1
|
Lee LCC, Lo KKW. Shining New Light on Biological Systems: Luminescent Transition Metal Complexes for Bioimaging and Biosensing Applications. Chem Rev 2024; 124:8825-9014. [PMID: 39052606 PMCID: PMC11328004 DOI: 10.1021/acs.chemrev.3c00629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Luminescence imaging is a powerful and versatile technique for investigating cell physiology and pathology in living systems, making significant contributions to life science research and clinical diagnosis. In recent years, luminescent transition metal complexes have gained significant attention for diagnostic and therapeutic applications due to their unique photophysical and photochemical properties. In this Review, we provide a comprehensive overview of the recent development of luminescent transition metal complexes for bioimaging and biosensing applications, with a focus on transition metal centers with a d6, d8, and d10 electronic configuration. We elucidate the structure-property relationships of luminescent transition metal complexes, exploring how their structural characteristics can be manipulated to control their biological behavior such as cellular uptake, localization, biocompatibility, pharmacokinetics, and biodistribution. Furthermore, we introduce the various design strategies that leverage the interesting photophysical properties of luminescent transition metal complexes for a wide variety of biological applications, including autofluorescence-free imaging, multimodal imaging, organelle imaging, biological sensing, microenvironment monitoring, bioorthogonal labeling, bacterial imaging, and cell viability assessment. Finally, we provide insights into the challenges and perspectives of luminescent transition metal complexes for bioimaging and biosensing applications, as well as their use in disease diagnosis and treatment evaluation.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P. R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
- State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P. R. China
| |
Collapse
|
2
|
Fosnacht KG, Pluth MD. Activity-Based Fluorescent Probes for Hydrogen Sulfide and Related Reactive Sulfur Species. Chem Rev 2024; 124:4124-4257. [PMID: 38512066 PMCID: PMC11141071 DOI: 10.1021/acs.chemrev.3c00683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Hydrogen sulfide (H2S) is not only a well-established toxic gas but also an important small molecule bioregulator in all kingdoms of life. In contemporary biology, H2S is often classified as a "gasotransmitter," meaning that it is an endogenously produced membrane permeable gas that carries out essential cellular processes. Fluorescent probes for H2S and related reactive sulfur species (RSS) detection provide an important cornerstone for investigating the multifaceted roles of these important small molecules in complex biological systems. A now common approach to develop such tools is to develop "activity-based probes" that couple a specific H2S-mediated chemical reaction to a fluorescent output. This Review covers the different types of such probes and also highlights the chemical mechanisms by which each probe type is activated by specific RSS. Common examples include reduction of oxidized nitrogen motifs, disulfide exchange, electrophilic reactions, metal precipitation, and metal coordination. In addition, we also outline complementary activity-based probes for imaging reductant-labile and sulfane sulfur species, including persulfides and polysulfides. For probes highlighted in this Review, we focus on small molecule systems with demonstrated compatibility in cellular systems or related applications. Building from breadth of reported activity-based strategies and application, we also highlight key unmet challenges and future opportunities for advancing activity-based probes for H2S and related RSS.
Collapse
Affiliation(s)
- Kaylin G. Fosnacht
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and Biochemistry, Materials Science Institute, Knight Campus for Accelerating Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon, 97403-1253, United States
| |
Collapse
|
3
|
M R, Kulkarni RM, Sunil D. Small Molecule Optical Probes for Detection of H 2S in Water Samples: A Review. ACS OMEGA 2024; 9:14672-14691. [PMID: 38585100 PMCID: PMC10993273 DOI: 10.1021/acsomega.3c08573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 04/09/2024]
Abstract
Hydrogen sulfide (H2S) is closely linked to not only environmental hazards, but also it affects human health due to its toxic nature and the exposure risks associated with several occupational settings. Therefore, detection of this pollutant in water sources has garnered immense importance in the analytical research arena. Several research groups have devoted great efforts to explore the selective as well as sensitive methods to detect H2S concentrations in water. Recent studies describe different strategies for sensing this ubiquitous gas in real-life water samples. Though many of the designed and developed H2S detection approaches based on the use of organic small molecules facilitate qualitative/quantitative detection of the toxic contaminant in water, optical detection has been acknowledged as one of the best, attributed to the simple, highly sensitive, selective, and good repeatability features of the technique. Therefore, this review is an attempt to offer a general perspective of easy-to-use and fast response optical detection techniques for H2S, fluorimetry and colorimetry, over a wide variety of other instrumental platforms. The review affords a concise summary of the various design strategies adopted by various researchers in constructing small organic molecules as H2S sensors and offers insight into their mechanistic pathways. Moreover, it collates the salient aspects of optical detection techniques and highlights the future scope for prospective exploration in this field based on the limitations of the existing H2S probes.
Collapse
Affiliation(s)
- Ranjana M
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Rashmi M. Kulkarni
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| | - Dhanya Sunil
- Department of Chemistry, Manipal Institute of Technology, Manipal Academy of
Higher Education, Manipal, Karnataka, India 576104
| |
Collapse
|
4
|
Zhang T, Chi H, Guo J, Lu X, Li G. Construction of a Cu 2+-Responsive NIR Fluorescent Probe and the Preliminary Evaluation of its Multifunctional Application. J Fluoresc 2024:10.1007/s10895-024-03610-2. [PMID: 38386248 DOI: 10.1007/s10895-024-03610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 01/29/2024] [Indexed: 02/23/2024]
Abstract
Cu2+ was deemed as toxic and the most common heavy metal pollution in the water and food. Meanwhile, endogenous Cu2+ was deeply involved in plenty of physiological and pathological processes of human. Cu2+ imbalance was related to multiple diseases. Here we developed a Cu2+-responsive NIR probe HX, which not only demonstrated obvious color change when subjected to Cu2+, but also showed linear-dependent NIR fluorescence emission to Cu2+ concentration for Cu2+ detection and quantification both in vitro and in vivo. When HX was applied to imaging Cu2+ in the cell or living animals, intracellular Cu2+ fluctuation and Cu2+ accumulation in the liver could be visualized to indicate the copper level in the cell or organs with low background signals. Meanwhile, by applying HX to monitor Cu2+ uptake in the tumor, copper transporter function could be evaluated to screen the patient who are sensitivity to platinum drug.
Collapse
Affiliation(s)
- Tao Zhang
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Huirong Chi
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Jingjie Guo
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China
| | - Xinmiao Lu
- Department of Nuclear Medicine, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200235, China.
| | - Guolin Li
- Department of Oral, Shanghai Eighth People's Hospital, Xuhui Branch of Shanghai Sixth People's Hospital, Shanghai, 200233, China.
- Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, School of Basic Medicine, Jiamusi University, Jiamusi, Heilongjiang, 154000, P. R. China.
| |
Collapse
|
5
|
Alqahtani Z, Grell M. A 'Frugal' EGFET Sensor for Waterborne H 2S. SENSORS (BASEL, SWITZERLAND) 2024; 24:407. [PMID: 38257500 PMCID: PMC10818413 DOI: 10.3390/s24020407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 12/29/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024]
Abstract
Hydrogen sulphide (H2S) is a toxic gas soluble in water, H2Saq, as a weak acid. Since H2Saq usually originates from the decomposition of faecal matter, its presence also indicates sewage dumping and possible parallel waterborne pathogens associated with sewage. We here present a low footprint ('frugal') H2Saq sensor as an accessible resource for water quality monitoring. As a sensing mechanism, we find the chemical affinity of thiols to gold (Au) translates to H2Saq. When an Au electrode is used as a control gate (CG) or floating gate (FG) electrode in the electric double layer (EDL) pool of an extended gate field effect transistor (EGFET) sensor, EGFET transfer characteristics shift along the CG voltage axis in response to H2Saq. We rationalise this by the interface potential from the adsorption of polar H2S molecules to the electrode. The sign of the shift changes between Au CG and Au FG, and cancels when both electrodes are Au. The sensor is selective for H2Saq over the components of urine, nor does urine suppress the sensor's ability to detect H2Saq. Electrodes can be recovered for repeated use by washing in 1M HCl. Quantitatively, CG voltage shift is fitted by a Langmuir-Freundlich (LF) model, supporting dipole adsorption over an ionic (Nernstian) response mechanism. We find a limit-of-detection of 14.9 nM, 100 times below potability.
Collapse
Affiliation(s)
- Zahrah Alqahtani
- Physics Department, Faculty of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Martin Grell
- Llyfrgell Bangor, Ffordd Gwynedd, Bangor LL57 1DT, UK;
| |
Collapse
|
6
|
Song J, Liu Y, Wang C, Xu B, Zhao L. A Dipeptide-derived Dansyl Fluorescent Probe for the Detection of Cu 2+ in Aqueous Solutions. J Fluoresc 2023; 33:2515-2521. [PMID: 37204534 DOI: 10.1007/s10895-023-03274-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 05/15/2023] [Indexed: 05/20/2023]
Abstract
A novel dansyl-based fluorescent probe (DG) was designed via the introduction of a dipeptide, glycyl-L-glutamine. DG showed good selectivity and sensitivity towards Cu2+ in aqueous solutions in the pH span of ~ 6-12. The coordination of Cu2+ with the dipeptide moiety led to the fluorescent quenching of the dansyl fluorophore. The association constant value for Cu2+ was 0.78 × 104 M- 1 in a 1 to 1 stoichiometric ratio. The detection limit in HEPES buffer solution (10 mM, pH 7.4) was 1.52 µM. DG also showed strong anti-interference capability in the presence of other metal ions. It was worth noting that DG maintained the detection ability towards Cu2+ in real water samples and cell imaging, implying the potential application opportunities in complicated environments.
Collapse
Affiliation(s)
- Jian Song
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing, 100048, China.
- China Food Flavor and Nutrition Health Innovation Center, Beijing Technology and Business University, Beijing, 100048, China.
| |
Collapse
|
7
|
Genjiafu A, Shi M, Zhang X, Jian X. Case report: Analysis of a case of hydrogen sulfide poisoning in a waste treatment plant. Front Public Health 2023; 11:1226282. [PMID: 37965501 PMCID: PMC10641707 DOI: 10.3389/fpubh.2023.1226282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/17/2023] [Indexed: 11/16/2023] Open
Abstract
This paper summarizes and analyzes the clinical data of a patient with Occupational hydrogen sulfide poisoning admitted to our hospital on March 4, 2023. On the morning of March 2, 2023, the patient worked at an environmental energy company (waste treatment plant) in Shandong Province for the first time, The job was to flush the sludge from the walls of the sludge treatment tank (anaerobic tank) with a water gun, which can release hydrogen sulfide gas. When the patient was about to start work after entering the tank for about 1 min, he suddenly smelled a harsh and pungent odor, felt dizzy and weak, and then the patient suddenly fainted. After hearing the sound of the patient fainting, the workman waiting at the entrance of the tank immediately called someone to go into the tank and quickly pull the patient out, and sent to the local hospital. In the local hospital, the patient was confused, accompanied by irritability, convulsion and other manifestations, and was treated with sedation and nutritional support. Two days later, the patient's condition did not improve. For further diagnosis and treatment, the patient was transferred to the Department of Poisoning and Occupational Diseases in our hospital. After comprehensive treatment in our hospital, the patient got better and was discharged. Subsequent reexamination and follow-up showed that the patient recovered well. The work unit of the patient did not provide any personal protective equipment. According to the field investigation after the accident, the pipeline around the sludge treatment tank was blocked by sludge, resulting in a large amount of high concentration of H2S accumulated in the tank, causing the patient to faint soon after entering the tank, and his worker should be in the tank for a short time, and no health abnormalities were found. Hydrogen sulfide has a strong irritation to the human body, which can lead to asphyxia or even death in severe cases. The safety prevention and prevention knowledge of hydrogen sulfide poisoning should be popularized among enterprises and workers to reduce the occurrence of such incidents.
Collapse
Affiliation(s)
- Aerbusili Genjiafu
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Mengdi Shi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangxing Zhang
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Xiangdong Jian
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Poisoning and Occupational Diseases, Emergency Medicine, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, China
| |
Collapse
|
8
|
Smith H, Pluth MD. Advances and Opportunities in H 2S Measurement in Chemical Biology. JACS AU 2023; 3:2677-2691. [PMID: 37885594 PMCID: PMC10598833 DOI: 10.1021/jacsau.3c00427] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 09/02/2023] [Accepted: 09/08/2023] [Indexed: 10/28/2023]
Abstract
Hydrogen sulfide (H2S) is an important biological mediator across all kingdoms of life and plays intertwined roles in various disciplines, ranging from geochemical cycles to industrial processes. A common need across these broad disciplines is the ability to detect and measure H2S in complex sample environments. This Perspective focuses on key advances and opportunities for H2S detection and quantification that are relevant to chemical biology. Specifically, we focus on methods for H2S detection and quantification most commonly used in biological samples, including activity-based H2S probes, the methylene blue assay, the monobromobimane assay, and H2S-sensitive electrode measurements. Our goal is to help simplify what at first may seem to be an overwhelming array of detection and measurement choices, to articulate the strengths and limitations of individual techniques, and to highlight key unmet needs and opportunities in the field.
