1
|
Chen C, Ikemoto S, Yokota GI, Higuchi K, Muratsugu S, Tada M. Low-temperature redox activity and alcohol ammoxidation performance on Cu- and Ru-incorporated ceria catalysts. Phys Chem Chem Phys 2024; 26:17979-17990. [PMID: 38814159 DOI: 10.1039/d4cp01432d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Transition-metal-incorporated cerium oxides with Cu and a small amount of Ru (Cu0.18Ru0.05CeOz) were prepared, and their low-temperature redox performance (<423 K) and catalytic alcohol ammoxidation performance were investigated. Temperature-programmed reduction/oxidation under H2/O2 and in situ X-ray absorption fine structure revealed the reversible redox behavior of the three metals, Cu, Ru, and Ce, in the low-temperature redox processes. The initially reduced Ru species decreased the reduction temperature of Cu oxides and promoted the activation of Ce species. Cu0.18Ru0.05CeOz selectively catalyzed the production of benzonitrile in the ammoxidation of benzyl alcohol. H2-treated Cu0.18Ru0.05CeOz showed a slightly larger initial conversion of benzyl alcohol than O2-treated Cu0.18Ru0.05CeOz, suggesting that the reduced structure of Cu0.18Ru0.05CeOz was active for the ammoxidation. The integration of both Cu and Ru resulted in the efficient promotion of ammoxidation, in which the Ru species were involved in the conversion of benzyl alcohol and Cu species were required for selective production of benzonitrile.
Collapse
Affiliation(s)
- Chaoqi Chen
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Satoru Ikemoto
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Gen-Ichi Yokota
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| | - Kimitaka Higuchi
- Institute of Materials and Systems for Sustainability, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Satoshi Muratsugu
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Mizuki Tada
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
- Integrated Research Consortium on Chemical Sciences (IRCCS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
- Research Center for Materials Science (RCMS), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan.
| |
Collapse
|
2
|
den Boer D, Hetterscheid DGH. Correlations between the Electronic Structure and Energetics of the Catalytic Steps in Homogeneous Water Oxidation Catalysis. J Am Chem Soc 2023; 145:23057-23067. [PMID: 37815483 PMCID: PMC10603781 DOI: 10.1021/jacs.3c05741] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Indexed: 10/11/2023]
Abstract
The development of an efficient electrocatalyst for the water oxidation reaction is limited by unfavorable scaling relations between catalytic intermediates, resulting in an overpotential. In contrast to heterogeneous catalysts, the electronic structure of homogeneous catalysts can be modified to a great extent due to a tailored ligand design. However, studies utilizing the tunability of organic ligands have rarely been conducted in a systematic manner and, as of yet, have not produced catalytic paths that avoid the aforementioned unfavorable scaling relations. To investigate the influence of electron-donating groups (EDGs) or electron-withdrawing groups (EWGs) on elementary steps in electrochemical water oxidation catalysis, cis-[Ru(bpy)2(H2O)]2+ (bpy = 2,2'-bipyridine) was selected as the scaffold that was modified with methyl, methoxy, chloro, and trifluoromethyl groups. This catalyst can undergo several electron transfer (ET), proton transfer (PT), and proton-coupled electron transfer (PCET) steps that were all probed experimentally. In this systematic study, it was found that PCET steps are relatively insensitive with respect to the presence of EDGs or EWGs, while the decoupled ET and PT steps are more heavily affected. However, the influence of the substituents decreases with an increasing oxidation state of Ru due to a lack of d-electrons available at the Ru center for π-backbonding to the bipyridine ligand. Therefore, the RuV/VI redox couple appears to be relatively unaffected by the substituent. Nevertheless, the implementation of EWGs can shift all oxidation events to a very narrow potential window. Not only do our findings illustrate how electronic substituents affect the entire potential energy landscape of the catalytic water oxidation reaction, but they also show that the cis-[Ru(bpy)2(H2O)]2+ compounds follow different design rules and scaling relations, as has been reported for every other oxygen evolution catalyst thus far.
Collapse
Affiliation(s)
- Daan den Boer
- Leiden Institute of Chemistry, Leiden University, 2300RA, Leiden, The Netherlands
| | | |
Collapse
|
3
|
Khan S, Sengupta S, Khan MA, Sk MP, Naskar S. Electrocatalytic water oxidation by heteroleptic ruthenium complexes of 2,6-bis(benzimidazolyl)pyridine Scaffold: a mechanistic investigation. Dalton Trans 2023. [PMID: 37194336 DOI: 10.1039/d3dt00128h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Three monomeric ruthenium complexes with anionic ligands [RuII(L)(L1)(DMSO)][ClO4] (1), [RuII(L)(L2)(DMSO)] [PF6] (2), and [RuII(L)(L3)(DMSO)][PF6] (3) [L = pyrazine carboxylate, L1 = 2,6-bis(1H-benzo[d]imidazol-2-yl)pyridine, L2 = 4,5-dmbimpy = 2,6-bis(5,6-dimethyl-1H-benzo[d]imidazol-2-yl)pyridine, L3 = 4-Fbimpy = 2,6-bis(5-fluoro-1H-benzo[d]imidazol-2-yl)pyridine, DMSO = dimethyl sulfoxide] as electrocatalysts for water oxidation are reported herein. The single crystal X-ray structure of the complexes reveals the presence of a DMSO molecule, which is supposed to be the labile group undergoing water exchange under the experimental condition of electrocatalysis. Linear sweep voltammetry (LSV) and cyclic voltammetry (CV) study shows the appearance of the catalytic wave for water oxidation at Ru(IV/V) oxidation. LSV, CV, and bulk electrolysis technique has been used to study the redox properties of the complexes and their electrocatalytic activity. A systematic variation on the ligand scaffold has been found to display a profound effect on the rate of electrocatalytic oxygen evolution. Electrochemical and theoretical (density functional theory) studies support the O-O bond formation during water oxidation passes through water nucleophilic attack (WNA) for all the ruthenium complexes. At pH 1, the maximum turnover frequency (TOFmax) has been experimentally obtained as 17556.25 s-1, 31648.41 s-1, and 39.69 s-1 for complexes 1, 2, and 3, respectively, from the foot of wave analysis (FOWA). The high value of TOFmax for complex 2 indicates its efficiency as an electrocatalyst for water oxidation in a homogeneous medium.
Collapse
Affiliation(s)
- Sahanwaj Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | - Swaraj Sengupta
- Department of Chemical Engineering, Birla institute of Technology-Mesra, Ranchi, India
| | - Md Adnan Khan
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| | | | - Subhendu Naskar
- Department of Chemistry, Birla institute of Technology-Mesra, Ranchi, India.
| |
Collapse
|
4
|
Tébar-Soler C, Martin-Diaconescu V, Simonelli L, Missyul A, Perez-Dieste V, Villar-García IJ, Brubach JB, Roy P, Haro ML, Calvino JJ, Concepción P, Corma A. Low-oxidation-state Ru sites stabilized in carbon-doped RuO 2 with low-temperature CO 2 activation to yield methane. NATURE MATERIALS 2023:10.1038/s41563-023-01540-1. [PMID: 37142737 DOI: 10.1038/s41563-023-01540-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 03/22/2023] [Indexed: 05/06/2023]
Abstract
The generation of methane fuel using surplus renewable energy with CO2 as the carbon source enables both the decarbonization and substitution of fossil fuel feedstocks. However, high temperatures are usually required for the efficient activation of CO2. Here we present a solid catalyst synthesized using a mild, green hydrothermal synthesis that involves interstitial carbon doped into ruthenium oxide, which enables the stabilization of Ru cations in a low oxidation state and a ruthenium oxycarbonate phase to form. The catalyst shows an activity and selectivity for the conversion of CO2 into methane at lower temperatures than those of conventional catalysts, with an excellent long-term stability. Furthermore, this catalyst is able to operate under intermittent power supply conditions, which couples very well with electricity production systems based on renewable energies. The structure of the catalyst and the nature of the ruthenium species were acutely characterized by combining advanced imaging and spectroscopic tools at the macro and atomic scales, which highlighted the low-oxidation-state Ru sites (Run+, 0 < n < 4) as responsible for the high catalytic activity. This catalyst suggests alternative perspectives for materials design using interstitial dopants.
Collapse
Affiliation(s)
- Carmen Tébar-Soler
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Valencia, Spain
| | | | - Laura Simonelli
- CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Vallès, Spain
| | - Alexander Missyul
- CELLS-ALBA Synchrotron Radiation Facility, Cerdanyola del Vallès, Spain
| | | | | | - Jean-Blaise Brubach
- Synchrotron SOLEIL, AILES Beamline, L'Orme des Merisiers, Saint Aubin, France
| | - Pascale Roy
- Synchrotron SOLEIL, AILES Beamline, L'Orme des Merisiers, Saint Aubin, France
| | - Miguel Lopez Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad Ciencias, Universidad de Cádiz, Cádiz, Spain
| | - Jose Juan Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad Ciencias, Universidad de Cádiz, Cádiz, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Valencia, Spain.
