1
|
Nemykin VN, Sabin JR, Kail BW, Upadhyay A, Hendrich MP, Basu P. Influence of the ligand-field on EPR parameters of cis- and trans-isomers in Mo V systems relevant to molybdenum enzymes: Experimental and density functional theory study. J Inorg Biochem 2023; 245:112228. [PMID: 37149488 PMCID: PMC10330323 DOI: 10.1016/j.jinorgbio.2023.112228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 04/12/2023] [Accepted: 04/12/2023] [Indexed: 05/08/2023]
Abstract
The electron paramagnetic resonance (EPR) investigation of mononuclear cis- and trans-(L1O)MoOCl2 complexes [L1OH = bis(3,5-dimethylpyrazolyl)-3-tert-butyl-2-hydroxy-5-methylphenyl)methane] reveals a significant difference in their spin Hamiltonian parameters which reflect different equatorial and axial ligand fields created by the heteroscorpionate donor atoms. Density functional theory (DFT) was used to calculate the values of principal components and relative orientations of the g and A tensors, and the molecular framework in four pairs of isomeric mononuclear oxo‑molybdenum(V) complexes (cis- and trans-(L1O)MoOCl2, cis,cis- and cis,trans-(L-N2S2)MoOCl [L-N2S2H2 = N,N'-dimethyl-N,N'-bis(mercaptophenyl)ethylenediamine], cis,cis- and cis,trans-(L-N2S2)MoO(SCN), and cis- and trans-[(dt)2MoO(OMe)]2- [dtH2 = 2,3-dimercapto-2-butene]). Scalar relativistic DFT calculations were conducted using three different exchange-correlation functionals. It was found that the use of hybrid exchange-correlation functional with 25% of the Hartree-Fock exchange leads to the best quantitative agreement between theory and experiment. A simplified ligand-field approach was used to analyze the influence of the ligand fields in all cis- and trans-isomers on energies and contributions of molybdenum d-orbital manifold to g and A tensors and relative orientations. Specifically, contributions that originated from the spin-orbit coupling of the dxz, dyz, and dx2-y2 orbitals into the ground state have been discussed. The new findings are discussed in the context of the experimental data of mononuclear molybdoenzyme, DMSO reductase.
Collapse
Affiliation(s)
- Victor N Nemykin
- Department of Chemistry, University of Tennessee - Knoxville, Knoxville, TN 37996, USA; Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA.
| | - Jared R Sabin
- Department of Chemistry and Biochemistry, University of Minnesota Duluth, Duluth, MN 55812, USA
| | - Brian W Kail
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA
| | - Anup Upadhyay
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA
| | - Michael P Hendrich
- Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213, USA.
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, PA 15216, USA; Department of Chemistry and Chemical Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN 46202, USA.
| |
Collapse
|
2
|
Kirk ML, Lepluart J, Yang J. Resonance Raman spectroscopy of pyranopterin molybdenum enzymes. J Inorg Biochem 2022; 235:111907. [PMID: 35932756 PMCID: PMC10575615 DOI: 10.1016/j.jinorgbio.2022.111907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 05/16/2022] [Accepted: 06/16/2022] [Indexed: 10/17/2022]
Abstract
Resonance Raman spectroscopy (rR) is a powerful spectroscopic probe that is widely used for studying the geometric and electronic structure of metalloproteins. In this focused review, we detail how resonance Raman spectroscopy has contributed to a greater understanding of electronic structure, geometric structure, and the reaction mechanisms of pyranopterin molybdenum enzymes. The review focuses on the enzymes sulfite oxidase (SO), dimethyl sulfoxide reductase (DMSOR), xanthine oxidase (XO), and carbon monoxide dehydrogenase. Specifically, we highlight how Mo-Ooxo, Mo-Ssulfido, Mo-Sdithiolene, and dithiolene CC vibrational modes, isotope and heavy atom perturbations, resonance enhancement, and associated Raman studies of small molecule analogs have provided detailed insight into the nature of these metalloenzyme active sites.
