1
|
Saha S, Akhtar S, Pramanik S, Bala S, Mondal R. Utilization of a trinuclear Cu-pyrazolate inorganic motif to build multifunctional MOFs. Dalton Trans 2024; 53:11021-11037. [PMID: 38881376 DOI: 10.1039/d4dt00986j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
The current work aims to generate multifunctional MOFs by incorporating a well-known inorganic motif, a trinuclear Cu-pyrazolate [Cu3(μ3-OH)(μ-Pyz)3] (T-CuP) unit, as a node of the network. Accordingly, we report herein the synthesis and properties of five new compounds using five V-shaped dicarboxylic acids as auxiliary ligands. The structural features are consistent with the theme of grafting T-CuP units as nodal points of architectures whose chassis are primarily made of bent acids. V-shaped acids also induce a helical nature inside resulting frameworks. Beside their structural and physical features, T-CuP unit-based MOFs also vindicate our thematic approach of the trinuclear Cu-pyrazolate unit imparting specific physicochemical properties, such as magnetic, electrical, and catalytic properties, to resultant MOFs. The MOFs show excellent catalytic properties in reducing 4-nitrophenol, which could be attributed to the porous nature of the network along with the presence of metal centres with unsaturated coordination within the T-CuP unit. Furthermore, efficient photocatalytic degradation of harmful organic dyes confirms their importance for environmental remediation. The presence of a T-CuP unit and various functional groups also make some of the MOFs suitable candidates for electrical applications, which is indeed manifested in encouraging proton conductivity. Finally, the potential of current MOFs, fitted with a magnetically important trinuclear Cu-pyrazolate motif, as magnetic materials has also been thoroughly investigated.
Collapse
Affiliation(s)
- Sayan Saha
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Sohel Akhtar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Subhendu Pramanik
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Sukhen Bala
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| | - Raju Mondal
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A &2B Raja S. C. Mullick Road, Jadavpur, Kolkata 700 032, India.
| |
Collapse
|
2
|
Wu WY, Zheng WY, Chen WT, Tsai FT, Tsai ML, Pao CW, Chen JL, Liaw WF. Electronic Structure and Transformation of Dinitrosyl Iron Complexes (DNICs) Regulated by Redox Non-Innocent Imino-Substituted Phenoxide Ligand. Inorg Chem 2024; 63:2431-2442. [PMID: 38258796 PMCID: PMC10848267 DOI: 10.1021/acs.inorgchem.3c03367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/24/2024]
Abstract
The coupled NO-vibrational peaks [IR νNO 1775 s, 1716 vs, 1668 vs cm-1 (THF)] between two adjacent [Fe(NO)2] groups implicate the electron delocalization nature of the singly O-phenoxide-bridged dinuclear dinitrosyliron complex (DNIC) [Fe(NO)2(μ-ON2Me)Fe(NO)2] (1). Electronic interplay between [Fe(NO)2] units and [ON2Me]- ligand in DNIC 1 rationalizes that "hard" O-phenoxide moiety polarizes iron center(s) of [Fe(NO)2] unit(s) to enforce a "constrained" π-conjugation system acting as an electron reservoir to bestow the spin-frustrated {Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2- electron configuration (Stotal = 1/2). This system plays a crucial role in facilitating the ligand-based redox interconversion, working in harmony to control the storage and redox-triggered transport of the [Fe(NO)2]10 unit, while preserving the {Fe(NO)2}9 core in DNICs {Fe(NO)2}9-[·ON2Me]2- [K-18-crown-6-ether)][(ON2Me)Fe(NO)2] (2) and {Fe(NO)2}9-[·ON2Me] [(ON2Me)Fe(NO)2][PF6] (3). Electrochemical studies suggest that the redox interconversion among [{Fe(NO)2}9-[·ON2Me]2-] DNIC 3 ↔ [{Fe(NO)2}9-[ON2Me]-] ↔ [{Fe(NO)2}9-[·ON2Me]] DNIC 2 are kinetically feasible, corroborated by the redox shuttle between O-bridged dimerized [(μ-ONMe)2Fe2(NO)4] (4) and [K-18-crown-6-ether)][(ONMe)Fe(NO)2] (5). In parallel with this finding, the electronic structures of [{Fe(NO)2}9-{Fe(NO)2}9-[·ON2Me]2-] DNIC 1, [{Fe(NO)2}9-[·ON2Me]2-] DNIC 2, [{Fe(NO)2}9-[·ON2Me]] DNIC 3, [{Fe(NO)2}9-[ONMe]-]2 DNIC 4, and [{Fe(NO)2}9-[·ONMe]2-] DNIC 5 are evidenced by EPR, SQUID, and Fe K-edge pre-edge analyses, respectively.
Collapse
Affiliation(s)
- Wun-Yan Wu
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Yuan Zheng
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Ting Chen
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Fu-Te Tsai
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Ming-Li Tsai
- Department of Chemistry, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Chih-Wen Pao
- National Synchrotron Radiation
Research Center, Hsinchu 30013, Taiwan
| | - Jeng-Lung Chen
- National Synchrotron Radiation
Research Center, Hsinchu 30013, Taiwan
| | - Wen-Feng Liaw
- Department of Chemistry, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
3
|
Lun HJ, Zhang ZM, Sun YH, Wang MM, Cai JJ, Liang XY, Li YM, Bai Y. N-N-Bridged Polynuclear POM-Based Coordination Polymers Based on a V-Type Ligand: Proton Conduction and Magnetism. Inorg Chem 2023; 62:17093-17101. [PMID: 37800965 DOI: 10.1021/acs.inorgchem.3c01606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
The construction of polyoxometalate (POM)-based coordination polymers, in the presence of a nitrogen heterocyclic ligand, is intriguing due to the potential for obtaining diverse structures. These structures exhibit extensive application possibilities in the fields of proton conductivity and magnetism. Herein, four new POM-based polynuclear coordination polymers with the formulas of {[Fe2(btb)3(H2O)2(SiW12O40)]·3H2O}n (1), {[Cd2(btb)2(H2O)6(HPMoVI10MoV2O40)]·2H2O}n (2), {[Co3(OH)2(btb)2(H2O)5(HPMoVI10MoV2O40)]·7H2O}n (3), and {[Cu3(OH)(btb)2(H2O)(HP2Mo5O23)]·6H2O}n (4) have been prepared using the V-type 1,3-bis(4H-1,2,4-triazole-4-yl)benzene (btb) ligand. Compounds 1 and 2 feature similar two-dimensional (2D) structures, derived from the binuclear Fe2N6 and Cd2N4 subunits connected by tridentate btb ligands. Meanwhile, in compound 3, hexanuclear Co6(OH)4 units are bound by quadridentate btb ligands forming a 2D layer with the same 4-c sql topology simplification as compounds 1 and 2. In compound 1, Keggin-type polyoxoanions are monodentate-coordinated to metal ions and suspended on the 2D structure, while, in compounds 2 and 3, they act as discrete counterions residing in the interstitial spaces between two adjacent layers, thereby extending the 2D structures into 3D structures through hydrogen bonding interactions. In compound 4, trinuclear Cu3(OH) subunits are further constructed into a 3D framework through cooperation with four tridentate and quadridentate btb ligands as well as Strandberg-type anions. Furthermore, the proton conduction of the four compounds has been investigated. They display high proton conductivities at 358 K and 98% RH with powdered samples, which are 1.26 × 10-3, 1.24 × 10-3, 3.24 × 10-4, and 2.57 × 10-4 S cm-1, respectively. Interestingly, by mixing with Nafion, the composite membranes of compounds 2 and 4 exhibit enhanced proton conductivities, measuring at 4.87 × 10-2 and 1.28 × 10-2 S cm-1, respectively, at 358 K and 98% RH, which suggests excellent potential for applications. In addition, compounds 1, 3, and 4 display antiferromagnetic behaviors due to similar magnetic interactions. This work can provide research insights into the assembly of 2D POM-based coordination polymers with nitrogen heterocyclic ligands and Keggin-type POMs and further promote their research progress in proton conduction.