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Valencia, Spain.
| |
Collapse
|
5
|
Pavlović M, Kahrović E, Aranđelović S, Radulović S, Ilich PP, Grgurić-Šipka S, Ljubijankić N, Žilić D, Jurec J. Tumor selective Ru(III) Schiff bases complexes with strong in vitro activity toward cisplatin-resistant MDA-MB-231 breast cancer cells. J Biol Inorg Chem 2023; 28:263-284. [PMID: 36781474 DOI: 10.1007/s00775-023-01989-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 01/24/2023] [Indexed: 02/15/2023]
Abstract
Novel ruthenium(III) complexes of general formula Na[RuCl2(L1-3-N,O)2] where L(1-3) denote deprotonated Schiff bases (HL1-HL3) derived from 5-substituted salicyladehyde and alkylamine (propyl- or butylamine) were prepared and characterized based on elemental analysis, mass spectra, infrared, electron spin/paramagnetic resonance (ESR/EPR) spectroscopy, and cyclovoltammetric study. Optimization of five isomers of complex C1 was done by DFT calculation. The interaction of C1-C3 complexes with DNA (Deoxyribonucleic acid) and BSA (Bovine serum albumin) was investigated by electron spectroscopy and fluorescence quenching. The cytotoxic activity of C1-C3 was investigated in a panel of four human cancer cell lines (K562, A549, EA.hy926, MDA-MB-231) and one human non-tumor cell line (MRC-5). Complexes displayed an apparent cytoselective profile, with IC50 values in the low micromolar range from 1.6 ± 0.3 to 23.0 ± 0.1 µM. Cisplatin-resistant triple-negative breast cancer cells MDA-MB-231 displayed the highest sensitivity to complexes, with Ru(III) compound containing two chlorides and two deprotonated N-propyl-5-chloro-salicylidenimine (hereinafter C1) as the most potent (IC50 = 1.6 µM), and approximately ten times more active than cisplatin (IC50 = 21.9 µM). MDA-MB-231 cells treated for 24 h with C1 presented with apoptotic morphology, as seen by acridine orange/ethidium bromide staining, while 48 h of treatment induced DNA fragmentation, and necrotic changes in cells, as seen by flow cytometry analysis. Drug-accumulation study by inductively coupled plasma mass spectrometry (ICP-MS) demonstrated markedly higher intracellular accumulation of C1 compared with cisplatin.
Collapse
Affiliation(s)
- Marijana Pavlović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Emira Kahrović
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71 000, Sarajevo, Bosnia and Herzegovina.
| | - Sandra Aranđelović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Siniša Radulović
- Department of Experimental Oncology, Institute for Oncology and Radiology of Serbia, Pasterova 14, Belgrade, Serbia
| | - Predrag-Peter Ilich
- Department of Natural Sciences, Weissman School of Arts and Sciences, Baruch College/CUNY, New York City, NY, USA
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski Trg 12-16, Belgrade, Serbia
| | - Nevzeta Ljubijankić
- Laboratory for Inorganic and Bioinorganic Chemistry, Department of Chemistry, Faculty of Science, University of Sarajevo, Zmaja od Bosne 33, 71 000, Sarajevo, Bosnia and Herzegovina
| | - Dijana Žilić
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| | - Jurica Jurec
- Ruđer Bošković Institute, Bijenička 54, Zagreb, Croatia
| |
Collapse
|
6
|
Bury G, Pushkar Y. Computational Analysis of Structure - Activity Relationships in Highly Active Homogeneous Ruthenium-based Water Oxidation Catalysts. Catalysts 2022; 12:863. [PMID: 37309356 PMCID: PMC10260203 DOI: 10.3390/catal12080863] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2024] Open
Abstract
Linear free energy scaling relationships (LFESRs) and regression analysis may predict the catalytic performance of heterogeneous and recently, homogenous water oxidation catalysts (WOCs). This study analyses twelve homogeneous Ru-based catalysts - some, the most active catalysts studied: the Ru(tpy-R)(QC) and Ru(tpy-R)(4-pic)2 catalysts, where tpy is 2,2:6,2-terpyridine, QC is 8-quinolinecarboxylate and 4-pic is 4-picoline. Typical relationships studied among heterogenous and solid-state catalysts cannot be broadly applied to homogeneous catalysts. This subset of structurally similar catalysts with impressive catalytic activity deserves closer computational and statistical analysis of energetics correlating with measured catalytic activity. We report general methods of LFESR analysis yield insufficiently robust relationships between descriptor variables. However, volcano plot-based analysis grounded in Sabatier's principle reveals ranges of ideal relative energies of the RuIV=O and RuIV-OH intermediates and optimal changes in free energies of water nucleophilic attack on RuV=O. A narrow range of RuIV-OH to RuV=O redox potentials corresponding with the highest catalytic activities suggests facile access to the catalytically competent high-valent RuV=O state, often inaccessible from RuIV=O. Our work introduces experimental oxygen evolution rates into approaches of LFESR and Sabatier principle-based analysis, identifying a narrow yet fertile energetic landscape to bountiful oxygen-evolution activity, leading future rational design.
Collapse
Affiliation(s)
- Gabriel Bury
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907
| |
Collapse
|
7
|
Escobar-Bedia FJ, Lopez-Haro M, Calvino JJ, Martin-Diaconescu V, Simonelli L, Perez-Dieste V, Sabater MJ, Concepción P, Corma A. Active and Regioselective Ru Single-Site Heterogeneous Catalysts for Alpha-Olefin Hydroformylation. ACS Catal 2022. [DOI: 10.1021/acscatal.1c05737] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Francisco Javier Escobar-Bedia
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Miguel Lopez-Haro
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - Jose Juan Calvino
- Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Campus Rio San Pedro, Puerto Real, 11510 Cádiz, Spain
| | - Vlad Martin-Diaconescu
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Laura Simonelli
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Virginia Perez-Dieste
- CELLS─ALBA Synchrotron Radiation Facility, Carrer de la Llum 2-26, 08290 Cerdanyola del Vallès, Spain
| | - Maria J. Sabater
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Patricia Concepción
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| | - Avelino Corma
- Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
| |
Collapse
|
8
|
Levin N, Casadevall C, Cutsail GE, Lloret‐Fillol J, DeBeer S, Rüdiger O. XAS and EPR in Situ Observation of Ru(V) Oxo Intermediate in a Ru Water Oxidation Complex**. ChemElectroChem 2021; 9:e202101271. [PMID: 35874044 PMCID: PMC9302654 DOI: 10.1002/celc.202101271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Indexed: 11/13/2022]
Abstract
In this study, we combine in situ spectroelectrochemistry coupled with electron paramagnetic resonance (EPR) and X‐ray absorption spectroscopies (XAS) to investigate a molecular Ru‐based water oxidation catalyst bearing a polypyridinic backbone [RuII(OH2)(Py2Metacn)]2+. Although high valent key intermediate species arising in catalytic cycles of this family of compounds have remain elusive due to the lack of additional anionic ligands that could potentially stabilize them, mechanistic studies performed on this system proposed a water nucleophilic attack (WNA) mechanism for the O−O bond formation. Employing in situ experimental conditions and complementary spectroscopic techniques allowed to observe intermediates that provide support for a WNA mechanism, including for the first time a Ru(V) oxo intermediate based on the Py2Metacn ligand, in agreement with the previously proposed mechanism.
