1
|
Bonczidai-Kelemen D, Sciortino G, May NV, Garribba E, Fábián I, Lihi N. Introducing the penicillamine moiety into a metallopeptide mimicking the NiSOD enzyme: electronic and kinetic effects. Inorg Chem Front 2022. [DOI: 10.1039/d1qi01025e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel NiSOD related metallopeptide incorporates penicillamine moiety in the active center which alters both the electronic and kinetic features.
Collapse
Affiliation(s)
- Dóra Bonczidai-Kelemen
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
| | - Giuseppe Sciortino
- Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Technology, 43007 Tarragona, Spain
| | - Nóra V. May
- Centre for Structural Science, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Eugenio Garribba
- Dipartimento di Scienze Mediche, Chirurgiche e Sperimentali, Università di Sassari, I-07100 Sassari, Italy
| | - István Fábián
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| | - Norbert Lihi
- Department of Inorganic and Analytical Chemistry, University of Debrecen, H-4032, Debrecen, Hungary
- MTA-DE Redox and Homogeneous Catalytic Reaction Mechanisms Research Group, University of Debrecen, H-4032, Debrecen, Hungary
| |
Collapse
|
2
|
Yang X, DeLaney CR, Burns KT, Elrod LC, Mo W, Naumann H, Bhuvanesh N, Hall MB, Darensbourg MY. Self-Assembled Nickel-4 Supramolecular Squares and Assays for HER Electrocatalysts Derived Therefrom. Inorg Chem 2021; 60:7051-7061. [PMID: 33891813 DOI: 10.1021/acs.inorgchem.0c03613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Solid-state structures find a self-assembled tetrameric nickel cage with carboxylate linkages, [Ni(N2S'O)I(CH3CN)]4 ([Ni-I]40), resulting from sulfur acetylation by sodium iodoacetate of an [NiN2S]22+ dimer in acetonitrile. Various synthetic routes to the tetramer, best described from XRD as a molecular square, were discovered to generate the hexacoordinate nickel units ligated by N2Sthioether, iodide, and two carboxylate oxygens, one of which is the bridge from the adjacent nickel unit in [Ni-I]40. Removal of the four iodides by silver ion precipitation yields an analogous species but with an additional vacant coordination site, [Ni-Solv]+, a cation but with coordinated solvent molecules. This also recrystallizes as the tetramer [Ni-Solv]44+. In solution, dissociation into the (presumed) monomer occurs, with coordinating solvents occupying the vacant site [Ni(N2S'O)I(solv)]0, ([Ni-I]0). Hydrodynamic radii determined from 1H DOSY NMR data suggest that monomeric units are present as well in CD2Cl2. Evans method magnetism values are consistent with triplet spin states in polar solvents; however, in CD2Cl2 solutions no paramagnetism is evident. The abilities of [Ni-I]40 and [Ni-Solv]44+ to serve as sources of electrocatalysts, or precatalysts, for the hydrogen evolution reaction (HER) were explored. Cyclic voltammetry responses and bulk coulometry with gas chromatographic analysis demonstrated that a stronger acid, trifluoroacetic acid, as a proton source resulted in H2 production from both electroprecatalysts; however, electrocatalysis developed primarily from uncharacterized deposits on the electrode. With acetic acid as a proton source, the major contribution to the HER is from homogeneous electrocatalysis. Overpotentials of 490 mV were obtained for both the solution-phase [Ni-I]0 and [Ni-Solv]+. While the electrocatalyst derived from [Ni-Solv]+ has a substantially higher TOF (102 s-1) than [Ni-I]0 (19 s-1), it has a shorter catalytically active lifespan (4 h) in comparison to [Ni-I]0 (>18 h).
Collapse
Affiliation(s)
- Xuemei Yang
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Christopher R DeLaney
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Kyle T Burns
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Lindy C Elrod
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Wenting Mo
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Haley Naumann
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Nattamai Bhuvanesh
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Michael B Hall
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| | - Marcetta Y Darensbourg
- Texas A&M University, Department of Chemistry, College Station, Texas 77843, United States
| |
Collapse
|
3
|
Domergue J, Pécaut J, Proux O, Lebrun C, Gateau C, Le Goff A, Maldivi P, Duboc C, Delangle P. Mononuclear Ni(II) Complexes with a S3O Coordination Sphere Based on a Tripodal Cysteine-Rich Ligand: pH Tuning of the Superoxide Dismutase Activity. Inorg Chem 2019; 58:12775-12785. [PMID: 31545024 DOI: 10.1021/acs.inorgchem.9b01686] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The superoxide dismutase (SOD) activity of mononuclear NiII complexes, whose structures are inspired by the NiSOD, has been investigated. They have been designed with a sulfur-rich pseudopeptide ligand, derived from nitrilotriacetic acid (NTA), where the three acid functions are grafted with cysteines (L3S). Two mononuclear complexes, which exist in pH-dependent proportions, have been fully characterized by a combination of spectroscopic techniques including 1H NMR, UV-vis, circular dichroism, and X-ray absorption spectroscopy, together with theoretical calculations. They display similar square-planar S3O coordination, with the three thiolates of the three cysteine moieties from L3S coordinated to the NiII ion, together with either a water molecule at physiological pH, as [NiL3S(OH2)]-, or a hydroxo ion in more basic conditions, as [NiL3S(OH)]2-. The 1H NMR study has revealed that contrary to the hydroxo ligand, the bound water molecule is labile. The cyclic voltammogram of both complexes displays an irreversible one-electron oxidation process assigned to the NiII/NiIII redox system with Epa = 0.48 and 0.31 V versus SCE for NiL3S(OH2) and NiL3S(OH), respectively. The SOD activity of both complexes has been tested. On the basis of the xanthine oxidase assay, an IC50 of about 1 μM has been measured at pH 7.4, where NiL3S(OH2) is mainly present (93% of the NiII species), while the IC50 is larger than 100 μM at pH 9.6, where NiL3S(OH) is the major species (92% of the NiII species). Interestingly, only NiL3S(OH2) displays SOD activity, suggesting that the presence of a labile ligand is required. The SOD activity has been also evaluated under catalytic conditions at pH 7.75, where the ratio between NiL3S(OH2)/ NiL3S(OH) is about (86:14), and a rate constant, kcat = 1.8 × 105 M-1 s-1, has been measured. NiL3S(OH2) is thus the first low-molecular weight, synthetic, bioinspired Ni complex that displays catalytic SOD activity in water at physiological pH, although it does not contain any N-donor ligand in its first coordination sphere, as in the NiSOD. Overall, the data show that a key structural feature is the presence of a labile ligand in the coordination sphere of the NiII ion.
