1
|
Dinda S, Roy T, Samanta S, Banerjee K, Cox N, Dey A. Proton-Coupled Electron Transfer between a Pendant Thiol and a Ferrous Dioxygen Adduct. Inorg Chem 2024; 63:21313-21322. [PMID: 39432325 DOI: 10.1021/acs.inorgchem.4c03802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
The mechanism of thiol oxidation by O2, as catalyzed by ferrous porphyrins, is investigated by trapping intermediates of the transformation at low temperatures and subsequently characterizing them using continuous wave and pulsed electron paramagnetic resonance and resonance Raman spectroscopy. A Fe(III)-O2•- species is initially formed in an iron porphyrin with a pendant thiol functional group, which undergoes proton-coupled electron transfer (PCET) (not HAT) to form an Fe(III)-OOH species. Following O-O bond homolysis, this forms a Fe(IV)═O species with concomitant oxidation of the thiol to an RSO3H group.
Collapse
Affiliation(s)
- Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata, WB 700032, India
| | - Triparna Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata, WB 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata, WB 700032, India
| | - Kumarjit Banerjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata, WB 700032, India
| | - Nicholas Cox
- Research School of Chemistry, Australian National University, Acton, ACT 2601, Australia
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A & B Raja S C Mullick Road, Kolkata, WB 700032, India
| |
Collapse
|
2
|
Lundahl MN, Greiner MB, Piquette MC, Gannon PM, Kaminsky W, Kovacs JA. Exploring the influence of H-bonding and ligand constraints on thiolate ligated non-heme iron mediated dioxygen activation. Chem Sci 2024; 15:12710-12720. [PMID: 39148773 PMCID: PMC11325341 DOI: 10.1039/d4sc02787f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024] Open
Abstract
Converting triplet dioxygen into a powerful oxidant is fundamentally important to life. The study reported herein quantitatively examines the formation of a well-characterized, reactive, O2-derived thiolate ligated FeIII-superoxo using low-temperature stopped-flow kinetics. Comparison of the kinetic barriers to the formation of this species via two routes, involving either the addition of (a) O2 to [FeII(S2 Me2N3(Pr,Pr))] (1) or (b) superoxide to [FeIII(S2 Me2N3(Pr,Pr))]+ (3) is shown to provide insight into the mechanism of O2 activation. Route (b) was shown to be significantly slower, and the kinetic barrier 14.9 kJ mol-1 higher than route (a), implying that dioxygen activation involves inner-sphere, as opposed to outer sphere, electron transfer from Fe(ii). H-bond donors and ligand constraints are shown to dramatically influence O2 binding kinetics and reversibility. Dioxygen binds irreversibly to [FeII(S2 Me2N3(Pr,Pr))] (1) in tetrahydrofuran, but reversibly in methanol. Hydrogen bonding decreases the ability of the thiolate sulfur to stabilize the transition state and the FeIII-superoxo, as shown by the 10 kJ mol-1 increase in the kinetic barrier to O2 binding in methanol vs. tetrahydrofuran. Dioxygen release from [FeIII(S2 Me2N3(Pr,Pr))O2] (2) is shown to be 24 kJ mol-1 higher relative to previously reported [FeIII(SMe2N4(tren))(O2)]+ (5), the latter of which contains a more flexible ligand. These kinetic results afford an experimentally determined reaction coordinate that illustrates the influence of H-bonding and ligand constraints on the kinetic barrier to dioxygen activation an essential step in biosynthetic pathways critical to life.
Collapse
Affiliation(s)
- Maike N Lundahl
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Maria B Greiner
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Marc C Piquette
- Department of Chemistry, Tufts University 62 Talbot Avenue Medford Massachusetts 02155 USA
| | - Paige M Gannon
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Werner Kaminsky
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| | - Julie A Kovacs
- Department of Chemistry, University of Washington Campus Box 351700 Seattle WA 98195 USA
| |
Collapse
|
3
|
Panda S, Phan H, Karlin KD. Heme-copper and Heme O 2-derived synthetic (bioinorganic) chemistry toward an understanding of cytochrome c oxidase dioxygen chemistry. J Inorg Biochem 2023; 249:112367. [PMID: 37742491 PMCID: PMC10615892 DOI: 10.1016/j.jinorgbio.2023.112367] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/22/2023] [Accepted: 09/07/2023] [Indexed: 09/26/2023]
Abstract
Cytochrome c oxidase (CcO), also widely known as mitochondrial electron-transport-chain complex IV, is a multi-subunit transmembrane protein responsible for catalyzing the last step of the electron transport chain, dioxygen reduction to water, which is essential to the establishment and maintenance of the membrane proton gradient that drives ATP synthesis. Although many intermediates in the CcO catalytic cycle have been spectroscopically and/or computationally authenticated, the specifics regarding the IP intermediate, hypothesized to be a heme-Cu (hydro)peroxo species whose O-O bond homolysis is supported by a hydrogen-bonding network of water molecules, are largely obscured by the fast kinetics of the A (FeIII-O2•-/CuI/Tyr) → PM (FeIV=O/CuII-OH/Tyr•) step. In this review, we have focused on the recent advancements in the design, development, and characterization of synthetic heme-peroxo‑copper model complexes, which can circumvent the abovementioned limitation, for the investigation of the formation of IP and its O-O cleavage chemistry. Novel findings regarding (a) proton and electron transfer (PT/ET) processes, together with their contributions to exogenous phenol induced O-O cleavage, (b) the stereo-electronic tunability of the secondary coordination sphere (especially hydrogen-bonding) on the geometric and spin state alteration of the heme-peroxo‑copper unit, and (c) a plausible mechanism for the Tyr-His cofactor biogenesis, are discussed in great detail. Additionally, since the ferric-superoxide and the ferryl-oxo (Compound II) species are critically involved in the CcO catalytic cycle, this review also highlights a few fundamental aspects of these heme-only (i.e., without copper) species, including the structural and reactivity influences of electron-donating trans-axial ligands and Lewis acid-promoted H-bonding.