Collapse
Affiliation(s)
- Natalia Levin
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| | - Carla Casadevall
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans, 16 43007 Tarragona Spain
- Current address Department of Chemistry University of Cambridge Lensfield road CB2 1EW Cambridge UK
| | - George E. Cutsail
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
- University of Duisburg-Essen Department of Chemistry Universitätstr. 7 D-45141 Essen Germany
| | - Julio Lloret‐Fillol
- Institute of Chemical Research of Catalonia (ICIQ) Avinguda Països Catalans, 16 43007 Tarragona Spain
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion Stiftstr. 34–36 D-45470 Mülheim an der Ruhr Germany
| |
Collapse
|
9
|
Hong D, Liu Y, Wu L, Lo VK, Toy PH, Law S, Huang J, Che C. Ru
V
‐Acylimido Intermediate in [Ru
IV
(Por)Cl
2
]‐Catalyzed C–N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202100668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Dan‐Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Yungen Liu
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Vanessa Kar‐Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Patrick H. Toy
- Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Siu‐Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Jie‐Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
| | - Chi‐Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry The University of Hong Kong Pokfulam Road Hong Kong SAR China
- Department of Chemistry Southern University of Science and Technology Shenzhen Guangdong 518055 China
- HKU Shenzhen Institute of Research and Innovation Shenzhen 518053 China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited Units 1503–1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories Hong Kong SAR China
| |
Collapse
|
10
|
Gil-Sepulcre M, Lindner JO, Schindler D, Velasco L, Moonshiram D, Rüdiger O, DeBeer S, Stepanenko V, Solano E, Würthner F, Llobet A. Surface-Promoted Evolution of Ru-bda Coordination Oligomers Boosts the Efficiency of Water Oxidation Molecular Anodes. J Am Chem Soc 2021; 143:11651-11661. [PMID: 34293261 PMCID: PMC8343522 DOI: 10.1021/jacs.1c04738] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A new Ru oligomer of formula {[RuII(bda-κ-N2O2)(4,4'-bpy)]10(4,4'-bpy)}, 10 (bda is [2,2'-bipyridine]-6,6'-dicarboxylate and 4,4'-bpy is 4,4'-bipyridine), was synthesized and thoroughly characterized with spectroscopic, X-ray, and electrochemical techniques. This oligomer exhibits strong affinity for graphitic materials through CH-π interactions and thus easily anchors on multiwalled carbon nanotubes (CNT), generating the molecular hybrid material 10@CNT. The latter acts as a water oxidation catalyst and converts to a new species, 10'(H2O)2@CNT, during the electrochemical oxygen evolution process involving solvation and ligand reorganization facilitated by the interactions of molecular Ru catalyst and the surface. This heterogeneous system has been shown to be a powerful and robust molecular hybrid anode for electrocatalytic water oxidation into molecular oxygen, achieving current densities in the range of 200 mA/cm2 at pH 7 under an applied potential of 1.45 V vs NHE. The remarkable long-term stability of this hybrid material during turnover is rationalized based on the supramolecular interaction of the catalyst with the graphitic surface.
Collapse
Affiliation(s)
- Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ). Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain
| | - Joachim O Lindner
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany
| | - Dorothee Schindler
- Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Lucía Velasco
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, 28049 Madrid, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDEA-Nanociencia), Calle Faraday 9, 28049 Madrid, Spain
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Vladimir Stepanenko
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany.,Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Eduardo Solano
- NCD-SWEET beamline, ALBA synchrotron light source, Carrer de la Llum, 2, 26, 08290 Cerdanyola del Vallès, Barcelona, Spain
| | - Frank Würthner
- Center for Nanosystems Chemistry, Theodor-Boveri-Weg, 97074 Würzburg, Germany.,Institut für Organische Chemie, Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ). Barcelona Institute of Science and Technology (BIST), Avenida Països Catalans 16, 43007 Tarragona, Spain.,Departament de Quimica, Universitat Autonoma de Barcelona, Cerdanyola del Vallès, 08193 Barcelona, Spain
| |
Collapse
|
11
|
Hong DY, Liu Y, Wu L, Lo VKY, Toy PH, Law SM, Huang JS, Che CM. Ru V -Acylimido Intermediate in [Ru IV (Por)Cl 2 ]-Catalyzed C-N Bond Formation: Spectroscopic Characterization, Reactivity, and Catalytic Reactions. Angew Chem Int Ed Engl 2021; 60:18619-18629. [PMID: 33847064 DOI: 10.1002/anie.202100668] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 03/16/2021] [Indexed: 01/12/2023]
Abstract
Metal-catalyzed C-N bond formation reactions via acylnitrene transfer have recently attracted much attention, but direct detection of the proposed acylnitrenoid/acylimido M(NCOR) (R=aryl or alkyl) species in these reactions poses a formidable challenge. Herein, we report on Ru(NCOR) intermediates in C-N bond formation catalyzed by [RuIV (Por)Cl2 ]/N3 COR, a catalytic method applicable to aziridine/oxazoline formation from alkenes, amination of substituted indoles, α-amino ketone formation from silyl enol ethers, amination of C(sp3 )-H bonds, and functionalization of natural products and carbohydrate derivatives (up to 99 % yield). Experimental studies, including HR-ESI-MS and EPR measurements, coupled with DFT calculations, lend evidence for the formulation of the Ru(NCOR) acylnitrenoids as a RuV -imido species.
Collapse
Affiliation(s)
- Dan-Yan Hong
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Yungen Liu
- Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Liangliang Wu
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Vanessa Kar-Yan Lo
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Patrick H Toy
- Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Siu-Man Law
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Jie-Sheng Huang
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China
| | - Chi-Ming Che
- State Key Laboratory of Synthetic Chemistry and Department of Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong SAR, China.,Department of Chemistry, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen, 518053, China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F., Building 17W, Hong Kong Science and Technology Parks, New Territories, Hong Kong SAR, China
| |
Collapse
|
12
|
Garrido-Barros P, Moonshiram D, Gil-Sepulcre M, Pelosin P, Gimbert-Suriñach C, Benet-Buchholz J, Llobet A. Redox Metal-Ligand Cooperativity Enables Robust and Efficient Water Oxidation Catalysis at Neutral pH with Macrocyclic Copper Complexes. J Am Chem Soc 2020; 142:17434-17446. [PMID: 32935982 DOI: 10.1021/jacs.0c06515] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Water oxidation catalysis stands out as one of the most important reactions to design practical devices for artificial photosynthesis. Use of late first-row transition metal (TM) complexes provides an excellent platform for the development of inexpensive catalysts with exquisite control on their electronic and structural features via ligand design. However, the difficult access to their high oxidation states and the general labile character of their metal-ligand bonds pose important challenges. Herein, we explore a copper complex (12-) featuring an extended, π-delocalized, tetra-amidate macrocyclic ligand (TAML) as water oxidation catalyst and compare its activity to analogous systems with lower π-delocalization (22- and 32-). Their characterization evidences a special metal-ligand cooperativity in accommodating the required oxidative equivalents using 12- that is absent in 22- and 32-. This consists of charge delocalization promoted by easy access to different electronic states at a narrow energy range, corresponding to either metal-centered or ligand-centered oxidations, which we identify as an essential factor to stabilize the accumulated oxidative charges. This translates into a significant improvement in the catalytic performance of 12- compared to 22- and 32- and leads to one of the most active and robust molecular complexes for water oxidation at neutral pH with a kobs of 140 s-1 at an overpotential of only 200 mV. In contrast, 22- degrades under oxidative conditions, which we associate to the impossibility of efficiently stabilizing several oxidative equivalents via charge delocalization, resulting in a highly reactive oxidized ligand. Finally, the acyclic structure of 32- prevents its use at neutral pH due to acidic demetalation, highlighting the importance of the macrocyclic stabilization.
Collapse
Affiliation(s)
- Pablo Garrido-Barros
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Dooshaye Moonshiram
- Instituto Madrileño de Estudios Avanzados en Nanociencia (IMDE A Nanociencia), Calle Faraday, 9, 28049 Madrid, Spain
| | - Marcos Gil-Sepulcre
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Primavera Pelosin
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans, 16, 43007 Tarragona, Spain.,Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
13
|
Karbakhsh Ravari A, Pineda-Galvan Y, Huynh A, Ezhov R, Pushkar Y. Facile Light-Induced Transformation of [Ru II(bpy) 2(bpyNO)] 2+ to [Ru II(bpy) 3] 2. Inorg Chem 2020; 59:13880-13887. [PMID: 32924462 DOI: 10.1021/acs.inorgchem.0c01446] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Ru-based coordination compounds have important applications as photosensitizers and catalysts. [RuII(bpy)2(bpyNO)]2+ (bpy = 2,2'-bipyridine and bpyNO = 2,2'-bipyridine-N-oxide) was reported to be extremely light-sensitive, but its light-induced transformation pathways have not been analyzed. Here, we elucidated a mechanism of the light-induced transformation of [RuII(bpy)2(bpyNO)]2+ using UV-vis, EPR, resonance Raman, and NMR spectroscopic techniques. The spectroscopic analysis was augmented with the DFT calculations. We concluded that upon 530-650 nm light excitation, 3[RuIII(bpyNO-•)(bpy)2]2+ is formed similarly to the 3[RuIII(bpy-•)(bpy)2]2+ light-induced state of the well-known photosensitizer [RuII(bpy)3]2+. An electron localization on the bpyNO ligand was confirmed by obtaining a unique EPR signal of reduced [RuII(bpy)2(bpyNO-•)]+ (gxx = 2.02, gyy = 1.99, and gzz = 1.87 and 14N hfs Axx = 12 G, Ayy = 34 G, and Azz = 11 G). 3[RuIII(bpyNO-•)(bpy)2]2+ may evolve via breaking of the Ru-O-N fragment at two different positions resulting in [RuIV═O(bpy)2(bpyout)]2+ for breakage at the O-|-N bond and [RuII(H2O)(bpy)2(bpyNOout)]2+ for breakage at the Ru-|-O bond. These pathways were found to have comparable ΔG. A reduction of [RuIV═O(bpy)2(bpyout)]2+ may result in water elimination and formation of [RuII(bpy)3]2+. The expected intermediates, [RuIII(bpy)2(bpyNO)]3+ and [RuIII(bpy)3]3+, were detected by EPR. In addition, a new signal with gxx = 2.38, gyy = 2.10, and gzz = 1.85 was observed and tentatively assigned to a complex with the dissociated ligand, such as [RuIII(H2O)(bpy)2(bpyNOout)]3+. The spectroscopic signatures of [RuIV═O(bpy)2(bpyout)]2+ were not observed, although DFT analysis and [RuII(bpy)3]2+ formation suggest this intermediate. Thus, [RuII(bpy)2(bpyNO)]2+ has potential as a light-induced oxidizer.
