1
|
Ren W, Schulz CE, Shroyer MH, Xu W, Xi S, An P, Guo W, Li J. Electronic Configurations and the Effect of Peripheral Substituents of (Nitrosyl)iron Corroles. Inorg Chem 2022; 61:20385-20396. [DOI: 10.1021/acs.inorgchem.2c03026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Wanjie Ren
- College of Materials Science and Optoelectronic Technology and Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing101408, P. R. China
| | - Charles E. Schulz
- Department of Physics and Astronomy, Knox College, Galesburg, Illinois61401, United States
| | - Mark H. Shroyer
- Department of Physics and Astronomy, Knox College, Galesburg, Illinois61401, United States
| | - Wei Xu
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing100049, P. R. China
- RICMASS, Rome International Center for Materials Science Superstripes, Via dei Sabelli 119A, Rome00185, Italy
| | - Shibo Xi
- Institute of Chemical and Engineering Sciences, Agency for Science, Technology and Research, 1 Pesek Road, Jurong Island, Singapore627833, Singapore
| | - Pengfei An
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences (CAS), Beijing100049, P. R. China
| | - Wenping Guo
- National Energy Center for Coal to Clean Fuels, Synfuels China Co., Ltd., Huairou District, Beijing101400, P. R. China
| | - Jianfeng Li
- College of Materials Science and Optoelectronic Technology and Chinese Academy of Sciences Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Yanqi Lake, Huairou District, Beijing101408, P. R. China
| |
Collapse
|
2
|
Ryan Osterloh W, Fang Y, Desbois N, Naitana ML, Brandès S, Pacquelet S, Gros CP, Kadish KM. Here’s looking at the reduction of noninnocent copper corroles via anion induced electron transfer. CR CHIM 2021. [DOI: 10.5802/crchim.95] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
3
|
Tanaka T, Ueto K, Osuka A. Development of Peripheral Functionalization Chemistry of meso-Free Corroles. Chemistry 2021; 27:15605-15615. [PMID: 34363279 DOI: 10.1002/chem.202102267] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Indexed: 11/06/2022]
Abstract
In contrast to the extensive development of meso functionalization of porphyrins, that of corroles has been only rarely explored until the development of practical synthetic methods of meso -free corroles in 2015. Ready availability of meso -free corroles opened up meso -functionalization chemistry of corroles, giving rise to successful synthesis of various meso-substituted corroles such as meso -halogen, meso -nitro, meso -amino, meso -oxo, and meso iminocorroles as well as meso-meso linked corrole dimers and corrole tapes. In some cases, 2NH corroles existed as stable or transient radical species. The impacts of meso -functionalization on the structures, electronic properties, optical characteristics, and aromaticity are highlighted in this Minireview.
Collapse
Affiliation(s)
- Takayuki Tanaka
- Kyoto University, Graduate School of Science, Department of Chemistry, JAPAN
| | - Kento Ueto
- Kyoto University, Graduate School of Science, Department of Chemistry, JAPAN
| | - Atsuhiro Osuka
- Kyoto University, Graduate School of Science, Department of Chemistry, Kita-shirakawa Oiwake-cho, Sakyo-ku, 606-8502, Kyoto, JAPAN
| |
Collapse
|
4
|
Dmitrieva OA, Chizhova NV, Tesakova MV, Parfenyuk VI, Mamardashvili NZ. Meso-nitro substitution as a means of Mn-octaethylporphyrin redox state controlling. J Organomet Chem 2021. [DOI: 10.1016/j.jorganchem.2021.121790] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
5
|
Alvarado JG, Cummins DC, Diaconescu A, Siegler MA, Goldberg DP. The Selective Monobromination of a Highly Sterically Encumbered Corrole: Structural and Spectroscopic Properties of Fe(Cl)(2-Bromo-5,10,15-tris(triphenyl)phenyl corrole). J PORPHYR PHTHALOCYA 2021; 25:1176-1185. [PMID: 36213143 PMCID: PMC9536772 DOI: 10.1142/s1088424621501169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
The corrole ligand serves as a versatile tri-anionic, macrocyclic platform on which to model biological catalytic systems, as well as to effect mechanistically challenging chemical transformations. Here in we describe the synthesis, structure, and characterization of an isomerically pure corrole ligand, selectively mono-brominated at the β-carbon position adjacent to the corrole C-C bond (2-C) and produced in relatively high yields, as well as its iron chloride complex. Analysis of the iron metalated complex by cyclic voltammetry shows that the bromine being present on the ligand resulted in anodic shifts of +93 and +63 mV for first oxidation and first reduction of the complex respectively. The Mossbauer spectrum of the iron metalated complex shows negligible change relative to the non-brominated analog, indicating the presence of the halide substituent predominantly effects the orbitals of the ligand rather than the metal.