Collapse
Affiliation(s)
- Jérémy Domergue
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France.,Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Jacques Pécaut
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Olivier Proux
- Univ. Grenoble Alpes, CNRS, OSUG , 38000 Grenoble , France
| | - Colette Lebrun
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Christelle Gateau
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Alan Le Goff
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Maldivi
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| | - Carole Duboc
- Univ. Grenoble Alpes, CNRS, DCM , 38000 Grenoble , France
| | - Pascale Delangle
- Univ. Grenoble Alpes, CEA, CNRS, IRIG, SYMMES , 38000 Grenoble , France
| |
Collapse
|
4
|
Hsieh CC, Liu YC, Tseng MC, Chiang MH, Horng YC. Dioxygen activation by a dinuclear thiolate-ligated Fe(ii) complex. Dalton Trans 2019; 48:379-386. [PMID: 30516213 DOI: 10.1039/c8dt04491k] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Dioxygen activation by FeII thiolate complexes is relatively rare in biological and chemical systems because the sulfur site is at least as vulnerable as the iron site to oxidative modification. O2 activation by FeII-SR complexes with thiolate bound trans to the O2 binding site generally affords the FeIV[double bond, length as m-dash]O intermediate and oxidized thiolate. On the other hand, O2 activation by Fe(ii)-SR complexes with thiolate bound cis to the O2 binding site generates FeIII-O-FeIII or S-oxygenated complexes. The postulated FeIV[double bond, length as m-dash]O intermediate has only been identified in isopenicillin N synthase recently. We demonstrated here that O2 activation by a dinuclear FeII thiolate-rich complex produces a mononuclear FeIII complex and water with a supply of electron donors. The thiolate is bound cis to the postulated dioxygen binding site, and no FeIII-O-FeIII or S-oxygenated complex was observed. Although we have not detected the transient intermediate by spectroscopic measurements, the FeIV[double bond, length as m-dash]O intermediate is suggested to exist by theoretical calculation, and P-oxidation and hydride-transfer experiments. In addition, an unprecedented FeIII-O2-FeIII complex supported by thiolates was observed during the reaction by using a coldspray ionization time-of-flight mass (CSI-TOF MS) instrument. This is also supported by low-temperature UV-vis measurements. The intramolecular NHO[double bond, length as m-dash]FeIV hydrogen bonding, calculated by DFT, probably fine tunes the O2-activation process for intramolecular hydrogen abstraction, avoiding the S-oxygenation at cis-thiolate.
Collapse
Affiliation(s)
- Chang-Chih Hsieh
- Department of Chemistry, National Changhua University of Education, Changhua 50058, Taiwan.
| | | | | | | | | |
Collapse
|
5
|
Truong PT, Broering EP, Dzul SP, Chakraborty I, Stemmler TL, Harrop TC. Simultaneous nitrosylation and N-nitrosation of a Ni-thiolate model complex of Ni-containing SOD. Chem Sci 2018; 9:8567-8574. [PMID: 30568781 PMCID: PMC6253683 DOI: 10.1039/c8sc03321h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Accepted: 09/17/2018] [Indexed: 11/21/2022] Open
Abstract
Nitric oxide (NO) is used as a substrate analogue/spectroscopic probe of metal sites that bind and activate oxygen and its derivatives. To assess the interaction of superoxide with the Ni center in Ni-containing superoxide dismutase (NiSOD), we studied the reaction of NO+ and NO with the model complex, Et4N[Ni(nmp)(SPh-o-NH2-p-CF3)] (1; nmp2- = dianion of N-(2-mercaptoethyl)picolinamide; -SPh-o-NH2-p-CF3 = 2-amino-4-(trifluoromethyl)benzenethiolate) and its oxidized analogue 1ox , respectively. The ultimate products of these reactions are the disulfide of -SPh-o-NH2-p-CF3 and the S,S-bridged tetrameric complex [Ni4(nmp)4], a result of S-based redox activity. However, introduction of NO to 1 affords the green dimeric {NiNO}10 complex (Et4N)2[{Ni(κ2-SPh-o-NNO-p-CF3)(NO)}2] (2) via NO-induced loss of nmp2- as the disulfide and N-nitrosation of the aromatic thiolate. Complex 2 was characterized by X-ray crystallography and several spectroscopies. These measurements are in-line with other tetrahedral complexes in the {NiNO}10 classification. In contrast to the established stability of this metal-nitrosyl class, the Ni-NO bond of 2 is labile and release of NO from this unit was quantified by trapping the NO with a CoII-porphyrin (70-80% yield). In the process, the Ni ends up coordinated by two o-nitrosaminobenzenethiolato ligands to result in the structurally characterized trans-(Et4N)2[Ni(SPh-o-NNO-p-CF3)2] (3), likely by a disproportionation mechanism. The isolation and characterization of 2 and 3 suggest that: (i) the strongly donating thiolates dominate the electronic structure of Ni-nitrosyls that result in less covalent Ni-NO bonds, and (ii) superoxide undergoes disproportionation via an outer-sphere mechanism in NiSOD as complexes in the {NiNO}9/8 state have yet to be isolated.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Ellen P Broering
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry , Florida International University , Miami , Florida 33199 , USA
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry, and Molecular Biology , Wayne State University , Detroit , Michigan 48201 , USA
| | - Todd C Harrop
- Department of Chemistry , Center for Metalloenzyme Studies , The University of Georgia , Athens , Georgia 30602 , USA .
| |
Collapse
|
6
|
Freige MJ, Senaratne NK, Eichhorn DM. (2-{[2-(Dimethylamino)ethyl]iminomethyl}benzenethiolato-κ 3
N, N′, S)(4-methoxybenzenethiolato-κ S)nickel(II). IUCRDATA 2018. [DOI: 10.1107/s2414314618011677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
In the title compound, [Ni(C11H15N2S)(C7H7OS)] or [Ni(NNImS)(4-OCH3PhS)] (NNImS = 2-{[2-(dimethylamino)ethyl]iminomethyl}benzenethiolato), the NiII cation is coordinated by a tridentate NNImS ligand and a monodentate thiolate ligand giving an N2S2 coordination set defining an almost square-planar environment. The Ni—Namine bond in the coordination plane is approximately 0.1 Å longer than the Ni—Nimine bond.