Collapse
Affiliation(s)
- Sanjib Panda
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Hai Phan
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Kenneth D Karlin
- Department of Chemistry, Johns Hopkins University, Baltimore, MD 21218, USA.
| |
Collapse
|
4
|
Ghatak A, Samanta S, Nayek A, Mukherjee S, Dey SG, Dey A. Second-Sphere Hydrogen-Bond Donors and Acceptors Affect the Rate and Selectivity of Electrochemical Oxygen Reduction by Iron Porphyrins Differently. Inorg Chem 2022; 61:12931-12947. [PMID: 35939766 DOI: 10.1021/acs.inorgchem.2c02170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The factors that control the rate and selectivity of 4e-/4H+ O2 reduction are important for efficient energy transformation as well as for understanding the terminal step of respiration in aerobic organisms. Inspired by the design of naturally occurring enzymes which are efficient catalysts for O2 and H2O2 reduction, several artificial systems have been generated where different second-sphere residues have been installed to enhance the rate and efficiency of the 4e-/4H+ O2 reduction. These include hydrogen-bonding residues like amines, carboxylates, ethers, amides, phenols, etc. In some cases, improvements in the catalysis were recorded, whereas in some cases improvements were marginal or nonexistent. In this work, we use an iron porphyrin complex with pendant 1,10-phenanthroline residues which show a pH-dependent variation of the rate of the electrochemical O2 reduction reaction (ORR) over 2 orders of magnitude. In-situ surface-enhanced resonance Raman spectroscopy reveals the presence of different intermediates at different pH's reflecting different rate-determining steps at different pH's. These data in conjunction with density functional theory calculations reveal that when the distal 1,10-phenanthroline is neutral it acts as a hydrogen-bond acceptor which stabilizes H2O (product) binding to the active FeII state and retards the reaction. However, when the 1,10-phenanthroline is protonated, it acts as a hydrogen-bond donor which enhances O2 reduction by stabilizing FeIII-O2.- and FeIII-OOH intermediates and activating the O-O bond for cleavage. On the basis of these data, general guidelines for controlling the different possible rate-determining steps in the complex multistep 4e-/4H+ ORR are developed and a bioinspired principle-based design of an efficient electrochemical ORR is presented.
Collapse
Affiliation(s)
- Arnab Ghatak
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Sudipta Mukherjee
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, West Bengal 700032, India
| |
Collapse
|
5
|
Nayek A, Ahmed ME, Samanta S, Dinda S, Patra S, Dey SG, Dey A. Bioinorganic Chemistry on Electrodes: Methods to Functional Modeling. J Am Chem Soc 2022; 144:8402-8429. [PMID: 35503922 DOI: 10.1021/jacs.2c01842] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
One of the major goals of bioinorganic chemistry has been to mimic the function of elegant metalloenzymes. Such functional modeling has been difficult to attain in solution, in particular, for reactions that require multiple protons and multiple electrons (nH+/ne-). Using a combination of heterogeneous electrochemistry, electrode and molecule design one may control both electron transfer (ET) and proton transfer (PT) of these nH+/ne- reactions. Such control can allow functional modeling of hydrogenases (H+ + e- → 1/2 H2), cytochrome c oxidase (O2 + 4 e- + 4 H+ → 2 H2O), monooxygenases (RR'CH2 + O2 + 2 e- + 2 H+ → RR'CHOH + H2O) and dioxygenases (S + O2 → SO2; S = organic substrate) in aqueous medium and at room temperatures. In addition, these heterogeneous constructs allow probing unnatural bioinspired reactions and estimation of the inner- and outer-sphere reorganization energy of small molecules and proteins.
Collapse
Affiliation(s)
- Abhijit Nayek
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Md Estak Ahmed
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Soumya Samanta
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Souvik Dinda
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Suman Patra
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Somdatta Ghosh Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| | - Abhishek Dey
- School of Chemical Sciences, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India 700032
| |
Collapse
|
6
|
Bhunia S, Ghatak A, Dey A. Second Sphere Effects on Oxygen Reduction and Peroxide Activation by Mononuclear Iron Porphyrins and Related Systems. Chem Rev 2022; 122:12370-12426. [PMID: 35404575 DOI: 10.1021/acs.chemrev.1c01021] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Activation and reduction of O2 and H2O2 by synthetic and biosynthetic iron porphyrin models have proved to be a versatile platform for evaluating second-sphere effects deemed important in naturally occurring heme active sites. Advances in synthetic techniques have made it possible to install different functional groups around the porphyrin ligand, recreating artificial analogues of the proximal and distal sites encountered in the heme proteins. Using judicious choices of these substituents, several of the elegant second-sphere effects that are proposed to be important in the reactivity of key heme proteins have been evaluated under controlled environments, adding fundamental insight into the roles played by these weak interactions in nature. This review presents a detailed description of these efforts and how these have not only demystified these second-sphere effects but also how the knowledge obtained resulted in functional mimics of these heme enzymes.