Collapse
Affiliation(s)
- Haley
M. Smith
- Department of Chemistry and
Biochemistry, Materials Science Institute, Knight Campus for Accelerating
Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| | - Michael D. Pluth
- Department of Chemistry and
Biochemistry, Materials Science Institute, Knight Campus for Accelerating
Scientific Impact, and Institute of Molecular Biology, University of Oregon, Eugene, Oregon 97403-1253, United States
| |
Collapse
|
9
|
Banik D, Karak A, Halder S, Banerjee S, Mandal M, Maiti A, Jana K, Mahapatra AK. A turn-on fluorescent probe for selective detection of H 2S in environmental samples and bio-imaging in human breast cancer cells. Org Biomol Chem 2023; 21:8020-8030. [PMID: 37772332 DOI: 10.1039/d3ob01319g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
A triphenylamine-benzothaizole-based turn-on fluorescent probe TPB-NO2 was designed and synthesized for tracking H2S in both environmental and biological samples depending upon the sensing strategy of thiolysis of 2,4-dinitrophenyl (DNP) ether. Due to PET (photoinduced electron transfer), occurring from donor triphenylamine moiety to acceptor DNP moiety, the probe TPB-NO2 itself is very weakly fluorescent and colorless in DMSO/H2O solution (1 : 1, v/v; 10 mM HEPES buffer, pH 7.4). But the addition of H2S leads to thiolysis of 2,4-dinitrophenyl ether to block the initial PET process and hence it exhibits naked eye detectable turn-on response with bright cyan fluorescence and intense brown color. Not only that, the probe exhibits excellent selectivity over other bio-thiols like Cysteine (Cys), homocysteine (Hcy), and glutathione (GSH), fast response time (<2 min), and high sensitivity with a detection limit of 9.81 nM. Moreover, to explore the practical applicability of our probe we employed it to monitor H2S successfully in environmental water samples, solid-state TLC strip study, Quantitative determination of H2S in eggs, and in the bioimaging of human breast cancer cells (MDA-MB 231).
Collapse
Affiliation(s)
- Dipanjan Banik
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anirban Karak
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Satyajit Halder
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Shilpita Banerjee
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Moumi Mandal
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Anwesha Maiti
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| | - Kuladip Jana
- Division of Molecular Medicine, Bose Institute, P 1/12, CIT Scheme VIIM, Kolkata 700054, India
| | - Ajit Kumar Mahapatra
- Molecular Sensor and Supramolecular Chemistry Laboratory, Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Howrah-711103, West Bengal, India.
| |
Collapse
|
10
|
Magesh K, Vijay N, Wu SP, Velmathi S. Dual-Responsive Benzo-Hemicyanine-Based Fluorescent Probe for Detection of Cyanide and Hydrogen Sulfide: Real-Time Application in Identification of Food Spoilage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1190-1200. [PMID: 36602329 DOI: 10.1021/acs.jafc.2c05567] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Colorimetric and fluorescent probes have received a lot of attention for detecting lethal analytes in realistic systems and in living things. Herein, a dual-approachable Benzo-hemicyaninebased red-emitting fluorescent probe PBiSMe, for distinct and instantaneous detection of CN- and HS- was synthesized. The PBiSMe emitted red fluorescence (570 nm) can switch to turn-off (570 nm) and blue fluorescence (465 nm) in response to CN- and HS-, respectively. Other nucleophilic reagents, such as reactive sulfur species (RSS) and anions, have no contact or interference with the probe; instead, a unique approach is undertaken to exclusively interact with CN- and HS- over a wide pH range. The measured detection limits for CN- (0.43 μM) and HS- (0.22 μM) ions are lower than the World Health Organization's (WHO) recommended levels in drinking water. We confirmed 1:1 stoichiometry ratio using Job's plot and observed good quantum yield for both analytes. The probe-coated paper strips were used to detect the H2S gas produced by food spoilage (such as eggs, raw meat, and fish) via an eye-catching visual response. Moreover, fluorescence bioimaging studies of living cells was done to confirm the probe's potential by monitoring the presence of CN- and HS- in a living system.
Collapse
Affiliation(s)
- Kuppan Magesh
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Natarajan Vijay
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| | - Shu Pao Wu
- Department of Applied Chemistry, National Yang Ming Chiao Tung University, Hsinchu 30010, ROC
| | - Sivan Velmathi
- Organic and Polymer Synthesis Laboratory, Department of Chemistry, National Institute of Technology, Tiruchirappalli 620 015, India
| |
Collapse
|
11
|
Sun L, Sun C, Ge Y, Zhang Z, Zhou J. Inner filter effect-based upconversion fluorescence sensing of sulfide ions. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:3680-3685. [PMID: 36063084 DOI: 10.1039/d2ay01072k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Upconversion nanocrystals (UCNCs) have emerged as a new type of fluorescent probe for sensing applications. Herein, we designed a 980 nm excited upconversion luminescence system, composed of core-shell-structured NaYF4 : Yb,Er@NaYF4 : Yb nanocrystals (csUCNCs) and the triethylenetetramine-Cu complex (complex-I), for quantitative detection of sulfide ions. Taking advantage of the specific recognition of complex-I toward S2-, the as-formed compound (complex-II) exhibits excellent spectral overlap not only in the range of fluorescence emissions of UCNCs but also in the excitation wavelength for UCNCs; fluorescence quenching of UCNCs occurs where the complex-II acts as the energy acceptor. Due to the electrostatic repulsion between positively charged ligand-free csUCNCs and complex-I, the fluorescence quenching is based on the primary and secondary inner filter effect rather than the fluorescence resonance energy transfer process. The detection limit of S2- for the upconversion-based system is calculated to be 2.7 μM, exhibiting higher detection sensitivity over the single complex-I compound measured by the spectrophotometric method. Moreover, no significant variation in upconversion luminescence is observed upon the addition of other interfering ions, showing the excellent selectivity of this nanoprobe toward S2-.
Collapse
Affiliation(s)
- Lanjuan Sun
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| | - Chunning Sun
- Inorganic Chemistry and Catalysis Group, Debye Institute for Nanomaterials Science, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands.
| | - Yang Ge
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| | - Zhaoming Zhang
- Shangdong Yellow Triangle Biotechnology Industry Research Institute Co.Ltd., Dongying Shangdong 257091, P. R. China
| | - Jiancheng Zhou
- School of Chemistry and Chemical Engineering, Southeast University, No. 2 Dongnandaxue Road, Nanjing, Jiangsu 211189, P. R. China.
| |
Collapse
|
12
|
Detection of S2− in Water by a Glucose Enhanced Water-Soluble Fluorescent Bioprobe. BIOSENSORS 2022; 12:bios12080600. [PMID: 36004996 PMCID: PMC9406183 DOI: 10.3390/bios12080600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 07/31/2022] [Accepted: 08/02/2022] [Indexed: 11/17/2022]
Abstract
That sulfide anions (S2−) in aquatic environments are produced by microorganisms through degrading sulfur-containing proteins and other organics are harmful to human health. Thus, it is of significance to develop a convenient method for the detection of S2− in water. Small molecular fluorescent probes are very popular for their advantages of visualization, real-time, high sensitivity, and convenience. However, low solubility in water limits the application of existing S2− probes. In this work, we found that our previously developed water-soluble glycosylated fluorescent bioprobe Cu[GluC] can achieve detection of S2− in water. Cu[GluC] can restore fluorescence within 20 s when it encounters S2− and shows good sensitivity towards S2− with a detection limit of 49.6 nM. Besides, Cu[GluC] derived fluorescent test strips were obtained by immersion and realized conveniently visual S2− detection in water by coupling with a UV lamp and a smartphone app. This work provides a fluorescent bioprobe with good water solubility as well as its derived fluorescent test strip for sensitive and simple detection of S2− in water, which shows good prospects in on-site water quality monitoring.