Collapse
|
7
|
Tietze D, Sartorius J, Koley Seth B, Herr K, Heimer P, Imhof D, Mollenhauer D, Buntkowsky G. New insights into the mechanism of nickel superoxide degradation from studies of model peptides. Sci Rep 2017; 7:17194. [PMID: 29222438 PMCID: PMC5722923 DOI: 10.1038/s41598-017-17446-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 11/27/2017] [Indexed: 12/27/2022] Open
Abstract
A series of small, catalytically active metallopeptides, which were derived from the nickel superoxide dismutase (NiSOD) active site were employed to study the mechanism of superoxide degradation especially focusing on the role of the axial imidazole ligand. In the literature, there are contradicting propositions about the catalytic importance of the N-terminal histidine. Therefore, we studied the stability and activity of a set of eight NiSOD model peptides, which represent the major model systems discussed in the literature to date, yet differing in their length and their Ni-coordination. UV-Vis-coupled stopped-flow kinetic measurements and mass spectrometry analysis unveiled their high oxidation sensitivity in the presence of oxygen and superoxide resulting into a much faster Ni(II)-peptide degradation for the amine/amide Ni(II) coordination than for the catalytically inactive bis-amidate Ni(II) coordination. With respect to these results we determined the catalytic activities for all NiSOD mimics studied herein, which turned out to be in almost the same range of about 2 × 106 M-1 s-1. From these experiments, we concluded that the amine/amide Ni(II) coordination is clearly the key factor for catalytic activity. Finally, we were able to clarify the role of the N-terminal histidine and to resolve the contradictory literature propositions, reported in previous studies.
Collapse
Affiliation(s)
- Daniel Tietze
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| | - Jana Sartorius
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Banabithi Koley Seth
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Kevin Herr
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany
| | - Pascal Heimer
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Diana Imhof
- Pharmaceutical Biochemistry and Bioanalytics, Pharmaceutical Institute, University of Bonn, An der Immenburg 4, D-53119, Bonn, Germany
| | - Doreen Mollenhauer
- Institute of Physical Chemistry, Justus Liebig University Giessen, Heinrich-Buff-Ring 17, D-35392, Giessen, Germany
| | - Gerd Buntkowsky
- Eduard-Zintl Institute for Physical and Inorganic Chemistry, Darmstadt University of Technology, Alarich-Weiss-Str. 8, 64287, Darmstadt, Germany.
| |
Collapse
|
8
|
Truong PT, Gale EM, Dzul SP, Stemmler TL, Harrop TC. Steric Enforcement about One Thiolate Donor Leads to New Oxidation Chemistry in a NiSOD Model Complex. Inorg Chem 2017; 56:7761-7780. [PMID: 28459242 DOI: 10.1021/acs.inorgchem.7b00485] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Ni-containing superoxide dismutase (NiSOD) represents an unusual member of the SOD family due to the presence of oxygen-sensitive Ni-SCys bonds at its active site. Reported in this account is the synthesis and properties of the NiII complex of the N3S2 ligand [N3S2Me2]3- ([N3S2Me2]3- = deprotonated form of 2-((2-mercapto-2-methylpropyl)(pyridin-2-ylmethyl)amino)-N-(2-mercaptoethyl)acetamide), namely Na[Ni(N3S2Me2)] (2), as a NiSOD model that features sterically robust gem-(CH3)2 groups on the thiolate α-C positioned trans to the carboxamide. The crystal structure of 2, coupled with spectroscopic measurements from 1H NMR, X-ray absorption, IR, UV-vis, and mass spectrometry (MS), reveal a planar NiII (S = 0) ion coordinated by only the N2S2 basal donors of the N3S2 ligand. While the structure and spectroscopic properties of 2 resemble those of NiSODred and other models, the asymmetric S ligands open up new reaction paths upon chemical oxidation. One unusual oxidation product is the planar NiII-N3S complex [Ni(Lox)] (5; Lox = 2-(5,5-dimethyl-2-(pyridin-2-yl)thiazolidin-3-yl)-N-(2-mercaptoethyl)acetamide), where two-electron oxidation takes place at the substituted thiolate and py-CH2 carbon to generate a thiazolidine heterocycle. Electrochemical measurements of 2 reveal irreversible events wholly consistent with thiolate redox, which were identified by comparison to the ZnII complex Na[Zn(N3S2Me2)] (3). Although no reaction is observed between 2 and azide, reaction of 2 with superoxide produces multiple products on the basis of UV-vis and MS data, one of which is 5. Density functional theory (DFT) computations suggest that the HOMO in 2 is π* with primary contributions from Ni-dπ/S-pπ orbitals. These contributions can be modulated and biased toward Ni when electron-withdrawing groups are placed on the thiolate α-C. Analysis of the oxidized five-coordinate species 2ox* by DFT reveal a singly occupied spin-up (α) MO that is largely thiolate based, which supports the proposed NiIII-thiolate/NiII-thiyl radical intermediates that ultimately yield 5 and other products.