Collapse
Affiliation(s)
- Jessica G Alvarado
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Daniel C Cummins
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Andrada Diaconescu
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - Maxime A Siegler
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| | - David P Goldberg
- Department of Chemistry, The Johns Hopkins University, 3400 N. Charles Street, Baltimore, Maryland 21218, United States
| |
Collapse
|
6
|
Pierloot K, Phung QM, Ghosh A. Electronic Structure of Neutral and Anionic Iron–Nitrosyl Corrole. A Multiconfigurational and Density Matrix Renormalization Group Investigation. Inorg Chem 2020; 59:11493-11502. [DOI: 10.1021/acs.inorgchem.0c01312] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Kristine Pierloot
- Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven 3001, Belgium
| | - Quan Manh Phung
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Norway, N-9037 Tromsø, Norway
| |
Collapse
|
7
|
Rahman MH, Ryan MD, Vazquez-Lima H, Alemayehu A, Ghosh A. Infrared Spectroelectrochemistry of Iron-Nitrosyl Triarylcorroles. Implications for Ligand Noninnocence. Inorg Chem 2020; 59:3232-3238. [PMID: 32053351 PMCID: PMC7997370 DOI: 10.1021/acs.inorgchem.9b03613] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Recent DFT calculations
have suggested that iron nitrosyl triarylcorrole
complexes have substantial {FeNO}7–corrole•2– character. With this formulation, reduction of Fe(C)(NO) complexes,
where C = triarylcorrole, should be centered on the corrole macrocycle
rather than on the {FeNO}7 moiety. To verify this proposition,
visible and infrared spectroelectrochemical studies of Fe(C)(NO) were
carried out and the results were interpreted using DFT (B3LYP/STO-TZP)
calculations. The first reduction of Fe(C)(NO) led to significant
changes in the Soret and Q-band regions of the visible spectrum as
well as to a significant downshift in the νNO and
changes in the corrole vibrational frequencies. DFT calculations,
which showed that the electron was mostly added to the corrole ligand
(85%), were also able to predict the observed shifts in the νNO and corrole bands upon reduction. These results underscore
the importance of monitoring both the corrole and nitrosyl vibrations
in ascertaining the site of reduction. By contrast, the visible spectroelectrochemistry
of the second reduction revealed only minor changes in the Soret band
upon reduction, consistent with the reduction of the FeNO moiety. For the reduction of FeNO moiety or corrole,
infrared spectroelectrochemistry
and DFT calculations were performed and experimental evidence was
obtained for the noninnocence of the corrole in Fe(triphenylcorrole)(NO).
Collapse
Affiliation(s)
- Md Hafizur Rahman
- Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | - Michael D Ryan
- Department of Chemistry, Marquette University, 1414 West Clybourn Street, Milwaukee, Wisconsin 53233, United States
| | - Hugo Vazquez-Lima
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway.,Centro de Química, Instituto de Ciencias, Universidad Autónoma de Puebla, Edif. IC9, CU, San Manuel, 72570 Puebla, Puebla, Mexico
| | - Abraham Alemayehu
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway
| | - Abhik Ghosh
- Department of Chemistry, UiT-The Arctic University of Tromsø, 9037 Tromsø, Norway
| |
Collapse
|
8
|
Stefanelli M, Ricci A, Chiarini M, Lo Sterzo C, Berionni Berna B, Pomarico G, Sabuzi F, Galloni P, Fronczek FR, Smith KM, Wang L, Ou Z, Kadish KM, Paolesse R. β-Arylethynyl substituted silver corrole complexes. Dalton Trans 2019; 48:13589-13598. [PMID: 31478049 DOI: 10.1039/c9dt03166a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Silver corrolates are attractive compounds from both practical and theoretical points of view. Indeed, they play a key role in peripheral functionalization reactions occurring at the macrocycle, enabling high-yield and regioselective group insertions useful to further elaborate the molecular skeleton. In parallel, the Janus innocent or noninnocent behavior of the corrole ligand in these complexes makes their description particularly challenging. Herein, we report properties for a series of silver 3,17-disubstituted triarylcorrole complexes with various functionalities (halogens or different phenylethynyl units) that deeply affect the electron density in the macrocyclic ligand, with obvious repercussions on the observed spectral characteristics. The compounds were obtained in yields of 54-92% by applying the Stille coupling reaction with the appropriate tributylethynyl stannane. Among the complexes prepared was a derivative bearing two terminal acetylenic units which opens the way to "click" reactions for new corrole-based architectures. This corrole was structurally characterized by single crystal X-ray crystallography. The addition of substituted ethynyl groups resulted in red-shifts of the electronic absorption spectra, the largest of which was observed for the compound with two β-NO2-Ph-C[triple bond, length as m-dash]C substituents. The remarkable influence of the NO2 groups on the electron density of this macrocycle was further demonstrated by electrochemical measurements, where an easier reduction of this complex derivative was observed as compared to the others. DFT calculations showed full delocalization over the entire p-nitrophenylethynyl unit of 5, largely affecting orbital distributions and the corresponding electronic absorptions. Although a variation of the β-substituents dramatically modifies the Soret- and Q-band positions towards lower energies for all the examined complexes, the saddling of the macrocycle resulting from functionalization is only moderate. The collected results suggest the description of these compounds as AgIII-corrolate3-, a metallocorrole with an innocent macrocyclic ligand.