Collapse
Affiliation(s)
- Hui-Jie Lun
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Zhi-Min Zhang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya-Hao Sun
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Meng-Meng Wang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Jun-Jie Cai
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Xin-Yu Liang
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Ya-Min Li
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| | - Yan Bai
- Henan Key Laboratory of Polyoxometalate, College of Chemistry and Molecular Sciences, Henan University, Kaifeng, Henan 475004, P.R. China
| |
Collapse
|
4
|
Wilson LRB, Coletta M, Singh MK, Teat SJ, Brookfield A, Shanmugam M, McInnes EJL, Piligkos S, Dalgarno SJ, Brechin EK. A bis-calix[4]arene-supported [CuII16] cage. Dalton Trans 2023. [PMID: 37325815 DOI: 10.1039/d3dt01448g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Reaction of 2,2'-bis-p-tBu-calix[4]arene (H8L) with Cu(NO3)2·3H2O and N-methyldiethanolamine (Me-deaH2) in a basic dmf/MeOH mixture affords [CuII16(L)2(Me-dea)4(μ4-NO3)2(μ-OH)4(dmf)3.5(MeOH)0.5(H2O)2](H6L)·16dmf·4H2O (4), following slow evaporation of the mother liquor. The central core of the metallic skeleton describes a tetracapped square prism, [Cu12], in which the four capping metal ions are the CuII ions housed in the calix[4]arene polyphenolic pockets. The [CuII8] square prism is held together "internally" by a combination of hydroxide and nitrate anions, with the N-methyldiethanolamine co-ligands forming dimeric [CuII2] units which edge-cap above and below the upper and lower square faces of the prism. Charge balance is maintained through the presence of one doubly deprotonated H6L2- ligand per [Cu16] cluster. Magnetic susceptibility measurements reveal the predominance of strong antiferromagnetic exchange interactions and an S = 1 ground state, while EPR is consistent with a large zero-field splitting.
Collapse
Affiliation(s)
- Lucinda R B Wilson
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| | - Marco Coletta
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| | - Mukesh K Singh
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| | - Simon J Teat
- Station 11.3.1, Advanced Light Source, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA
| | - Adam Brookfield
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, England, M13 9PL, UK.
| | - Muralidharan Shanmugam
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, England, M13 9PL, UK.
| | - Eric J L McInnes
- School of Chemistry, The University of Manchester, Oxford Road, Manchester, England, M13 9PL, UK.
| | - Stergios Piligkos
- Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100, Copenhagen, Denmark.
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University, Riccarton, Edinburgh, Scotland, EH14 4AS, UK.
| | - Euan K Brechin
- EastCHEM School of Chemistry, The University of Edinburgh, David Brewster Road, Edinburgh, Scotland, EH9 3FJ, UK.
| |
Collapse
|
5
|
Stefanczyk O, Kumar K, Pai T, Li G, Ohkoshi SI. Integration of Trinuclear Triangle Copper(II) Secondary Building Units in Octacyanidometallates(IV)-Based Frameworks. Inorg Chem 2022; 61:8930-8939. [PMID: 35652381 DOI: 10.1021/acs.inorgchem.2c01294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The design and synthesis of high-dimensional materials based on secondary building blocks (SBUs) play a pivotal role in the further development of functional molecular materials. Herein, the self-assembly of Cu(II) ions, pyrazole (Hpz), and octacyanidometallate(IV) anions in the presence of water produced two new isostructural three-dimensional systems {[Cu3(μ3-OH)(μ-pz)3(H2O)3]2[M(CN)8]}·nH2O (M = W, 1, and Mo, 2). 1 and 2 consist of trinuclear triangle copper(II) (TTC) SBUs and octacyanidometallates(IV). At room temperature, both assemblies display strong antiferromagnetic interactions within the TTC entities with an average CuII···CuII isotropic magnetic coupling constant of about -145 cm-1. Moreover, a detailed analysis of magnetic data revealed the presence of spin frustration with antisymmetric magnetic exchange-coupling constants of around +32 and +46 cm-1 for 1 and 2, respectively. Finally, quantum chemical calculations explained their magnetic and optical properties.
Collapse
Affiliation(s)
- Olaf Stefanczyk
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kunal Kumar
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - TingYun Pai
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Guanping Li
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Shin-Ichi Ohkoshi
- Department of Chemistry, School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
6
|
Abstract
For single-molecule toroics (SMTs) based on noncollinear Ising spins, intramolecular magnetic dipole–dipole coupling favours a head-to-tail vortex arrangement of the semi-classical magnetic moments associated with a toroidal ground state. However, to what extent does this effect survive beyond the semi-classical Ising limit? Here, we theoretically investigate the role of dipolar interactions in stabilising ground-state toroidal moments in quantum Heisenberg rings with and without on-site magnetic anisotropy. For the prototypical triangular SMT with strong on-site magnetic anisotropy, we illustrate that, together with noncollinear exchange, intramolecular magnetic dipole–dipole coupling serves to preserve ground-state toroidicity. In addition, we investigate the effect on quantum tunnelling of the toroidal moment in Kramers and non-Kramers systems. In the weak anisotropy limit, we find that, within some critical ion–ion distances, intramolecular magnetic dipole–dipole interactions, diagonalised over the entire Hilbert space of the quantum system, recover ground-state toroidicity in ferromagnetic and antiferromagnetic odd-membered rings with up to seven sites, and are further stabilised by Dzyaloshinskii–Moriya coupling.
Collapse
|
7
|
Lukov VV, Tupolova YP, Shcherbakov IN, Popov LD, Gishko KB, Chetverikova VA. Coordination Chemistry and Magnetic Properties of Bi- and Polynuclear Exchange-Coupled Cu(II) and Ni(II) Metal Oximates. RUSS J COORD CHEM+ 2022. [DOI: 10.1134/s1070328422020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Tang S, Ruan H, Hu Z, Zhao Y, Song Y, Wang X. A cationic sulfur-hydrocarbon triradical with an excited quartet state. Chem Commun (Camb) 2022; 58:1986-1989. [PMID: 35045147 DOI: 10.1039/d1cc06904g] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The triptycene-bridged tris(thianthrene) compound 1 was designed and synthesized. Three-electron oxidation of 1 by NO[Al(OC(CF3)3)4], followed by crystallization at two different temperatures resulted in the triradical trication salts 2a and 2b respectively, which feature different crystal packing patterns. The triradical trications in 2a and 2b both feature a doublet ground state which can be thermally populated to a quartet state, representing the first examples of cationic main-group triradicals.