Collapse
Affiliation(s)
- Alireza Karbakhsh Ravari
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Alexander Huynh
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics and Astronomy, Purdue University, West Lafayette, Indiana 47907, United States
| |
Collapse
|
14
|
Ezhov R, Ravari AK, Pushkar Y. Characterization of the Fe
V
=O Complex in the Pathway of Water Oxidation. Angew Chem Int Ed Engl 2020; 59:13502-13505. [PMID: 32369663 DOI: 10.1002/anie.202003278] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/15/2020] [Indexed: 02/02/2023]
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Alireza Karbakhsh Ravari
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Yulia Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| |
Collapse
|
15
|
Ezhov R, Ravari AK, Pushkar Y. Characterization of the Fe
V
=O Complex in the Pathway of Water Oxidation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202003278] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Roman Ezhov
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Alireza Karbakhsh Ravari
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| | - Yulia Pushkar
- Department of Physics and Astronomy Purdue University 525 Northwestern avenue West Lafayette IN 47906 USA
| |
Collapse
|
16
|
Levin N, Peredkov S, Weyhermüller T, Rüdiger O, Pereira NB, Grötzsch D, Kalinko A, DeBeer S. Ruthenium 4d-to-2p X-ray Emission Spectroscopy: A Simultaneous Probe of the Metal and the Bound Ligands. Inorg Chem 2020; 59:8272-8283. [PMID: 32390417 PMCID: PMC7298721 DOI: 10.1021/acs.inorgchem.0c00663] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
![]()
Ruthenium 4d-to-2p
X-ray emission spectroscopy (XES) was systematically
explored for a series of Ru2+ and Ru3+ species.
Complementary density functional theory calculations were utilized
to allow for a detailed assignment of the experimental spectra. The
studied complexes have a range of different coordination spheres,
which allows the influence of the ligand donor/acceptor properties
on the spectra to be assessed. Similarly, the contributions of the
site symmetry and the oxidation state of the metal were analyzed.
Because the 4d-to-2p emission lines are dipole-allowed, the spectral
features are intense. Furthermore, in contrast with K- or L-edge X-ray
absorption of 4d transition metals, which probe the unoccupied levels,
the observed 4p-to-2p XES arises from electrons in filled-ligand-
and filled-metal-based orbitals, thus providing simultaneous access
to the ligand and metal contributions to bonding. As such, 4d-to-2p
XES should be a promising tool for the study of a wide range of 4d
transition-metal compounds. Ruthenium 4d-to-2p
XES was applied to a series of molecular
Ru complexes with varied coordination environment, oxidation state
and site symmetry. Through correlations to calculations, it is demonstrated
the Ru 4d-to-2p XES provides a unique probe of both the filled ligand np and filled metal 4d orbitals, providing a promising new
tool for the study of a wide range of 4d transition metals.
Collapse
Affiliation(s)
- Natalia Levin
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Sergey Peredkov
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Thomas Weyhermüller
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Olaf Rüdiger
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Nilson B Pereira
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| | - Daniel Grötzsch
- Institut für Optik und Atomare Physik (IOAP), TU-Berlin, Hardenbergstr. 36, 10623 Berlin, Germany
| | - Aleksandr Kalinko
- Universität Paderborn, Warburger Straße 100, 33098 Paderborn, Germany.,DESY Photon Science, Notkestrasse 85, 22603 Hamburg, Germany
| | - Serena DeBeer
- Max Planck Institute for Chemical Energy Conversion, Stiftstraße 34-36, 45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
17
|
Ravari AK, Zhu G, Ezhov R, Pineda-Galvan Y, Page A, Weinschenk W, Yan L, Pushkar Y. Unraveling the Mechanism of Catalytic Water Oxidation via de Novo Synthesis of Reactive Intermediate. J Am Chem Soc 2019; 142:884-893. [PMID: 31865704 DOI: 10.1021/jacs.9b10265] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Alireza Karbakhsh Ravari
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Guibo Zhu
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Roman Ezhov
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Yuliana Pineda-Galvan
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Allison Page
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Whitney Weinschenk
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Lifen Yan
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| | - Yulia Pushkar
- Department of Physics, Purdue University, 525 Northwestern, West Lafayette, Indiana 47907, United States
| |
Collapse
|
18
|
Amtawong J, Balcells D, Wilcoxen J, Handford RC, Biggins N, Nguyen AI, Britt RD, Tilley TD. Isolation and Study of Ruthenium-Cobalt Oxo Cubanes Bearing a High-Valent, Terminal Ru V-Oxo with Significant Oxyl Radical Character. J Am Chem Soc 2019; 141:19859-19869. [PMID: 31697896 DOI: 10.1021/jacs.9b10320] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
High-valent RuV-oxo intermediates have long been proposed in catalytic oxidation chemistry, but investigations into their electronic and chemical properties have been limited due to their reactive nature and rarity. The incorporation of Ru into the [Co3O4] subcluster via the single-step assembly reaction of CoII(OAc)2(H2O)4 (OAc = acetate), perruthenate (RuO4-), and pyridine (py) yielded an unprecedented Ru(O)Co3(μ3-O)4(OAc)4(py)3 cubane featuring an isolable, yet reactive, RuV-oxo moiety. EPR, ENDOR, and DFT studies reveal a valence-localized [RuV(S = 1/2)CoIII3(S = 0)O4] configuration and non-negligible covalency in the cubane core. Significant oxyl radical character in the RuV-oxo unit is experimentally demonstrated by radical coupling reactions between the oxo cubane and both 2,4,6-tri-tert-butylphenoxyl and trityl radicals. The oxo cubane oxidizes organic substrates and, notably, reacts with water to form an isolable μ-oxo bis-cubane complex [(py)3(OAc)4Co3(μ3-O)4Ru]-O-[RuCo3(μ3-O)4(OAc)4(py)3]. Redox activity of the RuV-oxo fragment is easily tuned by the electron-donating ability of the distal pyridyl ligand set at the Co sites demonstrating strong electronic communication throughout the entire cubane cluster. Natural bond orbital calculations reveal cooperative orbital interactions of the [Co3O4] unit in supporting the RuV-oxo moiety via a strong π-electron donation.
Collapse
Affiliation(s)
- Jaruwan Amtawong
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - David Balcells
- Hylleraas Centre for Quantum Molecular Sciences, Department of Chemistry , University of Oslo , P.O. Box 1033, Blindern, 0315 Oslo , Norway
| | - Jarett Wilcoxen
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - Rex C Handford
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - Naomi Biggins
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States
| | - Andy I Nguyen
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| | - R David Britt
- Department of Chemistry , University of California , Davis , California 95616 , United States
| | - T Don Tilley
- Department of Chemistry , University of California at Berkeley , Berkeley , California 94720-1460 , United States.,Chemical Sciences Division , Lawrence Berkeley National Laboratory , Berkeley , California 94720 , United States
| |
Collapse
|
19
|
Pineda-Galvan Y, Ravari AK, Shmakov S, Lifshits L, Kaveevivitchai N, Thummel R, Pushkar Y. Detection of the site protected 7-coordinate RuV = O species and its chemical reactivity to enable catalytic water oxidation. J Catal 2019. [DOI: 10.1016/j.jcat.2019.05.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Shatskiy A, Bardin AA, Oschmann M, Matheu R, Benet-Buchholz J, Eriksson L, Kärkäs MD, Johnston EV, Gimbert-Suriñach C, Llobet A, Åkermark B. Electrochemically Driven Water Oxidation by a Highly Active Ruthenium-Based Catalyst. CHEMSUSCHEM 2019; 12:2251-2262. [PMID: 30759324 DOI: 10.1002/cssc.201900097] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/12/2019] [Indexed: 06/09/2023]
Abstract
The highly active ruthenium-based water oxidation catalyst [RuX (mcbp)(OHn )(py)2 ] [mcbp2- =2,6-bis(1-methyl-4-(carboxylate)benzimidazol-2-yl)pyridine; n=2, 1, and 0 for X=II, III, and IV, respectively], can be generated in a mixture of RuIII and RuIV states from either [RuII (mcbp)(py)2 ] or [RuIII (Hmcbp)(py)2 ]2+ precursors. The precursor complexes are isolated and characterized by single-crystal X-ray analysis, NMR, UV/Vis, EPR, and FTIR spectroscopy, ESI-HRMS, and elemental analysis, and their redox properties are studied in detail by electrochemical and spectroscopic methods. Unlike the parent catalyst [Ru(tda) (py)2 ] (tda2- =[2,2':6',2''-terpyridine]-6,6''-dicarboxylate), for which full transformation into the catalytically active species [RuIV (tda)(O)(py)2 ] could not be carried out, stoichiometric generation of the catalytically active Ru-aqua complex [RuX (mcbp)(OHn )(py)2 ] from the RuII precursor was achieved under mild conditions (pH 7.0) and short reaction times. The redox properties of the catalyst were studied and its activity for electrocatalytic water oxidation was evaluated, reaching a maximum turnover frequency (TOFmax ) of around 40 000 s-1 at pH 9.0 (from foot-of-the-wave analysis), which is comparable to the activity of the state-of-the-art catalyst [RuIV (tda)(O)(py)2 ].