Collapse
Affiliation(s)
- Manuela Stefanelli
- Department of Chemical Science and Technologies, University of Roma Tor Vergata, Via della Ricerca Scientifica, 00133 Rome, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Lei H, Li X, Meng J, Zheng H, Zhang W, Cao R. Structure Effects of Metal Corroles on Energy-Related Small Molecule Activation Reactions. ACS Catal 2019. [DOI: 10.1021/acscatal.9b00310] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Haitao Lei
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Xialiang Li
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Jia Meng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Haoquan Zheng
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Wei Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Rui Cao
- Key Laboratory of Applied Surface and Colloid Chemistry,
Ministry of Education, School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| |
Collapse
|
10
|
Affiliation(s)
- Kento Ueta
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Takayuki Tanaka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| | - Atsuhiro Osuka
- Department of Chemistry, Graduate School of Science, Kyoto University, Sakyo-ku, Kyoto 606-8502, Japan
| |
Collapse
|
11
|
Jiang X, Naitana ML, Desbois N, Quesneau V, Brandès S, Rousselin Y, Shan W, Osterloh WR, Blondeau-Patissier V, Gros CP, Kadish KM. Electrochemistry of Bis(pyridine)cobalt (Nitrophenyl)corroles in Nonaqueous Media. Inorg Chem 2018; 57:1226-1241. [DOI: 10.1021/acs.inorgchem.7b02655] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiaoqin Jiang
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Mario L. Naitana
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Nicolas Desbois
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Valentin Quesneau
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Stéphane Brandès
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Yoann Rousselin
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Wenqian Shan
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - W. Ryan Osterloh
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| | - Virginie Blondeau-Patissier
- Department of Time-Frequency, Université de Bourgogne Franche-Comté, Institut FEMTO-ST (UMR CNRS 6174), 26 Chemin de l’épitaphe, 25030 Besançon Cedex, France
| | - Claude P. Gros
- Université de Bourgogne Franche-Comté, ICMUB (UMR CNRS 6302), 9 Avenue Alain Savary, BP 47870, 21078 Dijon, Cedex, France
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
12
|
Jiang X, Pomarico G, Bischetti M, Galloni P, Cicero DO, Cui Y, Kadish KM, Paolesse R. Iron, iron everywhere: synthesis and characterization of iron 5,10,15-triferrocenylcorrole complexes. NEW J CHEM 2018. [DOI: 10.1039/c7nj05076c] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new series of iron triferrocenylcorroles with three different axial ligands, NO, Cl−and σ-Ph, is synthesized and characterized using1H NMR, electrochemical and spectroelectrochemical techniques in nonaqueous media.
Collapse
Affiliation(s)
- X. Jiang
- Department of Chemistry, University of Houston
- USA
| | - G. Pomarico
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - M. Bischetti
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - P. Galloni
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - D. O. Cicero
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| | - Y. Cui
- Department of Chemistry, University of Houston
- USA
| | - K. M. Kadish
- Department of Chemistry, University of Houston
- USA
| | - R. Paolesse
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata
- 00133 Rome
- Italy
| |
Collapse
|
13
|
Song Y, Fang Y, Ou Z, Capar J, Wang C, Conradie J, Thomas KE, Wamser CC, Ghosh A, Kadish KM. Influence of β-octabromination on free-base triarylcorroles: Electrochemistry and protonation-deprotonation reactions in nonaqueous media. J PORPHYR PHTHALOCYA 2017. [DOI: 10.1142/s1088424617500602] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Electrochemical and acid-base properties of four free-base triarylcorroles were examined in nonaqueous media. These compounds are represented here as (tdcc)H[Formula: see text], (tpfc)H[Formula: see text], (Br[Formula: see text]tdcc)H[Formula: see text] and (Br[Formula: see text]tpfc)H[Formula: see text], where tdcc and tpfc are the trianions of tris(2,6-dichlorophenyl)corrole and tris(pentafluorophenyl)corrole, respectively. Different spectroscopic and electrochemical properties were observed for the [Formula: see text]-brominated corroles as compared to the non-brominated derivatives, due in part to the corrole ring distortion and in part to the strong electron-withdrawing properties of the Br groups. The brominated free-base corroles are easier to deprotonate than the non-brominated corroles in solution, which was confirmed by electrochemistry and spectroelectrochemistry as well as protonation/deprotonation reactions of the compounds with acid or base in PhCN. The electrochemistry of the protonated and deprotonated corroles is presented and comparisons made with previously published data for other protonated and deprotonated free-base corroles under the same solution conditions.