Collapse
Affiliation(s)
- Phan T Truong
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Eric M Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
9
|
Steiner RA, Dzul SP, Stemmler TL, Harrop TC. Synthesis and Speciation-Dependent Properties of a Multimetallic Model Complex of NiSOD That Exhibits Unique Hydrogen-Bonding. Inorg Chem 2017; 56:2849-2862. [PMID: 28212040 DOI: 10.1021/acs.inorgchem.6b02997] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The complex Na3[{NiII(nmp)}3S3BTAalk)] (1) (nmp2- = deprotonated form of N-(2-mercaptoethyl)picolinamide; H3S3BTAalk = N1,N3,N5-tris(2-mercaptoethyl)benzene-1,3,5-tricarboxamide, where H = dissociable protons), supported by the thiolate-benzenetricarboxamide scaffold (S3BTAalk), has been synthesized as a trimetallic model of nickel-containing superoxide dismutase (NiSOD). X-ray absorption spectroscopy (XAS) and 1H NMR measurements on 1 indicate that the NiII centers are square-planar with N2S2 coordination, and Ni-N and Ni-S distances of 1.95 and 2.16 Å, respectively. Additional evidence from IR indicates the presence of H-bonds in 1 from the approximately -200 cm-1 shift in νNH from free ligand. The presence of H-bonds allows for speciation that is temperature-, concentration-, and solvent-dependent. In unbuffered water and at low temperature, a dimeric complex (1A; λ = 410 nm) that aggregates through intermolecular NH···O═C bonds of BTA units is observed. Dissolution of 1 in pH 7.4 buffer or in unbuffered water at temperatures above 50 °C results in monomeric complex (1M; λ = 367 nm) linked through intramolecular NH···S bonds. DFT computations indicate a low energy barrier between 1A and 1M with nearly identical frontier MOs and Ni-ligand metrics. Notably, 1A and 1M exhibit remarkable stability in protic solvents such as MeOH and H2O, in stark contrast to monometallic [NiII(nmp)(SR)]- complexes. The reactivity of 1 with excess O2, H2O2, and O2•- is species-dependent. IR and UV-vis reveal that 1A in MeOH reacts with excess O2 to yield an S-bound sulfinate, but does not react with O2•-. In contrast, 1M is stable to O2 in pH 7.4 buffer, but reacts with O2•- to yield a putative [NiII(nmp)(O2)]- complex from release of the BTA-thiolate based on EPR.
Collapse
Affiliation(s)
- Ramsey A Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| | - Stephen P Dzul
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Timothy L Stemmler
- Departments of Pharmaceutical Sciences, and Biochemistry and Molecular Biology, Wayne State University , Detroit, Michigan 48201, United States
| | - Todd C Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia , 140 Cedar St, Athens, Georgia 30602, United States
| |
Collapse
|
10
|
Pladzyk A, Ozarowski A, Ponikiewski Ł. Crystal and electronic structures of Ni(II) silanethiolates containing flexible diamine ligands. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2015.10.034] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
11
|
Yadav S, Kumar S, Gupta R. Manganese Complexes of Pyrrole‐ and Indolecarboxamide Ligands: Synthesis, Structure, Electrochemistry, and Applications in Oxidative and Lewis‐Acid‐Assisted Catalysis. Eur J Inorg Chem 2015. [DOI: 10.1002/ejic.201500773] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sunil Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Sushil Kumar
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| | - Rajeev Gupta
- Department of Chemistry, University of Delhi, Delhi 110007, India, http://people.du.ac.in/~rgupta/
| |
Collapse
|
12
|
Wang J, Zheng R, Bai S, Gao X, Liu M, Yan W. Mongolian Almond (Prunus mongolica Maxim): The Morpho-Physiological, Biochemical and Transcriptomic Response to Drought Stress. PLoS One 2015; 10:e0124442. [PMID: 25893685 PMCID: PMC4404049 DOI: 10.1371/journal.pone.0124442] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 03/13/2015] [Indexed: 11/18/2022] Open
Abstract
Prunus mongolica Maxim, which is widely established in the Gobi Desert, shows extreme tolerance to drought. However, there is a lack of available transcriptomic resources for this species related to its response to water deficiency. To investigate the mechanisms that allow P. mongolica to maintain growth in extremely arid environments, the response of P. mongolica seedlings to drought stress was analyzed using morphological, physiological, biochemical and high-throughput sequencing approaches. We generated 28,713,735 and 26,650,133 raw reads from no-stress control and drought-stressed P. mongolica seedlings, respectively. In total, we obtained 67,352 transcripts with an average length of 874.44 bp. Compared with the no-stress control, 3,365 transcripts were differentially expressed in the drought-stressed seedlings, including 55.75% (1,876 transcripts) up-regulated and 44.25% (1,489 transcripts) down-regulated transcripts. The photosynthesis response showed a decreasing tendency under drought stress, but the changes in the levels of hormones (auxins, cytokinins and abscisic acid) resulted in the closing of stomata and decreased cell enlargement and division; these changes were effective for promoting P. mongolica survival in Gobi Desert. Next, we analyzed the aquaporin and superoxide dismutase gene families due to their importance in plant resistance to drought stress. We found that all of the plasma membrane intrinsic protein transcripts were down-regulated in the drought-stressed treatment, whereas drought did not affect the expression of nodulin intrinsic protein or small basic intrinsic protein transcripts in P. mongolica seedlings. In addition, activation of iron superoxide dismutase transcription and enhanced transcription of manganese superoxide dismutase were observed in P. mongolica to promote tolerance of drought stress. This study identified drought response genes in P. mongolica seedlings. Our results provide a significant contribution to the understanding of how P. mongolica responds to drought stress at the transcriptome level, which may help to elucidate molecular mechanisms associated with the drought response of almond plants.