Collapse
|
13
|
Plasmonic sensor for hydrogen sulphide in saliva: Multisensor platform and bag format. Talanta 2022; 245:123449. [DOI: 10.1016/j.talanta.2022.123449] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/27/2022] [Accepted: 04/02/2022] [Indexed: 01/01/2023]
|
14
|
Guo WT, Dou L, Yan YJ, Li RY, Dong WK. A naphthol-functionalized bis(salamo)-like chromogenic and fluorogenic probe for monitoring hydrogen sulfide and application in water samples. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2046576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Wen-Ting Guo
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Lin Dou
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Yuan-Ji Yan
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Ruo-Yu Li
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| | - Wen-Kui Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou, People’s Republic of China
| |
Collapse
|
15
|
Krämer J, Kang R, Grimm LM, De Cola L, Picchetti P, Biedermann F. Molecular Probes, Chemosensors, and Nanosensors for Optical Detection of Biorelevant Molecules and Ions in Aqueous Media and Biofluids. Chem Rev 2022; 122:3459-3636. [PMID: 34995461 PMCID: PMC8832467 DOI: 10.1021/acs.chemrev.1c00746] [Citation(s) in RCA: 131] [Impact Index Per Article: 65.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Indexed: 02/08/2023]
Abstract
Synthetic molecular probes, chemosensors, and nanosensors used in combination with innovative assay protocols hold great potential for the development of robust, low-cost, and fast-responding sensors that are applicable in biofluids (urine, blood, and saliva). Particularly, the development of sensors for metabolites, neurotransmitters, drugs, and inorganic ions is highly desirable due to a lack of suitable biosensors. In addition, the monitoring and analysis of metabolic and signaling networks in cells and organisms by optical probes and chemosensors is becoming increasingly important in molecular biology and medicine. Thus, new perspectives for personalized diagnostics, theranostics, and biochemical/medical research will be unlocked when standing limitations of artificial binders and receptors are overcome. In this review, we survey synthetic sensing systems that have promising (future) application potential for the detection of small molecules, cations, and anions in aqueous media and biofluids. Special attention was given to sensing systems that provide a readily measurable optical signal through dynamic covalent chemistry, supramolecular host-guest interactions, or nanoparticles featuring plasmonic effects. This review shall also enable the reader to evaluate the current performance of molecular probes, chemosensors, and nanosensors in terms of sensitivity and selectivity with respect to practical requirement, and thereby inspiring new ideas for the development of further advanced systems.
Collapse
Affiliation(s)
- Joana Krämer
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Rui Kang
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Laura M. Grimm
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Luisa De Cola
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
- Dipartimento
DISFARM, University of Milano, via Camillo Golgi 19, 20133 Milano, Italy
- Department
of Molecular Biochemistry and Pharmacology, Instituto di Ricerche Farmacologiche Mario Negri, IRCCS, 20156 Milano, Italy
| | - Pierre Picchetti
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| | - Frank Biedermann
- Institute
of Nanotechnology, Karlsruhe Institute of
Technology (KIT), Hermann-von-Helmholtz Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
| |
Collapse
|
16
|
Wang P, Zhou D, Xue S, Chen B, Wen S, Yang X, Wu J. Rational design of dual-functional peptide-based chemosensor for sequential detection of Ag+ (AgNPs) and S2- ions by fluorescent and colorimetric changes and its application in live cells, real water samples and test strips. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107326] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Du Y, Wang H, Zhang T, Wen W, Li Z, Bi M, Liu J. An ESIPT-based fluorescent probe with fast-response for detection of hydrogen sulfide in mitochondria. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 265:120390. [PMID: 34536889 DOI: 10.1016/j.saa.2021.120390] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/23/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Excited-state intramolecular proton transfer (ESIPT) has recently received considerable attention due to its dual fluorescent changes and large Stokes shift. Hydrogen sulfide (H2S) is a gas signal molecule that plays important roles in modulating the functions of different systems. Herein, by modifying 2-(2́-hydroxyphenyl) benzothiazole (HBT) scaffold, a novel near-infrared mitochondria-targeted fluorescent probe HBTP-H2S has been rationally designed based on excited-state intramolecular proton transfer (ESIPT) effect. The nucleophilic addition reaction of the H2S with probe HBTP-H2S caused the break of the conjugated skeleton, resulting the shifting of maximum emission peak from 658 nm to 470 nm. HBTP-H2S showed fast-response response time, good selectivity and a large Stokes shift (188 nm) toward H2S. Most importantly, inspired by the inherent advantages of the probe, HBTP-H2S was successfully employed to monitor mitochondrial H2S in HepG2 cells.
Collapse
Affiliation(s)
- Yuting Du
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China.
| | - Hongliang Wang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Ting Zhang
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Wei Wen
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Zhiying Li
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Minjie Bi
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| | - Juan Liu
- Department of Chemistry, Xinzhou Teachers University, Xinzhou, Shanxi 034000, China
| |
Collapse
|
18
|
Hu Y, Quan S, Zhao C, Li J, Sun X, Xiao J. An “On-Off-On” fluorescent peptide probe for the specific detection of Cu2+ and S2- in living cells and zebrafish. NEW J CHEM 2022. [DOI: 10.1039/d2nj00408a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cu2+ plays an important role as the third of most abundant essential trace elements in normal physiological activities and metabolism of the organism. S2- participates in a variety of physiological...
Collapse
|
19
|
Progress on the reaction-based methods for detection of endogenous hydrogen sulfide. Anal Bioanal Chem 2021; 414:2809-2839. [PMID: 34825272 DOI: 10.1007/s00216-021-03777-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 10/12/2021] [Accepted: 11/05/2021] [Indexed: 12/29/2022]
Abstract
Hydrogen sulfide (H2S) is a biologically signaling molecule that mediates a wide range of physiological functions, which is frequently misregulated in numerous pathological processes. As such, measurement of H2S holds great attention due to its unique physiological and pathophysiological roles. Currently, a variety of methods based on the H2S-involved reactions have been reported for detection of endogenous H2S, bearing the advantages of good specificity and high sensitivity. This review describes in detail the types of reactions, their mechanisms, and their applications in biological research, thus hopefully providing some guidelines to the researchers in this field for further investigation.
Collapse
|
20
|
Liu Y, Jiang B, Zhao L, Zhao L, Wang Q, Wang C, Xu B. A dansyl-based fluorescent probe for sensing Cu 2+ in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 261:120009. [PMID: 34087769 DOI: 10.1016/j.saa.2021.120009] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
A fluorescent probe based on a glycyl-L-tyrosine-modified dansyl derivative (D-GT) is designed and synthesized. D-GT demonstrated great detection performance toward Cu2+ in an aqueous solution. Fluorescence quenching occurred due to the coordination of Cu2+ with D-GT. The sensitive detection of D-GT to Cu2+ was applied in aqueous solution within a wide pH span (6-12). A 1:1 coordinate stoichiometric way and an association constant of 6.47 × 104 M-1 between D-GT and Cu2+ were determined. The measured detection limit for Cu2+ in HEPES buffer solution (10 mM, pH 7.4) was 0.69 μM. The probe displayed an appropriate sensitivity toward Cu2+ in real drinking water samples and living cells, which reveals the potential applications of D-GT in complicated environments.