Collapse
Affiliation(s)
- Shuxuan Tang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Huapeng Ruan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Zhaobo Hu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - You Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| | - Xinping Wang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
9
|
Kintzel B, Fittipaldi M, Böhme M, Cini A, Tesi L, Buchholz A, Sessoli R, Plass W. Spin-Electric Coupling in a Cobalt(II)-Based Spin Triangle Revealed by Electric-Field-Modulated Electron Spin Resonance Spectroscopy. Angew Chem Int Ed Engl 2021; 60:8832-8838. [PMID: 33511751 PMCID: PMC8048656 DOI: 10.1002/anie.202017116] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Indexed: 11/18/2022]
Abstract
A cobalt(II)-based spin triangle shows a significant spin-electric coupling. [Co3 (pytag)(py)6 Cl3 ]ClO4 ⋅3 py crystallizes in the acentric monoclinic space group P21 . The intra-triangle antiferromagnetic interaction, of the order of ca. -15 cm-1 (H=-JSa Sb ), leads to spin frustration. The two expected energy-degenerate ground doublets are, however, separated by a few wavenumbers, as a consequence of magnetic anisotropy and deviations from threefold symmetry. The Co3 planes of symmetry-related molecules are almost parallel, allowing for the determination of the spin-electric properties of single crystals by EFM-ESR spectroscopy. The spin-electric effect detected when the electric field is applied in the Co3 plane was revealed by a shift in the resonance field. It was quantified as ΔgE /E=0.11×10-9 m V-1 , which in terms of frequency corresponds to approximately 0.3 Hz m V-1 . This value is comparable to what was determined for a Cu3 triangle despite the antiferromagnetic interaction being 20 times larger for the latter.
Collapse
Affiliation(s)
- Benjamin Kintzel
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstrasse 807743JenaGermany
| | - Maria Fittipaldi
- Department of Physics and AstronomyUniversity of Florence and INSTM UdRvia Sansone 1Sesto Fiorentino (FI)Italy
| | - Michael Böhme
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstrasse 807743JenaGermany
| | - Alberto Cini
- Dipartimento di Chimica “Ugo Schiff”Universitá degli Studi FirenzeVia della Lastruccia 3–1350019Sesto Fiorentino (FI)Italy
| | - Lorenzo Tesi
- Dipartimento di Chimica “Ugo Schiff”Universitá degli Studi FirenzeVia della Lastruccia 3–1350019Sesto Fiorentino (FI)Italy
- Current address: Institute of Physical ChemistryUniversity of StuttgartPfaffenwaldring 5570569StuttgartGermany
| | - Axel Buchholz
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstrasse 807743JenaGermany
| | - Roberta Sessoli
- Dipartimento di Chimica “Ugo Schiff”Universitá degli Studi FirenzeVia della Lastruccia 3–1350019Sesto Fiorentino (FI)Italy
| | - Winfried Plass
- Institut für Anorganische und Analytische ChemieFriedrich-Schiller-Universität JenaHumboldtstrasse 807743JenaGermany
| |
Collapse
|
10
|
Kintzel B, Fittipaldi M, Böhme M, Cini A, Tesi L, Buchholz A, Sessoli R, Plass W. Spin‐elektrische Kopplung in einem Cobalt(II)‐basierten Spindreieck, gezeigt mithilfe elektrisches‐Feld‐modulierter Elektronenspinresonanzspektroskopie. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202017116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| | - Maria Fittipaldi
- Department of Physics and Astronomy University of Florence and INSTM UdR via Sansone 1 Sesto Fiorentino (FI) Italien
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| | - Alberto Cini
- Dipartimento di Chimica “Ugo Schiff” Universitá degli Studi Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino (FI) Italien
| | - Lorenzo Tesi
- Dipartimento di Chimica “Ugo Schiff” Universitá degli Studi Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino (FI) Italien
- Derzeitige Adresse: Institut für Physikalische Chemistry Universität Stuttgart Pfaffenwaldring 55 70569 Stuttgart Deutschland
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| | - Roberta Sessoli
- Dipartimento di Chimica “Ugo Schiff” Universitá degli Studi Firenze Via della Lastruccia 3–13 50019 Sesto Fiorentino (FI) Italien
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie Friedrich-Schiller-Universität Jena Humboldtstraße 8 07743 Jena Deutschland
| |
Collapse
|
11
|
Al-Karawi AJM, OmarAli AAB, Mangelsen S, Dege N, Kansız S, Breuninger P, Baydere C, OmarAli OB. An unprecedented formation of new copper(II) complexes as bioactive materials based on copper-catalyzed click reaction. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
12
|
Boudalis AK. Half-Integer Spin Triangles: Old Dogs, New Tricks. Chemistry 2021; 27:7022-7042. [PMID: 33336864 DOI: 10.1002/chem.202004919] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/14/2020] [Indexed: 11/06/2022]
Abstract
Spin triangles, that is, triangular complexes of half-integer spins, are the oldest molecular nanomagnets (MNMs). Their magnetic properties have been studied long before molecular magnetism was delineated as a research field. This Review presents the history of their study, with references to the parallel development of new experimental investigations and new theoretical ideas used for their interpretation. It then presents an indicative list of spin-triangle families to illustrate their chemical diversity. Finally, it makes reference to recent developments in terms of theoretical ideas and new phenomena, as well as to the relevance of spin triangles to spintronic devices and new physics.
Collapse
Affiliation(s)
- Athanassios K Boudalis
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS), UMR 7504, Université de Strasbourg, CNRS, 67000, Strasbourg, France.,Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, 67081, Strasbourg, France
| |
Collapse
|
13
|
Georgiev M, Chamati H. Molecular magnetism in the multi-configurational self-consistent field method. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 33:075803. [PMID: 33152727 DOI: 10.1088/1361-648x/abc802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
We develop a structured theoretical framework used in our recent articles (2019 Eur. Phys. J. B 92 93 and 2020 Phys. Rev. B 101 094427) to characterize the unusual behavior of the magnetic spectrum, magnetization and magnetic susceptibility of the molecular magnet Ni4Mo12. The theoretical background is based on the molecular orbital theory in conjunction with the multi-configurational self-consistent field method and results in a post-Hartree-Fock scheme for constructing the corresponding energy spectrum. Furthermore, we construct a bilinear spin-like Hamiltonian involving discrete coupling parameters accounting for the relevant spectroscopic magnetic excitations, magnetization and magnetic susceptibility. The explicit expressions of the eigenenergies of the ensuing Hamiltonian are determined and the physical origin of broadening and splitting of experimentally observed peaks in the magnetic spectra is discussed. To demonstrate the efficiency of our method we compute the spectral properties of a spin-one magnetic dimer. The present approach may be applied to a variety of magnetic units based on transition metals and rare Earth elements.