Collapse
Affiliation(s)
- Jǖgang Wang
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Rong Zheng
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
- College of Life Science and Technology, Inner Mongolia Normal University, Hohhot, Inner Mongolia, China
| | - Shulan Bai
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Xiaomin Gao
- College of Agriculture, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Min Liu
- College of Forestry, Inner Mongolia Agricultural University, Hohhot, Inner Mongolia, China
| | - Wei Yan
- Institute of Forestry Science of Ordos, Ordos, Inner Mongolia, China
| |
Collapse
|
13
|
Broering EP, Dillon S, Gale EM, Steiner RA, Telser J, Brunold TC, Harrop TC. Accessing Ni(III)-thiolate versus Ni(II)-thiyl bonding in a family of Ni-N2S2 synthetic models of NiSOD. Inorg Chem 2015; 54:3815-28. [PMID: 25835183 PMCID: PMC4630978 DOI: 10.1021/ic503124f] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Superoxide dismutase (SOD) catalyzes the disproportionation of superoxide (O2(• -)) into H2O2 and O2(g) by toggling through different oxidation states of a first-row transition metal ion at its active site. Ni-containing SODs (NiSODs) are a distinct class of this family of metalloenzymes due to the unusual coordination sphere that is comprised of mixed N/S-ligands from peptide-N and cysteine-S donor atoms. A central goal of our research is to understand the factors that govern reactive oxygen species (ROS) stability of the Ni-S(Cys) bond in NiSOD utilizing a synthetic model approach. In light of the reactivity of metal-coordinated thiolates to ROS, several hypotheses have been proffered and include the coordination of His1-Nδ to the Ni(II) and Ni(III) forms of NiSOD, as well as hydrogen bonding or full protonation of a coordinated S(Cys). In this work, we present NiSOD analogues of the general formula [Ni(N2S)(SR')](-), providing a variable location (SR' = aryl thiolate) in the N2S2 basal plane coordination sphere where we have introduced o-amino and/or electron-withdrawing groups to intercept an oxidized Ni species. The synthesis, structure, and properties of the NiSOD model complexes (Et4N)[Ni(nmp)(SPh-o-NH2)] (2), (Et4N)[Ni(nmp)(SPh-o-NH2-p-CF3)] (3), (Et4N)[Ni(nmp)(SPh-p-NH2)] (4), and (Et4N)[Ni(nmp)(SPh-p-CF3)] (5) (nmp(2-) = dianion of N-(2-mercaptoethyl)picolinamide) are reported. NiSOD model complexes with amino groups positioned ortho to the aryl-S in SR' (2 and 3) afford oxidized species (2(ox) and 3(ox)) that are best described as a resonance hybrid between Ni(III)-SR and Ni(II)-(•)SR based on ultraviolet-visible (UV-vis), magnetic circular dichroism (MCD), and electron paramagnetic resonance (EPR) spectroscopies, as well as density functional theory (DFT) calculations. The results presented here, demonstrating the high percentage of S(3p) character in the highest occupied molecular orbital (HOMO) of the four-coordinate reduced form of NiSOD (NiSODred), suggest that the transition from NiSODred to the five-coordinate oxidized form of NiSOD (NiSODox) may go through a four-coordinate Ni-(•)S(Cys) (NiSODox-Hisoff) that is stabilized by coordination to Ni(II).
Collapse
Affiliation(s)
- Ellen P. Broering
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Stephanie Dillon
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Eric M. Gale
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Ramsey A. Steiner
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Thomas C. Brunold
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Todd C. Harrop
- Department of Chemistry and Center for Metalloenzyme Studies, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
14
|
Shearer J, Peck KL, Schmitt JC, Neupane KP. Cysteinate protonation and water hydrogen bonding at the active-site of a nickel superoxide dismutase metallopeptide-based mimic: implications for the mechanism of superoxide reduction. J Am Chem Soc 2014; 136:16009-22. [PMID: 25322331 DOI: 10.1021/ja5079514] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nickel-containing superoxide dismutase (NiSOD) is a mononuclear cysteinate-ligated nickel metalloenzyme that catalyzes the disproportionation of superoxide into dioxygen and hydrogen peroxide by cycling between Ni(II) and Ni(III) oxidation states. All of the ligating residues to nickel are found within the first six residues from the N-terminus, which has prompted several research groups to generate NiSOD metallopeptide-based mimics derived from the first several residues of the NiSOD sequence. To assess the viability of using these metallopeptide-based mimics (NiSOD maquettes) to probe the mechanism of SOD catalysis facilitated by NiSOD, we computationally explored the initial step of the O2(-) reduction mechanism catalyzed by the NiSOD maquette {Ni(II)(SOD(m1))} (SOD(m1) = HCDLP CGVYD PA). Herein we use spectroscopic (S K-edge X-ray absorption spectroscopy, electronic absorption spectroscopy, and circular dichroism spectroscopy) and computational techniques to derive the detailed active-site structure of {Ni(II)(SOD(m1))}. These studies suggest that the {Ni(II)(SOD(m1))} active-site possesses a Ni(II)-S(H(+))-Cys(6) moiety and at least one associated water molecule contained in a hydrogen-bonding interaction to the coordinated Cys(2) and Cys(6) sulfur atoms. A computationally derived mechanism for O2(-) reduction using the formulated active-site structure of {Ni(II)(SOD(m1))} suggests that O2(-) reduction takes place through an apparent initial outersphere hydrogen atom transfer (HAT) from the Ni(II)-S(H(+))-Cys(6) moiety to the O2(-) molecule. It is proposed that the water molecule aids in driving the reaction forward by lowering the Ni(II)-S(H(+))-Cys(6) pK(a). Such a mechanism is not possible in NiSOD itself for structural reasons. These results therefore strongly suggest that maquettes derived from the primary sequence of NiSOD are mechanistically distinct from NiSOD itself despite the similarities in the structure and physical properties of the metalloenzyme vs the NiSOD metallopeptide-based models.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, University of Nevada, Reno , Reno, Nevada 89557, United States
| | | | | | | |
Collapse
|
15
|