Collapse
Affiliation(s)
- Yang Song
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| | - Jan Capar
- Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Chenyi Wang
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA
| | - Jeanet Conradie
- Department of Chemistry, University of the Free State, 9300 Bloemfontein, South Africa
| | - Kolle E. Thomas
- Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Carl C. Wamser
- Department of Chemistry, Portland State University, Portland, Oregon 97207-0751, USA
| | - Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, University of Tromsø, 9037 Tromsø, Norway
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, USA
| |
Collapse
|
14
|
Ghosh A. Electronic Structure of Corrole Derivatives: Insights from Molecular Structures, Spectroscopy, Electrochemistry, and Quantum Chemical Calculations. Chem Rev 2017; 117:3798-3881. [PMID: 28191934 DOI: 10.1021/acs.chemrev.6b00590] [Citation(s) in RCA: 218] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Presented herein is a comprehensive account of the electronic structure of corrole derivatives. Our knowledge in this area derives from a broad range of methods, including UV-vis-NIR absorption and MCD spectroscopies, single-crystal X-ray structure determination, vibrational spectroscopy, NMR and EPR spectroscopies, electrochemistry, X-ray absorption spectroscopy, and quantum chemical calculations, the latter including both density functional theory and ab initio multiconfigurational methods. The review is organized according to the Periodic Table, describing free-base and main-group element corrole derivatives, then transition-metal corroles, and finally f-block element corroles. Like porphyrins, corrole derivatives with a redox-inactive coordinated atom follow the Gouterman four-orbital model. A key difference from porphyrins is the much wider prevalence of noninnocent electronic structures as well as full-fledged corrole•2- radicals among corrole derivatives. The most common orbital pathways mediating ligand noninnocence in transition-metal corroles are the metal(dz2)-corrole("a2u") interaction (most commonly observed in Mn and Fe corroles) and the metal(dx2-y2)-corrole(a2u) interaction in coinage metal corroles. Less commonly encountered is the metal(dπ)-corrole("a1u") interaction, a unique feature of formal d5 metallocorroles. Corrole derivatives exhibit a rich array of optical properties, including substituent-sensitive Soret maxima indicative of ligand noninnocence, strong fluorescence in the case of lighter main-group element complexes, and room-temperature near-IR phosphorescence in the case of several 5d metal complexes. The review concludes with an attempt at identifying gaps in our current knowledge and potential future directions of electronic-structural research on corrole derivatives.
Collapse
Affiliation(s)
- Abhik Ghosh
- Department of Chemistry and Center for Theoretical and Computational Chemistry, UiT-The Arctic University of Norway , 9037 Tromsø, Norway
| |
Collapse
|
15
|
Affiliation(s)
- Yuanyuan Fang
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongping Ou
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M. Kadish
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
16
|
Barata JFB, Neves MGPMS, Faustino MAF, Tomé AC, Cavaleiro JAS. Strategies for Corrole Functionalization. Chem Rev 2016; 117:3192-3253. [PMID: 28222602 DOI: 10.1021/acs.chemrev.6b00476] [Citation(s) in RCA: 150] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
This review covers the functionalization reactions of meso-arylcorroles, both at the inner core, as well as the peripheral positions of the macrocycle. Experimental details for the synthesis of all known metallocorrole types and for the N-alkylation reactions are presented. Key peripheral functionalization reactions such as halogenation, formylation, carboxylation, nitration, sulfonation, and others are discussed in detail, particularly the nucleophilic aromatic substitution and the participation of corroles in cycloaddition reactions as 2π or 4π components (covering Diels-Alder and 1,3-dipolar cycloadditions). Other functionalizations of corroles include a large diversity of reactions, namely Wittig reactions, reactions with methylene active compounds, formation of amines, amides, and imines, and metal catalyzed reactions. At the final section, the reactions involving oxidation and ring expansion of the corrole macrocycle are described comprehensively.
Collapse
Affiliation(s)
- Joana F B Barata
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Graça P M S Neves
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - M Amparo F Faustino
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - Augusto C Tomé
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| | - José A S Cavaleiro
- Department of Chemistry and QOPNA, and ‡Department of Chemistry and CICECO, University of Aveiro , 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Ye L, Ou Z, Fang Y, Song Y, Li B, Liu R, Kadish KM. Effect of NO2 substitution and solvent on UV-visible spectra, redox potentials and electron transfer mechanisms of copper β-nitrotriarylcorroles. Proposed electrogeneration of a Cu(I) oxidation state. J PORPHYR PHTHALOCYA 2016. [DOI: 10.1142/s1088424616500899] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Three copper triarylcorroles containing a [Formula: see text]-pyrrole nitro substituent were synthesized and characterized as to their spectral and electrochemical properties in nonaqueous media. The examined compounds are represented as [Formula: see text]-NO2(YPh)3CorCu, where Cor is the trianion of a triphenylcorrole and Y is a Cl, H or CH3 substituent at the para-position of the three meso-phenyl rings of the compound. The data from absorption spectra, electrochemistry and thin-layer spectroelectrochemistry are consistent with an initial assignment of Cu[Formula: see text]-Cor[Formula: see text] in CH2Cl2, DMF and pyridine and electrogeneration of a formal Cu(II) corrole with an unreduced macrocycle, represented as Cu[Formula: see text]-Cor[Formula: see text], after the first one-electron reduction in these solvents. The doubly reduced [Formula: see text]-nitrocorrole has a sharp Soret band at 439 nm and a well-defined Q-band at 611 nm in CH2Cl2. Similar absorption spectra are seen for the three examined doubly reduced nitrocorroles in DMF and pyridine, suggesting formation of a Cu(I) species with an unreduced macrocycle which is represented as Cu[Formula: see text]-Cor[Formula: see text]. Changes in redox potentials and absorption spectra of the nitrocorroles are examined as a function of solvent and substituents on the meso-phenyl rings of the compounds and comparisons are made between spectral and electrochemical data of the newly synthesized corroles and that of structurally related tetraarylcorroles lacking a [Formula: see text]-nitro group.
