III) Complexes with Two Hexapeptides Incorporating Unnatural Chelating Amino Acids: Secondary Structure and Stability. Chemistry 2009; 15:7456-69. [DOI: 10.1002/chem.200900747] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Łuczkowski M, Stachura M, Schirf V, Demeler B, Hemmingsen L, Pecoraro VL. Design of thiolate rich metal binding sites within a peptidic framework. Inorg Chem 2009; 47:10875-88. [PMID: 18959366 DOI: 10.1021/ic8009817] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A de novo protein design strategy provides a powerful tool to elucidate how heavy metals interact with proteins.Cysteine derivatives of the TRI peptide family (Ac-G(LKALEEK)4G-NH2) have been shown to bind heavy metals in an unusual trigonal geometry. Our present objective was to design binding sites in R-helical scaffolds that are able to form higher coordination number complexes with Cd(II) and Hg(II). Herein, we evaluate the binding of Cd(II) and Hg(II) to double cysteine substituted TRI peptides lacking intervening leucines between sulfurs in the heptads. We compare a -Cysd-X-X-X-Cysa- binding motif found in TRIL12CL16C to the more common -Cysa-X-X-Cysd- sequence of native proteins found in TRIL9CL12C. Compared to TRI, these substitutions destabilize the helical aggregates,leading to mixtures of two- and three-stranded bundles. The three-stranded coiled coils are stabilized by the addition of metals. TRIL9CL12C forms distorted tetrahedral complexes with both Cd(II) and Hg(II), as supported by UV-vis,CD, 113Cd NMR, 199Hg NMR and 111mCd PAC spectroscopy. Additionally, these signatures are very similar to those found for heavy metal substituted rubredoxin. These results suggest that in terms of Hg(II) binding, TRIL9CL12Ccan be considered as a good mimic of the metallochaperone HAH1, that has previously been shown to form protein dimers. TRIL12CL16C has limited ability to generate homoleptic tetrahedral complexes (Cd(SR)42-). These type of complexes were identified only for Hg(II). However, the spectroscopic signatures suggest a different geometry around the metal ion, demonstrating that effective metal sequestration into the hydrophobic interior of the bundle requires more than simply adding two sulfur residues in adjacent layers of the peptide core. Thus, proper design of metal binding sites must also consider the orientation of cysteine sidechains in a vs d positions of the heptads.
Collapse
Affiliation(s)
- Marek Łuczkowski
- Department of Chemistry, UniVersity of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | | | | | | | |
Collapse
|
29
|
Pendley SS, Yu YB, Cheatham TE. Molecular dynamics guided study of salt bridge length dependence in both fluorinated and non-fluorinated parallel dimeric coiled-coils. Proteins 2009; 74:612-29. [PMID: 18704948 PMCID: PMC2692595 DOI: 10.1002/prot.22177] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The alpha-helical coiled-coil is one of the most common oligomerization motifs found in both native and engineered proteins. To better understand the stability and dynamics of the coiled-coil motifs, including those modified by fluorination, several fluorinated and nonfluorinated parallel dimeric coiled-coil protein structures were designed and modeled. We also attempt to investigate how changing the length and geometry of the important stabilizing salt bridges influences the coiled-coil protein structure. Molecular dynamics (MD) and free energy simulations with AMBER used a particle mesh Ewald treatment of the electrostatics in explicit TIP3P solvent with balanced force field treatments. Preliminary studies with legacy force fields (ff94, ff96, and ff99) show a profound instability of the coiled-coil structures in short MD simulation. Significantly, better behavior is evident with the more balanced ff99SB and ff03 protein force fields. Overall, the results suggest that the coiled-coil structures can readily accommodate the larger acidic arginine or S-2,7-diaminoheptanedoic acid mutants in the salt bridge, whereas substitution of the smaller L-ornithine residue leads to rapid disruption of the coiled-coil structure on the MD simulation time scale. This structural distortion of the secondary structure allows both the formation of large hydration pockets proximal to the charged groups and within the hydrophobic core. Moreover, the increased structural fluctuations and movement lead to a decrease in the water occupancy lifetimes in the hydration pockets. In contrast, analysis of the hydration in the stable dimeric coiled-coils shows high occupancy water sites along the backbone residues with no water occupancy in the hydrophobic core, although transitory water interactions with the salt bridge residues are