Collapse
Affiliation(s)
- Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States.
| | - Jesse Lepluart
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States
| |
Collapse
|
3
|
Summers KL, Roseman G, Schilling KM, Dolgova NV, Pushie MJ, Sokaras D, Kroll T, Harris HH, Millhauser GL, Pickering IJ, George GN. Alzheimer's Drug PBT2 Interacts with the Amyloid β 1-42 Peptide Differently than Other 8-Hydroxyquinoline Chelating Drugs. Inorg Chem 2022; 61:14626-14640. [PMID: 36073854 PMCID: PMC9957665 DOI: 10.1021/acs.inorgchem.2c01694] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Although Alzheimer's disease (AD) was first described over a century ago, it remains the leading cause of age-related dementia. Innumerable changes have been linked to the pathology of AD; however, there remains much discord regarding which might be the initial cause of the disease. The "amyloid cascade hypothesis" proposes that the amyloid β (Aβ) peptide is central to disease pathology, which is supported by elevated Aβ levels in the brain before the development of symptoms and correlations of amyloid burden with cognitive impairment. The "metals hypothesis" proposes a role for metal ions such as iron, copper, and zinc in the pathology of AD, which is supported by the accumulation of these metals within amyloid plaques in the brain. Metals have been shown to induce aggregation of Aβ, and metal ion chelators have been shown to reverse this reaction in vitro. 8-Hydroxyquinoline-based chelators showed early promise as anti-Alzheimer's drugs. Both 5-chloro-7-iodo-8-hydroxyquinoline (CQ) and 5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline (PBT2) underwent unsuccessful clinical trials for the treatment of AD. To gain insight into the mechanism of action of 8HQs, we have investigated the potential interaction of CQ, PBT2, and 5,7-dibromo-8-hydroxyquinoline (B2Q) with Cu(II)-bound Aβ(1-42) using X-ray absorption spectroscopy (XAS), high energy resolution fluorescence detected (HERFD) XAS, and electron paramagnetic resonance (EPR). By XAS, we found CQ and B2Q sequestered ∼83% of the Cu(II) from Aβ(1-42), whereas PBT2 sequestered only ∼59% of the Cu(II) from Aβ(1-42), suggesting that CQ and B2Q have a higher relative Cu(II) affinity than PBT2. From our EPR, it became clear that PBT2 sequestered Cu(II) from a heterogeneous mixture of Cu(II)Aβ(1-42) species in solution, leaving a single Cu(II)Aβ(1-42) species. It follows that the Cu(II) site in this Cu(II)Aβ(1-42) species is inaccessible to PBT2 and may be less solvent-exposed than in other Cu(II)Aβ(1-42) species. We found no evidence to suggest that these 8HQs form ternary complexes with Cu(II)Aβ(1-42).
Collapse
Affiliation(s)
- Kelly L. Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Kevin M. Schilling
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Natalia V. Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - M. Jake Pushie
- Department of Surgery, University of Saskatchewan, 103 Hospital Dr, Saskatoon, Saskatchewan S7N 0W8, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H. Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L. Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Ingrid J. Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N. George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, College of Arts and Science, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, College of Arts and Science, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
4
|
Kirk ML, Hille R. Spectroscopic Studies of Mononuclear Molybdenum Enzyme Centers. Molecules 2022; 27:4802. [PMID: 35956757 PMCID: PMC9370002 DOI: 10.3390/molecules27154802] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/26/2022] [Accepted: 06/29/2022] [Indexed: 02/06/2023] Open
Abstract
A concise review is provided of the contributions that various spectroscopic methods have made to our understanding of the physical and electronic structures of mononuclear molybdenum enzymes. Contributions to our understanding of the structure and function of each of the major families of these enzymes is considered, providing a perspective on how spectroscopy has impacted the field.
Collapse
Affiliation(s)
- Martin L. Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Russ Hille
- Department of Biochemistry, Boyce Hall 1463, University of California, Riverside, CA 82521, USA
| |
Collapse
|
5
|
Kc K, Yang J, Kirk ML. Addressing Serine Lability in a Paramagnetic Dimethyl Sulfoxide Reductase Catalytic Intermediate. Inorg Chem 2021; 60:9233-9237. [PMID: 34111354 DOI: 10.1021/acs.inorgchem.1c00940] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Two new desoxo molybdenum(V) complexes have been synthesized and characterized as models for the paramagnetic high-g split intermediate observed in the catalytic cycle of dimethyl sulfoxide reductase (DMSOR). Extended X-ray absorption fine structure (EXAFS) and electron paramagnetic resonance (EPR) data are used to provide new insight into the geometric and electronic structures of high-g split and other EPR-active type II/III DMSOR family enzyme forms. The results support a 6-coordinate [(PDT)2Mo(OH)(OSer)]- structure (PDT = pyranopterin dithiolene) for a high-g split with four S donors from two PDT ligands, a coordinated hydroxyl ligand, and a serinate O donor. This geometry orients the redox orbital toward the substrate access channel for the two-electron reduction of substrates.