Collapse
Affiliation(s)
- Lina Ye
- College of Computer, Jilin Normal University, Siping 136000, China
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yuanyuan Fang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yang Song
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Bihong Li
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
18
|
Fischer S, Vestfrid J, Mahammed A, Herrmann-Westendorf F, Schulz M, Müller J, Kiesewetter O, Dietzek B, Gross Z, Presselt M. Photometric Detection of Nitric Oxide Using a Dissolved Iron(III) Corrole as a Sensitizer. Chempluschem 2016; 81:594-603. [DOI: 10.1002/cplu.201500553] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Indexed: 01/04/2023]
Affiliation(s)
- Stefan Fischer
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Jenya Vestfrid
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Atif Mahammed
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Felix Herrmann-Westendorf
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Martin Schulz
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Jürgen Müller
- UST Umweltsensortechnik GmbH; Dieselstrasse 2 and 4 98716 Geschwenda Germany
| | - Olaf Kiesewetter
- UST Umweltsensortechnik GmbH; Dieselstrasse 2 and 4 98716 Geschwenda Germany
| | - Benjamin Dietzek
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| | - Zeev Gross
- Schulich Faculty of Chemistry; Technion-Israel Institute of Technology; Haifa 32000 Israel
| | - Martin Presselt
- Institute of Physical Chemistry; Friedrich Schiller University Jena; Helmholtzweg 4 07743 Jena Germany
- Leibniz Institute of Photonic Technology (IPHT); Albert-Einstein-Strasse 9 07745 Jena Germany
| |
Collapse
|
19
|
Bursa B, Wróbel D, Barszcz B, Kotkowiak M, Vakuliuk O, Gryko DT, Kolanowski Ł, Baraniak M, Lota G. The impact of solvents on the singlet and triplet states of selected fluorine corroles – absorption, fluorescence, and optoacoustic studies. Phys Chem Chem Phys 2016; 18:7216-28. [DOI: 10.1039/c5cp06335c] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This paper examines the influence of aprotic solvents on the spectroscopic properties as well as the energy deactivation of two free-base corrole dyes substituted with C6F5 and/or 4-NO2C6H4 groups.
Collapse
Affiliation(s)
- Bartosz Bursa
- Faculty of Technical Physics
- Institute of Physics
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Danuta Wróbel
- Faculty of Technical Physics
- Institute of Physics
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Bolesław Barszcz
- Faculty of Technical Physics
- Institute of Physics
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Michał Kotkowiak
- Faculty of Technical Physics
- Institute of Physics
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Olena Vakuliuk
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Daniel T. Gryko
- Institute of Organic Chemistry
- Polish Academy of Sciences
- 01-224 Warsaw
- Poland
| | - Łukasz Kolanowski
- Institute of Chemistry and Technical Electrochemistry
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Marek Baraniak
- Institute of Chemistry and Technical Electrochemistry
- Poznan University of Technology
- 60-965 Poznan
- Poland
| | - Grzegorz Lota
- Institute of Chemistry and Technical Electrochemistry
- Poznan University of Technology
- 60-965 Poznan
- Poland
| |
Collapse
|
20
|
Lu G, Li J, Jiang X, Ou Z, Kadish KM. Europium Triple-Decker Complexes Containing Phthalocyanine and Nitrophenyl–Corrole Macrocycles. Inorg Chem 2015; 54:9211-22. [DOI: 10.1021/acs.inorgchem.5b01713] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Guifen Lu
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Jing Li
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Xiaoqin Jiang
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Zhongping Ou
- School
of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Karl M. Kadish
- Department
of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| |
Collapse
|
21
|
Stefanelli M, Mandoj F, Nardis S, Raggio M, Fronczek FR, McCandless GT, Smith KM, Paolesse R. Corrole and nucleophilic aromatic substitution are not incompatible: a novel route to 2,3-difunctionalized copper corrolates. Org Biomol Chem 2015; 13:6611-8. [PMID: 25986693 PMCID: PMC4454397 DOI: 10.1039/c5ob00659g] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The insertion of a -NO2 group onto the corrole framework represents a key step for subsequent synthetic manipulation of the macrocycle based on the chemical versatility of such a functionality. Here we report results of the investigation of a copper 3-NO2-triarylcorrolate in nucleophilic aromatic substitution reactions with "active" methylene carbanions, namely diethyl malonate and diethyl 2-chloromalonate. Although similar reactions on nitroporphyrins afford chlorin derivatives, nucleophilic attack on carbon-2 of corrole produces 2,3-difunctionalized Cu corrolates in acceptable yields (ca. 30%), evidencing once again the erratic chemistry of this contracted porphyrinoid.