Shearer J. Insight into the structure and mechanism of nickel-containing superoxide dismutase derived from peptide-based mimics. Acc Chem Res 2014; 47:2332-41. [PMID: 24825124 DOI: 10.1021/ar500060s] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Nickel superoxide dismutase (NiSOD) is a nickel-containing metalloenzyme that catalyzes the disproportionation of superoxide through a ping-pong mechanism that relies on accessing reduced Ni(II) and oxidized Ni(III) oxidation states. NiSOD is the most recently discovered SOD. Unlike the other known SODs (MnSOD, FeSOD, and (CuZn)SOD), which utilize "typical" biological nitrogen and oxygen donors, NiSOD utilizes a rather unexpected ligand set. In the reduced Ni(II) oxidation state, NiSOD utilizes nitrogen ligands derived from the N-terminal amine and an amidate along with two cysteinates sulfur donors. These are unusual biological ligands, especially for an SOD: amine and amidate donors are underrepresented as biological ligands, whereas cysteinates are highly susceptible to oxidative damage. An axial histidine imidazole binds to nickel upon oxidation to Ni(III). This bond is long (2.3-2.6 Å) owing to a tight hydrogen-bonding network. All of the ligating residues to Ni(II) and Ni(III) are found within the first 6 residues from the NiSOD N-terminus. Thus, small nickel-containing metallopeptides derived from the first 6-12 residues of the NiSOD sequence can reproduce many of the properties of NiSOD itself. Using these nickel-containing metallopeptide-based NiSOD mimics, we have shown that the minimal sequence needed for nickel binding and reproduction of the structural, spectroscopic, and functional properties of NiSOD is H2N-HCXXPC. Insight into how NiSOD avoids oxidative damage has also been gained. Using small NiN2S2 complexes and metallopeptide-based mimics, it was shown that the unusual nitrogen donor atoms protect the cysteinates from oxidative damage (both one-electron oxidation and oxygen atom insertion reactions) by fine-tuning the electronic structure of the nickel center. Changing the nitrogen donor set to a bis-amidate or bis-amine nitrogen donor led to catalytically nonviable species owing to nickel-cysteinate bond oxidative damage. Only the amine/amidate nitrogen donor atoms within the NiSOD ligand set produce a catalytically viable species. These metallopeptide-based mimics have also hinted at the detailed mechanism of SOD catalysis by NiSOD. One such aspect is that the axial imidazole likely remains ligated to the Ni center under rapid catalytic conditions (i.e., high superoxide loads). This reduces the degree of structural rearrangement about the nickel center, leading to higher catalytic rates. Metallopeptide-based mimics have also shown that, although an axial ligand to Ni(III) is required for catalysis, the rates are highest when this is a weak interaction, suggesting a reason for the long axial His-Ni(III) bond found in NiSOD. These mimics have also suggested a surprising mechanistic insight: O2(-) reduction via a "H(•)" tunneling event from a R-S(H(+))-Ni(II) moiety to O2(-) is possible. The importance of this mechanism in NiSOD has not been verified.
Collapse
Affiliation(s)
- Jason Shearer
- Department
of Chemistry, University of Nevada, Reno, Reno, Nevada 89557, United States
| |
Collapse
|
16
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate nickel(II)/(III) complexes that mimic the catalytic cycle of nickel superoxide dismutase. Angew Chem Int Ed Engl 2014; 53:10184-9. [PMID: 25056843 DOI: 10.1002/anie.201404133] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 06/03/2014] [Indexed: 11/07/2022]
Abstract
A functional model complex of nickel superoxide dismutase (NiSOD) with a non-peptide ligand which mimics the full catalytic cycle of NiSOD is unknown. Similarly, it has not been fully elucidated whether NiSOD activity is a result of an outer- or inner-sphere electron-transfer mechanism. With this in mind, two octahedral nickel(II)/(III) complexes of a bis-tridentate N2 S donor carboxamide ligand, N-2-phenylthiophenyl-2'-pyridinecarboxamide (HL(Ph)), have been synthesized, structurally characterized, and their SOD activities examined. These complexes mimic the full catalytic cycle of NiSOD. Electrochemical experiments support an outer-sphere electron-transfer mechanism for their SOD activity.
Collapse
Affiliation(s)
- Sudip K Chatterjee
- Department of Chemistry, National Institute of Technology Durgapur, Mahatma Gandhi Avenue, Durgapur 713 209 (WB) (India)
| | | | | | | | | |
Collapse
|
17
|
Chatterjee SK, Maji RC, Barman SK, Olmstead MM, Patra AK. Hexacoordinate Nickel(II)/(III) Complexes that Mimic the Catalytic Cycle of Nickel Superoxide Dismutase. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201404133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
18
|
Nakane D, Wasada-Tsutsui Y, Funahashi Y, Hatanaka T, Ozawa T, Masuda H. A Novel Square-Planar Ni(II) Complex with an Amino—Carboxamido—Dithiolato-Type Ligand as an Active-Site Model of NiSOD. Inorg Chem 2014; 53:6512-23. [DOI: 10.1021/ic402574d] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Daisuke Nakane
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yuko Wasada-Tsutsui
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Yasuhiro Funahashi
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tsubasa Hatanaka
- Department
of Chemistry, Graduate School of Science, Osaka University, 1-1
Machikaneyama, Toyonaka, Osaka 560-0043, Japan
| | - Tomohiro Ozawa
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| | - Hideki Masuda
- Department
of Frontier Materials, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso, Showa, Nagoya 466-8555, Japan
| |
Collapse
|
19
|
Just an additional hydrogen bond can dramatically reduce the catalytic activity of Bacillus subtilis lipase A I12T mutant: An integration of computational modeling and experimental analysis. Comput Biol Med 2013; 43:1882-8. [DOI: 10.1016/j.compbiomed.2013.08.018] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2012] [Revised: 08/19/2013] [Accepted: 08/22/2013] [Indexed: 11/22/2022]
|
20
|
Discrete trigonal prism nickel clusters: Syntheses, crystal structures and characterizations. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.09.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Shearer J. Use of a metallopeptide-based mimic provides evidence for a proton-coupled electron-transfer mechanism for superoxide reduction by nickel-containing superoxide dismutase. Angew Chem Int Ed Engl 2013; 52:2569-72. [PMID: 23341243 DOI: 10.1002/anie.201209746] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Indexed: 11/10/2022]
Abstract
Sneaky little SOD! A metallopeptide-based mimic of nickel-containing superoxide dismutase was used to probe the mechanism of superoxide reduction by the metalloenzyme. Kinetic studies suggest a proton-coupled electron-transfer mechanism; large H/D kinetic isotope effects (KIE) are observed. XAS studies suggest the transferred H-atom is in the form of a Ni(II) -S(H)-Cys moiety.