Collapse
Affiliation(s)
- Yu Liu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Bing Jiang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Linlin Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Li Zhao
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Qiyu Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Ce Wang
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| | - Baocai Xu
- School of Light Industry, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
21
|
A new sensitive “turn-on” fluorescent probe based on naphthalimide: Application in visual recognition of hydrogen sulfide in environmental samples and living cells. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113491] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
22
|
A novel fluorescent probe for highly selective and sensitive detection of sulfur ions in real samples and living cells based on the tripeptide-Cu2+ ensemble system. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106612] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
S K, Sam B, George L, N SY, Varghese A. Fluorescein Based Fluorescence Sensors for the Selective Sensing of Various Analytes. J Fluoresc 2021; 31:1251-1276. [PMID: 34255257 DOI: 10.1007/s10895-021-02770-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/30/2021] [Indexed: 12/18/2022]
Abstract
Fluorescein molecules are extensively used to develop fluorescent probes for various analytes due to their excellent photophysical properties and the spirocyclic structure. The main structural modification of fluorescein occurs at the carboxyl group where different groups can be easily introduced to produce the spirolactam structure which is non-fluorescent. The spirolactam ring opening accounts for the fluorescence and the dual sensing of analytes using fluorescent sensors is still a topic of high interest. There is an increase in the number of dual sensors developed in the past five years and quite a good number of fluorescein derivatives were also reported based on reversible mechanisms. This review analyses environmentally and biologically important cations such as Cu2+, Hg2+, Fe3+, Pd2+, Zn2+, Cd2+, and Mg2+; anions (F-, OCl-) and small molecules (thiols, CO and H2S). Structural modifications, binding mechanisms, different strategies and a comparative study for selected cations, anions and molecules are outlined in the article.
Collapse
Affiliation(s)
- Keerthana S
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Bincy Sam
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Louis George
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Sudhakar Y N
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India
| | - Anitha Varghese
- Department of Chemistry, CHRIST (Deemed To Be University), Hosur Road, Bengaluru, 560029, India.
| |
Collapse
|
24
|
Patra A, Chakraborty S, Lohar S, Zangrando E, Chattopadhyay P. A phenolato-bridged dinuclear Ni(II) complex for selective fluorescent sensing of oxalate in aqueous medium. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
25
|
Zhang Q, Liu Y, Jia X, He Y, Zhang R, Guan T, Zhang Q, Yang Y, Liu Y. Fluorescence turn off–on mechanism of selective chemosensor for hydrogen sulfide: A theoretical perspective. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116679] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
26
|
Recent advances of small-molecule fluorescent probes for detecting biological hydrogen sulfide. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2050-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
27
|
Wang P, Sun L, Wu J, Yang X, Lin P, Wang M. A dual-functional colorimetric and fluorescent peptide-based probe for sequential detection of Cu 2+ and S 2- in 100% aqueous buffered solutions and living cells. JOURNAL OF HAZARDOUS MATERIALS 2021; 407:124388. [PMID: 33199144 DOI: 10.1016/j.jhazmat.2020.124388] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 10/15/2020] [Accepted: 10/23/2020] [Indexed: 05/12/2023]
Abstract
Highly sensitive and selectivite detection of copper ions (Cu2+) and hydrogen sulfide (H2S) have become important research topics due to the potential harmful impacts of these chemicals to human health and the environment. In this study, we report the synthesis of a dual-functional peptide-based probe L (FITC-AhxSerSerHis), designed to mimic a copper-sulfur metalloprotein, and capable of continuous detection of Cu2+ and S2- based on colorimetric and fluorescent methods. The new probe L displayed excellent "turn off" fluorescence response and good selectivity for Cu2+ ions via a modification of the tripeptide and fluorescein isothiocyanate group, and produced an obvious color change visible to the naked eye. Furthermore, as an excitable probe, the L-Cu complex could continuously detect S2- with high selectivity and sensitivity in 100% aqueous buffered solutions. The detection limits for fluorescence titration measurements, calculated using the equation 3σ/k, were 76.7 nM (Cu2+) and 27.2 nM (S2-), which were well below U.S. EPA safety levels. In addition, L could be cycled to alternately detect Cu2+ and S2-, thereby making it a promising reversible probe. Moreover, L was successfully applied to monitoring Cu2+ and S2- in live RKO cells through fluorescence imaging, exhibiting low cytotoxicity and good cell permeability.
Collapse
Affiliation(s)
- Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China.
| | - Liangyu Sun
- Bankpeptide Biological Technology Co., LTD, Hefei 230031, PR China
| | - Jiang Wu
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| | - Xiupei Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637009, PR China
| | - Pengchen Lin
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| | - Min Wang
- Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Chinese Academy of Science, Xining 810008, PR China
| |
Collapse
|
28
|
Zhang Y, Cai Y, He Y, Lin Q, Ren J, Cao D, Zhang L. A label-free fluorescent peptide probe for sensitive and selective determination of copper and sulfide ions in aqueous systems. RSC Adv 2021; 11:7426-7435. [PMID: 35423246 PMCID: PMC8694936 DOI: 10.1039/d0ra08788b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/06/2021] [Indexed: 12/22/2022] Open
Abstract
A label free fluorescent peptide probe (HDSGWEVHH) was used for Cu2+ and S2- determination in aqueous solution. Our results demonstrated that HDSGWEVHH is highly selective and sensitive for monitoring free Cu2+ concentration via quenching of the probe fluorescence upon Cu2+ binding. The mechanism of the complexation is investigated with Cyclic Voltammetry (CV), 1H nuclear magnetic resonance (NMR), electron paramagnetic resonance (EPR) spectroscopy and computational techniques. Theoretical calculation results indicated the binding ratio of the probe to Cu2+ is 2 : 1 and the binding constant was obtained as 1.72 × 10 8 M-1. Cu2+ concentration can be detected with the detection limit of 16 nM. Free Cu2+ concentration released from the metallothionein-Cu complex at different pH values was detected. Cu2+ concentration in real water and tea samples was also detected, and the results were consistent with the ones monitored by atomic absorption spectrometer. Because of the exceedingly small K sp value of CuS (1.27 × 10-36), S2- can sequester Cu2+ from HDSGWEVHH to restore the tryptophan (W) fluorescence. Thus the HDSGWEVHH-Cu2+ complex can also be used for S2- detection. The S2- concentrations can be monitored with a detection limit of 19 nM. The assay is also amenable to measurement of S2- concentration in pure water samples. Thus the probe designed herein is sensitive, label free, low cost, and environmentally friendly for Cu2+ and S2- determination in aqueous solutions.