Collapse
Affiliation(s)
- Andrey Shatskiy
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Andrey A Bardin
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
- Current address: Institute of Problems of Chemical Physics, Russian Academy of Sciences, Academician Semenov's Prospect 1g, 142432 Chernogolovka, Moscow Region, Russia
| | - Michael Oschmann
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Roc Matheu
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Jordi Benet-Buchholz
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Lars Eriksson
- Department of Materials and Environmental Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| | - Markus D Kärkäs
- Department of Chemistry, KTH Royal Institute of Technology, Teknikringen 30, 10044, Stockholm, Sweden
| | - Eric V Johnston
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
- Current address: Sigrid Therapeutics AB, Sankt Göransgatan 159, 11217, Stockholm, Sweden
| | - Carolina Gimbert-Suriñach
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
| | - Antoni Llobet
- Institute of Chemical Research of Catalonia (ICIQ), Barcelona Institute of Science and Technology (BIST), Avinguda Països Catalans 16, 43007, Tarragona, Spain
- Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Björn Åkermark
- Department of Organic Chemistry, Arrhenius Laboratory, Stockholm University, Svante Arrhenius väg 16C, 10691, Stockholm, Sweden
| |
Collapse
|
21
|
Kayanuma M, Shoji M, Shigeta Y. Photosubstitution Reaction of cis-[Ru(bpy) 2(CH 3CN) 2] 2+ and cis-[Ru(bpy) 2(NH 3) 2] 2+ in Aqueous Solution via Monoaqua Intermediate. J Phys Chem A 2019; 123:2497-2502. [PMID: 30864800 DOI: 10.1021/acs.jpca.8b11399] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoinduced ligand exchange reaction of Ru(II) complexes in aqueous solution was studied using density functional theory (DFT). The optimized structures of the lowest triplet state of cis-[Ru(bpy)2(CH3CN)2]2+ (bpy = bipyridine), cis-[Ru(bpy)2(NH3)2]2+, and their monoaqua complexes were analyzed. The metal-centered (3MC) structure was lower than the metal-to-ligand charge transfer (3MLCT) structure for cis-[Ru(bpy)2(CH3CN)2]2+, whereas the 3MLCT structure was lower than the 3MC structure for cis-[Ru(bpy)2(NH3)2]2+. Such a difference would correlate with the higher quantum yield of the former complex. For the monoaqua complexes, the most stable local minimum structure was the 3MC structure, in which the Ru-OH2O and Ru-Nbpy ( trans to the oxygen) bonds were elongated. Therefore, the dissociation of the H2O ligand would be preferred to that of the CH3CN (or NH3) ligand from the monoaqua intermediate, which might result in the reformation of the monoaqua intermediate, and thus, the formation of the bis-aqua product would take a longer time than that of the monoaqua intermediate.
Collapse
Affiliation(s)
- Megumi Kayanuma
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Mitsuo Shoji
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| | - Yasuteru Shigeta
- Center for Computational Sciences , University of Tsukuba , 1-1-1 Tennodai , Tsukuba , Ibaraki 305-8577 , Japan
| |
Collapse
|
22
|
Hsieh HC, Tsai PW, Chang YC, Weng SF, Sheu HS, Chuang YC, Lee CS. Oxidative steam reforming of ethanol over MxLa2−xCe1.8Ru0.2O7−δ (M = Mg, Ca) catalysts: effect of alkaline earth metal substitution and support on stability and activity. RSC Adv 2019; 9:39932-39944. [PMID: 35541368 PMCID: PMC9076197 DOI: 10.1039/c9ra08385e] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 11/20/2019] [Indexed: 11/21/2022] Open
Abstract
Alkaline earth metal substitutions on the A-site of pyrochlore oxide MxLa2−xCe1.8Ru0.2O7−δ (M = Mg, Ca) were studied as catalyst materials for oxidative/autothermal steam reforming of ethanol (OSRE/ATR).
Collapse
Affiliation(s)
- Ho-Chen Hsieh
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Graduate Degree Program of Science and Technology of Accelerator Light Source
| | - Ping-Wen Tsai
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Yuan-Chia Chang
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Sheng-Feng Weng
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
| | - Hwo-Shuenn Sheu
- Graduate Degree Program of Science and Technology of Accelerator Light Source
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- National Synchrotron Radiation Research Center
| | - Yu-Chun Chuang
- National Synchrotron Radiation Research Center
- Hsinchu
- Taiwan
| | - Chi-Shen Lee
- Department of Applied Chemistry
- National Chiao Tung University
- Hsinchu 30010
- Taiwan
- Center for Emergent Functional Matter Science
| |
Collapse
|
23
|
Guo S, Chen KK, Dong R, Zhang ZM, Zhao J, Lu TB. Robust and Long-Lived Excited State Ru(II) Polyimine Photosensitizers Boost Hydrogen Production. ACS Catal 2018. [DOI: 10.1021/acscatal.8b02226] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Song Guo
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Kai-Kai Chen
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Ru Dong
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Zhi-Ming Zhang
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Jianzhang Zhao
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, China
| | - Tong-Bu Lu
- Institute for New Energy Materials and Low Carbon Technologies, School of Materials Science and Engineering, Tianjin University of Technology, Tianjin 300384, China
| |
Collapse
|
24
|
Pushkar Y, Davis KM, Palenik MC. Model of the Oxygen Evolving Complex Which Is Highly Predisposed to O-O Bond Formation. J Phys Chem Lett 2018; 9:3525-3531. [PMID: 29863871 DOI: 10.1021/acs.jpclett.8b00800] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Light-driven water oxidation is a fundamental reaction in the biosphere. The Mn4Ca cluster of photosystem II cycles through five redox states termed S0-S4, after which oxygen is evolved. Critically, the timing of O-O bond formation within the Kok cycle remains unknown. By combining recent crystallographic, spectroscopic, and DFT results, we demonstrate an atomistic S3 state model with the possibility of a low barrier to O-O bond formation prior to the final oxidation step. Furthermore, the associated one electron oxidized S4 state does not provide more advantages in terms of spin alignment or the energy of O-O bond formation. We propose that a high energy peroxide isoform of the S3 state can preferentially be oxidized by Tyr zox in the course of final electron transfer leading to O2 evolution. Such a mechanism may explain the peculiar kinetic behavior of O2 evolution as well as serve as an evolutionary adaptation to avoid release of the harmful peroxides.
Collapse
Affiliation(s)
- Yulia Pushkar
- Department of Physics and Astronomy , Purdue University , West Lafayette , Indiana 47907 , United States
| | - Katherine M Davis
- Department of Chemistry , Princeton University , Princeton , New Jersey 08544 , United States
| | - Mark C Palenik
- Chemistry Division , Naval Research Laboratory , NRC Research Associate, Code 6189, 4555 Overlook Avenue SW , Washington, DC 20375 , United States
| |
Collapse
|
25
|
Shing KP, Cao B, Liu Y, Lee HK, Li MD, Phillips DL, Chang XY, Che CM. Arylruthenium(III) Porphyrin-Catalyzed C-H Oxidation and Epoxidation at Room Temperature and [Ru V(Por)(O)(Ph)] Intermediate by Spectroscopic Analysis and Density Functional Theory Calculations. J Am Chem Soc 2018; 140:7032-7042. [PMID: 29781605 DOI: 10.1021/jacs.8b04470] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The development of highly active and selective metal catalysts for efficient oxidation of hydrocarbons and identification of the reactive intermediates in the oxidation catalysis are long-standing challenges. In the rapid hydrocarbon oxidation catalyzed by ruthenium(IV) and -(III) porphyrins, the putative Ru(V)-oxo intermediates remain elusive. Herein we report that arylruthenium(III) porphyrins are highly active catalysts for hydrocarbon oxidation. Using catalyst [RuIII(TDCPP)(Ph)(OEt2)] (H2TDCPP = 5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrin), the oxidation of C-H bonds of various hydrocarbons with oxidant m-CPBA at room temperature gave alcohols/ketones in up to 99% yield within 1 h; use of [ nBu4N]IO4 as a mild alternative oxidant avoided formation of lactone from cyclic ketone in C-H oxidation, and the catalytic epoxidation with up to 99% yield and high selectivity (no aldehydes as side product) was accomplished within 5 min. UV-vis, electrospray ionization-mass spectrometry, resonance Raman, electron paramagnetic resonance, and kinetic measurements and density functional theory calculations lend evidence for the formation of Ru(V)-oxo intermediate [RuV(TDCPP)(O)(Ph)].