Collapse
Affiliation(s)
- Khadanand Kc
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Jing Yang
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| | - Martin L Kirk
- Department of Chemistry and Chemical Biology, The University of New Mexico, MSC03 2060, 1 University of New Mexico, Albuquerque, New Mexico 87131-0001, United States
| |
Collapse
|
6
|
Summers KL, Roseman GP, Sopasis GJ, Millhauser GL, Harris HH, Pickering IJ, George GN. Copper(II) Binding to PBT2 Differs from That of Other 8-Hydroxyquinoline Chelators: Implications for the Treatment of Neurodegenerative Protein Misfolding Diseases. Inorg Chem 2020; 59:17519-17534. [PMID: 33226796 PMCID: PMC7927943 DOI: 10.1021/acs.inorgchem.0c02754] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) is a small Cu(II)-binding drug that has been investigated in the treatment of neurodegenerative diseases, namely, Alzheimer's disease (AD). PBT2 is thought to be highly effective at crossing the blood-brain barrier and has been proposed to exert anti-Alzheimer's effects through the modulation of metal ion concentrations in the brain, specifically the sequestration of Cu(II) from amyloid plaques. However, despite promising initial results in animal models and in clinical trials where PBT2 was shown to improve cognitive function, larger-scale clinical trials did not find PBT2 to have a significant effect on the amyloid plaque burden compared with controls. We propose that the results of these clinical trials likely point to a more complex mechanism of action for PBT2 other than simple Cu(II) sequestration. To this end, herein we have investigated the solution chemistry of Cu(II) coordination by PBT2 primarily using X-ray absorption spectroscopy (XAS), high-energy-resolution fluorescence-detected XAS, and electron paramagnetic resonance. We propose that a novel bis-PBT2 Cu(II) complex with asymmetric coordination may coexist in solution with a symmetric four-coordinate Cu(II)-bis-PBT2 complex distorted from coplanarity. Additionally, PBT2 is a more flexible ligand than other 8HQs because it can act as both a bidentate and a tridentate ligand as well as coordinate Cu(II) in both 1:1 and 2:1 PBT2/Cu(II) complexes.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham P Roseman
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - George J Sopasis
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Glenn L Millhauser
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Hugh H Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
- Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| |
Collapse
|
7
|
Summers KL, Pushie MJ, Sopasis GJ, James AK, Dolgova NV, Sokaras D, Kroll T, Harris HH, Pickering IJ, George GN. Solution Chemistry of Copper(II) Binding to Substituted 8-Hydroxyquinolines. Inorg Chem 2020; 59:13858-13874. [PMID: 32936627 DOI: 10.1021/acs.inorgchem.0c01356] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
8-Hydroxyquinolines (8HQs) are a family of lipophilic metal ion chelators that have been used in a range of analytical and pharmaceutical applications over the last 100 years. More recently, CQ (clioquinol; 5-chloro-7-iodo-8-hydroxyquinoline) and PBT2 (5,7-dichloro-2-[(dimethylamino)methyl]-8-hydroxyquinoline) have undergone clinical trials for the treatment of Alzheimer's disease and Huntington's disease. Because CQ and PBT2 appear to redistribute metals into cells, these compounds have been redefined as copper and zinc ionophores. Despite the attention surrounding the clinical trials and the clear link between 8HQs and metals, the fundamental solution chemistry of how these compounds bind divalent metals such as copper and zinc, as well as their mechanism(s) of action in mammalian systems, remains poorly understood. In this study, we used a combination of X-ray absorption spectroscopy (XAS), high-energy resolution fluorescence detected (HERFD) XAS, electron paramagnetic resonance (EPR), and UV-visible absorption spectroscopies to investigate the aqueous solution chemistry of a range of 8HQ derivatives. To circumvent the known solubility issues with 8HQ compounds and their complexes with Cu(II), and to avoid the use of abiological organic solvents, we have devised a surfactant buffer system to investigate these Cu(II) complexes in aqueous solution. Our study comprises the first comprehensive investigation of the Cu(II) complexes formed with many 8HQs of interest in aqueous solution, and it provides the first structural information on some of these complexes. We find that halogen substitutions in 8HQ derivatives appear to have little effect on the Cu(II) coordination environment; 5,7-dihalogenated 8HQ conformers all have a pseudo square planar Cu(II) bound by two quinolin-8-olate anions, in agreement with previous studies. Conversely, substituents in the 2-position of the 8HQ moiety appear to cause significant distortions from the typical square-planar-like coordination of most Cu(II)-bis-8HQ complexes, such that the 8HQ moieties in the Cu(II)-bis-8HQ complex are rotated approximately 30-40° apart in a "propeller-like" arrangement.