evident. The simulations of the fluorinated coiled-coils suggest that in some cases fluorination electrostatically stabilizes the intermolecular coiled-coil salt bridges. Structural analyses also reveal different side chain rotamer preferences for leucine when compared with 5,5,5,5',5',5'-hexafluoroleucine mutants. These observed differences in the side chain rotamer populations suggest differential changes in the side chain conformational entropy upon coiled-coil formation when the protein is fluorinated. The free energy of hydration of the isolated 5,5,5,5',5',5'-hexafluoroleucine amino acid is calculated to be 1.1 kcal/mol less stable than leucine; this hydrophobic penalty in the monomer may provide a driving force for coiled-coil dimer formation. Estimation of the ellipticity at 222 nm from a series of snapshots from the MD simulations with DicroCalc shows distinct increases in the ellipticity when the coiled-coil is fluorinated, which suggests that the helicity in the folded coiled-coils is greater when fluorinated.
Collapse
Affiliation(s)
- Scott S. Pendley
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| | - Yihua B. Yu
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Departments of Pharmaceutical Sciences and Bioengineering, University of Maryland, University of Maryland, 20 Penn Street, Rm. 635, Baltimore, MD 21201
| | - Thomas E. Cheatham
- Departments of Pharmaceutics and Pharmaceutical Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Medicinal Chemistry, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
- Department of Bioengineering, University of Utah, 2000 South 30 East, Skaggs Hall 201, Salt Lake City, UT 84112
| |
Collapse
|
30
|
Pagel K, Koksch B. Following polypeptide folding and assembly with conformational switches. Curr Opin Chem Biol 2008; 12:730-9. [DOI: 10.1016/j.cbpa.2008.09.005] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2008] [Revised: 08/29/2008] [Accepted: 09/07/2008] [Indexed: 10/21/2022]
|
31
|
Xie J, Liu W, Schultz PG. A genetically encoded bidentate, metal-binding amino acid. Angew Chem Int Ed Engl 2008; 46:9239-42. [PMID: 17893898 DOI: 10.1002/anie.200703397] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianming Xie
- Department of Chemistry and The Skaggs Institute for Chemical Biology, The Scripps Research Institute, 10550 N. Torrey Pines Rd, La Jolla, CA 92037, USA
| | | | | |
Collapse
|
32
|
Cid MM, Garc誕-Lago R, Alonso-G洋ez JL, Sicre C. Synthesis of 2,4-Dibromopyridine and 4,4’-Dibromo-2,2’-bipyridine. Efficient Usage in Selective Bromine-Substitution under Palladium-Catalysis. HETEROCYCLES 2008. [DOI: 10.3987/com-07-11170] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
Slutsky MM, Phillip JS, Tew GN. Synthesis and characterization of amphiphilic o-phenylene ethynylene oligomers. NEW J CHEM 2008. [DOI: 10.1039/b707618e] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
34
|
Xie J, Liu W, Schultz P. A Genetically Encoded Bidentate, Metal-Binding Amino Acid. Angew Chem Int Ed Engl 2007. [DOI: 10.1002/ange.200703397] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
35
|
Kashiwada A, Ishida K, Matsuda K. Lanthanide Ion-Induced Folding of De Novo Designed Coiled-Coil Polypeptides. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2007. [DOI: 10.1246/bcsj.80.2203] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
36
|
Touw DS, Nordman CE, Stuckey JA, Pecoraro VL. Identifying important structural characteristics of arsenic resistance proteins by using designed three-stranded coiled coils. Proc Natl Acad Sci U S A 2007; 104:11969-74. [PMID: 17609383 PMCID: PMC1924535 DOI: 10.1073/pnas.0701979104] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2007] [Indexed: 11/18/2022] Open
Abstract
Arsenic, a contaminant of water supplies worldwide, is one of the most toxic inorganic ions. Despite arsenic's health impact, there is relatively little structural detail known about its interactions with proteins. Bacteria such as Escherichia coli have evolved arsenic resistance using the Ars operon that is regulated by ArsR, a repressor protein that dissociates from DNA when As(III) binds. This protein undergoes a critical conformational change upon binding As(III) with three cysteine residues. Unfortunately, structures of ArsR with or without As(III) have not been reported. Alternatively, de novo designed peptides can bind As(III) in an endo configuration within a thiolate-rich environment consistent with that proposed for both ArsR and ArsD. We report the structure of the As(III) complex of Coil Ser L9C to a 1.8-A resolution, providing x-ray characterization of As(III) in a Tris thiolate protein environment and allowing a structural basis by which to understand arsenated ArsR.