Collapse
Affiliation(s)
- Jason Shearer
- Department of Chemistry, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
22
|
Shearer J. Use of a Metallopeptide-Based Mimic Provides Evidence for a Proton-Coupled Electron-Transfer Mechanism for Superoxide Reduction by Nickel-Containing Superoxide Dismutase. Angew Chem Int Ed Engl 2013. [DOI: 10.1002/ange.201209746] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
23
|
Broering EP, Truong PT, Gale EM, Harrop TC. Synthetic Analogues of Nickel Superoxide Dismutase: A New Role for Nickel in Biology. Biochemistry 2012; 52:4-18. [DOI: 10.1021/bi3014533] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Ellen P. Broering
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Phan T. Truong
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Eric M. Gale
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department
of Chemistry and Center for Metalloenzyme
Studies, The University of Georgia, 1001
Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
24
|
Krause ME, Glass AM, Jackson TA, Laurence JS. Embedding the Ni-SOD mimetic Ni-NCC within a polypeptide sequence alters the specificity of the reaction pathway. Inorg Chem 2012; 52:77-83. [PMID: 23214928 DOI: 10.1021/ic301175f] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The unique metal abstracting peptide asparagine-cysteine-cysteine (NCC) binds nickel in a square planar 2N:2S geometry and acts as a mimic of the enzyme nickel superoxide dismutase (Ni-SOD). The Ni-NCC tripeptide complex undergoes rapid, site-specific chiral inversion to dld-NCC in the presence of oxygen. Superoxide scavenging activity increases proportionally with the degree of chiral inversion. Characterization of the NCC sequence within longer peptides with absorption, circular dichroism (CD), and magnetic CD (MCD) spectroscopies and mass spectrometry (MS) shows that the geometry of metal coordination is maintained, though the electronic properties of the complex are varied to a small extent because of bis-amide, rather than amine/amide, coordination. In addition, both Ni-tripeptide and Ni-pentapeptide complexes have charges of -2. This study demonstrates that the chiral inversion chemistry does not occur when NCC is embedded in a longer polypeptide sequence. Nonetheless, the superoxide scavenging reactivity of the embedded Ni-NCC module is similar to that of the chirally inverted tripeptide complex, which is consistent with a minor change in the reduction potential for the Ni-pentapeptide complex. Together, this suggests that the charge of the complex could affect the SOD activity as much as a change in the primary coordination sphere. In Ni-NCC and other Ni-SOD mimics, changes in chirality, superoxide scavenging activity, and oxidation of the peptide itself all depend on the presence of dioxygen or its reduced derivatives (e.g., superoxide), and the extent to which each of these distinct reactions occurs is ruled by electronic and steric effects that emenate from the organization of ligands around the metal center.
Collapse
Affiliation(s)
- Mary E Krause
- Department of Pharmaceutical Chemistry, University of Kansas, Lawrence, Kansas 66047, United States
| | | | | | | |
Collapse
|
25
|
Shaw WJ. The Outer-Coordination Sphere: Incorporating Amino Acids and Peptides as Ligands for Homogeneous Catalysts to Mimic Enzyme Function. CATALYSIS REVIEWS-SCIENCE AND ENGINEERING 2012. [DOI: 10.1080/01614940.2012.679453] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
26
|
Galardon E, Roger T, Deschamps P, Roussel P, Tomas A, Artaud I. Synthesis of a FeIISH Complex Stabilized by an Intramolecular N–H···S Hydrogen Bond, Which Acts as a H2S Donor. Inorg Chem 2012; 51:10068-70. [DOI: 10.1021/ic300952d] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Erwan Galardon
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Thomas Roger
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| | - Patrick Deschamps
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Pascal Roussel
- Unité de Catalyse et Chimie
du Solide (UCCS), UMR 8012 CNRS, École Nationale Supérieure de Chimie de Lille, BP 90108, 59652
Villeneuve d’Ascq Cedex, France
| | - Alain Tomas
- Laboratoire
de Crystallographie
et RMN Biologiques, UMR 8015 CNRS, Université Paris Descartes, PRES Paris cité, 4 avenue de
l’Observatoire, 75270 Paris Cedex 06, France
| | - Isabelle Artaud
- Laboratoire de Chimie et Biochimie
Pharmacologique et Toxicologique, UMR 8601 CNRS, Université Paris Descartes, PRES
Paris cité, 45 rue des Saints Pères, 75270 Paris Cedex
06, France
| |
Collapse
|
27
|
Glass AM, Krause ME, Laurence JS, Jackson TA. Controlling the chiral inversion reaction of the metallopeptide Ni-asparagine-cysteine-cysteine with dioxygen. Inorg Chem 2012; 51:10055-63. [PMID: 22928993 DOI: 10.1021/ic301717q] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Synthetically generated metallopeptides have the potential to serve a variety of roles in biotechnology applications, but the use of such systems is often hampered by the inability to control secondary reactions. We have previously reported that the Ni(II) complex of the tripeptide LLL-asparagine-cysteine-cysteine, LLL-Ni(II)-NCC, undergoes metal-facilitated chiral inversion to dld-Ni(II)-NCC, which increases the observed superoxide scavenging activity. However, the mechanism for this process remained unexplored. Electronic absorption and circular dichroism studies of the chiral inversion reaction of Ni(II)-NCC reveal a unique dependence on dioxygen. Specifically, in the absence of dioxygen, the chiral inversion is not observed, even at elevated pH, whereas the addition of O(2) initiates this reactivity and concomitantly generates superoxide. Scavenging experiments using acetaldehyde are indicative of the formation of carbanion intermediates, demonstrating that inversion takes place by deprotonation of the alpha carbons of Asn1 and Cys3. Together, these data are consistent with the chiral inversion being dependent on the formation of a Ni(III)-NCC intermediate from Ni(II)-NCC and O(2). The data further suggest that the anionic thiolate and amide ligands in Ni(II)-NCC inhibit Cα-H deprotonation for the Ni(II) oxidation state, leading to a stable complex in the absence of O(2). Together, these results offer insights into the factors controlling reactivity in synthetic metallopeptides.