Collapse
Affiliation(s)
- Kelly L Summers
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada
| | - M Jake Pushie
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - George J Sopasis
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Ashley K James
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada.,Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Natalia V Dolgova
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada
| | - Dimosthenis Sokaras
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Thomas Kroll
- Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, Stanford University, Menlo Park, California 94025, United States
| | - Hugh H Harris
- Department of Chemistry, University of Adelaide, South Australia 5005, Australia
| | - Ingrid J Pickering
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Toxicology Centre, University of Saskatchewan, 44 Campus Dr, Saskatoon, Saskatchewan S7N 5B3, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, 114 Science Place, Saskatoon, Saskatchewan S7N 5E2, Canada.,Department of Chemistry, University of Saskatchewan, 110 Science Place, Saskatoon, Saskatchewan S7N 5C9, Canada.,Department of Anatomy and Cell Biology, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan S7N 5E5, Canada
| |
Collapse
|
8
|
Duffus BR, Schrapers P, Schuth N, Mebs S, Dau H, Leimkühler S, Haumann M. Anion Binding and Oxidative Modification at the Molybdenum Cofactor of Formate Dehydrogenase from Rhodobacter capsulatus Studied by X-ray Absorption Spectroscopy. Inorg Chem 2019; 59:214-225. [PMID: 31814403 DOI: 10.1021/acs.inorgchem.9b01613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Formate dehydrogenase (FDH) enzymes are versatile catalysts for CO2 conversion. The FDH from Rhodobacter capsulatus contains a molybdenum cofactor with the dithiolene functions of two pyranopterin guanine dinucleotide molecules, a conserved cysteine, and a sulfido group bound at Mo(VI). In this study, we focused on metal oxidation state and coordination changes in response to exposure to O2, inhibitory anions, and redox agents using X-ray absorption spectroscopy (XAS) at the Mo K-edge. Differences in the oxidative modification of the bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor relative to samples prepared aerobically without inhibitor, such as variations in the relative numbers of sulfido (Mo═S) and oxo (Mo═O) bonds, were observed in the presence of azide (N3-) or cyanate (OCN-). Azide provided best protection against O2, resulting in a quantitatively sulfurated cofactor with a displaced cysteine ligand and optimized formate oxidation activity. Replacement of the cysteine ligand by a formate (HCO2-) ligand at the molybdenum in active enzyme is compatible with our XAS data. Cyanide (CN-) inactivated the enzyme by replacing the sulfido ligand at Mo(VI) with an oxo ligand. Evidence that the sulfido group may become protonated upon molybdenum reduction was obtained. Our results emphasize the role of coordination flexibility at the molybdenum center during inhibitory and catalytic processes of FDH enzymes.
Collapse
Affiliation(s)
- Benjamin R Duffus
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Peer Schrapers
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Nils Schuth
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Stefan Mebs
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Holger Dau
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| | - Silke Leimkühler
- Institut für Biochemie und Biologie, Molekulare Enzymologie , Universität Potsdam , Karl-Liebknecht Strasse 24-25 , 14476 Potsdam , Germany
| | - Michael Haumann
- Institut für Experimentalphysik , Freie Universität Berlin , Arnimallee 14 , 14195 Berlin , Germany
| |
Collapse
|
9
|
Kaufmann P, Duffus BR, Mitrova B, Iobbi-Nivol C, Teutloff C, Nimtz M, Jänsch L, Wollenberger U, Leimkühler S. Modulating the Molybdenum Coordination Sphere of Escherichia coli Trimethylamine N-Oxide Reductase. Biochemistry 2018; 57:1130-1143. [PMID: 29334455 DOI: 10.1021/acs.biochem.7b01108] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The well-studied enterobacterium Escherichia coli present in the human gut can reduce trimethylamine N-oxide (TMAO) to trimethylamine during anaerobic respiration. The TMAO reductase TorA is a monomeric, bis-molybdopterin guanine dinucleotide (bis-MGD) cofactor-containing enzyme that belongs to the dimethyl sulfoxide reductase family of molybdoenzymes. We report on a system for the in vitro reconstitution of TorA with molybdenum cofactors (Moco) from different sources. Higher TMAO reductase activities for TorA were obtained when using Moco sources containing a sulfido ligand at the molybdenum atom. For the first time, we were able to isolate functional bis-MGD from Rhodobacter capsulatus formate dehydrogenase (FDH), which remained intact in its isolated state and after insertion into apo-TorA yielded a highly active enzyme. Combined characterizations of the reconstituted TorA enzymes by electron paramagnetic resonance spectroscopy and direct electrochemistry emphasize that TorA activity can be modified by changes in the Mo coordination sphere. The combination of these results together with studies of amino acid exchanges at the active site led us to propose a novel model for binding of the substrate to the molybdenum atom of TorA.