Collapse
Affiliation(s)
- Ka-Pan Shing
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Bei Cao
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Yungen Liu
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Hung Kay Lee
- Department of Chemistry , The Chinese University of Hong Kong , Shatin, New Territories, Hong Kong , China
| | - Ming-De Li
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - David Lee Phillips
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Xiao-Yong Chang
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China
| | - Chi-Ming Che
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry , The University of Hong Kong , Pokfulam Road , Hong Kong , China.,HKU Shenzhen Institute of Research and Innovation, Shenzhen 518053 , China
| |
Collapse
|
26
|
Wang K, Xu Q, Ma P, Zhang C, Wang J, Niu J. Polyoxovanadate catalysts for oxidation of 1-phenyl ethanol: from the discrete [V4O12]4− and [V10O28]6− anions to the anionic [V6O17]n4n− coordination polymer. CrystEngComm 2018. [DOI: 10.1039/c8ce01237g] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The hybrids assembled from {Ru(phen)3} complexes and POV anions via electrostatic interactions have been systematically investigated, and we found that compounds 1 and 3 can be employed as efficient catalysts for the oxidation reaction of 1-phenyl ethanol to acetophenone.
Collapse
Affiliation(s)
- Ke Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Qiaofei Xu
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Pengtao Ma
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Chao Zhang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jingping Wang
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| | - Jingyang Niu
- Henan Key Laboratory of Polyoxometalate Chemistry
- College of Chemistry and Chemical Engineering
- Henan University
- Kaifeng
- P. R. China
| |
Collapse
|
27
|
Lebedev D, Pineda-Galvan Y, Tokimaru Y, Fedorov A, Kaeffer N, Copéret C, Pushkar Y. The Key Ru V=O Intermediate of Site-Isolated Mononuclear Water Oxidation Catalyst Detected by in Situ X-ray Absorption Spectroscopy. J Am Chem Soc 2017; 140:451-458. [PMID: 29219306 DOI: 10.1021/jacs.7b11388] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Improvement of the oxygen evolution reaction (OER) is a challenging step toward the development of sustainable energy technologies. Enhancing the OER rate and efficiency relies on understanding the water oxidation mechanism, which entails the characterization of the reaction intermediates. Very active Ru-bda type (bda is 2,2'-bipyridine-6,6'-dicarboxylate) molecular OER catalysts are proposed to operate via a transient 7-coordinate RuV═O intermediate, which so far has never been detected due to its high reactivity. Here we prepare and characterize a well-defined supported Ru(bda) catalyst on porous indium tin oxide (ITO) electrode. Site isolation of the catalyst molecules on the electrode surface allows trapping of the key 7-coordinate RuV═O intermediate at potentials above 1.34 V vs NHE at pH 1, which is characterized by electron paramagnetic resonance and in situ X-ray absorption spectroscopies. The in situ extended X-ray absorption fine structure analysis shows a Ru═O bond distance of 1.75 ± 0.02 Å, consistent with computational results. Electrochemical studies and density functional theory calculations suggest that the water nucleophilic attack on the surface-bound RuV═O intermediate (O-O bond formation) is the rate limiting step for OER catalysis at low pH.
Collapse
Affiliation(s)
- Dmitry Lebedev
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yuliana Pineda-Galvan
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| | - Yuki Tokimaru
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Alexey Fedorov
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Nicolas Kaeffer
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Christophe Copéret
- ETH Zürich , Department of Chemistry and Applied Biosciences, Vladimir-Prelog-Weg 1-5, CH-8093 Zürich, Switzerland
| | - Yulia Pushkar
- Purdue University , Department of Physics and Astronomy, West Lafayette, Indiana 47907, United States
| |
Collapse
|
28
|
Rearranging from 6- to 7-coordination initiates the catalytic activity: An EPR study on a Ru-bda water oxidation catalyst. Coord Chem Rev 2017. [DOI: 10.1016/j.ccr.2017.02.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
29
|
Gupta SK, Choudhury J. A Mixed N-Heterocyclic Carbene/2,2′-Bipyridine-Supported Robust Ruthenium(II) Oxidation Precatalyst for Benzylic C−H Oxidation. ChemCatChem 2017. [DOI: 10.1002/cctc.201700177] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Suraj K. Gupta
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory; Department of Chemistry; Indian Institute of Science Education and Research Bhopal; Bhopal 462 066 India
| |
Collapse
|
30
|
Mechanistic Analysis of Water Oxidation Catalyst cis-[Ru(bpy)2(H2O)2]2+: Effect of Dimerization. Catalysts 2017. [DOI: 10.3390/catal7020039] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
31
|
Shaffer DW, Xie Y, Concepcion JJ. O–O bond formation in ruthenium-catalyzed water oxidation: single-site nucleophilic attack vs. O–O radical coupling. Chem Soc Rev 2017; 46:6170-6193. [DOI: 10.1039/c7cs00542c] [Citation(s) in RCA: 159] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A review of water oxidation by ruthenium-based molecular catalysts, with emphasis on the mechanism of O–O bond formation.
Collapse
Affiliation(s)
| | - Yan Xie
- Chemistry Division
- Brookhaven National Laboratory
- Upton
- USA
| | | |
Collapse
|
32
|
Dixon IM, Heully JL, Alary F, Elliott PIP. Theoretical illumination of highly original photoreactive3MC states and the mechanism of the photochemistry of Ru(ii) tris(bidentate) complexes. Phys Chem Chem Phys 2017; 19:27765-27778. [DOI: 10.1039/c7cp05532c] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Elucidation of the photoreactive mechanism of ruthenium(ii) complexes is reported along with identification of crucial and highly original metal-centred states.
Collapse
Affiliation(s)
- Isabelle M. Dixon
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques
- UMR 5626 CNRS/Université Toulouse 3 – Paul Sabatier
- Université de Toulouse
- Toulouse
- France
| | | |
Collapse
|
33
|
Hirahara M, Yagi M. Photoisomerization of ruthenium(ii) aquo complexes: mechanistic insights and application development. Dalton Trans 2017; 46:3787-3799. [DOI: 10.1039/c7dt00079k] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The perspective article highlights a new strategic synthesis of dinuclear ruthenium(ii) complexes acting as active water oxidation catalysts and also reports the development of unique visible-light-responsive giant vesicles, both of which are achieved based on photoisomerization.
Collapse
Affiliation(s)
- Masanari Hirahara
- Department of Applied Chemistry
- National Defense Academy of Japan
- Kanagawa 239-8686
- Japan
| | - Masayuki Yagi
- Department of Materials Science and Technology
- Faculty of Engineering
- Niigata University
- Niigata 950-2181
- Japan
| |
Collapse
|
34
|
Shimoyama Y, Ishizuka T, Kotani H, Shiota Y, Yoshizawa K, Mieda K, Ogura T, Okajima T, Nozawa S, Kojima T. A Ruthenium(III)-Oxyl Complex Bearing Strong Radical Character. Angew Chem Int Ed Engl 2016; 55:14041-14045. [PMID: 27709765 DOI: 10.1002/anie.201607861] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 09/15/2016] [Indexed: 11/07/2022]
Abstract
Proton-coupled electron-transfer oxidation of a RuII -OH2 complex, having an N-heterocyclic carbene ligand, gives a RuIII -O. species, which has an electronically equivalent structure of the RuIV =O species, in an acidic aqueous solution. The RuIII -O. complex was characterized by spectroscopic methods and DFT calculations. The oxidation state of the Ru center was shown to be close to +3; the Ru-O bond showed a lower-energy Raman scattering at 732 cm-1 and the Ru-O bond length was estimated to be 1.77(1) Å. The RuIII -O. complex exhibits high reactivity in substrate oxidation under catalytic conditions; particularly, benzaldehyde and the derivatives are oxidized to the corresponding benzoic acid through C-H abstraction from the formyl group by the RuIII -O. complex bearing a strong radical character as the active species.