Collapse
Affiliation(s)
- Sarmistha Bhunia
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Arnab Ghatak
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata 700032, India
| |
Collapse
|
7
|
Mukherjee M, Dey A. Rejigging Electron and Proton Transfer to Transition between Dioxygenase, Monooxygenase, Peroxygenase, and Oxygen Reduction Activity: Insights from Bioinspired Constructs of Heme Enzymes. JACS AU 2021; 1:1296-1311. [PMID: 34604840 PMCID: PMC8479764 DOI: 10.1021/jacsau.1c00100] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Indexed: 05/10/2023]
Abstract
Nature has employed heme proteins to execute a diverse set of vital life processes. Years of research have been devoted to understanding the factors which bias these heme enzymes, with all having a heme cofactor, toward distinct catalytic activity. Among them, axial ligation, distal super structure, and substrate binding pockets are few very vividly recognized ones. Detailed mechanistic investigation of these heme enzymes suggested that several of these enzymes, while functionally divergent, use similar intermediates. Furthermore, the formation and decay of these intermediates depend on proton and electron transfer processes in the enzyme active site. Over the past decade, work in this group, using in situ surface enhanced resonance Raman spectroscopy of synthetic and biosynthetic analogues of heme enzymes, a general idea of how proton and electron transfer rates relate to the lifetime of different O2 derived intermediates has been developed. These findings suggest that the enzymatic activities of all these heme enzymes can be integrated into one general cycle which can be branched out to different catalytic pathways by regulating the lifetime and population of each of these intermediates. This regulation can further be achieved by tuning the electron and proton transfer steps. By strategically populating one of these intermediates during oxygen reduction, one can navigate through different catalytic processes to a desired direction by altering proton and electron transfer steps.
Collapse
Affiliation(s)
- Manjistha Mukherjee
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| | - Abhishek Dey
- School of Chemical Science, Indian Association for the Cultivation of Science, 2A Raja SC Mullick Road, Kolkata, WB India, 700032
| |
Collapse
|
8
|
Mukherjee G, Satpathy JK, Bagha UK, Mubarak MQE, Sastri CV, de Visser SP. Inspiration from Nature: Influence of Engineered Ligand Scaffolds and Auxiliary Factors on the Reactivity of Biomimetic Oxidants. ACS Catal 2021. [DOI: 10.1021/acscatal.1c01993] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Gourab Mukherjee
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Jagnyesh K. Satpathy
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Umesh K. Bagha
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - M. Qadri E. Mubarak
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Fakulti Sains dan Teknologi, Universiti Sains Islam Malaysia, Bandar Baru Nilai, 71800 Nilai, Negeri Sembilan Malaysia
| | - Chivukula V. Sastri
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
| | - Sam P. de Visser
- Department of Chemistry, Indian Institute of Technology Guwahati, 781039, Assam, India
- Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
- Department of Chemical Engineering and Analytical Science, The University of Manchester, Oxford Road, Manchester M13 9PL, United Kingdom
| |
Collapse
|
9
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H‐Atom Transfer (HAT). Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Hyun Kim
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Patrick J. Rogler
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | - Savita K. Sharma
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| | | | | | - Kenneth D. Karlin
- Chemistry Department Johns Hopkins University Baltimore MD 21218 USA
| |
Collapse
|
10
|
Kim H, Rogler PJ, Sharma SK, Schaefer AW, Solomon EI, Karlin KD. Ferric Heme Superoxide Reductive Transformations to Ferric Heme (Hydro)Peroxide Species: Spectroscopic Characterization and Thermodynamic Implications for H-Atom Transfer (HAT). Angew Chem Int Ed Engl 2021; 60:5907-5912. [PMID: 33348450 PMCID: PMC7920932 DOI: 10.1002/anie.202013791] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 01/07/2023]
Abstract
A new end-on low-spin ferric heme peroxide, [(PIm )FeIII -(O22- )]- (PIm -P), and subsequently formed hydroperoxide species, [(PIm )FeIII -(OOH)] (PIm -HP) are generated utilizing the iron-porphyrinate PIm with its tethered axial base imidazolyl group. Measured thermodynamic parameters, the ferric heme superoxide [(PIm )FeIII -(O2⋅- )] (PIm -S) reduction potential (E°') and the PIm -HP pKa value, lead to the finding of the OO-H bond-dissociation free energy (BDFE) of PIm -HP as 69.5 kcal mol-1 using a thermodynamic square scheme and Bordwell relationship. The results are validated by the observed oxidizing ability of PIm -S via hydrogen-atom transfer (HAT) compared to that of the F8 superoxide complex, [(F8 )FeIII -(O2.- )] (S) (F8 =tetrakis(2,6-difluorophenyl)porphyrinate, without an internally appended axial base imidazolyl), as determined from reactivity comparison of superoxide complexes PIm -S and S with the hydroxylamine (O-H) substrates TEMPO-H and ABNO-H.