Collapse
Affiliation(s)
- Paul Kaufmann
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Benjamin R Duffus
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Biljana Mitrova
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | | | - Christian Teutloff
- Institute for Experimental Physics, Free University of Berlin , Arnimallee 14, 14195 Berlin, Germany
| | - Manfred Nimtz
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Lothar Jänsch
- Helmholtz Center for Infection Research , Inhoffenstraße 7, 38124 Braunschweig, Germany
| | - Ulla Wollenberger
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| | - Silke Leimkühler
- Institute of Biochemistry and Biology, Department of Molecular Enzymology, University of Potsdam , 14476 Potsdam, Germany
| |
Collapse
|
10
|
Warelow TP, Pushie MJ, Cotelesage JJH, Santini JM, George GN. The active site structure and catalytic mechanism of arsenite oxidase. Sci Rep 2017; 7:1757. [PMID: 28496149 PMCID: PMC5432002 DOI: 10.1038/s41598-017-01840-y] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Accepted: 04/04/2017] [Indexed: 11/09/2022] Open
Abstract
Arsenite oxidase is thought to be an ancient enzyme, originating before the divergence of the Archaea and the Bacteria. We have investigated the nature of the molybdenum active site of the arsenite oxidase from the Alphaproteobacterium Rhizobium sp. str. NT-26 using a combination of X-ray absorption spectroscopy and computational chemistry. Our analysis indicates an oxidized Mo(VI) active site with a structure that is far from equilibrium. We propose that this is an entatic state imposed by the protein on the active site through relative orientation of the two molybdopterin cofactors, in a variant of the Rây-Dutt twist of classical coordination chemistry, which we call the pterin twist hypothesis. We discuss the implications of this hypothesis for other putatively ancient molybdopterin-based enzymes.
Collapse
Affiliation(s)
- Thomas P Warelow
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - M Jake Pushie
- Department of Anatomy and Cell Biology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.,Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, SK, S7N 5E2, Canada
| | - Julien J H Cotelesage
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, SK, S7N 5E2, Canada
| | - Joanne M Santini
- Institute of Structural and Molecular Biology, Division of Biosciences, University College London, London, WC1E 6BT, United Kingdom
| | - Graham N George
- Molecular and Environmental Sciences Research Group, Department of Geological Sciences, University of Saskatchewan, SK, S7N 5E2, Canada. .,Department of Chemistry, University of Saskatchewan, Saskatoon, SK, S7N 5C9, Canada.
| |
Collapse
|
11
|
Niedzialkowska E, Mrugała B, Rugor A, Czub MP, Skotnicka A, Cotelesage JJH, George GN, Szaleniec M, Minor W, Lewiński K. Optimization of overexpression of a chaperone protein of steroid C25 dehydrogenase for biochemical and biophysical characterization. Protein Expr Purif 2017; 134:47-62. [PMID: 28343996 DOI: 10.1016/j.pep.2017.03.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/21/2017] [Indexed: 11/27/2022]
Abstract
Molybdenum is an essential nutrient for metabolism in plant, bacteria, and animals. Molybdoenzymes are involved in nitrogen assimilation and oxidoreductive detoxification, and bioconversion reactions of environmental, industrial, and pharmaceutical interest. Molybdoenzymes contain a molybdenum cofactor (Moco), which is a pyranopterin heterocyclic compound that binds a molybdenum atom via a dithiolene group. Because Moco is a large and complex compound deeply buried within the protein, molybdoenzymes are accompanied by private chaperone proteins responsible for the cofactor's insertion into the enzyme and the enzyme's maturation. An efficient recombinant expression and purification of both Moco-free and Moco-containing molybdoenzymes and their chaperones is of paramount importance for fundamental and applied research related to molybdoenzymes. In this work, we focused on a D1 protein annotated as a chaperone of steroid C25 dehydrogenase (S25DH) from Sterolibacterium denitrificans Chol-1S. The D1 protein is presumably involved in the maturation of S25DH engaged in oxygen-independent oxidation of sterols. As this chaperone is thought to be a crucial element that ensures the insertion of Moco into the enzyme and consequently, proper folding of S25DH optimization of the chaperon's expression is the first step toward the development of recombinant expression and purification methods for S25DH. We have identified common E. coli strains and conditions for both expression and purification that allow us to selectively produce Moco-containing and Moco-free chaperones. We have also characterized the Moco-containing chaperone by EXAFS and HPLC analysis and identified conditions that stabilize both forms of the protein. The protocols presented here are efficient and result in protein quantities sufficient for biochemical studies.