Collapse
Affiliation(s)
| | | | | | - Vincent L. Pecoraro
- *Department of Chemistry
- Biophysics Research Division, University of Michigan, Ann Arbor, MI 48109
| |
Collapse
|
37
|
Iranzo O, Ghosh D, Pecoraro VL. Assessing the integrity of designed homomeric parallel three-stranded coiled coils in the presence of metal ions. Inorg Chem 2007; 45:9959-73. [PMID: 17140192 DOI: 10.1021/ic061183e] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
De novo design of alpha-helical peptides that self-assemble to form helical coiled coils is a powerful tool for studying molecular recognition between peptides/proteins and determining the fundamental forces involved in their folding and structure. These amphipathic helices assemble in aqueous solution to generate the final coiled coil motif, with the hydrophobic residues in the interior and the polar/hydrophilic groups on the exterior. Considerable effort has been devoted to investigate the forces that determine the overall stability and final three-dimensional structure of the coiled coils. One of the major challenges in coiled coil design is the achievement of specificity in terms of the oligomeric state, with respect to number (two, three, four, or higher), nature (homomers vs heteromers), and strand orientation (parallel vs antiparallel). As seen in nature, metal ions play an important role in this self-organization process, and the overall structure of metalloproteins is primarily the result of two driving forces: the metal coordination preference and the fold of the polypeptide backbone. Previous work in our group has shown that metal ions such as As(III) and Hg(II) can be used to enforce different aggregation states in the Cys derivatives of the designed homotrimeric coiled-coil TRI family [Ac-G(LKALEEK)4G-CONH2]. We are now interested in studying the interplay between the metal ion and peptide preferences in controlling the specificity and relative orientation of the alpha-helices in coiled coils. For this objective, two derivatives of the TRI family, TRi L2WL9C and TRi L2WL23C, have been synthesized. Along with those two peptides, two derivatives of Coil-Ser, CSL9C and CSL19C (CS = Ac-EWEALEKKLAALESKLQALEKKLEALEHG-CONH2), a similar de novo designed three-stranded coiled coil that has the potential to form antiparallel coiled coils, have also been used. Circular dichroism, UV-vis, and 199Hg and 113Cd NMR spectroscopy results reveal that the addition of Hg(II) and Cd(II) to the different mixtures of these peptides forms preferentially homotrimeric coiled coils, over a statistical population of heterotrimeric parallel and antiparallel coiled coils.