Collapse
Affiliation(s)
- Amanda M Glass
- Department of Chemistry, University of Kansas, Lawrence, Kansas 66045, USA
| | | | | | | |
Collapse
|
28
|
Bolligarla R, Das SK. Sulfur Oxygenation of [Ni(btdt)
2
]
2–
by Aerial Oxidation under Ambient Conditions – Syntheses, Crystal Structures, and Properties of [Bu
4
N]
2
[Ni(btdt)
2
] and [Bu
4
N]
2
[Ni(btdtO
2
)
2
]·H
2
O ({btdt}
2–
= 2,1,3‐Benzenethiadiazole‐5,6‐dithiolate). Eur J Inorg Chem 2012. [DOI: 10.1002/ejic.201101426] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Ramababu Bolligarla
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, Andhra Pradesh, India, Fax: +91‐40‐2301‐2460
| | - Samar K. Das
- School of Chemistry, University of Hyderabad, P. O. Central University, Hyderabad 500046, Andhra Pradesh, India, Fax: +91‐40‐2301‐2460
| |
Collapse
|
29
|
Tan C, Jin M, Ma X, Zhu Q, Huang Y, Wang Y, Hu S, Sheng T, Wu X. In situ synthesis of nickel tiara-like clusters with two different thiolate bridges. Dalton Trans 2012; 41:8472-6. [DOI: 10.1039/c2dt30524k] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
30
|
Herdt DR, Grapperhaus CA. Kinetic study of nickel-thiolate oxygenation by hydrogen peroxide. Implications for nickel-containing superoxide dismutase. Dalton Trans 2012; 41:364-6. [DOI: 10.1039/c1dt11300c] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
31
|
Zhang J, Adhikary A, King KM, Krause JA, Guan H. Substituent effects on Ni–S bond dissociation energies and kinetic stability of nickel arylthiolate complexes supported by a bis(phosphinite)-based pincer ligand. Dalton Trans 2012; 41:7959-68. [DOI: 10.1039/c2dt30407d] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
32
|
Gale EM, Cowart DM, Scott RA, Harrop TC. Dipeptide-based models of nickel superoxide dismutase: solvent effects highlight a critical role to Ni-S bonding and active site stabilization. Inorg Chem 2011; 50:10460-71. [PMID: 21932766 PMCID: PMC3561719 DOI: 10.1021/ic2016462] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nickel superoxide dismutase (Ni-SOD) catalyzes the disproportionation of the superoxide radical to O(2) and H(2)O(2) utilizing the Ni(III/II) redox couple. The Ni center in Ni-SOD resides in an unusual coordination environment that is distinct from other SODs. In the reduced state (Ni-SOD(red)), Ni(II) is ligated to a primary amine-N from His1, anionic carboxamido-N/thiolato-S from Cys2, and a second thiolato-S from Cys6 to complete a NiN(2)S(2) square-planar coordination motif. Utilizing the dipeptide N(2)S(2-) ligand, H(2)N-Gly-l-Cys-OMe (GC-OMeH(2)), an accurate model of the structural and electronic contributions provided by His1 and Cys2 in Ni-SOD(red), we constructed the dinuclear sulfur-bridged metallosynthon, [Ni(2)(GC-OMe)(2)] (1). From 1 we prepared the following monomeric Ni(II)-N(2)S(2) complexes: K[Ni(GC-OMe)(SC(6)H(4)-p-Cl)] (2), K[Ni(GC-OMe)(S(t)Bu)] (3), K[Ni(GC-OMe)(SC(6)H(4)-p-OMe)] (4), and K[Ni(GC-OMe)(SNAc)] (5). The design strategy in utilizing GC-OMe(2-) is analogous to one which we reported before (see Inorg. Chem. 2009, 48, 5620 and Inorg. Chem. 2010, 49, 7080) where Ni-SOD(red) active site mimics can be assembled at will with electronically variant RS(-) ligands. Discussed herein is our initial account pertaining to the aqueous behavior of isolable, small-molecule Ni-SOD model complexes (non-maquette based). Spectroscopic (FTIR, UV-vis, ESI-MS, XAS) and electrochemical (CV) measurements suggest that 2-5 successfully simulate many of the electronic features of Ni-SOD(red). Furthermore, the aqueous studies reveal a dynamic behavior with regard to RS(-) lability and bridging interactions, suggesting a stabilizing role brought about by the protein architecture.
Collapse
Affiliation(s)
- Eric M. Gale
- Department of Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Darin M. Cowart
- Department of Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Robert A. Scott
- Department of Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| | - Todd C. Harrop
- Department of Chemistry, University of Georgia, 1001 Cedar Street, Athens, Georgia 30602
| |
Collapse
|
33
|
Gale EM, Simmonett AC, Telser J, Schaefer HF, Harrop TC. Toward Functional Ni-SOD Biomimetics: Achieving a Structural/Electronic Correlation with Redox Dynamics. Inorg Chem 2011; 50:9216-8. [DOI: 10.1021/ic201822f] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Eric M. Gale
- Department of Chemistry and Center for Computational Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Andrew C. Simmonett
- Department of Chemistry and Center for Computational Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Joshua Telser
- Department of Biological, Chemical and Physical Sciences, Roosevelt University, 430 South Michigan Avenue, Chicago, Illinois 60605, United States
| | - Henry F. Schaefer
- Department of Chemistry and Center for Computational Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| | - Todd C. Harrop
- Department of Chemistry and Center for Computational Chemistry, The University of Georgia, 1001 Cedar Street, Athens, Georgia 30602, United States
| |
Collapse
|
34
|
Ponikiewski Ł, Pladzyk A, Wojnowski W, Becker B. Nickel(II) tri-tert-butoxysilanethiolates with N-heterocyclic bases as additional ligands: Synthesis, molecular structure and spectral studies. Polyhedron 2011. [DOI: 10.1016/j.poly.2011.06.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|