Collapse
Affiliation(s)
- Hyun Kim
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Patrick J Rogler
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | - Savita K Sharma
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| | | | - Edward I Solomon
- Chemistry Department, Stanford University, Stanford, CA, 94305, USA
| | - Kenneth D Karlin
- Chemistry Department, Johns Hopkins University, Baltimore, MD, 21218, USA
| |
Collapse
|
11
|
Xue Q, Wu R, Wang D, Zhu M, Zuo W. The Stabilization Effect of π‐Backdonation Ligands on the Catalytic Reactivities of Amido‐Ene(amido) Iron Catalysts in the Asymmetric Transfer Hydrogenation of Ketones. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.202000470] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Qingquan Xue
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Rongliang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Di Wang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| | - Weiwei Zuo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials College of Materials Science and Engineering Donghua University 2999 North Renmin Road, Songjiang District 201620 Shanghai P. R. China
| |
Collapse
|
12
|
Hunt AP, Samanta S, Dent MR, Milbauer MW, Burstyn JN, Lehnert N. Model Complexes Elucidate the Role of the Proximal Hydrogen-Bonding Network in Cytochrome P450s. Inorg Chem 2020; 59:8034-8043. [DOI: 10.1021/acs.inorgchem.0c00245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Andrew P. Hunt
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Subhra Samanta
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| | - Matthew R. Dent
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Michael W. Milbauer
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin, Madison, Wisconsin 53706, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan, Ann Arbor, Michigan 48109-1055, United States
| |
Collapse
|
13
|
The chemistry, recent advancements and activity descriptors for macrocycles based electrocatalysts in oxygen reduction reaction. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213047] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
14
|
Dent MR, Milbauer MW, Hunt AP, Aristov MM, Guzei IA, Lehnert N, Burstyn JN. Electron Paramagnetic Resonance Spectroscopy as a Probe of Hydrogen Bonding in Heme-Thiolate Proteins. Inorg Chem 2019; 58:16011-16027. [PMID: 31786931 PMCID: PMC11160398 DOI: 10.1021/acs.inorgchem.9b02506] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Despite utilizing a common cofactor binding motif, hemoproteins bearing a cysteine-derived thiolate ligand (heme-thiolate proteins) are involved in a diverse array of biological processes ranging from drug metabolism to transcriptional regulation. Though the origin of heme-thiolate functional divergence is not well understood, growing evidence suggests that the hydrogen bonding (H-bonding) environment surrounding the Fe-coordinating thiolate influences protein function. Outside of X-ray crystallography, few methods exist to characterize these critical H-bonding interactions. Electron paramagnetic resonance (EPR) spectra of heme-thiolate proteins bearing a six-coordinate, Fe(III) heme exhibit uniquely narrow low-spin (S = 1/2), rhombic signals, which are sensitive to changes in the heme-thiolate H-bonding environment. To establish a well-defined relationship between the magnitude of g-value dispersion in this unique EPR signal and the strength of the heme-thiolate H-bonding environment, we synthesized and characterized of a series of six-coordinate, aryl-thiolate-ligated Fe(III) porphyrin complexes bearing a tunable intramolecular H-bond. Spectroscopic investigation of these complexes revealed a direct correlation between H-bond strength and g-value dispersion in the rhombic EPR signal. Using density functional theory (DFT), we elucidated the electronic origins of the narrow, rhombic EPR signal in heme-thiolates, which arises from an Fe-S pπ-dπ bonding interaction. Computational analysis of the intramolecularly H-bonded heme-thiolate models revealed that H-bond donation to the coordinating thiolate reduces thiolate donor strength and weakens this Fe-S interaction, giving rise to larger g-value dispersion. By defining the relationship between heme-thiolate electronic structure and rhombic EPR signal, it is possible to compare thiolate donor strengths among heme-thiolate proteins through analysis of low-spin, Fe(III) EPR spectra. Thus, this study establishes EPR spectroscopy as a valuable tool for exploring how second coordination sphere effects influence heme-thiolate protein function.
Collapse
Affiliation(s)
- Matthew R. Dent
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Michael W. Milbauer
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Andrew P. Hunt
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Michael M. Aristov
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Ilia A. Guzei
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| | - Nicolai Lehnert
- Department of Chemistry, University of Michigan, 930 North University Avenue, Ann Arbor, Michigan 48109, United States
| | - Judith N. Burstyn
- Department of Chemistry, University of Wisconsin-Madison, 1101 University Avenue, Madison, Wisconsin 53706, United States
| |
Collapse
|
15
|
Amanullah S, Singha A, Dey A. Tailor made iron porphyrins for investigating axial ligand and distal environment contributions to electronic structure and reactivity. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.01.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
16
|
Zhang P, Hu J, Liu B, Yang J, Hou H. Recent advances in metalloporphyrins for environmental and energy applications. CHEMOSPHERE 2019; 219:617-635. [PMID: 30554049 DOI: 10.1016/j.chemosphere.2018.12.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/30/2018] [Accepted: 12/03/2018] [Indexed: 06/09/2023]
Abstract
Porphyrin-based chemistry has reached an unprecedented period of rapid development after decades of study. Due to attractive multifunctional properties, porphyrins and their analogues have emerged as multifunctional organometals for environmental and energy purposes. In particular, pioneer works have been conducted to explore their application in pollution abatement, energy conversion and storage and molecule recognition. This review summarizes recent advances of porphyrins chemistry, focusing on elucidating the nature of catalytic process. The Fenton-like redox chemistry and photo-excitability of porphyrins and their analogues are discussed, highlighting the generation of high-valent iron oxo porphyrin species. Finally, challenges in current research are identified and perspectives for future development in this area are presented.