Collapse
Affiliation(s)
- Yadan Zhang
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P. R. China
| | - Yunhui Cai
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P. R. China
| | - Yonghui He
- Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission & Ministry of Education, Yunnan Minzu University Kunming Yunnan 650500 P. R. China
| | - Qinlu Lin
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P. R. China
| | - Jiali Ren
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P. R. China
| | - Dongsheng Cao
- Xiangya School of Pharmaceutical Science, Central South University Changsha 410083 P. R. China
| | - Lin Zhang
- National Engineering Laboratory for Rice and Byproduct Deep Processing, Hunan Key Laboratory of Processed Food for Special Medical Purpose, Hunan Key Laboratory of Forestry Edible Resources Safety and Processing, School of Food Science and Engineering, Central South University of Forestry and Technology Changsha 410004 P. R. China
| |
Collapse
|
29
|
Guo JM, Xing HJ, Cai JZ, Zhang HF, Xu SW. H 2S exposure-induced oxidative stress promotes LPS-mediated hepatocyte autophagy through the PI3K/AKT/TOR pathway. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 209:111801. [PMID: 33383342 DOI: 10.1016/j.ecoenv.2020.111801] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 12/08/2020] [Accepted: 12/09/2020] [Indexed: 06/12/2023]
Abstract
Hydrogen sulfide (H2S), a common air pollutant and toxic gas, is detrimental to organisms and the environment. Exposure to highly concentrated H2S can induce oxidative stress and autophagy. However, the mechanism underlying the liver damage caused by H2S has not been identified. Lipopolysaccharide (LPS), the key component of endotoxin, can induce oxidative stress and autophagy. For this experiment, we used one-day-old chickens as model organisms to evaluate the effects of H2S combined with LPS on oxidative stress and autophagy. The four groups (control group, LPS group, H2S group and H2S-LPS group) were observed by electron microscopy, detected by oxidative stress kit, analyzed by quantitative real-time quantitative PCR, and analyzed by Western blot. We found that the activities of antioxidant enzymes (superoxide dismutase, antioxidant glutathione, catalase, and glutathione peroxidase) decreased in the H2S group compared to those in the control group; however, malondialdehyde levels in the H2S group increased. Molecular-level studies showed that the expression of genes associated with the PI3K/ AKT/ TOR pathways in the H2S group decreased, whereas the expression of other autophagy-related genes (Beclin1, ATG5 and the ratio of LC3-II/ LC3-I) increased compared to that in the control group. These findings suggest that H2S caused oxidative stress and induced autophagy through the PI3K/ AKT/ TOR pathway in chicken liver cells. Additionally, exposure to H2S aggravated LPS-induced oxidative stress and autophagy injury. Capsule: Aerial exposure to H2S can cause oxidative stress in chicken livers and induce autophagy through the PI3K/AKT/TOR pathway, and can aggravate LPS-induced oxidative stress and autophagy.
Collapse
Affiliation(s)
- Jin-Ming Guo
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Hou-Juan Xing
- College of Animal Science and Technology, Northeast Agricultural University, Harbin 150030, PR China
| | - Jing-Zeng Cai
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China
| | - Hong-Fu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, PR China
| | - Shi-Wen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, College of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, PR China.
| |
Collapse
|
30
|
Xiong Y, Shi C, Li L, Tang Y, Zhang X, Liao S, Zhang B, Sun C, Ren C. A review on recent advances in amino acid and peptide-based fluorescence and its potential applications. NEW J CHEM 2021. [DOI: 10.1039/d1nj02230j] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Fluorescence is widely used to detect functional groups and ions, and peptides are used in various fields due to their excellent biological activity.
Collapse
Affiliation(s)
- Yingshuo Xiong
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changxin Shi
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Lingyi Li
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Yuanhan Tang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Xin Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Sisi Liao
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Beibei Zhang
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Changmei Sun
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, China
| | - Chunguang Ren
- Yantai Institute of Materia Medica, Yantai 264000, China
| |
Collapse
|
31
|
Abstract
Unsymmetrical tri-functionalized perylene diimide dyes were explored for making solution- and solid-state-based colorimetric kits for the detection of gaseous and aqueous H2S.
Collapse
Affiliation(s)
- Prabhpreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India
| | - Navdeep Kaur
- Department of Chemistry, UGC Centre for Advanced Studies, Guru Nanak Dev University, Amritsar 143 005, India
| |
Collapse
|
32
|
Singh N, Chandra R. A naked-eye colorimetric sensor based on chalcone for the sequential recognition of copper( ii) and sulfide ions in semi-aqueous solution: spectroscopic and theoretical approaches. NEW J CHEM 2021. [DOI: 10.1039/d1nj00583a] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A chalcone-based new colorimetric sensor A01 for the sequential detection of Cu2+ and S2− ions.
Collapse
Affiliation(s)
- Nidhi Singh
- Department of Chemistry
- University of Delhi
- Drug Discovery & Development Laboratory
- Delhi 110007
- India
| | - Ramesh Chandra
- Department of Chemistry
- University of Delhi
- Drug Discovery & Development Laboratory
- Delhi 110007
- India
| |
Collapse
|
33
|
A new palladium complex as a dual fluorometric and colorimetric probe for rapid determination of sulfide anion. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2020.112885] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
34
|
A novel peptide-based fluorescent chemosensor for detection of zinc (II) and copper (II) through differential response and application in logic gate and bioimaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
35
|
Xu G, Wei F, Cen Y, Cheng X, Hu Q. Dual-Emissive Fluorescent Sensor Based on Functionalized Quantum Dots for the Simultaneous Determination of Nitric Oxide and Hydrogen Sulfide. ACS Biomater Sci Eng 2020; 6:6086-6094. [DOI: 10.1021/acsbiomaterials.0c00842] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Guanhong Xu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Fangdi Wei
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Yao Cen
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Xia Cheng
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| | - Qin Hu
- School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
- Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, Jiangsu 211166, PR China
| |
Collapse
|
36
|
Noh HL, Oh BM, Park YK, Chun HW, Lee J, Kim JK, Zheng J, Jung D, Lee W, Kim JH. Chromogenic detection of hydrogen sulfide using squarylium-based chemosensors. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2020; 239:118457. [PMID: 32450535 DOI: 10.1016/j.saa.2020.118457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 04/22/2020] [Accepted: 05/06/2020] [Indexed: 06/11/2023]
Abstract
Squarylium-based colorimetric hydrogen sulfide (H2S) chemosensors (SQ1, SQ2, and SQ3) were developed, and their detection properties were systematically characterized. SQ1 exhibited rapid and high resolution H2S sensing properties through significant color changes detectable by naked-eye with limit of detection as low as 7.2 ppb. SQ1 also showed excellent selectivity for H2S detection over other relevant anions and nucleophiles. Sensing mechanisms of SQ1 were investigated based on spectroscopic and 1H NMR analyses with quantum calculations. Furthermore, SQ1 showed an efficient response to H2S under versatile conditions in the solution, solid, and dyed fabric states, which suggests applicability of SQ1 to simple, low-cost, and practical H2S sensors.