Collapse
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Tomoya Ishizuka
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hiroaki Kotani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering, Kyushu University, Motooka, Nishi-Ku, Fukuoka, 819-0395, Japan
| | - Kaoru Mieda
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science, University of Hyogo, RSC-UH Leading Program Center, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Toshihiro Okajima
- Kyushu Synchrotron Light Research Center, 8-7 Yayoigaoka, Tosu, Saga, 841-0005, Japan
| | - Shunsuke Nozawa
- Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), 1-1 Oho, Tsukuba, Ibaraki, 305-0801, Japan
| | - Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
35
|
Shimoyama Y, Ishizuka T, Kotani H, Shiota Y, Yoshizawa K, Mieda K, Ogura T, Okajima T, Nozawa S, Kojima T. A Ruthenium(III)-Oxyl Complex Bearing Strong Radical Character. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201607861] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yoshihiro Shimoyama
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennoudai, Tsukuba Ibaraki 305-8571 Japan
| | - Tomoya Ishizuka
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennoudai, Tsukuba Ibaraki 305-8571 Japan
| | - Hiroaki Kotani
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennoudai, Tsukuba Ibaraki 305-8571 Japan
| | - Yoshihito Shiota
- Institute for Materials Chemistry and Engineering; Kyushu University; Motooka, Nishi-Ku Fukuoka 819-0395 Japan
| | - Kazunari Yoshizawa
- Institute for Materials Chemistry and Engineering; Kyushu University; Motooka, Nishi-Ku Fukuoka 819-0395 Japan
| | - Kaoru Mieda
- Picobiology Institute, Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Takashi Ogura
- Picobiology Institute, Graduate School of Life Science; University of Hyogo; RSC-UH Leading Program Center; 1-1-1 Kouto, Sayo-cho, Sayo-gun Hyogo 679-5148 Japan
| | - Toshihiro Okajima
- Kyushu Synchrotron Light Research Center; 8-7 Yayoigaoka, Tosu Saga 841-0005 Japan
| | - Shunsuke Nozawa
- Photon Factory; Institute of Materials Structure Science; High Energy Accelerator Research Organization (KEK); 1-1 Oho, Tsukuba Ibaraki 305-0801 Japan
| | - Takahiko Kojima
- Department of Chemistry; Faculty of Pure and Applied Sciences; University of Tsukuba; 1-1-1 Tennoudai, Tsukuba Ibaraki 305-8571 Japan
| |
Collapse
|
36
|
Lv Z, Zheng W, Chen Z, Tang Z, Mo W, Yin G. Synergistic oxygen atom transfer by ruthenium complexes with non-redox metal ions. Dalton Trans 2016; 45:11369-83. [PMID: 27333442 DOI: 10.1039/c6dt01077f] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Non-redox metal ions can affect the reactivity of active redox metal ions in versatile biological and heterogeneous oxidation processes; however, the intrinsic roles of these non-redox ions still remain elusive. This work demonstrates the first example of the use of non-redox metal ions as Lewis acids to sharply improve the catalytic oxygen atom transfer efficiency of a ruthenium complex bearing the classic 2,2'-bipyridine ligand. In the absence of Lewis acid, the oxidation of ruthenium(ii) complex by PhI(OAc)2 generates the Ru(iv)[double bond, length as m-dash]O species, which is very sluggish for olefin epoxidation. When Ru(bpy)2Cl2 was tested as a catalyst alone, only 21.2% of cyclooctene was converted, and the yield of 1,2-epoxycyclooctane was only 6.7%. As evidenced by electronic absorption spectra and EPR studies, both the oxidation of Ru(ii) by PhI(OAc)2 and the reduction of Ru(iv)[double bond, length as m-dash]O by olefin are kinetically slow. However, adding non-redox metal ions such as Al(iii) can sharply improve the oxygen transfer efficiency of the catalyst to 100% conversion with 89.9% yield of epoxide under identical conditions. Through various spectroscopic characterizations, an adduct of Ru(iv)[double bond, length as m-dash]O with Al(iii), Ru(iv)[double bond, length as m-dash]O/Al(iii), was proposed to serve as the active species for epoxidation, which in turn generated a Ru(iii)-O-Ru(iii) dimer as the reduced form. In particular, both the oxygen transfer from Ru(iv)[double bond, length as m-dash]O/Al(iii) to olefin and the oxidation of Ru(iii)-O-Ru(iii) back to the active Ru(iv)[double bond, length as m-dash]O/Al(iii) species in the catalytic cycle can be remarkably accelerated by adding a non-redox metal, such as Al(iii). These results have important implications for the role played by non-redox metal ions in catalytic oxidation at redox metal centers as well as for the understanding of the redox mechanism of ruthenium catalysts in the oxygen atom transfer reaction.
Collapse
Affiliation(s)
- Zhanao Lv
- Key laboratory of Material Chemistry for Energy Conversion and Storage (Huazhong University of Science and Technology), Ministry of Education, Key laboratory of Material Chemistry and Service Failure, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China.
| | | | | | | | | | | |
Collapse
|
37
|
Word TA, Karolak A, Cioce CR, Van Der Vaart A, Larsen RW. Using Photoacoustic Calorimetry to Study thecis- totrans- Photoisomerization of the [Ru(II)(2,2’-bipyridine)2(H2O)2]2+Complex in Aqueous Solution. COMMENT INORG CHEM 2016. [DOI: 10.1080/02603594.2016.1183488] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016. [DOI: 10.1002/ange.201601653] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
39
|
Yang B, Jiang X, Guo Q, Lei T, Zhang LP, Chen B, Tung CH, Wu LZ. Self-Assembled Amphiphilic Water Oxidation Catalysts: Control of O−O Bond Formation Pathways by Different Aggregation Patterns. Angew Chem Int Ed Engl 2016; 55:6229-34. [DOI: 10.1002/anie.201601653] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Indexed: 12/22/2022]
Affiliation(s)
- Bing Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Xin Jiang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Qing Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Ping Zhang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials; Technical Institute of Physics and Chemistry & University of Chinese Academy of Sciences; Chinese Academy of Sciences; Beijing 100190 P.R. China
| |
Collapse
|
40
|
Göttle AJ, Alary F, Boggio-Pasqua M, Dixon IM, Heully JL, Bahreman A, Askes SHC, Bonnet S. Pivotal Role of a Pentacoordinate (3)MC State on the Photocleavage Efficiency of a Thioether Ligand in Ruthenium(II) Complexes: A Theoretical Mechanistic Study. Inorg Chem 2016; 55:4448-56. [PMID: 27054312 DOI: 10.1021/acs.inorgchem.6b00268] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
A mechanistic study of the photocleavage of the methylthioethanol ligand (Hmte) in the series of ruthenium complexes [Ru(tpy)(N-N)(Hmte)](2+) (tpy = 2,2':6',2″-terpyridine, N-N = bpy (2,2'-bipyridine), biq (2,2'-biquinoline), dcbpy (6,6'-dichloro-2,2'-bipyridine), dmbpy (6,6'-dimethyl-2,2'-bipyridine)) was performed using density functional theory. These studies reveal the decisive role of two quasi-degenerate triplet metal-centered states, denoted (3)MChexa and (3)MCpenta, on the lowest triplet potential energy surface. It also shows how the population of the specific pentacoordinate (3)MCpenta state, characterized by a geometry more accessible for the attack of a solvent molecule, is a key step for the efficiency of the photosubstitution reaction. The difference in the photosubstitution quantum yields experimentally observed for this series of complexes (from φ = 0.022 for N-N = bpy up to φ = 0.30 for N-N = dmbpy) is rationalized by the existence of this (3)MCpenta photoreactive state and by the different topologies of the triplet excited-state potential energy surfaces, rather than by the sole steric properties of these polypyridinyl ligands.
Collapse
Affiliation(s)
- Adrien J Göttle
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Fabienne Alary
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Martial Boggio-Pasqua
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Isabelle M Dixon
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Jean-Louis Heully
- Laboratoire de Chimie et Physique Quantiques, UMR 5626, IRSAMC, CNRS et Université de Toulouse , 118 route de Narbonne, 31062 Toulouse, France
| | - Azadeh Bahreman
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sven H C Askes
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sylvestre Bonnet
- Leiden Institute of Chemistry, Leiden University , Einsteinweg 55, 2333 CC Leiden, The Netherlands
| |
Collapse
|
41
|
Ishizuka T, Kotani H, Kojima T. Characteristics and reactivity of ruthenium–oxo complexes. Dalton Trans 2016; 45:16727-16750. [DOI: 10.1039/c6dt03024f] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this perspective, we have surveyed the synthetic procedure, characteristics, and reactivity of high-valent ruthenium–oxo complexes.