Collapse
Affiliation(s)
- Peng Zhang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, Huazhong University of Science and Technology (HUST), Wuhan, Hubei, 430074, PR China.
| |
Collapse
|
17
|
Zhang J, Tang M, Chen D, Lin B, Zhou Z, Liu Q. Horizontal and Vertical Push Effects in Saddled Zinc Porphyrin Complexes: Implications for Heme Distortion. Inorg Chem 2019; 58:2627-2636. [DOI: 10.1021/acs.inorgchem.8b03219] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Jinjin Zhang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Min Tang
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Dilong Chen
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Binghua Lin
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zaichun Zhou
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Qiuhua Liu
- Key Laboratory of Theoretical Organic Chemistry and Functional Molecules, Ministry of Education, and School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| |
Collapse
|
18
|
Mukherjee A, Pattanayak S, Sen Gupta S, Vanka K. What drives the H-abstraction reaction in bio-mimetic oxoiron-bTAML complexes? A computational investigation. Phys Chem Chem Phys 2018; 20:13845-13850. [PMID: 29717729 DOI: 10.1039/c8cp01333k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monomeric iron-oxo units have been confirmed as intermediates involved in the C-H bond activation in various metallo-enzymes. Biomimetic oxoiron complexes of the biuret modified tetra-amido macrocyclic ligand (bTAML) have been demonstrated to oxidize a wide variety of unactivated C-H bonds. In the current work, density functional theory (DFT) has been employed to investigate the hydrogen abstraction (HAT) reactivity differences across a series of bTAML complexes. The cause for the differences in the HAT energy barriers has been found to be the relative changes in the energy of the frontier molecular orbitals (FMOs) induced by electronic perturbation.
Collapse
Affiliation(s)
- Anagh Mukherjee
- Physical and Material Chemistry Division, CSIR-National Chemical Laboratory, Pune-411008, India.
| | | | | | | |
Collapse
|
19
|
|
20
|
Moin ST, Hofer TS. Hydration of iron-porphyrins: ab initio quantum mechanical charge field molecular dynamics simulation study. Phys Chem Chem Phys 2017; 19:30822-30833. [PMID: 29135005 DOI: 10.1039/c7cp04436d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ab initio quantum mechanical charge field molecular dynamics (QMCF-MD) simulation approach was successfully applied to Fe2+-P and Fe3+-P in water to evaluate their structural, dynamical and energetic properties. Based on the structural data, it was found that Fe2+-P accommodates one water molecule in the first coordination sphere of the Fe2+ ion including the four nitrogen atoms of the porphyrin system coordinating with central metal species. On the other hand, two water molecules were coordinated to Fe3+-P, thus forming a hexa-coordinated species. Comparison of dynamical properties such as the vibrational power spectrum and ligand mean residence times to other metal-free porphyrin systems demonstrate the ions' influence on the hydration structure, enabling a characterisation of the strong interaction of the ions which greatly reduces the hydrogen bonding potential of the complex. The association of water molecules with the metal ions in both solutes was quantified by computing the free energy of binding obtained via the potential of mean force. This further confirmed the strong association of water to the metal ions which was conversely weak as inferred from the energetic data for the Fe2+-P system.
Collapse
Affiliation(s)
- Syed Tarique Moin
- H.E.J. Research Institute of Chemistry International Center for Chemical and Biological Sciences University of Karachi, Karachi-75270, Pakistan.
| | | |
Collapse
|
21
|
McQuarters AB, Kampf JW, Alp EE, Hu M, Zhao J, Lehnert N. Ferric Heme-Nitrosyl Complexes: Kinetically Robust or Unstable Intermediates? Inorg Chem 2017; 56:10513-10528. [PMID: 28825299 DOI: 10.1021/acs.inorgchem.7b01493] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
We have determined a convenient method for the bulk synthesis of high-purity ferric heme-nitrosyl complexes ({FeNO}6 in the Enemark-Feltham notation); this method is based on the chemical or electrochemical oxidation of corresponding {FeNO}7 precursors. We used this method to obtain the five- and six-coordinate complexes [Fe(TPP)(NO)]+ (TPP2- = tetraphenylporphyrin dianion) and [Fe(TPP)(NO)(MI)]+ (MI = 1-methylimidazole) and demonstrate that these complexes are stable in solution in the absence of excess NO gas. This is in stark contrast to the often-cited instability of such {FeNO}6 model complexes in the literature, which is likely due to the common presence of halide impurities (although other impurities could certainly also play a role). This is avoided in our approach for the synthesis of {FeNO}6 complexes via oxidation of pure {FeNO}7 precursors. On the basis of these results, {FeNO}6 complexes in proteins do not show an increased stability toward NO loss compared to model complexes. We also prepared the halide-coordinated complexes [Fe(TPP)(NO)(X)] (X = Cl-, Br-), which correspond to the elusive, key reactive intermediate in the so-called autoreduction reaction, which is frequently used to prepare {FeNO}7 complexes from ferric precursors. All of the complexes were characterized using X-ray crystallography, UV-vis, IR, and nuclear resonance vibrational spectroscopy (NRVS). On the basis of the vibrational data, further insight into the electronic structure of these {FeNO}6 complexes, in particular with respect to the role of the axial ligand trans to NO, is obtained.