Collapse
Affiliation(s)
- Ha Lim Noh
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Byeong M Oh
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Young Ki Park
- Smart Textiles R&D Group, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnogu, Ansan-si, Gyeonggi-do 426-910, Republic of Korea
| | - Hye W Chun
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea
| | - Junyeop Lee
- AI System Technology Group, Korea Institute of Industrial Technology (KITECH), Daegu 41566, Republic of Korea
| | - Jae Keon Kim
- AI System Technology Group, Korea Institute of Industrial Technology (KITECH), Daegu 41566, Republic of Korea
| | - Jian Zheng
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea; School of Chemistry and Chemical Engineering, Lingnan Normal University, Zhanjiang, China
| | - Daewoong Jung
- AI System Technology Group, Korea Institute of Industrial Technology (KITECH), Daegu 41566, Republic of Korea.
| | - Woosung Lee
- Smart Textiles R&D Group, Korea Institute of Industrial Technology (KITECH), 143 Hanggaulro, Sangnogu, Ansan-si, Gyeonggi-do 426-910, Republic of Korea.
| | - Jong H Kim
- Department of Molecular Science and Technology, Ajou University, Suwon 443-749, Republic of Korea.
| |
Collapse
|
37
|
Highly selective and sensitive detection of hydrogen sulfide in aqueous medium and live cells using peptide-based bioprobe to mimic the binding sites of the ceruloplasmin for Cu(II) ions. Biosens Bioelectron 2020; 163:112283. [PMID: 32421631 DOI: 10.1016/j.bios.2020.112283] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/31/2022]
|
38
|
Alday J, Mazzeo A, Suarez S. Selective detection of gasotransmitters using fluorescent probes based on transition metal complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
39
|
Hatai J, Hirschhäuser C, Schmuck C, Niemeyer J. A Metallosupramolecular Coordination Polymer for the 'Turn-on' Fluorescence Detection of Hydrogen Sulfide. ChemistryOpen 2020; 9:786-792. [PMID: 32760642 PMCID: PMC7391242 DOI: 10.1002/open.202000163] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/29/2020] [Indexed: 12/20/2022] Open
Abstract
A coumarin based probe for the efficient detection of hydrogen sulfide in aqueous medium is reported. The investigated coumarine-based derivative forms spherical nanoparticles in aqueous media. In presence of Pd2+, a metallosupramolecular coordination polymer is formed, which is accompanied by quenching of the coumarin emission at 390 nm. Its Pd2+ complex could be used as a probe for chemoselective detection of monohydrogensulfide (HS-). Presence of HS- leads to a'turn-on' fluorescence signal, resulting from decomplexation of Pd2+ from the metallosupramolecular probe. The probe was successfully applied for qualitative and quantitative detection of HS- in different sources of water directly collected from sea, river, tap and laboratory drain water, as well as in growth media for aquatic species.
Collapse
Affiliation(s)
- Joydev Hatai
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Christoph Hirschhäuser
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Carsten Schmuck
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| | - Jochen Niemeyer
- Faculty of Chemistry (Organic Chemistry) and Center for Nanointegration Duisburg- Essen (CENIDE)University of Duisburg-EssenUniversitätsstrasse 745141EssenGermany
| |
Collapse
|
40
|
Hao C, Li Y, Fan B, Zeng G, Zhang D, Bian Z, Wu J. A new peptide-based chemosensor for selective imaging of copper ion and hydrogen sulfide in living cells. Microchem J 2020. [DOI: 10.1016/j.microc.2020.104658] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
41
|
Chang R, Chen X, Yu H, Tan G, Wen H, Huang J, Hao Z. Modified EDTA selectively recognized Cu2+ and its application in the disaggregation of β-amyloid-Cu (II)/Zn (II) aggregates. J Inorg Biochem 2020; 203:110929. [DOI: 10.1016/j.jinorgbio.2019.110929] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 12/26/2022]
|
42
|
Zhang Y, Chen Y, Bai Y, Xue X, He W, Guo Z. FRET-based fluorescent ratiometric probes for the rapid detection of endogenous hydrogen sulphide in living cells. Analyst 2020; 145:4233-4238. [DOI: 10.1039/d0an00531b] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
FRET strategy was adopted for designing ratiometric fluorescent H2S sensors using Coumarin-derived merocyanine fluorophore.
Collapse
Affiliation(s)
- Yuming Zhang
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Yang Bai
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Xuling Xue
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Weijiang He
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry
- Coordination ChemistryInstitute
- School of Chemistry and Chemical Engineering
- Nanjing University
- Nanjing 210023
| |
Collapse
|
43
|
Mandewale MC, Kokate S, Thorat B, Sawant S, Yamgar R. Zinc complexes of hydrazone derivatives bearing 3,4-dihydroquinolin-2(1H)-one nucleus as new anti-tubercular agents. ARAB J CHEM 2019. [DOI: 10.1016/j.arabjc.2016.07.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
|
44
|
Iovan DA, Jia S, Chang CJ. Inorganic Chemistry Approaches to Activity-Based Sensing: From Metal Sensors to Bioorthogonal Metal Chemistry. Inorg Chem 2019; 58:13546-13560. [PMID: 31185541 PMCID: PMC8544879 DOI: 10.1021/acs.inorgchem.9b01221] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complex network of chemical processes that sustain life motivates the development of new synthetic tools to decipher biological mechanisms of action at a molecular level. In this context, fluorescent and related optical probes have emerged as useful chemical reagents for monitoring small-molecule and metal signals in biological systems, enabling visualization of dynamic cellular events with spatial and temporal resolution. In particular, metals occupy a central role in this field as analytes in their own right, while also being leveraged for their unique biocompatible reactivity with small-molecule substrates. This Viewpoint highlights the use of inorganic chemistry principles to develop activity-based sensing platforms mediated by metal reactivity, spanning indicators for metal detection to metal-based reagents for bioorthogonal tracking, and manipulation of small and large biomolecules, illustrating the privileged roles of metals at the interface of chemistry and biology.
Collapse
Affiliation(s)
- Diana A. Iovan
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| | - Shang Jia
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, California 94720, United States
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720, United States
- Howard Hughes Medical Institute, University of California, Berkeley, California 94720, United States
| |
Collapse
|
45
|
Echizen H, Hanaoka K. [Development of fluorescent probes for detecting reactive sulfur species and their application to development of inhibitors for 3MST]. Nihon Yakurigaku Zasshi 2019; 154:121-127. [PMID: 31527361 DOI: 10.1254/fpj.154.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Hydrogen sulfide (H2S) has been reported to play an important role in biological systems. More recently, sulfane sulfur (sulfur with 0 or -1 charge) molecules have been also reported to be involved in various biological phenomena such as regulation of redox signaling and antioxidant functions. Fluorescent probes are one of the important chemical tools because it is easy to use and enable the real-time detection of the target molecules in living cells and tissues. We have successfully developed a highly selective H2S-detecting fluorescent probe, HSip-1. HSip-1 has been designed on the basis of the facts that the macrocyclic polyamine ligands form a stable complex with Cu2+, and Cu2+ also reacts with H2S and make a stable CuS complex. SSip-1 is a fluorescent probe for detecting sulfane sulfur and this fluorescent probe is designed on the basis of the unique feature of sulfane sulfur to bind reversibly to other sulfur atoms and the intramolecular spirocyclization reaction of xanthene dyes. SSip-1 is a highly selective fluorescent probe and can detect sulfane sulfur reversibly. Both HSip-1 and SSip-1 were able to be used for the live-cell fluorescence imaging. Further, we applied HSip-1 to the high-throughput screening (HTS) for the inhibitors of 3-mercaptopyruvate sulfurtransferase (3MST), one of the reactive sulfur species (RSS)-generating enzymes. We successfully found new 3MST inhibitors by screening of 174,118 compounds. We expect that these fluorescent probes and inhibitors would be useful to elucidate new functions of RSS and RSS-generating enzymes.