Collapse
Affiliation(s)
| | - Hiroaki Kotani
- Department of Chemistry
- University of Tsukuba
- Tsukuba
- Japan
| | | |
Collapse
|
42
|
Ding L, Chung LW, Morokuma K. Excited-State Proton Transfer Controls Irreversibility of Photoisomerization in Mononuclear Ruthenium(II) Monoaquo Complexes: A DFT Study. J Chem Theory Comput 2015; 10:668-75. [PMID: 26580044 DOI: 10.1021/ct400982r] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The detailed DFT investigation clears the working mechanism of the irreversible photoisomerization of trans-[Ru(tpy)(pynp)(OH2)](2+) (TA) and cis-[Ru(tpy)(pynp)(OH2)](2+) (CA) complexes. Both TA and CA complexes present two types of low lying triplet states, one resulting from a triplet metal-ligand charge-transfer (TMLCT) and the other from a triplet metal-centered d-d transition (TMC). The vertical excitation of the singlet ground state of the complexes leads to a singlet excited state, which undergoes ultrafast decay to the corresponding TMLCT. For TA, this TMLCT transforms with a low barrier to a TMC state. The dissociative nature of the TMC state leads to easy water removal to produce a five-coordinate intermediate that can isomerize via rotation of a pynp ligand and proceed towards the CA product. For CA, however, during this excitation and intersystem crossing process, an excited-state proton transfer (ESPT) occurs and the resultant TMLCT is very much stabilized with a very strong Ru(II)-OH bond; the high barrier from this TMLCT blocks conversion to a TMC state and thus prevents isomerization from the cis to the trans isomer. This high barrier also prevents the possibility of the isomerization process from TA to CA solely on the adiabatic triplet pathway. Instead, crossing points (XMC-CB, XMC-CA) near the minimum of the triplet metal-centered state of the cis isomer provide nonadiabatic decay channels to the ground-state S0--CA, which completes the photoisomerization pathway from TA to CA.
Collapse
Affiliation(s)
- Lina Ding
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan.,School of Pharmaceutical Sciences, Zhengzhou University , 100 Kexue Avenue, Zhengzhou, Henan 450001, China
| | - Lung Wa Chung
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| | - Keiji Morokuma
- Fukui Institute for Fundamental Chemistry, Kyoto University , 34-4 Takano Nishihiraki-cho, Kyoto 606-8103, Japan
| |
Collapse
|
43
|
Jäger M, Freitag L, González L. Using computational chemistry to design Ru photosensitizers with directional charge transfer. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2015.03.019] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
44
|
Das B, Orthaber A, Ott S, Thapper A. Water oxidation catalysed by a mononuclear CoII polypyridine complex; possible reaction intermediates and the role of the chloride ligand. Chem Commun (Camb) 2015; 51:13074-7. [DOI: 10.1039/c5cc04148a] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic water oxidation using mononuclear CoII complex with a chloride ligand has been investigated. Spectroscopic measurements show that the chloride ligand is an integral component of the catalytic process.
Collapse
Affiliation(s)
- Biswanath Das
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Andreas Orthaber
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Sascha Ott
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| | - Anders Thapper
- Department of Chemistry-Ångström Laboratory
- Uppsala University
- 75120 Uppsala
- Sweden
| |
Collapse
|
45
|
Kärkäs MD, Verho O, Johnston EV, Åkermark B. Artificial Photosynthesis: Molecular Systems for Catalytic Water Oxidation. Chem Rev 2014; 114:11863-2001. [DOI: 10.1021/cr400572f] [Citation(s) in RCA: 1024] [Impact Index Per Article: 102.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Markus D. Kärkäs
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Oscar Verho
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Eric V. Johnston
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Björn Åkermark
- Department of Organic Chemistry,
Arrhenius Laboratory, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
46
|
Wang HY, Mijangos E, Ott S, Thapper A. Water Oxidation Catalyzed by a Dinuclear Cobalt-Polypyridine Complex. Angew Chem Int Ed Engl 2014; 53:14499-502. [DOI: 10.1002/anie.201406540] [Citation(s) in RCA: 99] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Indexed: 11/10/2022]
|
47
|
Wang HY, Mijangos E, Ott S, Thapper A. Water Oxidation Catalyzed by a Dinuclear Cobalt-Polypyridine Complex. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201406540] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
48
|
Pushkar Y, Moonshiram D, Purohit V, Yan L, Alperovich I. Spectroscopic analysis of catalytic water oxidation by [Ru(II)(bpy)(tpy)H2O]2+ suggests that Ru(V)═O is not a rate-limiting intermediate. J Am Chem Soc 2014; 136:11938-45. [PMID: 25130482 DOI: 10.1021/ja506586b] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
Modern chemistry's grand challenge is to significantly improve catalysts for water splitting. Further progress requires detailed spectroscopic and computational characterization of catalytic mechanisms. We analyzed one of the most studied homogeneous single-site Ru catalysts, [Ru(II)(bpy)(tpy)H2O](2+) (where bpy = 2,2'-bipyridine, tpy = 2,2';6',2″-terpyridine). Our results reveal that the [Ru(V)(bpy)(tpy)═O](3+) intermediate, reportedly detected in catalytic mixtures as a rate-limiting intermediate in water activation, is not present as such. Using a combination of electron paramagnetic resonance (EPR) and X-ray absorption spectroscopy, we demonstrate that 95% of the Ru complex in the catalytic steady state is of the form [Ru(IV)(bpy)(tpy)═O](2+). [Ru(V)(bpy)(tpy)═O](3+) was not observed, and according to density functional theory (DFT) analysis, it might be thermodynamically inaccessible at our experimental conditions. A reaction product with unique EPR spectrum was detected in reaction mixtures at about 5% and assigned to Ru(III)-peroxo species with (-OOH or -OO- ligands). We also analyzed the [Ru(II)(bpy)(tpy)Cl](+) catalyst precursor and confirmed that this molecule is not a catalyst and its oxidation past Ru(III) state is impeded by a lack of proton-coupled electron transfer. Ru-Cl exchange with water is required to form active catalysts with the Ru-H2O fragment. [Ru(II)(bpy)(tpy)H2O](2+) is the simplest representative of a larger class of water oxidation catalysts with neutral, nitrogen containing heterocycles. We expect this class of catalysts to work mechanistically in a similar fashion via [Ru(IV)(bpy)(tpy)═O](2+) intermediate unless more electronegative (oxygen containing) ligands are introduced in the Ru coordination sphere, allowing the formation of more oxidized Ru(V) intermediate.
Collapse
Affiliation(s)
- Yulia Pushkar
- Department of Physics, Purdue University , 525 Northwestern Avenue, West Lafayette, Indiana 47907, United States
| | | | | | | | | |
Collapse
|
49
|
Marenich AV, Ho J, Coote ML, Cramer CJ, Truhlar DG. Computational electrochemistry: prediction of liquid-phase reduction potentials. Phys Chem Chem Phys 2014; 16:15068-106. [PMID: 24958074 DOI: 10.1039/c4cp01572j] [Citation(s) in RCA: 314] [Impact Index Per Article: 31.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
This article reviews recent developments and applications in the area of computational electrochemistry. Our focus is on predicting the reduction potentials of electron transfer and other electrochemical reactions and half-reactions in both aqueous and nonaqueous solutions. Topics covered include various computational protocols that combine quantum mechanical electronic structure methods (such as density functional theory) with implicit-solvent models, explicit-solvent protocols that employ Monte Carlo or molecular dynamics simulations (for example, Car-Parrinello molecular dynamics using the grand canonical ensemble formalism), and the Marcus theory of electronic charge transfer. We also review computational approaches based on empirical relationships between molecular and electronic structure and electron transfer reactivity. The scope of the implicit-solvent protocols is emphasized, and the present status of the theory and future directions are outlined.
Collapse
Affiliation(s)
- Aleksandr V Marenich
- Department of Chemistry, Chemical Theory Center, and Supercomputing Institute, University of Minnesota, 207 Pleasant Street S.E., Minneapolis, MN 55455-0431, USA.
| | | | | | | | | |
Collapse
|
50
|
Neudeck S, Maji S, López I, Meyer S, Meyer F, Llobet A. New Powerful and Oxidatively Rugged Dinuclear Ru Water Oxidation Catalyst: Control of Mechanistic Pathways by Tailored Ligand Design. J Am Chem Soc 2013; 136:24-7. [DOI: 10.1021/ja409974b] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Sven Neudeck
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Somnath Maji
- Institute of Chemical
Research of Catalonia (ICIQ), E-43007 Tarragona, Spain
| | - Isidoro López
- Institute of Chemical
Research of Catalonia (ICIQ), E-43007 Tarragona, Spain
| | - Steffen Meyer
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Franc Meyer
- Institute
of Inorganic Chemistry, Georg-August-University Göttingen, D-37077 Göttingen, Germany
| | - Antoni Llobet
- Institute of Chemical
Research of Catalonia (ICIQ), E-43007 Tarragona, Spain
- Departament
de Química, Universitat Autònoma de Barcelona, 08460 Cerdanyola del Vallès, Barcelona, Spain
| |
Collapse
|