Collapse
Affiliation(s)
- M Georgiev
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| | - H Chamati
- Institute of Solid State Physics, Bulgarian Academy of Sciences, Tsarigradsko Chaussée 72, 1784 Sofia, Bulgaria
| |
Collapse
|
14
|
Yang H, Zhang Y, Sun L, Li D, Zeng S, Li Y, Yang Y, Dou J. Slow Magnetic Relaxation in a [Na
2
Dy
4
] Complex and Coexistence of Multiple Metal Rings. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202001025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Hua Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yi‐Quan Zhang
- Jiangsu Key Lab for NSLSCS, School of Physical Science and Technology Nanjing Normal University Nanjing 210023 P. R. China
| | - Lei Sun
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Da‐Cheng Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Su‐Yuan Zeng
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yun‐Wu Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| | - Yan Yang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
- College of Chemistry, Chemical Engineering and Materials Science, Shandong Provincial Key Laboratory of Clean Production of Fine Chemicals Shandong Normal University 250014 Jinan P. R. China
| | - Jian‐Min Dou
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering Liaocheng University 252000 Liaocheng P. R. China
| |
Collapse
|
15
|
Mathivathanan L, Rogez G, Ben Amor N, Robert V, Raptis RG, Boudalis AK. Origin of Ferromagnetism and Magnetic Anisotropy in a Family of Copper(II) Triangles. Chemistry 2020; 26:12769-12784. [DOI: 10.1002/chem.202001028] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Logesh Mathivathanan
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute Florida International University Miami FL 33199 USA
| | - Guillaume Rogez
- Institut de Physique et Chimie des Matériaux de Strasbourg (IPCMS) CNRS/Université de Strasbourg UMR 7504 67000 Strasbourg France
| | - Nadia Ben Amor
- Laboratoire de Chimie et Physique Quantiques UMR 5626 CNRS/Université Paul Sabatier—Bat. 3R1B4 118 route de Narbonne 31062, Cedex 09 Toulouse France
| | - Vincent Robert
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra) Université de Strasbourg 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| | - Raphael G. Raptis
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute Florida International University Miami FL 33199 USA
| | - Athanassios K. Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra) Université de Strasbourg 4 rue Blaise Pascal, CS 90032 67081 Strasbourg France
| |
Collapse
|
16
|
Supramolecular Assemblies of Trinuclear Copper(II)-Pyrazolato Units: A Structural, Magnetic and EPR Study. CHEMISTRY 2020. [DOI: 10.3390/chemistry2030039] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Two anionic complexes, {[Cu3(µ3-OH)(µ-4-Ph-pz)3Cl3]2[Cu(4-Ph-pzH)4](µ-Cl)2}2− (1) and [Cu3(µ3-OH)(µ-pz)3(µ1,1-N3)2(N3)]− (2), crystallize as one-dimensional polymers, held together by weak Cu-(µ-Cl) and Cu-(µ-N3) interactions, respectively. Variable temperature magnetic susceptibility analyses determined the dominant antiferromagnetic intra-Cu3 exchange parameters in the solid state for both complexes, whereas the weak ferromagnetic inter-Cu3 interactions manifested also in the solid state EPR spectra, are absent in the corresponding frozen solution spectra. DFT calculations were employed to support the results of the magnetic susceptibility analyses.
Collapse
|
17
|
Schneider JD, Smith BA, Williams GA, Powell DR, Perez F, Rowe GT, Yang L. Synthesis and Characterization of Cu(II) and Mixed-Valence Cu(I)Cu(II) Clusters Supported by Pyridylamide Ligands. Inorg Chem 2020; 59:5433-5446. [PMID: 32237741 DOI: 10.1021/acs.inorgchem.0c00008] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A group of copper complexes supported by polydentate pyridylamide ligands H2bpda and H2ppda were synthesized and characterized. The two Cu(II) dimers [CuII2(Hbpda)2(ClO4)2] (1) and [CuII2(ppda)2(DMF)2] (2) were constructed by using neutral ligands to react with Cu(II) salts. Although the dimers showed similar structural features, the second-sphere interactions affect the structures differently. With the application of Et3N, the tetranuclear cluster (HNEt3)[CuII4(bpda)2(μ3-OH)2(ClO4)(DMF)3](ClO4)2 (3) and hexanuclear cluster (HNEt3)2[CuII6(ppda)6(H2O)2(CH3OH)2](ClO4)2 (4) were prepared under similar reaction conditions. The symmetrical and unsymmetrical arrangement of the ligand donors in ligands H2bpda and H2ppda led to the dramatic conformation difference of the two Cu(II) complexes. As part of our effort to explore mixed-valence copper chemistry, the triple-decker pentanuclear cluster [CuII3CuI2(bpda)3(μ3-O)] (5) was prepared. XPS examination demonstrated the localized mixed-valence properties of complex 5. Magnetic studies of the clusters with EPR evidence showed either weak ferromagnetic or antiferromagnetic interactions among copper centers. Due to the trigonal-planar conformation of the trinuclear Cu(II) motif with the μ3-O center, complex 5 exhibits geometric spin frustration and engages in antisymmetric exchange interactions. DFT calculations were also performed to better interpret spectroscopic evidence and understand the electronic structures, especially the mixed-valence nature of complex 5.
Collapse
Affiliation(s)
- Joseph D Schneider
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Brett A Smith
- Department of Chemistry & Physics, University of South Carolina-Aiken, Aiken, South Carolina 29801, United States
| | - Grant A Williams
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| | - Douglas R Powell
- Department of Chemistry and Biochemistry, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Felio Perez
- Integrated Microscopy Center, University of Memphis, Memphis, Tennessee 38152, United States
| | - Gerard T Rowe
- Department of Chemistry & Physics, University of South Carolina-Aiken, Aiken, South Carolina 29801, United States
| | - Lei Yang
- Department of Chemistry, University of Central Arkansas, Conway, Arkansas 72035, United States
| |
Collapse
|
18
|
Santra B, Kalita P, Chandra S, Mandal D, Kumar V, Narayanan RS, Dey A, Chrysochos N, Huch V, Biswas S, Ghoshal D, Sañudo EC, Sarkar B, Schulzke C, Chandrasekhar V, Jana A. Molecular enneanuclear Cu II phosphates containing planar hexanuclear and trinuclear sub-units: syntheses, structures, and magnetism. Dalton Trans 2020; 49:2527-2536. [PMID: 32022054 DOI: 10.1039/c9dt04584h] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Highly symmetric enneanuclear copper(ii) phosphates [Cu9(Pz)6(μ-OH)3(μ3-OH)(ArOPO3)4(DMF)3] (PzH = pyrazole, Ar = 2,6-(CHPh2)2-4-R-C6H2; R = Me, 2MeAr; Et, 2EtAr; iPr, 2iPrAr; and Ar = 2,6-iPr2C6H3, 2Dip) comprising nine copper(ii) centers and pyrazole, hydroxide and DMF as ancillary ligands were synthesized by a reaction involving the arylphosphate monoester, 1, copper(i)chloride, pyrazole, and triethylamine in a 4 : 9 : 6 : 14 ratio. All four complexes were characterized by single crystal structural analysis. The complexes contain two distinct structural motifs within the multinuclear copper scaffold: a hexanuclear unit and a trinuclear unit. In the latter, the three Cu(ii) centres are bridged by a μ3-OH. Each pair of Cu(ii) centers in the trinuclear unit are bridged by a pyrazole ligand. The hexanuclear unit is made up of three dinuclear Cu(ii) motifs where the two Cu(ii) centres are bridged by an -OH and a pyrazole ligand. The three dinuclear units are connected to each other by phosphate ligands. The latter also aid the fusion of the trinuclear and the hexanuclear motifs. Magnetic studies reveal a strong antiferromagnetic exchange between the Cu(ii) centres of the dinuclear units in the hexanuclear part and a strong spin frustration in the trinuclear part leading to a degenerate ground state.
Collapse
Affiliation(s)
- Biswajit Santra
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Pankaj Kalita
- National Institute of Science Education and Research Bhubaneswar, HBNI, Bhubaneswar-752050, Odisha, India
| | - Shubhadeep Chandra
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany. and Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany.
| | - Debdeep Mandal
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Vierandra Kumar
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | | | - Atanu Dey
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| | - Nicolas Chrysochos
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany.
| | - Volker Huch
- Krupp-Chair of General and Inorganic Chemistry, Saarland University, 66123 Saarbrücken, Germany
| | - Sourav Biswas
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-32, India.
| | - Debajyoti Ghoshal
- Department of Chemistry, Jadavpur University, Jadavpur, Kolkata-32, India.
| | - E Carolina Sañudo
- Departament de Química Inorgànica i Orgànica, Secció de Química Inorgànica, Facultat de Química, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. and Institut de Nanociència i Nanotecnologia, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain
| | - Biprajit Sarkar
- Institut für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, 14195, Berlin, Germany. and Institut für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring 55, D-70569, Stuttgart, Germany.
| | - Carola Schulzke
- Institut für Biochemie, Universität Greifswald, Felix-Hausdorff-Straße 4, D-17487 Greifswald, Germany.