Collapse
Affiliation(s)
- M Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Fang Y, Jiang X, Ou Z, Michelin C, Desbois N, Gros CP, Kadish KM. Redox properties of nitrophenylporphyrins and electrosynthesis of nitrophenyl-linked Zn porphyrin dimers or arrays. J PORPHYR PHTHALOCYA 2014. [DOI: 10.1142/s1088424614500540] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Five nitrophenylporphyrins were investigated as to their electrochemical properties in CH 2 Cl 2 containing 0.1 M TBAP. The investigated compounds are represented as ( NO 2 Ph )x Ph 4-x PorM , where Por represents the dianion of the porphyrin macrocycle, Ph is a phenyl group on meso-position of the macrocycle, NO 2 Ph is a meso-substituted nitrophenyl group, M = 2 H , Pd II or Zn II and x = 1 or 2. Each porphyrin undergoes an initial one electron reduction at E1/2 = -1.07 to -1.12 V where the added negative charge is almost totally localized on the meso-nitrophenyl group of the compound. This reversible reduction is then followed by one or more irreversible reductions of the nitrophenyl anion at more negative potentials which overlap with reduction of the conjugated porphyrin macrocycle. The initial one electron addition was monitored by thin-layer UV-vis spectroelectrochemistry which confirmed formation of a reduced nitrophenyl group in each case but also gave spectral evidence for a linkage of the one-electron reduction products in the case of the Zn derivatives, giving Zn porphyrin dimers or arrays which are characterized by a 14–15 nm red-shifted Soret band and two well-defined Q-bands, consistent with conversion from an unreduced four coordinate Zn II nitrophenylporphyrin to a five-coordinate Zn II complex with an unreduced porphyrin macrocycle.
Collapse
Affiliation(s)
- Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Xiaoqin Jiang
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Zhongping Ou
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
- Department of Chemistry and Chemical Engineer, Jiangsu University, Zhenjiang 212013, China
| | | | - Nicolas Desbois
- ICMUB (UMR 6302), Université de Bourgogne, 21000 Dijon, France
| | - Claude P. Gros
- ICMUB (UMR 6302), Université de Bourgogne, 21000 Dijon, France
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
23
|
Stefanelli M, Mancini M, Raggio M, Nardis S, Fronczek FR, McCandless GT, Smith KM, Paolesse R. 3-NO2-5,10,15-triarylcorrolato-Cu as a versatile platform for synthesis of novel 3-functionalized corrole derivatives. Org Biomol Chem 2014; 12:6200-7. [PMID: 25005049 PMCID: PMC4137568 DOI: 10.1039/c4ob01247j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
β-Nitrocorroles are potentially valuable platforms for the preparation of a wide range of more elaborated corrole derivatives possessing unique chemical functionalities and electronic properties. Here we report our results on the chemical manipulation of a copper 3-NO2-triarylcorrolate using different organic reactions, all involving the reduction of -NO2 to -NH2 at an early stage, followed by further transformations. By way of a β-acylated copper corrolate, a novel corrole derivative bearing an alkyl azide group on the peripheral positions was obtained and exploited in the Huisgen 1,3-dipolar cycloaddition.