Collapse
Affiliation(s)
- Olga Iranzo
- Department of Chemistry and Biophysics Research Division, University of Michigan, Ann Arbor, Michigan 48109-1055, USA
| | | | | |
Collapse
|
38
|
Cnudde SE, Prorok M, Dai Q, Castellino FJ, Geiger JH. The Crystal Structures of the Calcium-Bound con-G and con-T[K7γ] Dimeric Peptides Demonstrate a Metal-Dependent Helix-Forming Motif. J Am Chem Soc 2007; 129:1586-93. [PMID: 17243678 DOI: 10.1021/ja065722q] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Short peptides that have the ability to form stable alpha-helices in solution are rare, and a number of strategies have been used to produce them, including the use of metal chelation to stabilize folding of the backbone. However, no example exists of a structurally well-defined helix stabilized exclusively through metal ion chelation. Conantokins (con)-G and -T are short peptides that are potent antagonists of N-methyl-D-aspartate receptor channels. While con-G exhibits no helicity alone, it undergoes a structural transition to a helical conformation in the presence of a variety of multivalent cations, especially Mg2+ and Ca2+. This complexation also results in antiparallel dimerization of two peptide helices in the presence of Ca2+, but not Mg2+. A con-T variant, con-T[K7gamma], displays very similar behavior. We have solved the crystal structures of both Ca2+/con-G and Ca2+/con-T [K7gamma] at atomic resolution. These structures clearly show the nature of the metal-dependent dimerization and helix formation and surprisingly also show that the con-G dimer interface is completely different from the con-T[K7gamma] interface, even though the metal chelation is similar in the two peptides. This represents a new paradigm in helix stabilization completely independent of the hydrophobic effect, which we define as the "metallo-zipper."
Collapse
Affiliation(s)
- Sara E Cnudde
- Department of Biochemistry, Michigan State University, East Lansing, Michigan 48824, USA
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Gerhardt WW, Weck M. Investigations of Metal-Coordinated Peptides as Supramolecular Synthons. J Org Chem 2006; 71:6333-41. [PMID: 16901113 DOI: 10.1021/jo060395q] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This article describes the synthesis and controlled assembly of four model biological-hybrid scaffolds via coordination of a metal complex to four new tripeptides. Each model tripeptide investigated has either a central pyridyl glycyl or a pyridyl alanyl residue between two terminally protected glycines. All tripeptides were coordinated to their complementary recognition unit, a p-methoxy SCS-Pd pincer complex. The assembly events were fully characterized and investigated by 1H NMR, ES-MS, and isothermal titration calorimetry (ITC) to elucidate how the substitution and spatial distance of the pyridyl moiety to the peptide backbone affects the metal coordination. Using these characterization techniques, we have shown that the metal-coordination events in all cases are fast and quantitative and that the peptide backbones do not interfere with the self-assembly. The ITC analyses showed that the 4-pyridyl tripeptides are the tightest binding ligands toward the palladated pincer complexes with the alanyl derivative being the strongest overall, demonstrating the superiority of the 4-pyridyl peptides over their 3-pyridyl analogues. The measured association constants are comparable to other pincer-pyridine systems in DMSO suggesting that the controlled coordination of the metalated pincer/pyridine interaction is an interesting biological synthon and will allow for the future development of important noncovalent peptide-based hybrid materials.
Collapse
Affiliation(s)
- Warren W Gerhardt
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, Georgia 30332-0400, USA
| | | |
Collapse
|
41
|
Rigby KE, Chan J, Mackie J, Stillman MJ. Molecular dynamics study on the folding and metallation of the individual domains of metallothionein. Proteins 2005; 62:159-72. [PMID: 16288454 DOI: 10.1002/prot.20663] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
De novo synthesis of metallothionein (MT) initially forms the metal-free protein, which must, in a posttranslational reaction, coordinate metal ions via the cysteine sulfur ligands to form the fully folded protein structure. In this article, we use molecular dynamics (MD) and molecular mechanics (MM) to investigate the metal-dependent folding steps of the individual domains of recombinant human metallothionein (MT). The divalent metals were removed sequentially from the metal-sulfur M4(Scys)11 and M3(Scys)9 clusters within the alpha- and beta- domains of MT, respectively, after protonation of the previously coordinating sulfurs. With each of the four (alpha) or three (beta) sites defined, an order of metal release could be determined on the basis of a comparison of the strain energies for each combination by selecting the lowest energy demetallated conformations. The effect of an additional noninteracting, 34-residue peptide sequence on the demetallation order was assessed when bound to either the N- or C-termini of the individual domain fragments to identify the differences in cluster stability between one- and two-domain proteins. The N-terminal-bound peptide had no effect on the order of metal removal; however, addition to the C-terminus significantly altered the sequence. The number of hydrogen bonds was calculated for each energy-minimized demetallated structure and was increased on metal removal, indicating a possible stabilization mechanism for the protein structure via a hydrogen-bonding network. On complete demetallation, the cysteinyl sulfurs were shown to move to the exterior surface of the peptide chain.