| | - Vadapalli Chandrasekhar
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India. and Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur 208016, India.
| | - Anukul Jana
- Tata Institute of Fundamental Research Hyderabad, Gopanpally, Hyderabad-500107, India.
| |
Collapse
|
19
|
Robert J, Parizel N, Turek P, Boudalis AK. Polyanisotropic Magnetoelectric Coupling in an Electrically Controlled Molecular Spin Qubit. J Am Chem Soc 2019; 141:19765-19775. [DOI: 10.1021/jacs.9b09101] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jérôme Robert
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
- Sorbonne Université, CNRS, Laboratoire Jean Perrin, LJP, F-75005 Paris, France
| | - Nathalie Parizel
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| | - Athanassios K. Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra), Université de Strasbourg, 4 rue Blaise Pascal, CS 90032, F-67081 Strasbourg, France
| |
Collapse
|
20
|
Ferrer S, Hernández-Gil J, Valverde-Muñoz FJ, Lloret F, Castiñeiras A. Hexanuclear Cu 3O-3Cu triazole-based units as novel core motifs for high nuclearity copper(ii) frameworks. RSC Adv 2019; 9:29357-29367. [PMID: 35528438 PMCID: PMC9071962 DOI: 10.1039/c9ra05922a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 09/06/2019] [Indexed: 12/25/2022] Open
Abstract
The asymmetric 3,5-disubstituted 1,2,4-triazole ligand H2V (5-amino-3-picolinamido-1,2,4-triazole) by reaction with an excess of Cu(ii) perchlorate (Cu : H2V being 12 : 1) has produced a novel hexanuclear {Cu6(μ3-O/H)(HV/V)3} fragment, with one triangular Cu3(μ3-O/H) group connected to three peripheral single Cu(ii) ions through a cis-cis-trans bridging mode of the ligand, which is the building block of the three structures described here: one hexanuclear, [Cu6(μ3-O)(HV)3(ClO4)7(H2O)9]·8H2O (1), one dodecanuclear, [Cu12(μ3-O)2(V)6(ClO4)5(H2O)18](ClO4)3·6H2O (2), and one tetradecanuclear 1D-polymer, {[Cu14(μ3-OH)2(V)6(HV)(ClO4)11(H2O)20](ClO4)2·14H2O} n (3), the last two containing hexanuclear subunits linked by perchlorato bridges. The Cu-Cu av. intra-triangle distance is 3.352(2) Å and the Cu(central)-Cu(bridged external) av. distance is 5.338(3) Å. The magnetic properties of the hexanuclear "Cu3O-3Cu" cluster have been studied, resulting as best fit parameters: g = 2.18(1), J(intra-triangle) = -247.0(1) cm-1 and j(central CuII - external CuII) = -5.15(2) cm-1.
Collapse
Affiliation(s)
- Sacramento Ferrer
- Departament de Química Inorgànica, Universitat de València Av. Vicent Andrés Estellés, s/n, 46100 Burjassot Valencia Spain
| | - Javier Hernández-Gil
- Departament de Química Inorgànica, Universitat de València Av. Vicent Andrés Estellés, s/n, 46100 Burjassot Valencia Spain
| | - Francisco Javier Valverde-Muñoz
- Institut de Ciència Molecular (ICMol), Universitat de València C/Catedrático José Beltrán Martínez, 2, 46980 Paterna Valencia Spain
| | - Francisco Lloret
- Institut de Ciència Molecular (ICMol), Universitat de València C/Catedrático José Beltrán Martínez, 2, 46980 Paterna Valencia Spain
| | - Alfonso Castiñeiras
- Departamento de Química Inorgánica, Facultad de Farmacia, Universidad de Santiago de Compostela Praza do Seminario de Estudos Galegos, s/n 15782 Santiago de Compostela Spain
| |
Collapse
|
21
|
Wang J, Liu Y, Mao X, Shi N, Zhang X, Wang H, Fan Y, Wang M. Two Trinuclear Cu
II
Complexes: Effect of Phosphonate Ligand on the Magnetic Property and Electrocatalytic Reactivity for Water Oxidation. Chem Asian J 2019; 14:2685-2693. [DOI: 10.1002/asia.201900531] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Revised: 05/24/2019] [Indexed: 12/29/2022]
Affiliation(s)
- Jin‐Miao Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ya‐Rong Liu
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xue‐Yang Mao
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Ning‐Ning Shi
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Xia Zhang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Hui‐Sheng Wang
- Key Laboratory for Green Chemical Process of Ministry of EducationSchool of Chemistry and Environmental EngineeringWuhan Institute of Technology Wuhan 430074 P. R. China
| | - Yu‐Hua Fan
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| | - Mei Wang
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of EducationCollege of Chemistry and Chemical EngineeringOcean University of China Qingdao Shandong 266100 P. R. China
| |
Collapse
|
22
|
Rajpurohit J, Shanmugam M. The molecular and electronic structure of an unusual cobalt NNO pincer ligand complex. Dalton Trans 2019; 48:7378-7387. [PMID: 30949637 DOI: 10.1039/c9dt00056a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The reaction of two equivalents of [Co(PMe3)4] (1) with one equivalent of a neutral NNO pincer ligand (L1) led to the formation of purple-coloured single crystals. The crystal structure determination reveals the molecular structure as a cobalt dimer [Co2(L1)(PMe3)5], which is solved in the triclinic P1[combining macron] space group. Although this species appears to have a formal zero oxidation state on cobalt ions, careful analysis of the structural parameters of the L1 reveals that the NNO ligand is reduced by three electrons; this observation has rarely been reported in the literature. Therefore, herein, more accurate description of the molecular formula [(PMe3)2CoII(η4-L13-)CoI(PMe3)3] (2) was proposed. In 2, we observed an unusual η3-π-allyl-type binding mode of the pyridine ring carbon atoms of the L13- ligand with the cobalt ion. X-ray photoelectron spectroscopy not only reveals the presence of the mixed valent cobalt ion within 2 but also unambiguously discloses the spin state of these metal ions (Co(i) diamagnetic (low-spin) and Co(ii) paramagnetic (high-spin)). The proposed electronic structure is consistent with the magnetic moment measured at room temperature. The electronic structure of 2 was further supported by the Q-band EPR measurements performed on polycrystalline sample of 2 at 5.0 K, and the presence of two independent S = ½ states was revealed. This has been qualitatively rationalized based on the super-exchange coupling pathway observed in 2. The NMR studies performed for 2 (C6D6 solvent) evidently showed that the solid-state structure of 2 was maintained in solution.