Collapse
Affiliation(s)
- M Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Cobalt triarylcorroles containing one, two or three nitro groups. Effect of NO2 substitution on electrochemical properties and catalytic activity for reduction of molecular oxygen in acid media. J Inorg Biochem 2014; 136:130-9. [DOI: 10.1016/j.jinorgbio.2013.12.014] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 12/24/2013] [Accepted: 12/24/2013] [Indexed: 11/18/2022]
|
25
|
Fang Y, Mandoj F, Nardis S, Pomarico G, Stefanelli M, Cicero DO, Lentini S, Vecchi A, Cui Y, Zeng L, Kadish KM, Paolesse R. New Example of Hemiporphycene Formation from the Corrole Ring Expansion. Inorg Chem 2014; 53:7404-15. [DOI: 10.1021/ic500757a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Federica Mandoj
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Sara Nardis
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Giuseppe Pomarico
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Manuela Stefanelli
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Daniel O. Cicero
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Sara Lentini
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Andrea Vecchi
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| | - Yan Cui
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Lihan Zeng
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, Texas 77204-5003, United States
| | - Roberto Paolesse
- Department
of Chemical Science and Technologies, Università di Roma Tor Vergata, 00133 Roma, Italy
| |
Collapse
|
26
|
Nardis S, Cicero DO, Licoccia S, Pomarico G, Berionni Berna B, Sette M, Ricciardi G, Rosa A, Fronczek FR, Smith KM, Paolesse R. Phenyl derivative of iron 5,10,15-tritolylcorrole. Inorg Chem 2014; 53:4215-27. [PMID: 24697623 PMCID: PMC4002138 DOI: 10.1021/ic5003572] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2014] [Indexed: 01/10/2023]
Abstract
The phenyl-iron complex of 5,10,15-tritolylcorrole was prepared by reaction of the starting chloro-iron complex with phenylmagnesium bromide in dichloromethane. The organometallic complex was fully characterized by a combination of spectroscopic methods, X-ray crystallography, and density functional theory (DFT) calculations. All of these techniques support the description of the electronic structure of this phenyl-iron derivative as a low-spin iron(IV) coordinated to a closed-shell corrolate trianion and to a phenyl monoanion. Complete assignments of the (1)H and (13)C NMR spectra of the phenyl-iron derivative and the starting chloro-iron complex were performed on the basis of the NMR spectra of the regioselectively β-substituted bromo derivatives and the DFT calculations.
Collapse
Affiliation(s)
- Sara Nardis
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Daniel O. Cicero
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Silvia Licoccia
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Giuseppe Pomarico
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Beatrice Berionni Berna
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | - Marco Sette
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| | | | - Angela Rosa
- Dipartimento di
Scienze, Università della Basilicata, 85100 Potenza, Italy
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Kevin M. Smith
- Department of Chemistry, Louisiana State University, Baton
Rouge, Louisiana 70803, United States
| | - Roberto Paolesse
- Department
of Chemical Science and Technologies, Università
di Roma Tor Vergata, 00133 Roma, Italy
| |
Collapse
|
27
|
Sinha W, Deibel N, Agarwala H, Garai A, Schweinfurth D, Purohit CS, Lahiri GK, Sarkar B, Kar S. Synthesis, Spectral Characterization, Structures, and Oxidation State Distributions in [(corrolato)FeIII(NO)]n (n = 0, +1, −1) Complexes. Inorg Chem 2014; 53:1417-29. [DOI: 10.1021/ic402304e] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Woormileela Sinha
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Naina Deibel
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
- Institut
für Anorganische Chemie, Universität Stuttgart, Pfaffenwaldring
55, D-70550, Stuttgart, Germany
| | - Hemlata Agarwala
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Antara Garai
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - David Schweinfurth
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Chandra Shekhar Purohit
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| | - Goutam Kumar Lahiri
- Department
of Chemistry, Indian Institute of Technology−Bombay, Powai, Mumbai 400076, India
| | - Biprajit Sarkar
- Institut
für Chemie und Biochemie, Anorganische Chemie, Freie Universität Berlin, Fabeckstraße 34-36, D-14195, Berlin, Germany
| | - Sanjib Kar
- School
of Chemical Sciences, National Institute of Science Education and Research (NISER), Bhubaneswar, 751005, India
| |
Collapse
|
28
|
Iglesias BA, Barata JFB, Ramos CIV, Santana-Marques MG, Neves MGPMS, Cavaleiro JAS. Adventures in corrole features by electrospray ionization mass spectrometry studies. RSC Adv 2014. [DOI: 10.1039/c3ra47788f] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In this short review the importance of electrospray mass spectrometry in corrole chemistry is highlighted.
Collapse
Affiliation(s)
| | - Joana F. B. Barata
- Department of Chemistry and QOPNA
- University of Aveiro
- 3810-193 Aveiro, Portugal
| | | | | | | | | |
Collapse
|
29
|
Sun B, Ou Z, Yang S, Meng D, Lu G, Fang Y, Kadish KM. Synthesis and electrochemistry of β-pyrrole nitro-substituted cobalt(ii) porphyrins. The effect of the NO2 group on redox potentials, the electron transfer mechanism and catalytic reduction of molecular oxygen in acidic media. Dalton Trans 2014; 43:10809-15. [DOI: 10.1039/c4dt01072h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Four cobalt porphyrins were synthesized and characterized as to their electrochemical, spectroelectrochemical and electrocatalytic properties.