Collapse
Affiliation(s)
- Ashley B McQuarters
- Department of Chemistry and Department of Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Jeff W Kampf
- Department of Chemistry and Department of Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - E Ercan Alp
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Michael Hu
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Jiyong Zhao
- Advanced Photon Source, Argonne National Laboratory , Argonne, Illinois 60439, United States
| | - Nicolai Lehnert
- Department of Chemistry and Department of Biophysics, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
22
|
Mittra K, Singha A, Dey A. Mechanism of Reduction of Ferric Porphyrins by Sulfide: Identification of a Low Spin FeIII–SH Intermediate. Inorg Chem 2017; 56:3916-3925. [DOI: 10.1021/acs.inorgchem.6b02878] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Kaustuv Mittra
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Asmita Singha
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
23
|
Ni D, Zhang J, Wang X, Qin D, Li N, Lu W, Chen W. Hydroxyl Radical-Dominated Catalytic Oxidation in Neutral Condition by Axially Coordinated Iron Phthalocyanine on Mercapto-Functionalized Carbon Nanotubes. Ind Eng Chem Res 2017. [DOI: 10.1021/acs.iecr.6b04726] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Dongjing Ni
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jinfei Zhang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiyi Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Dandan Qin
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou 310018, China
| |
Collapse
|
24
|
Rodriguez KJ, Hanlon AM, Lyon CK, Cole JP, Tuten BT, Tooley CA, Berda EB, Pazicni S. Porphyrin-Cored Polymer Nanoparticles: Macromolecular Models for Heme Iron Coordination. Inorg Chem 2016; 55:9493-9496. [DOI: 10.1021/acs.inorgchem.6b01113] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
- Kyle J. Rodriguez
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Ashley M. Hanlon
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Christopher K. Lyon
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Justin P. Cole
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Bryan T. Tuten
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Christian A. Tooley
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Erik B. Berda
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| | - Samuel Pazicni
- Department of Chemistry and ‡Materials Science
Program, University of New Hampshire, 23 Academic Way, Durham, New Hampshire 03824, United States
| |
Collapse
|
25
|
Abstract
CytP450s have a cysteine-bound heme cofactor that, in its as-isolated resting (oxidized) form, can be conclusively described as a ferric thiolate species. Unlike the native enzyme, most synthetic thiolate-bound ferric porphyrins are unstable in air unless the axial thiolate ligand is sterically protected. Spectroscopic investigations on a series of synthetic mimics of cytP450 indicate that a thiolate-bound ferric porphyrin coexists in organic solutions at room temperature (RT) with a thiyl-radical bound ferrous porphyrin, i.e., its valence tautomer. The ferric thiolate state is favored by greater enthalpy and is air stable. The ferrous thiyl state is favored by entropy, populates at RT, and degrades in air. These ground states can be reversibly interchanged at RT by the addition or removal of water to the apolar medium. It is concluded that hydrogen bonding and local electrostatics protect the resting oxidized cytP450 active site from degradation in air by stabilizing the ferric thiolate ground state in contrast to its synthetic analogs.
Collapse
|
26
|
Meininger DJ, Kasrawi Z, Arman HD, Tonzetich ZJ. Synthesis of tetraphenylporphyrinate manganese(III) siloxides by silyl group transfer from silanethiols. J COORD CHEM 2016. [DOI: 10.1080/00958972.2016.1187727] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Daniel J. Meininger
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Zieph Kasrawi
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Hadi D. Arman
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| | - Zachary J. Tonzetich
- Department of Chemistry, University of Texas at San Antonio, San Antonio, TX, USA
| |
Collapse
|
27
|
Huang G, Wang WL, Ning XX, Liu Y, Zhao SK, Guo YA, Wei SJ, Zhou H. Interesting Green Catalysis of Cyclohexane Oxidation over Metal Tetrakis(4-carboxyphenyl)porphyrins Promoted by Zinc Sulfide. Ind Eng Chem Res 2016. [DOI: 10.1021/acs.iecr.6b00061] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Guan Huang
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Wei Lai Wang
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Xing Xing Ning
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Yao Liu
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Shu Kai Zhao
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Yong-An Guo
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Su Juan Wei
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| | - Hong Zhou
- College of Chemistry and Chemical
Engineering, Guangxi University, Nanning 530004, China
| |
Collapse
|
28
|
Davydov R, Im S, Shanmugam M, Gunderson WA, Pearl NM, Hoffman BM, Waskell L. Role of the Proximal Cysteine Hydrogen Bonding Interaction in Cytochrome P450 2B4 Studied by Cryoreduction, Electron Paramagnetic Resonance, and Electron-Nuclear Double Resonance Spectroscopy. Biochemistry 2016; 55:869-83. [PMID: 26750753 DOI: 10.1021/acs.biochem.5b00744] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Crystallographic studies have shown that the F429H mutation of cytochrome P450 2B4 introduces an H-bond between His429 and the proximal thiolate ligand, Cys436, without altering the protein fold but sharply decreases the enzymatic activity and stabilizes the oxyferrous P450 2B4 complex. To characterize the influence of this hydrogen bond on the states of the catalytic cycle, we have used radiolytic cryoreduction combined with electron paramagnetic resonance (EPR) and (electron-nuclear double resonance (ENDOR) spectroscopy to study and compare their characteristics for wild-type (WT) P450 2B4 and the F429H mutant. (i) The addition of an H-bond to the axial Cys436 thiolate significantly changes the EPR signals of both low-spin and high-spin heme-iron(III) and the hyperfine couplings of the heme-pyrrole (14)N but has relatively little effect on the (1)H ENDOR spectra of the water ligand in the six-coordinate low-spin ferriheme state. These changes indicate that the H-bond introduced between His and the proximal cysteine decreases the extent of S → Fe electron donation and weakens the Fe(III)-S bond. (ii) The added H-bond changes the primary product of cryoreduction of the Fe(II) enzyme, which is trapped in the conformation of the parent Fe(II) state. In the wild-type enzyme, the added electron localizes on the porphyrin, generating an S = (3)/2 state with the anion radical exchange-coupled to the Fe(II). In the mutant, it localizes on the iron, generating an S = (1)/2 Fe(I) state. (iii) The additional H-bond has little effect on g values and (1)H-(14)N hyperfine couplings of the cryogenerated, ferric hydroperoxo intermediate but noticeably slows its decay during cryoannealing. (iv) In both the WT and the mutant enzyme, this decay shows a significant solvent kinetic isotope effect, indicating that the decay reflects a proton-assisted conversion to Compound I (Cpd I). (v) We confirm that Cpd I formed during the annealing of the cryogenerated hydroperoxy intermediate and that it is the active hydroxylating species in both WT P450 2B4 and the F429H mutant. (vi) Our data also indicate that the added H-bond of the mutation diminishes the reactivity of Cpd I.