Collapse
Affiliation(s)
- Jitendrasingh Rajpurohit
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, Maharashtra, India.
| |
Collapse
|
23
|
The in-plane spin helicity of coplanar helical spin configurations of frustrated single trimer V3 and Cu3 nanomagnets, inversion (switching) of spin helicity. Chem Phys 2019. [DOI: 10.1016/j.chemphys.2019.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
24
|
Gusev A, Nemec I, Herchel R, Shul'gin V, Ryush I, Kiskin M, Efimov N, Ugolkova E, Minin V, Lyssenko K, Eremenko I, Linert W. Copper(ii) self-assembled clusters of bis((pyridin-2-yl)-1,2,4-triazol-3-yl)alkanes. Unusual rearrangement of ligands under reaction conditions. Dalton Trans 2019; 48:3052-3060. [PMID: 30758390 DOI: 10.1039/c8dt04816a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
The reaction of two structurally related bridging ligands bis[5-(2-pyridyl)-1,2,4-triazole-3-yl]methane (H2L1) and bis[5-(2-pyridyl)-1,2,4-triazole-3-yl]ethane (H2L2) with copper(ii) salts resulted in a surprising wide variety of complex structures [Cu2(H2L1)Cl2]Cl2·4CH3OH (1), [Cu4(L1)4]·4H2O (2), [Cu(H2L2)(ClO4)2] (3) and [Cu3(OH)Na2(L')6](ClO4)·5H2O·C3H6O (4), where HL' is 3,5-bis-(pyridin-2-yl)-1,2,4-triazole, which were structurally characterized by the X-ray diffraction method. Complexes 1 and 2 were prepared on the H2L1 basis and have binuclear and tetranuclear structures, respectively, demonstrating strong impact of the type of counter anion on the coordination mode of the ligand. In contrast, the reaction between Cu(ClO4)2 6H2O and H2L2 led to the preparation of mononuclear complex 3. The reaction of H2L2 with Cu(ClO4)2 under alkaline conditions led to oxidative rearrangement of the ligand and the homoleptic pentanuclear complex 4 with anionic ligand L' was prepared. Magnetic properties were studied for compounds 1, 2 and 4 and for all of them the antiferromagnetic interactions between the Cu atoms were confirmed and analyzed by the spin Hamiltonian formalism. Furthermore, the occurrence of the antisymmetric exchange was confirmed in 4. The magnetic data analysis was supported by the X-band EPR measurements performed for complexes 1, 2 and 4.
Collapse
Affiliation(s)
- Alexey Gusev
- General and Physical Chemistry Department, V.I. Vernadsky Crimean Federal University, Acad. Vernadsky av. 4, Simferopol, 295007, Crimea.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Robert J, Parizel N, Turek P, Boudalis AK. Relevance of Dzyaloshinskii–Moriya spectral broadenings in promoting spin decoherence: a comparative pulsed-EPR study of two structurally related iron(iii) and chromium(iii) spin-triangle molecular qubits. Phys Chem Chem Phys 2019; 21:19575-19584. [DOI: 10.1039/c9cp03422f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two related iron(iii) and chromium(iii) spin-triangle molecular qubits show coherent driving of their spins, and decoherence that is not significantly affected by Dzyaloshikskii–Moriya spectral broadenings.
Collapse
Affiliation(s)
- Jérôme Robert
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
- Sorbonne Université
| | - Nathalie Parizel
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
| | - Athanassios K. Boudalis
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
| |
Collapse
|
26
|
Kintzel B, Böhme M, Liu J, Burkhardt A, Mrozek J, Buchholz A, Ardavan A, Plass W. Molecular electronic spin qubits from a spin-frustrated trinuclear copper complex. Chem Commun (Camb) 2018; 54:12934-12937. [PMID: 30302454 DOI: 10.1039/c8cc06741d] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The trinuclear copper(ii) complex [Cu3(saltag)(py)6]ClO4 (H5saltag = tris(2-hydroxybenzylidene)triaminoguanidine) was synthesized and characterized by experimental as well as theoretical methods. This complex exhibits a strong antiferromagnetic coupling (J = -298 cm-1) between the copper(ii) ions, mediated by the N-N diazine bridges of the tritopic ligand, leading to a spin-frustrated system. This compound shows a T2 coherence time of 340 ns in frozen pyridine solution, which extends to 591 ns by changing the solvent to pyridine-d5. Hence, the presented compound is a promising candidate as a building block for molecular spintronics.
Collapse
Affiliation(s)
- Benjamin Kintzel
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07745 Jena, Germany.
| | - Michael Böhme
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07745 Jena, Germany.
| | - Junjie Liu
- The Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Anja Burkhardt
- Photon Science, DESY, Notkestrasse 85, 22607 Hamburg, Germany
| | - Jakub Mrozek
- The Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Axel Buchholz
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07745 Jena, Germany.
| | - Arzhang Ardavan
- The Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Winfried Plass
- Institut für Anorganische und Analytische Chemie, Friedrich-Schiller-Universität Jena, Humboldtstraße 8, 07745 Jena, Germany.
| |
Collapse
|
27
|
Yang YY, He MQ, Li MX, Huang YQ, Chi T, Wang ZX. Ferrimagnetic copper-carboxyphosphinate compounds for catalytic degradation of methylene blue. INORG CHEM COMMUN 2018. [DOI: 10.1016/j.inoche.2018.05.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Das C, Upadhyay A, Shanmugam M. Influence of Radicals on Magnetization Relaxation Dynamics of Pseudo-Octahedral Lanthanide Iminopyridyl Complexes. Inorg Chem 2018; 57:9002-9011. [DOI: 10.1021/acs.inorgchem.8b00979] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Chinmoy Das
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Apoorva Upadhyay
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| | - Maheswaran Shanmugam
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, Maharashtra, India
| |
Collapse
|
29
|
Jia X, Peng P, Cui J, Xin N, Huang X. Four N,O-Bidentate-Chelated Ligand-Tunable Copper(II) Complexes: Synthesis, Structural Characterization and Exceptional Catalytic Properties for Chan-Lam Coupling Reactions. ASIAN J ORG CHEM 2018. [DOI: 10.1002/ajoc.201800153] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Xuefeng Jia
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Pai Peng
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Jing Cui
- Key Laboratory of Magnetic Molecules and Magnetic Information Materials of Ministry of Education, School of Chemical and Material Science; Shanxi Normal University; Linfen, Shanxi Province 041004 China
| | - Nana Xin
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| | - Xianqiang Huang
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology; School of Chemistry & Chemical Engineering; Liaocheng University; Liaocheng Shandong Province 252059 China
| |
Collapse
|
30
|
Bhowmik P, Jana S, Mahapatra P, Giri S, Chattopadhyay S, Ghosh A. Role of steric crowding of ligands in the formation of hydroxido bridged di- and trinuclear copper(II) complexes: Structures and magnetic properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.026] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
31
|
Experimental and theoretical investigations on magneto-structural correlation in trinuclear copper(II) hydroxido propellers. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.01.028] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
32
|
Weng Z, Ren Y, Gu M, Yue B, He H. Two mixed-addenda Nb/W polyoxometalate-based hybrid compounds containing multicopper units: synthesis, structures, and electrochemical and magnetic properties. Dalton Trans 2018; 47:233-239. [DOI: 10.1039/c7dt03968a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two Nb/W mixed-addenda polyoxometalate-based hybrid compounds were synthesized. Their structures and properties were studied.
Collapse
Affiliation(s)
- Zhewei Weng
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Yuanhang Ren
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Min Gu
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Bin Yue
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| | - Heyong He
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials
- Collaborative Innovation Center of Chemistry for Energy Materials
- Fudan University
- Shanghai 200433
- P. R. China
| |
Collapse
|
33
|
Mathivathanan L, Boudalis AK, Turek P, Pissas M, Sanakis Y, Raptis RG. Interactions between H-bonded [CuII3(μ3-OH)] triangles; a combined magnetic susceptibility and EPR study. Phys Chem Chem Phys 2018; 20:17234-17244. [DOI: 10.1039/c8cp02643b] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
X-band EPR spectroscopy and magnetic susceptibility studies elucidate the magnetic exchange scheme within a triangular CuII3(μ3-OH) complex and the intermolecular dipolar interactions between two H-bonded CuII3(μ3-OH) units.