Collapse
Affiliation(s)
- Bin Sun
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang, P. R. China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang, P. R. China
| | - Shuibo Yang
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang, P. R. China
| | - Deying Meng
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang, P. R. China
| | - Guifen Lu
- School of Chemistry and Chemical Engineering
- Jiangsu University
- Zhenjiang, P. R. China
| | - Yuanyuan Fang
- Department of Chemistry
- University of Houston
- Houston, USA
| | - Karl M. Kadish
- Department of Chemistry
- University of Houston
- Houston, USA
| |
Collapse
|
30
|
Kuwano T, Kurahashi T, Matsubara S. Iron Corrole-catalyzed [4 + 2] Cycloaddition of Dienes and Aldehydes. CHEM LETT 2013. [DOI: 10.1246/cl.130672] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Toru Kuwano
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| | - Takuya Kurahashi
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
- JST, ACT-C
| | - Seijiro Matsubara
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University
| |
Collapse
|
31
|
Yang S, Sun B, Ou Z, Meng D, Lu G, Fang Y, Kadish KM. β-Nitro-substituted free-base, iron(III) and manganese(III) tetraarylporphyrins: synthesis, electrochemistry and effect of the NO2 substituent on spectra and redox potentials in non-aqueous media. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500612] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Two free-base and four metal derivatives of substituted tetraarylporphyrins containing a nitro-substituent on the β-pyrrole position of the macrocycle were synthesized and characterized by UV-vis, FTIR, 1 H NMR and mass spectrometry as well as electrochemistry and spectroelectrochemistry in non-aqueous media. The porphyrins are represented as ( NO 2 TmPP ) M and ( NO 2 TdmPP ) M , where M = 2 H , Fe III Cl or Mn III Cl , m is a CH 3 group on the para-position of the four meso-phenyl rings of the tetraphenylporphyrin (TPP) and dm represents two OCH 3 substituents on the meta-positions of each phenyl ring of the TPP macrocycle. UV-visible spectra of the nitro-substituted porphyrins exhibit absorption bands which are red-shifted by 4–11 nm as compared to bands of the same substituted tetraarylporphyrins lacking a nitro substituent. Three or four reductions are observed for each iron and manganese nitroporphyrin, the first of which is metal-centered, leading to formation of an Fe ( II ) or Mn ( II ) complex. Further reduction at the metal center occurs for the iron porphyrins but this reaction proceeds via an Fe ( II ) π anion radical in the case of the two nitro-substituented derivatives. The β-nitro-substituted porphyrins are easier to reduce and harder to oxidize than the corresponding compounds lacking a nitro group. The effect of NO 2 substituent on reduction/oxidation potentials and the site of electron transfer was also discussed.
Collapse
Affiliation(s)
- Shuibo Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Bin Sun
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Zhongping Ou
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Deying Meng
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Guifen Lu
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Yuanyuan Fang
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| | - Karl M. Kadish
- Department of Chemistry, University of Houston, Houston, TX 77204-5003, USA
| |
Collapse
|
32
|
Barata JFB, Santos CIM, Neves MGPMS, Faustino MAF, Cavaleiro JAS. Functionalization of Corroles. TOPICS IN HETEROCYCLIC CHEMISTRY 2013. [DOI: 10.1007/7081_2013_107] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
33
|
Stefanelli M, Pomarico G, Tortora L, Nardis S, Fronczek FR, McCandless GT, Smith KM, Manowong M, Fang Y, Chen P, Kadish KM, Rosa A, Ricciardi G, Paolesse R. β-Nitro-5,10,15-tritolylcorroles. Inorg Chem 2012; 51:6928-42. [PMID: 22668242 DOI: 10.1021/ic3007926] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Functionalization of the β-pyrrolic positions of the corrole macrocycle with -NO(2) groups is limited at present to metallocorrolates due to the instability exhibited by corrole free bases under oxidizing conditions. A careful choice of the oxidant can limit the transformation of corroles into decomposition products or isocorrole species, preserving the corrole aromaticity, and thus allowing the insertion of nitro groups onto the corrole framework. Here we report results obtained by reacting 5,10,15-tritolylcorrole (TTCorrH(3)) with the AgNO(2)/NaNO(2) system, to give mono- and dinitrocorrole derivatives when stoichiometry is carefully controlled. Reactions were found to be regioselective, affording the 3-NO(2)TTCorrH(3) and 3,17-(NO(2))(2)TTCorrH(3) isomers as the main products in the case of mono- and disubstitution, in 53 and 20% yields, respectively. In both cases, traces of other mono- and disubstituted isomers were detected, which were structurally characterized by X-ray crystallography. The influence of the β-nitro substituents on the corrole properties is studied in detail by UV-visible, electrochemical, and spectroelectrochemical characterization of these functionalized corroles. Density functional theory (DFT) and time-dependent DFT (TDDFT) calculations of the ground and excited state properties of these β-nitrocorrole derivatives also afforded significant information, closely matching the experimental observations. It is found that the β-NO(2) substituents conjugate with the π-aromatic system of the macrocycle, which initiates significant changes in both the spectroscopic and redox properties of the so functionalized corroles. This effect is more pronounced when the nitro group is introduced at the 2-position, because in this case the conjugation is, for steric reasons, more efficient than in the 3-nitro isomer.
Collapse
Affiliation(s)
- Manuela Stefanelli
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata, 00133 Roma, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|