Collapse
Affiliation(s)
- Roman Davydov
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Sangchoul Im
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Muralidharan Shanmugam
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - William A Gunderson
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Naw May Pearl
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| | - Brian M Hoffman
- Department of Chemistry, Northwestern University , 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Lucy Waskell
- Department of Anesthesiology, University of Michigan, and VA Medical Center , 2215 Fuller Road, Ann Arbor, Michigan 48105, United States
| |
Collapse
|
29
|
Mittra K, Sengupta K, Singha A, Bandyopadhyay S, Chatterjee S, Rana A, Samanta S, Dey A. Second sphere control of spin state: Differential tuning of axial ligand bonds in ferric porphyrin complexes by hydrogen bonding. J Inorg Biochem 2016; 155:82-91. [DOI: 10.1016/j.jinorgbio.2015.11.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Revised: 10/02/2015] [Accepted: 11/10/2015] [Indexed: 11/16/2022]
|
30
|
Huang G, Yuan RX, Peng Y, Chen XF, Zhao SK, Wei SJ, Guo WX, Chen X. Oxygen oxidation of ethylbenzene over manganese porphyrin is promoted by the axial nitrogen coordination in powdered chitosan. RSC Adv 2016. [DOI: 10.1039/c6ra07789g] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
A less wasteful production method of oxidation ethylbenzene to acetophenone and phenethyl alcohol was adviced. It revealed an important role in tuning catalytic reactivity of metalloporphyrins by the axial ligand for oxidation of hydrocarbon.
Collapse
Affiliation(s)
- Guan Huang
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Ru Xun Yuan
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Yan Peng
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Xiang Feng Chen
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Shu Kai Zhao
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Su Juan Wei
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Wen Xin Guo
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| | - Xi Chen
- College of Chemistry and Chemical Engineering
- Guangxi University
- Guangxi Colleges and Universities Key Laboratory of Applied Chemistry Technology and Resource Development
- Nanning 530004
- China
| |
Collapse
|
31
|
Samanta S, Das PK, Chatterjee S, Dey A. Effect of axial ligands on electronic structure and O2 reduction by iron porphyrin complexes: Towards a quantitative understanding of the "push effect". J PORPHYR PHTHALOCYA 2015. [DOI: 10.1142/s1088424615300049] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Axial ligands play a dominating role in determining the electronic structure and reactivity of iron porphyrin active sites and synthetic models. Several properties unique to the cysteine bound heme enzyme, cytochrome P450, is attributed to the "push effect" of the thiolate axial ligand. In this mini-review the ground state electronic structure of iron porphyrins with imidazole, phenolate and thiolate complexes, derived using a combination of spectroscopy and DFT calculations, are discussed. The differences in kinetics and selectivity of oxygen reduction reaction (ORR), catalyzed by these iron porphyrin complexes with different axial ligands, help elucidate the varying push effects of the different axial ligands on oxygen activation by ferrous porphyrin. The spectroscopic and kinetic data help to develop a quantitative understanding of the "push effect" and, in particular, the electrostatic and covalent contributions to it.
Collapse
Affiliation(s)
- Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
32
|
Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A. Concerted Proton–Electron Transfer in Electrocatalytic O2 Reduction by Iron Porphyrin Complexes: Axial Ligands Tuning H/D Isotope Effect. Inorg Chem 2015; 54:2383-92. [DOI: 10.1021/ic5029959] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
33
|
Das PK, Dey A. Resonance Raman, Electron Paramagnetic Resonance, and Density Functional Theory Calculations of a Phenolate-Bound Iron Porphyrin Complex: Electrostatic versus Covalent Contribution to Bonding. Inorg Chem 2014; 53:7361-70. [DOI: 10.1021/ic500716d] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Pradip Kumar Das
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
34
|
Tsou CC, Chiu WC, Ke CH, Tsai JC, Wang YM, Chiang MH, Liaw WF. Iron(III) Bound by Hydrosulfide Anion Ligands: NO-Promoted Stabilization of the [FeIII–SH] Motif. J Am Chem Soc 2014; 136:9424-33. [DOI: 10.1021/ja503683y] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Chih-Chin Tsou
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Wei-Chun Chiu
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Chun-Hung Ke
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Jia-Chun Tsai
- Department
of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Yun-Ming Wang
- Department
of Biological Science and Technology, National Chiao Tung University, Hsinchu 300, Taiwan
| | - Ming-Hsi Chiang
- Institute
of Chemistry, Academia Sinica, Nankang, Taipei 115, Taiwan
| | - Wen-Feng Liaw
- Department
of Chemistry and Frontier Research Center on Fundamental and Applied
Sciences of Matters, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
35
|
Das PK, Mittra K, Dey A. Spectroscopic characterization of a phenolate bound FeII–O2adduct: gauging the relative “push” effect of a phenolate axial ligand. Chem Commun (Camb) 2014; 50:5218-20. [DOI: 10.1039/c3cc47528j] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
|
36
|
Kleingardner JG, Bowman SEJ, Bren KL. The influence of heme ruffling on spin densities in ferricytochromes c probed by heme core 13C NMR. Inorg Chem 2013; 52:12933-46. [PMID: 24187968 DOI: 10.1021/ic401250d] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The heme in cytochromes c undergoes a conserved out-of-plane distortion known as ruffling. For cytochromes c from the bacteria Hydrogenobacter thermophilus and Pseudomonas aeruginosa , NMR and EPR spectra have been shown to be sensitive to the extent of heme ruffling and to provide insights into the effect of ruffling on the electronic structure. Through the use of mutants of each of these cytochromes that differ in the amount of heme ruffling, NMR characterization of the low-spin (S = ½) ferric proteins has confirmed and refined the developing understanding of how ruffling influences the spin distribution on heme. The chemical shifts of the core heme carbons were obtained through site-specific labeling of the heme via biosynthetic incorporation of (13)C-labeled 5-aminolevulinic acid derivatives. Analysis of the contact shifts of these core heme carbons allowed Fermi contact spin densities to be estimated and changes upon ruffling to be evaluated. The results allow a deconvolution of the contributions to heme hyperfine shifts and a test of the influence of heme ruffling on the electronic structure and hyperfine shifts. The data indicate that as heme ruffling increases, the spin densities on the β-pyrrole carbons decrease while the spin densities on the α-pyrrole carbons and meso carbons increase. Furthermore, increased ruffling is associated with stronger bonding to the heme axial His ligand.