Collapse
Affiliation(s)
- Honami Echizen
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| | - Kenjiro Hanaoka
- Graduate School of Pharmaceutical Sciences, The University of Tokyo
| |
Collapse
|
46
|
Xu T, Li D, Yan C, Wu Y, Yuan C, Shao X. Decoration of Terpyridine with Electron‐Rich Unit THDTAP: an Efficient Way to Explore Fluorescence Sensors for Recognizing Metal Ions. CHINESE J CHEM 2019. [DOI: 10.1002/cjoc.201900226] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Taoshan Xu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Dongxu Li
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Chaoxian Yan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Yuewei Wu
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Cheng‐Shan Yuan
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| | - Xiangfeng Shao
- State Key Laboratory of Applied Organic ChemistryLanzhou University Lanzhou Gansu 730000 China
| |
Collapse
|
47
|
Tharmalingam B, Mathivanan M, Dhamodiran G, Saravana Mani K, Paranjothy M, Murugesapandian B. Star-Shaped ESIPT-Active Mechanoresponsive Luminescent AIEgen and Its On-Off-On Emissive Response to Cu 2+/S 2. ACS OMEGA 2019; 4:12459-12469. [PMID: 31460365 PMCID: PMC6682042 DOI: 10.1021/acsomega.9b00845] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 06/03/2019] [Indexed: 05/08/2023]
Abstract
Design and development of multifunctional materials have drawn incredible attraction in recent years. Herein, we report the design and construction of versatile star-shaped intramolecular charge transfer (ICT)-coupled excited-state intramolecular proton transfer (ESIPT)-active mechanoresponsive and aggregation-induced emissive (AIE) luminogen triaminoguanidine-diethylaminophenol (LH3 ) conjugate from simple precursors triaminoguanidine hydrochloride and 4-(N,N-diethylamino)salicylaldehyde. Solvent-dependent dual emission in nonpolar to polar protic solvents implies the presence of ICT-coupled ESIPT features in the excited state. Aggregation-enhanced emissive feature of LH3 was established in the CH3CN/water mixture. Furthermore, this compound exhibits mechanochromic fluorescence behavior upon external grinding. Fluorescence microscopy images of pristine, crystal, and crushed crystals confirm the naked-eye mechanoresponsive characteristics of LH3 . In addition, LH3 selectively sensed a Cu2+ ion through a colorimetric and fluorescence "turn-off" route, and subsequently, the LH3 -Cu2+ ensemble could act as a selective and sensitive sensor for S2- in a "turn-on" fluorescence manner via a metal displacement approach. Reversible "turn-off-turn-on" features of LH3 with Cu2+/S2- ions were efficiently demonstrated to construct the IMPLICATION logic gate function. The Cu2+/S2--responsive sensing behavior of LH3 was established in the paper strip experiment also, which can easily be characterized by the naked eye under daylight as well as a UV lamp (λ = 365 nm).
Collapse
Affiliation(s)
| | - Moorthy Mathivanan
- Department
of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | - Ganesh Dhamodiran
- Department
of Chemistry, Bharathiar University, Coimbatore 641 046, Tamil Nadu, India
| | | | - Manikandan Paranjothy
- Department
of Chemistry, Indian Institute of Technology
Jodhpur, Jodhpur 342 037, Rajasthan, India
| | | |
Collapse
|
48
|
An Y, Wang P, Yue Z. A sequential and reversibility fluorescent pentapeptide probe for Cu(II) ions and hydrogen sulfide detections and its application in two different living cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2019; 216:319-327. [PMID: 30909088 DOI: 10.1016/j.saa.2019.03.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 03/03/2019] [Accepted: 03/18/2019] [Indexed: 05/12/2023]
Abstract
In this study, we report a sequential and reversibility fluorescent probe (DP5) based on pentapeptide conjugated with dansyl groups using the solid phase peptide synthesis (SPPS) technology. DP5 showed immediate "turn off" response toward Cu2+ ions at an excitation wavelength of 330 nm with detection limits of 23.5 nM. The 2:1 binding ratio between DP5 and Cu2+ were confirmed using Job's plot method and fluorescence titration study, and DP5-Cu complex was observed with an association constant of 6.76 × 108 M-2. As designed, DP5-Cu complex as a promising analytical probe exhibited highly selective for H2S detection in aqueous solutions. The detection limit for H2S was obtained to be 17.2 nM, and lower than EPA and WHO guidelines. In addition, the reversibility and cyclicity were imparted to the DP5 during the detection of Cu2+ and H2S, and cycle effect is very good. Furthermore, DP5 displayed better biocompatibility and low biotoxicity, and sequential fluorescence "on-off-on" responses of DP5 to Cu2+ and H2S were successfully applied in two different living cells.
Collapse
Affiliation(s)
- Yong An
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China
| | - Peng Wang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Shida Road 1#, Nanchong 637002, China.
| | - Zhongjin Yue
- Department of Urology, Institute of Urology, Gansu Nephro-Urological Clinical Center, Key Laboratory of Urological Diseases in Gansu Province, The Second Hospital of Lanzhou University, Lanzhou, Gansu 730030, China.
| |
Collapse
|
49
|
Sanskriti I, Upadhyay KK. Twinning as a Guiding Factor in Morphological Anisotropy of Silver Nanoparticles Stabilized Over L–DOPA: A Colorimetric Probe for Sulfide in Aqueous Medium. ChemistrySelect 2019. [DOI: 10.1002/slct.201900180] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Isha Sanskriti
- Department of ChemistryCentre of Advanced StudyInstitute of ScienceBanaras Hindu University Varanasi- 221005 India
| | - Kaushal K. Upadhyay
- Department of ChemistryCentre of Advanced StudyInstitute of ScienceBanaras Hindu University Varanasi- 221005 India
| |
Collapse
|
50
|
Samanta SK, Ali SS, Gangopadhyay A, Maiti K, Pramanik AK, Guria UN, Ghosh A, Datta P, Mahapatra AK. A highly selective ratiometric fluorescent probe for H 2S based on new heterocyclic ring formation and detection in live cells. Supramol Chem 2019. [DOI: 10.1080/10610278.2019.1590573] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Sandip Kumar Samanta
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Syed Samim Ali
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Ankita Gangopadhyay
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Kalipada Maiti
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Ajoy Kumar Pramanik
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Uday Narayan Guria
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| | - Aritri Ghosh
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Pallab Datta
- Centre for Healthcare Science and Technology, Indian Institute of Engineering Science and Technology, Shibpur, India
| | - Ajit Kumar Mahapatra
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur,Howrah, India
| |
Collapse
|