Collapse
Affiliation(s)
- Ewa Niedzialkowska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland.
| | - Beata Mrugała
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Agnieszka Rugor
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Mateusz P Czub
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow 30060, Poland; Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Anna Skotnicka
- Faculty of Agriculture and Economics, University of Agriculture in Krakow, Mickiewicza 21, 31120 Krakow, Poland
| | - Julien J H Cotelesage
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Graham N George
- Molecular and Environmental Sciences Group, Department of Geological Sciences, University of Saskatchewan, Saskatoon, SK S7N 5E2, Canada
| | - Maciej Szaleniec
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30239 Krakow, Poland
| | - Wladek Minor
- Department of Molecular Physiology and Biological Physics, University of Virginia, 1340 Jefferson Park Avenue, Charlottesville, VA 22908, USA
| | - Krzysztof Lewiński
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, Krakow 30060, Poland
| |
Collapse
|
12
|
Okamura T, Yamada T, Hasenaka Y, Yamashita S, Onitsuka K. Unexpected Reaction Promoted by NH+···O=Mo Hydrogen Bonds in Nonpolar Solvents. Eur J Inorg Chem 2016. [DOI: 10.1002/ejic.201600081] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Taka‐aki Okamura
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Takayoshi Yamada
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Yuki Hasenaka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Satoshi Yamashita
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| | - Kiyotaka Onitsuka
- Department of Macromolecular Science Graduate School of Science Osaka University 560‐0043 Toyonaka Osaka Japan
| |
Collapse
|
13
|
Affiliation(s)
- Y. Yang
- Pharmaceutical Orthopaedic Research Lab, 2-020J Katz Group Centre for Pharmacy & Health Research, Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| | - M. J. Pushie
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - D. M. L. Cooper
- Department of Anatomy & Cell Biology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5E5
| | - M. R. Doschak
- Pharmaceutical Orthopaedic Research Lab, 2-020J Katz Group Centre for Pharmacy & Health Research, Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta, Edmonton, Alberta, Canada T6G 2E1
| |
Collapse
|
14
|
Schrapers P, Hartmann T, Kositzki R, Dau H, Reschke S, Schulzke C, Leimkühler S, Haumann M. Sulfido and cysteine ligation changes at the molybdenum cofactor during substrate conversion by formate dehydrogenase (FDH) from Rhodobacter capsulatus. Inorg Chem 2015; 54:3260-71. [PMID: 25803130 DOI: 10.1021/ic502880y] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Formate dehydrogenase (FDH) enzymes are attractive catalysts for potential carbon dioxide conversion applications. The FDH from Rhodobacter capsulatus (RcFDH) binds a bis-molybdopterin-guanine-dinucleotide (bis-MGD) cofactor, facilitating reversible formate (HCOO(-)) to CO2 oxidation. We characterized the molecular structure of the active site of wildtype RcFDH and protein variants using X-ray absorption spectroscopy (XAS) at the Mo K-edge. This approach has revealed concomitant binding of a sulfido ligand (Mo=S) and a conserved cysteine residue (S(Cys386)) to Mo(VI) in the active oxidized molybdenum cofactor (Moco), retention of such a coordination motif at Mo(V) in a chemically reduced enzyme, and replacement of only the S(Cys386) ligand by an oxygen of formate upon Mo(IV) formation. The lack of a Mo=S bond in RcFDH expressed in the absence of FdsC implies specific metal sulfuration by this bis-MGD binding chaperone. This process still functioned in the Cys386Ser variant, showing no Mo-S(Cys386) ligand, but retaining a Mo=S bond. The C386S variant and the protein expressed without FdsC were inactive in formate oxidation, supporting that both Mo-ligands are essential for catalysis. Low-pH inhibition of RcFDH was attributed to protonation at the conserved His387, supported by the enhanced activity of the His387Met variant at low pH, whereas inactive cofactor species showed sulfido-to-oxo group exchange at the Mo ion. Our results support that the sulfido and S(Cys386) ligands at Mo and a hydrogen-bonded network including His387 are crucial for positioning, deprotonation, and oxidation of formate during the reaction cycle of RcFDH.