Collapse
Affiliation(s)
- Logesh Mathivathanan
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| | - Athanassios K. Boudalis
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
| | - Philippe Turek
- Institut de Chimie de Strasbourg (UMR 7177, CNRS-Unistra)
- Université de Strasbourg
- F-67081 Strasbourg
- France
| | - Michael Pissas
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- Athens
- Greece
| | - Yiannis Sanakis
- Institute of Nanoscience and Nanotechnology
- NCSR “Demokritos”
- Athens
- Greece
| | - Raphael G. Raptis
- Department of Chemistry and Biochemistry and the Biomolecular Sciences Institute
- Florida International University
- Miami
- USA
| |
Collapse
|
34
|
Martínez L, Bazzicalupi C, Bianchi A, Lloret F, González R, Kremer C, Chiozzone R. Structural and magnetic properties of polynuclear oximate copper complexes with different topologies. Polyhedron 2017. [DOI: 10.1016/j.poly.2017.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
35
|
Chen Z, Shen Y, Li L, Zou H, Fu X, Liu Z, Wang K, Liang F. High-nuclearity heterometallic clusters with both an anion and a cation sandwiched by planar cluster units: synthesis, structure and properties. Dalton Trans 2017; 46:15032-15039. [PMID: 29063099 DOI: 10.1039/c7dt02881d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To develop high-nuclearity clusters as multi-functional materials, we prepared a new type of sandwich clusters using an anion-templated synthetic strategy. The reactions of (2R,3R)-2,3-dihydroxybutanedioylbis(salicylidene hydrazone) (H6L) with [Cu2(OAc)4(H2O)2] in the presence of alkali metal halide (NaCl, NaBr, KCl or KBr) provided four high-nuclearity clusters [MCu18L6X(C5H5N)15(DMF)3]·3DMF·6H2O (M = Na and X = Cl (1); M = Na and X = Br (2); M = K and X = Cl (3); and M = K and X = Br (4)). They represent a new type of nanoscale high-nuclearity heterometallic sandwich clusters, in which the halide anion is fully sandwiched by two planar nonanuclear clusters, and the alkali metal ion is half-sandwiched on the top of the upper planar nonanuclear cluster. The experimental magnetic data and simulating results reveal dominant antiferromagnetic interactions between metal ions in these compounds. Their dielectric constants and electric hysteresis loops were also measured.
Collapse
Affiliation(s)
- Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Zhao JA, Yu HB, Zhi SC, Mao RN, Hu JY, Wang XX. Synthesis, chemical nuclease activity, and in vitro cytotoxicity of benzimidazole-based Cu(II)/Co(II) complexes. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.03.025] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
37
|
Gil-Hernández B, Calahorro AJ, Gili P, Sanchiz J. Effect of the apical ligand on the geometry and magnetic properties of copper(ii)/mesoxalate trinuclear units. Dalton Trans 2017; 46:5260-5268. [PMID: 28378861 DOI: 10.1039/c7dt00594f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Three new heterometallic metal-organic frameworks, namely, {(Ph4P)2[MnCu3(Hmesox)3Br(H2O)]·H2O}n (1), {(Ph4P)2[CoCu3(Hmesox)3Br]}n (2) and {(Ph4P)2[ZnCu3(Hmesox)3Br]·2.5H2O}n (3) were prepared and their structure and magnetic properties were investigated (H4mesox = mesoxalic acid, Ph4P+ = tetraphenylphosphonium). The structure of all the compounds consist of two interpenetrating opposite-chirality supramolecular cationic and polymeric anionic 3-D (10,3)-a networks, which results in chiral compounds. The anionic network is formed from the polymerization of [Cu3(Hmesox)3Br]4- units, working as three connectors, and M(ii) cations, working as three-connecting nodes, M = Mn(ii), Co(ii) and Zn(ii). The Ph4P+ cations build the cationic chiral supramolecular network opposite to the anionic one. Compounds 1 and 2 exhibit long-range magnetic ordering with critical temperatures of 7.2 K and 6.9 K, respectively. However, compound 3 does not display long-range order, but shows ferromagnetic and antiferromagnetic coupling among the Cu(ii) ions. The magnetic interactions are studied by DFT calculations and compared with related Cu(ii)-mesoxalate compounds previously reported.
Collapse
Affiliation(s)
- B Gil-Hernández
- Departamento de Química, Facultad de Ciencias, Sección Química, Universidad de la Laguna, 38206 La Laguna, España, Spain.
| | | | | | | |
Collapse
|
38
|
Georgopoulou AN, Margiolaki I, Psycharis V, Boudalis AK. Dynamic versus Static Character of the Magnetic Jahn–Teller Effect: Magnetostructural Studies of [Fe3O(O2CPh)6(py)3]ClO4·py. Inorg Chem 2017; 56:762-772. [DOI: 10.1021/acs.inorgchem.6b01912] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Anastasia N. Georgopoulou
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Agia Paraskevi, Athens 15310, Greece
| | - Irene Margiolaki
- European
Synchrotron Radiation Facility, ESRF, 6 rue Jules Horowitz, B.P. 220, 38043 Grenoble cedex, France
| | - Vassilis Psycharis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Agia Paraskevi, Athens 15310, Greece
| | - Athanassios K. Boudalis
- Institute of Nanoscience and Nanotechnology, NCSR “Demokritos”, 15310 Agia Paraskevi, Athens 15310, Greece
| |
Collapse
|
39
|
Pandolfo L, Pettinari C. Trinuclear copper(ii) pyrazolate compounds: a long story of serendipitous discoveries and rational design. CrystEngComm 2017. [DOI: 10.1039/c7ce00009j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
40
|
Heras Ojea MJ, Hay MA, Cioncoloni G, Craig GA, Wilson C, Shiga T, Oshio H, Symes MD, Murrie M. Ligand-directed synthesis of {MnIII5} twisted bow-ties. Dalton Trans 2017; 46:11201-11207. [DOI: 10.1039/c7dt02430d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
3,5-Diamino-1,2,4-triazole derivatives direct the assembly of {MnIII5} twisted bow-ties.
Collapse
Affiliation(s)
| | - Moya A. Hay
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | | | - Gavin A. Craig
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Claire Wilson
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Takuya Shiga
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Hiroki Oshio
- Graduate School of Pure and Applied Sciences
- University of Tsukuba
- Tsukuba 305-8571
- Japan
| | - Mark D. Symes
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| | - Mark Murrie
- WestChem
- School of Chemistry
- University of Glasgow
- Glasgow
- UK
| |
Collapse
|
41
|
Ferrando-Soria J, Magee S, Chiesa A, Carretta S, Santini P, Vitorica-Yrezabal I, Tuna F, Whitehead G, Sproules S, Lancaster K, Barra AL, Timco G, McInnes E, Winpenny R. Switchable Interaction in Molecular Double Qubits. Chem 2016. [DOI: 10.1016/j.chempr.2016.10.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
42
|
Calancea S, Reis SG, Guedes GP, Cassaro RAA, Semaan F, López-Ortiz F, Vaz MG. A new family of multinuclear mixed-ligand copper(II) clusters: Crystal structures, magnetic properties and catecholase-like activity. Inorganica Chim Acta 2016. [DOI: 10.1016/j.ica.2016.07.057] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
43
|
Metallacrown-based compounds: Applications in catalysis, luminescence, molecular magnetism, and adsorption. Coord Chem Rev 2016. [DOI: 10.1016/j.ccr.2016.04.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
44
|
Chen Z, Hu Z, Li Y, Liang Y, Wang X, Ouyang L, Zhao Q, Cheng H, Liang F. Manganese clusters of aromatic oximes: synthesis, structure and magnetic properties. Dalton Trans 2016; 45:15634-15643. [PMID: 27711733 DOI: 10.1039/c6dt03207a] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
With the aim of tuning the structures by using oxime ligands with different non-coordinating groups, three aromatic oxime ligands were designed by fusing oxime groups ([double bond, length as m-dash]N-OH) onto different non-coordinating groups. Their reactions with the corresponding Mn(ii) salts gave five manganese clusters [Mn(μ3-O)(L1)3(DMF)(H2O)3Cl]·2DMF·CH3OH (1), [Mn(μ3-O)(L2)3(OAc)(CH3OH)2] (2), [Mn(μ3-O)2(L2)6(H2O)(py)7](ClO4)2·py·0.5CH3OH·2H2O (3), [MnO4(L2)8(DMF)4]·DMF·6CH3CN (4), and [MnMnO4(L3)12]·3DMF·6H2O (5), in which H2L1, H2L2 and HL3 represent indane-1,2,3-trione-1,2-dioxime, acenaphthenequinone dioxime, and 9,10-phenanthrenedione-9-oxime, respectively. Their structures were determined and studied in detail. 1 and 2 show planar triangular trinuclear Mn structures. 3 has a hexanuclear Mn skeleton formed from two Mn triangular units through inter-trinuclear mutual coordination. 4 and 5 present octanuclear skeletons constructed from planar triangular Mn3O and tetrahedral Mn4O secondary building units, respectively, with different symmetries and different oxidation states of the manganese ions. Their structural studies reveal a significant contribution of the parent rings for fusing oxime groups, different non-coordinating groups and anions to the formation of different cluster skeletons. Their magnetic properties were investigated and simulated, which revealed the presence of dominant antiferromagnetic interactions between the metal ions in these compounds.