Collapse
Affiliation(s)
- Jesse G Kleingardner
- Department of Chemistry, University of Rochester , Rochester, New York 14627-0216, United States
| | | | | |
Collapse
|
37
|
Samanta S, Das PK, Chatterjee S, Sengupta K, Mondal B, Dey A. O2 Reduction Reaction by Biologically Relevant Anionic Ligand Bound Iron Porphyrin Complexes. Inorg Chem 2013; 52:12963-71. [DOI: 10.1021/ic4020652] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Subhra Samanta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Pradip Kumar Das
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Sudipta Chatterjee
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Kushal Sengupta
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Biswajit Mondal
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| | - Abhishek Dey
- Department
of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata, India 700032
| |
Collapse
|
38
|
Meininger DJ, Caranto JD, Arman HD, Tonzetich ZJ. Studies of iron(III) porphyrinates containing silanethiolate ligands. Inorg Chem 2013; 52:12468-76. [PMID: 24138018 DOI: 10.1021/ic401467k] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The chemistry of several iron(III) porphyrinates containing silanethiolate ligands is described. The complexes are prepared by protonolysis reactions of silanethiols with the iron(III) precursors, [Fe(OMe)(TPP)] and [Fe(OH)(H2O)(TMP)] (TPP = dianion of meso-tetraphenylporphine; TMP = dianion of meso-tetramesitylporphine). Each of the compounds has been fully characterized in solution and the solid state. The stability of the silanethiolate complexes versus other iron(III) porphyrinate complexes containing sulfur-based ligands allows for an examination of their reactivity with several biologically relevant small molecules including H2S, NO, and 1-methylimidazole. Electrochemically, the silanethiolate complexes display a quasi-reversible one-electron oxidation event at potentials higher than that observed for an analogous arenethiolate complex. The behavior of these complexes versus other sulfur-ligated iron(III) porphyrinates is discussed.
Collapse
Affiliation(s)
- Daniel J Meininger
- Department of Chemistry, University of Texas at San Antonio (UTSA) , San Antonio, Texas 78249, United States
| | | | | | | |
Collapse
|
39
|
Chatterjee S, Sengupta K, Samanta S, Das PK, Dey A. Electrocatalytic O2 Reduction Reaction by Synthetic Analogues of Cytochrome P450 and Myoglobin: In-Situ Resonance Raman and Dynamic Electrochemistry Investigations. Inorg Chem 2013; 52:9897-907. [DOI: 10.1021/ic401022z] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Pradip Kumar Das
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Jadavpur,
Kolkata 700032, India
| |
Collapse
|
40
|
Chatterjee S, Sengupta K, Bhattacharyya S, Nandi A, Samanta S, Mittra K, Dey A. Photophysical and ligand binding studies of metalloporphyrins bearing hydrophilic distal superstructure. J PORPHYR PHTHALOCYA 2013. [DOI: 10.1142/s1088424613500119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
UV-vis absorption and emission studies on zinc and iron porphyrin complexes bearing H-bonding distal superstructures have been performed in two different organic solvents- tetrahydrofuran (THF) (coordinating) and dichloromethane (DCM) (non-coordinating). Quantum yields and lifetimes have been measured for these complexes which are in good agreement with the other reported metalloporphyrins. Binding affinities with anionic ligands such as N3- , CN- , S-2 , F- were monitored for these two complexes in aqueous media and the respective binding constant values were calculated. The Zn complex shows more selectivity towards cyanide while the Fe complex shows more selectivity towards azide.
Collapse
Affiliation(s)
- Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Sohini Bhattacharyya
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Amrit Nandi
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Kaustuv Mittra
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science, Kolkata 700032, India
| |
Collapse
|
41
|
Sengupta K, Chatterjee S, Samanta S, Bandyopadhyay S, Dey A. Resonance Raman and Electrocatalytic Behavior of Thiolate and Imidazole Bound Iron Porphyrin Complexes on Self Assembled Monolayers: Functional Modeling of Cytochrome P450. Inorg Chem 2013; 52:2000-14. [DOI: 10.1021/ic302369v] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Kushal Sengupta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,
Kolkata, India 700032
| | - Sudipta Chatterjee
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,
Kolkata, India 700032
| | - Subhra Samanta
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,
Kolkata, India 700032
| | - Sabyasachi Bandyopadhyay
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,
Kolkata, India 700032
| | - Abhishek Dey
- Department of Inorganic Chemistry, Indian Association for the Cultivation of Science,
Kolkata, India 700032
| |
Collapse
|