Collapse
Affiliation(s)
- Peer Schrapers
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Tobias Hartmann
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Ramona Kositzki
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Holger Dau
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| | - Stefan Reschke
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Carola Schulzke
- §Institut für Biochemie, Bioanorganische Chemie, Ernst-Moritz-Arndt-Universität Greifswald, 17487 Greifswald, Germany
| | - Silke Leimkühler
- ‡Institut für Biochemie und Biologie, Molekulare Enzymologie, Universität Potsdam, 14476 Potsdam, Germany
| | - Michael Haumann
- †Institut für Experimentalphysik, Freie Universität Berlin, 14195 Berlin, Germany
| |
Collapse
|
15
|
Ha Y, Tenderholt AL, Holm RH, Hedman B, Hodgson KO, Solomon EI. Sulfur K-edge X-ray absorption spectroscopy and density functional theory calculations on monooxo Mo(IV) and bisoxo Mo(VI) bis-dithiolenes: insights into the mechanism of oxo transfer in sulfite oxidase and its relation to the mechanism of DMSO reductase. J Am Chem Soc 2014; 136:9094-105. [PMID: 24884723 PMCID: PMC4073832 DOI: 10.1021/ja503316p] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Indexed: 12/25/2022]
Abstract
Sulfur K-edge X-ray absorption spectroscopy (XAS) and density functional theory (DFT) calculations have been used to determine the electronic structures of two complexes [Mo(IV)O(bdt)2](2-) and [Mo(VI)O2(bdt)2](2-) (bdt = benzene-1,2-dithiolate(2-)) that relate to the reduced and oxidized forms of sulfite oxidase (SO). These are compared with those of previously studied dimethyl sulfoxide reductase (DMSOr) models. DFT calculations supported by the data are extended to evaluate the reaction coordinate for oxo transfer to a phosphite ester substrate. Three possible transition states are found with the one at lowest energy, stabilized by a P-S interaction, in good agreement with experimental kinetics data. Comparison of both oxo transfer reactions shows that in DMSOr, where the oxo is transferred from the substrate to the metal ion, the oxo transfer induces electron transfer, while in SO, where the oxo transfer is from the metal site to the substrate, the electron transfer initiates oxo transfer. This difference in reactivity is related to the difference in frontier molecular orbitals (FMO) of the metal-oxo and substrate-oxo bonds. Finally, these experimentally related calculations are extended to oxo transfer by sulfite oxidase. The presence of only one dithiolene at the enzyme active site selectively activates the equatorial oxo for transfer, and allows facile structural reorganization during turnover.
Collapse
Affiliation(s)
- Yang Ha
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Adam L. Tenderholt
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
| | - Richard H. Holm
- Department
of Chemistry and Chemical Biology, Harvard
University, Cambridge, Massachusetts 02138, United States
| | - Britt Hedman
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Keith O. Hodgson
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| | - Edward I. Solomon
- Department
of Chemistry, Stanford University, Stanford, California 94305, United States
- Stanford
Synchrotron Radiation Lightsource, SLAC, Stanford University, Menlo Park, California 94025, United States
| |
Collapse
|
16
|
Lima FA, Bjornsson R, Weyhermüller T, Chandrasekaran P, Glatzel P, Neese F, DeBeer S. High-resolution molybdenum K-edge X-ray absorption spectroscopy analyzed with time-dependent density functional theory. Phys Chem Chem Phys 2014; 15:20911-20. [PMID: 24197060 DOI: 10.1039/c3cp53133c] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
X-ray absorption spectroscopy (XAS) is a widely used experimental technique capable of selectively probing the local structure around an absorbing atomic species in molecules and materials. When applied to heavy elements, however, the quantitative interpretation can be challenging due to the intrinsic spectral broadening arising from the decrease in the core-hole lifetime. In this work we have used high-energy resolution fluorescence detected XAS (HERFD-XAS) to investigate a series of molybdenum complexes. The sharper spectral features obtained by HERFD-XAS measurements enable a clear assignment of the features present in the pre-edge region. Time-dependent density functional theory (TDDFT) has been previously shown to predict K-pre-edge XAS spectra of first row transition metal compounds with a reasonable degree of accuracy. Here we extend this approach to molybdenum K-edge HERFD-XAS and present the necessary calibration. Modern pure and hybrid functionals are utilized and relativistic effects are accounted for using either the Zeroth Order Regular Approximation (ZORA) or the second order Douglas-Kroll-Hess (DKH2) scalar relativistic approximations. We have found that both the predicted energies and intensities are in excellent agreement with experiment, independent of the functional used. The model chosen to account for relativistic effects also has little impact on the calculated spectra. This study provides an important calibration set for future applications of molybdenum HERFD-XAS to complex catalytic systems.