Collapse
Affiliation(s)
- Zilu Chen
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Zhaobo Hu
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yisheng Li
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Yuning Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Xinyu Wang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Li Ouyang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Qin Zhao
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Haiyan Cheng
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China.
| | - Fupei Liang
- State Key Laboratory for the Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences, Guangxi Normal University, Guilin 541004, P. R. China. and Guangxi Key Laboratory of Electrochemical and Magnetochemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin 541004, P. R. China.
| |
Collapse
|
45
|
Belinsky MI. Spin Chirality of Cu3 and V3 Nanomagnets. 1. Rotation Behavior of Vector Chirality, Scalar Chirality, and Magnetization in the Rotating Magnetic Field, Magnetochiral Correlations. Inorg Chem 2016; 55:4078-90. [DOI: 10.1021/acs.inorgchem.5b02202] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Moisey I. Belinsky
- School of Chemistry, Tel-Aviv University, Tel Aviv, Ramat Aviv 69978, Israel
| |
Collapse
|
46
|
Belinsky MI. Spin Chirality of Cu3 and V3 Nanomagnets. 2. Frustration, Temperature, and Distortion Dependence of Spin Chiralities and Magnetization in the Rotating and Tilted Magnetic Fields. Inorg Chem 2016; 55:4091-109. [DOI: 10.1021/acs.inorgchem.5b02204] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Moisey I. Belinsky
- School of Chemistry, Tel-Aviv University, Tel Aviv, Ramat Aviv 69978, Israel
| |
Collapse
|
47
|
Arizaga L, González R, Armentano D, De Munno G, Novak MA, Lloret F, Julve M, Kremer C, Chiozzone R. Synthesis, Crystal Structure and Magnetic Properties of Heteropolynuclear Re
IV
M
II
Complexes Based on the Robust [ReCl
5
(pyzCOO)]
2–
Unit (pyzCOO = 2‐pyrazinecarboxylate). Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201501487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Livia Arizaga
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Avda. General Flores 2124, CC 1157 Montevideo, Uruguay, http://dec.fq.edu.uy/ecampos/areas_qinorganica_index.html
| | - Ricardo González
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Avda. General Flores 2124, CC 1157 Montevideo, Uruguay, http://dec.fq.edu.uy/ecampos/areas_qinorganica_index.html
| | - Donatella Armentano
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 14/c, 87030, Arcavacata di Rende, Cosenza, Italy
| | - Giovanni De Munno
- Dipartimento di Chimica e Tecnologie Chimiche, Università della Calabria, via P. Bucci 14/c, 87030, Arcavacata di Rende, Cosenza, Italy
| | - Miguel A. Novak
- Universidade Federal do Rio de Janeiro, Instituto de Física, CT Bloco A, 21941‐972, Rio de Janeiro, RJ, Brazil
| | - Francesc Lloret
- Departamento de Química Inorgánica/Instituto de Ciencia Molecular, Universitat de València, C/José Beltrán 2, 46980 Paterna, València, Spain, http://www.uv.es/qcacoor/[‡]for his outstanding contribution to progress in the coordination chemistry field both as a teacher and researcher
| | - Miguel Julve
- Departamento de Química Inorgánica/Instituto de Ciencia Molecular, Universitat de València, C/José Beltrán 2, 46980 Paterna, València, Spain, http://www.uv.es/qcacoor/[‡]for his outstanding contribution to progress in the coordination chemistry field both as a teacher and researcher
| | - Carlos Kremer
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Avda. General Flores 2124, CC 1157 Montevideo, Uruguay, http://dec.fq.edu.uy/ecampos/areas_qinorganica_index.html
| | - Raúl Chiozzone
- Cátedra de Química Inorgánica, Departamento Estrella Campos, Facultad de Química, Universidad de la República, Avda. General Flores 2124, CC 1157 Montevideo, Uruguay, http://dec.fq.edu.uy/ecampos/areas_qinorganica_index.html
| |
Collapse
|
48
|
Chakraborty A, Escuer A, Ribas J, Maji TK. A discrete CuII6 cluster and a 3D MnII–CuII framework based on assembly of Mn2Cu4 clusters: synthesis, structure and magnetic properties. Dalton Trans 2016; 45:15523-15531. [DOI: 10.1039/c6dt03094g] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new magnetic metal–organic coordination compounds, a 0D Cu6 cluster and a 3D heterometallic framework with MnII2CuII4 secondary building units are synthesized. Detailed magnetic studies are performed with proper magneto-structural correlation.
Collapse
Affiliation(s)
- Anindita Chakraborty
- Molecular Materials Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560 064
- India
| | - Albert Escuer
- Departament de Quimica Inorganica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Joan Ribas
- Departament de Quimica Inorganica
- Universitat de Barcelona
- 08028 Barcelona
- Spain
| | - Tapas Kumar Maji
- Molecular Materials Laboratory
- Chemistry and Physics of Materials Unit
- Jawaharlal Nehru Centre for Advanced Scientific Research
- Bangalore 560 064
- India
| |
Collapse
|
49
|
Cheng M, Sun L, Han W, Wang S, Liu Q, Sun X, Xi H. Effect of N ancillary ligands on the structure, nuclearity and magnetic behavior of Cu(ii)–pyrazolecarboxylate complexes. NEW J CHEM 2016. [DOI: 10.1039/c6nj02338j] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The first discrete cyclic-trinuclear copper(ii)–pyrazolato complex without any μ3 ligand core was synthesized and its magnetic properties were investigated.
Collapse
Affiliation(s)
- Meiling Cheng
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Lin Sun
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Wei Han
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Shen Wang
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Qi Liu
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
- State Key Laboratory of Coordination Chemistry
| | - Xiaoqiang Sun
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| | - Haitao Xi
- School of Petrochemical Engineering and Jiangsu Key Laboratory of Advanced Catalytic Materials and Technology
- Changzhou University
- Changzhou 213164
- P. R. China
| |
Collapse
|
50
|
Hu TP, Xue ZJ, Zheng BH, Wang XQ, Hao XN, Song Y. Two novel nickel(ii) and cobalt(ii) metal–organic frameworks based on a rigid aromatic multicarboxylate ligand: syntheses, structural characterization and magnetic properties. CrystEngComm 2016. [DOI: 10.1039/c6ce00674d] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|