Collapse
Affiliation(s)
- Kelly E Rigby
- Department of Chemistry, The University of Western Ontario, London, Ontario, Canada
| | | | | | | |
Collapse
|
42
|
Cooper WJ, Waters ML. Molecular recognition with designed peptides and proteins. Curr Opin Chem Biol 2005; 9:627-31. [PMID: 16257571 DOI: 10.1016/j.cbpa.2005.10.015] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2005] [Accepted: 10/12/2005] [Indexed: 12/01/2022]
Abstract
The design of proteins and peptides as molecular receptors is a rapidly growing area of research. Two primary approaches have been utilized, involving the minimization of known protein binding motifs or the de novo design of binding pockets within well-folded protein structures. These approaches are complementary and help define the minimum requirements necessary for biomolecular recognition. Recent advances in this area include the design of cavities within helix bundles for the binding of anesthetics, the design of beta-hairpins for the recognition of nucleotides and oligonucleotides, the redesign of protein binding sites for unique ligands, and the design of mini-proteins via protein grafting for the recognition of proteins and DNA. These advances provide exciting new opportunities to develop novel biosensors, de novo designed catalysts, exogenously triggered synthetic signal transduction cascades, and novel approaches to therapeutic treatments.
Collapse
Affiliation(s)
- W John Cooper
- Department of Chemistry, CB 3290, University of North Carolina, Chapel Hill, North Carolina 27599, USA
| | | |
Collapse
|
43
|
Kohn JE, Plaxco KW. Engineering a signal transduction mechanism for protein-based biosensors. Proc Natl Acad Sci U S A 2005; 102:10841-5. [PMID: 16046542 PMCID: PMC1182433 DOI: 10.1073/pnas.0503055102] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2005] [Accepted: 06/16/2005] [Indexed: 11/18/2022] Open
Abstract
Hybridization-induced conformational changes have been successfully used in biosensors for the transduction of DNA-binding events into readily observable optical or electronic signals. Similar signal transduction has not, however, proven of equal utility in protein-based biosensors. The discrepancy arises because, unlike ssDNA, most proteins do not undergo significant conformational changes upon ligand binding. Here, we describe a solution to this problem. We show that an arbitrarily selected, normally well folded protein can be rationally engineered such that it undergoes ligand-induced folding. The engineered protein responds rapidly (milliseconds) and selectively to its target, and it couples recognition with the largest possible conformational change: folding. These traits suggest that ligand-induced folding could serve as an ideal signal-transduction mechanism. Consistent with this claim, we demonstrate a label-free optical biosensor based on the effect that is sufficiently selective to detect its target even in complex, contaminant-ridden samples such as blood serum.
Collapse
Affiliation(s)
- Jonathan E Kohn
- Interdepartmental Program in Biomolecular Science and Engineering, Department of Chemistry and Biochemistry, University of California-Santa Barbara, Santa Barbara, CA 93106, USA
| | | |
Collapse
|
44
|
Franklin SJ, Welch† JT. THE HELIX-TURN-HELIX AS A SCAFFOLD FOR CHIMERIC NUCLEASE DESIGN. COMMENT INORG CHEM 2005. [DOI: 10.1080/02603590500201188] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|