Collapse
Affiliation(s)
- Frederico A Lima
- Max-Planck-Institut für Chemische Energiekonversion, Stiftstrasse 34-36, D- 45470, Mülheim an der Ruhr, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Affiliation(s)
- Russ Hille
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - James Hall
- Department of Biochemistry, University of California, Riverside, Riverside, California 92521, United States
| | - Partha Basu
- Department of Chemistry and Biochemistry, Duquesne University, Pittsburgh, Pennsylvania 15282, United States
| |
Collapse
|
18
|
The solution structure of the copper clioquinol complex. J Inorg Biochem 2014; 133:50-6. [PMID: 24503514 DOI: 10.1016/j.jinorgbio.2014.01.003] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 12/01/2013] [Accepted: 01/07/2014] [Indexed: 10/25/2022]
Abstract
Clioquinol (5-chloro-7-iodo-8-hydroxyquinoline) recently has shown promising results in the treatment of Alzheimer's disease and in cancer therapy, both of which also are thought to be due to clioquinol's ability as a lipophilic copper chelator. Previously, clioquinol was used as an anti-fungal and anti-protozoal drug that was responsible for an epidemic of subacute myelo-optic neuropathy (SMON) in Japan during the 1960s, probably a myeloneuropathy arising from a clioquinol-induced copper deficiency. Previous X-ray absorption spectroscopy of solutions of copper chelates of clioquinol suggested unusual coordination chemistry. Here we use a combination of electron paramagnetic, UV-visible and X-ray absorption spectroscopies to provide clarification of the chelation chemistry between clioquinol and copper. We find that the solution structures for the copper complexes formed with stoichiometric and excess clioquinol are conventional 8-hydroxyquinolate chelates. Thus, the promise of clioquinol in new treatments for Alzheimer's disease and in cancer therapy is not likely to be due to any novel chelation chemistry, but rather due to other factors including the high lipophilicity of the free ligand and chelate complexes.
Collapse
|
19
|
Seo J, Williard PG, Kim E. Deoxygenation of mono-oxo bis(dithiolene) Mo and W complexes by protonation. Inorg Chem 2013; 52:8706-12. [PMID: 23865493 DOI: 10.1021/ic4008747] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Protonation-assisted deoxygenation of a mono-oxo molybdenum center has been observed in many oxotransferases when the enzyme removes an oxo group to regenerate a substrate binding site. Such a reaction is reported here with discrete synthetic mono-oxo bis(dithiolene) molybdenum and tungsten complexes, the chemistry of which had been rarely studied because of the instability of the resulting deoxygenated products. An addition of tosylic acid to an acetonitrile solution of [Mo(IV)O(S2C2Ph2)2](2-) (1) and [W(IV)O(S2C2Ph2)2](2-) (2) results in the loss of oxide with a concomitant formation of novel deoxygenated complexes, [M(MeCN)2(S2C2Ph2)2] (M = Mo (3), W (4)), that have been isolated and characterized. Whereas protonation of 1 exclusively produces 3, two different reaction products can be generated from 2; an oxidized product, [WO(S2C2Ph2)2](-), is produced with 1 equiv of acid while a deoxygenated product, [W(MeCN)2(S2C2Ph2)2] (4), is generated with an excess amount of proton. Alternatively, complexes 3 and 4 can be obtained from photolysis of [Mo(CO)2(S2C2Ph2)2] (5) and [W(CO)2(S2C2Ph2)2] (6) in acetonitrile. A di- and a monosubstituted adducts of 3, [Mo(CO)2(S2C2Ph2)2] (5) and [Mo(PPh3)(MeCN)(S2C2Ph2)2] (7) are also reported.
Collapse
Affiliation(s)
- Junhyeok Seo
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, United States
| | | | | |
Collapse
|